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Abstract— As a part of road safety initiatives, surrogate road
safety approaches have gained popularity due to the rapid
advancement of video collection and processing technologies.
This paper presents an end-to-end software pipeline for
processing traffic videos and running a safety analysis based on
surrogate safety measures. We developed algorithms and
software to determine trajectory movement and phases that,
when combined with signal timing data, enable us to perform
accurate event detection and categorization in terms of the type
of conflict for both pedestrian-vehicle and vehicle-vehicle
interactions. Using this information, we introduce a new
surrogate safety measure, “severe event,” which is quantified by
multiple existing metrics such as time-to-collision (TTC) and
post-encroachment time (PET) as recorded in the event,
deceleration, and speed. We present an efficient multistage event
filtering approach followed by a multi-attribute decision tree
algorithm that prunes the extensive set of conflicting interactions
to a robust set of severe events. The above pipeline was used to
process traffic videos from several intersections in multiple cities
to measure and compare pedestrian and vehicle safety. Detailed
experimental results are presented to demonstrate the
effectiveness of this pipeline.

I. INTRODUCTION

Intersection safety is an active area of research because
traffic intersections are prone to crashes. USDOT estimates
more than 50% of road crashes leading to fatality or injury
happen at or near traffic intersections. Road crashes have been
one of the leading causes of death worldwide. With the rapid
advancement in technology, many intersections now have
video cameras deployed as sensors to monitor these
intersections. The videos are streamed over the Web, stored,
and processed for safety assessment. Existing intersection
safety assessment methodologies often require the analysis of
historical data to infer current and future intersection user
behavior. Although helpful, these data are often biased to what
has been reported, are incomplete, and retrospective. This
paper will present our end-to-end intersection safety
methodology, starting with processing intersection videos and
ending at computing existing and new '"surrogate safety
measures."

Based on decades of safety research using crash data, it is
generally acknowledged that using surrogate measures of
safety could provide further insights into enhancing the safety
of roadways. These surrogate measures rely on maneuvers
(trajectories) of vehicles and pedestrians. By understanding
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trajectories that could have led to a crash, countermeasures can
be developed to reduce or even eliminate such unsafe
maneuvers. The most common surrogate safety measure is the
“near miss” or the “traffic conflict.” Near misses involve a
vehicle’s trajectory coming “very close” to that of another
vehicle or a pedestrian without an actual collision. The
proximity of the trajectories is measured on a temporal scale
using metrics such as time-to-collision (TTC) [1] and post-
encroachment time (PET) [2]. The severity of the near-miss
event can be determined based on both the temporal proximity
measures (TTC and PET) and the velocities of the vehicles or
pedestrians involved. Typically, shorter TTC and PET,
combined with higher relative speeds, imply a greater severity
of the near miss (i.e., the lesser likelihood of not avoiding the
potential crash and higher injury severity had the crash not
been avoided). Unlike the case of crashes, there are currently
no clear thresholds or categories for classifying near misses by
severity. In this paper, we introduce a new surrogate safety
measure, “severe event,” that includes all near-miss events as
well as unsafe behavior exhibited by road users.

While surrogate safety measures offer a great opportunity
to understand site-specific and time-specific safety issues and
develop countermeasures, a great practical impediment in
using surrogate measures for safety analysis is the need to
process large volumes of video data to determine trajectories,
identify the conflicts in these trajectories, and filter these down
to a subset of critical unsafe maneuvers for further analysis. In
the context of signalized intersections, it is also necessary to
analyze the unsafe maneuvers for the ongoing signal phasing
data to identify the appropriate countermeasures. For example,
unsafe maneuvers that happen during a permitted left-turn
phase may suggest the need for a profected left-turn phase.
Similarly, conflicts between right-turning vehicles and
crossing pedestrians may suggest separating the signal phases
for these two movements (no right turn on red or leading
pedestrian phase). This paper makes several contributions to
the field of intersection safety analysis, described as follows:

e The algorithms to decompose pedestrian and vehicle
trajectories while fusing signal timing data to derive
features useful for safety analysis.

e Introduction of a new surrogate safety measure, severe
event, which is quantified by multiple existing metrics
such as TTC or PET asrecorded in the event, deceleration,
and speed.

e Categorization of severe events based on the directional
movement of vehicles and/or pedestrian movements and
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phase information. This is then used for relative weighting
of severe events (based on the potential for damage) and
deriving a weighted average to reflect a comparative
safety rating for each intersection. This comparison can
also consider the exposure rate (determined by total
number of vehicles and pedestrians crossing the
intersection).

e An efficient multistage event filtering approach followed
by a multi-attribute decision tree approach that subsets the
extensive set of conflicting interactions to a robust set of
severe events.

We have applied our algorithms to multiple intersections in
two different cities. Our extensive results demonstrate the
usefulness of the software by exposing key insights into severe
conflicts by the day of the week and hour of the day analysis.

The rest of the paper is organized as follows. Section II
presents the related work in the field of traffic safety analysis
using surrogate safety measures. Section III presents the
overall methodology we developed, starting with trajectory
generation and computation of features from the trajectories,
our strategy of classification of serious conflicts, and the
introduction of the new surrogate safety measure, severe event,
that we developed as a part of this work. We present a set of
event filters that we use to automatically filter out events that
are not potentially dangerous. Section IV presents our

experimental results, and we conclude in Section V.

II. RELATED WORK

Several surrogate safety measures have been developed
relying on physical properties (time, distance, and speed) of
vehicle trajectories. Measures such as TTC and PET which are
based on temporal proximity of the road users are perhaps the
most widely used indicators, especially in the context of
intersections, which are the focus of this paper. TTC is the time
remaining to avoid a collision, from the time the road user
takes an action to the point where the collision can occur [1].
PET is the time difference between the time at which the first
road user leaves one point and the time at which the second
road user arrives at that same point [2]. Lower values of TTC
and PET indicate higher risks of collision. There are several
other measures that have been proposed which are based on
either spatial proximity or acceleration-deceleration patterns
of vehicles [3][4]. A very extensive synthesis of literature on
surrogate safety measures was recently provided by Arun et al.
[5].

Just as all traffic crashes are not equally severe (some could
lead to fatalities while a vast majority are minor crashes with
only property damage but no injuries), all temporally proximal
interactions among road users need not be “safety-critical”
events. Even though Hydén [6] proposed over three decades
ago that there is a hierarchy of traffic events varying in
severity, Arun et al. [5] note that there is still no consensus on
what constitutes a safety-critical event or a near miss.

One approach to identifying the critical events is by
applying thresholds on surrogate safety measures. For
example, thresholds on TTC range from 1.5 to 3.0 seconds
[7-10], while those for PET range from 1.0 to 1.5 sec [11,12].
Broadly, the perception-reaction time of road users (the time
taken by a road user to understand a situation and react to it)
are considered as benchmarks in determining these thresholds.

Surrogate safety measures primarily reflect the possible
interactions (or “events”) between road users, and not all of

them are critical from the standpoint of safety. Therefore, it is
important to distinguish between safer and critical interactions.

Safety-critical events are also known as near-misses or
sometimes as traffic conflicts, but the definition of a traffic
conflict has remained contentious over years [5]. The early
definitions of traffic conflicts indicate that only the most
extreme of traffic interactions have been considered as safety
critical [13]. Hydén [6] proposed that there is a hierarchy of
traffic events varying in severity, and Arun et al. [5] note that
there is still no consensus on what constitutes a safety-critical
event or a near miss.

A second approach to identifying critical conflicts is the
“Swedish Traffic Conflict Technique” [14]. This approach
considers both the surrogate measure and the speed of the
conflicting road users. In general, events representing a
combination of lower times to crash and a higher conflict
speed are considered more serious events. An example of
conflict curves is presented in Fig. 1. Vehicle-vehicle conflicts
placed above curve 26 are considered serious while vehicle-
pedestrian conflicts placed above curve 24 are considered
serious [20].

The determination of surrogate safety measures and critical
safety events requires trajectories of road users (vehicles and
pedestrians) as inputs. These trajectories may be obtained from
traffic simulators or from processing of real-world video data.
The Surrogate Safety Assessment Model (SSAM) has been
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Figure 1. Swedish technique conflict diagram (reproduced
from Laureshyn & Varhelyi [14]).

developed as a post-processor to estimate the number and
severity of conflicts based on vehicle trajectory data [16][17].
The outputs of SSAM include the number, the type, the
severity, and the locations of three types (crossing, lane
changing, and rear-end) of simulated conflicts. The conflict
type is identified according to the lane and link information or
the angle between the two converging vehicles.

Commercial applications for processing trajectory data
from videos to determine surrogate measures include those
developed by DERQ, AMAG, Currux, and Transoft Solutions.
Our paper is closely related to the work in [21], where the
authors use video analysis for intersection traffic analysis. The
main difference is [21] has not treated pedestrian-vehicle
conflicts. Further, only PET was used as a safety indicator. In
contrast, we use a holistic approach to compute and use PET
and TTC as is appropriate, speed, deceleration, and distance
between the road users as active features for severe-event
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detection. In combination, these features give a deeper insight
into the event's nature and get us nearer to the events that are
indeed close calls.

III. METHODOLOGY

The methodology used for this work is described as
follows. Section III.A presents the salient features generated
by our software to better qualify the events and their use for
safety analysis. Section III.B introduces a new surrogate safety
measure, severe event, and describes a categorization scheme
for  vehicle-vehicle and  pedestrian-vehicle  events.
Section III.C describes a filtering process, which is an event
sieve that helps narrow down the events to keep only the most
critical events. Finally, Section III.LD describes a multi-
attribute decision tree approach to isolate high intensity
regions in feature space that contain most of the severe events.

A. Generating Features from Trajectories

Trajectories are generated by processing the intersection
videos. The safety analysis system takes fisheye video footage
as input, then annotates objects with bounding boxes, maps
those coordinates from the fisheye image to rectilinear space,
and then stores the results in the trajectory table. The object
detection and tracking module utilizes YOLOvV4 [19] to detect
different kinds of road participants, including vehicles,
pedestrians, cyclists, and motorcyclists. A modified
DeepSORT algorithm is used to associate detections across
frames and assign a unique ID for each object. As the
trajectories from fisheye videos are usually of unnatural shapes
caused by distortion, we perform rectification and alignment
to Google Maps images before feeding the trajectories to
downstream modules. Our solution for rectification includes
two steps: fisheye-to-perspective transformation followed by
thin-plate spline (TPS) warping.

Separately, Automated Traffic Signal Performance
Measures (ATSPM) data provided by the city are collected,
which provides the signal information for each traffic light per
intersection over time. These signals are merged with object
trajectories, which enables analyses that are concerned with
object location and signal states over time, such as signal
violations, lingering mid-trajectory, and others. One issue that
arises however is the synchronization of city provided signal
changes and video-recorded signal changes, which usually
vary by a few seconds. A purpose-built computer vision model
is trained to output signal states, which is compared to ATSPM
signal changes to yield the time delay between video and city
data. If a signal is not visible, then the start-up time of a vehicle
is used under the assumption that driver reaction time is
roughly one and a half seconds, but this time is configurable
in the software.

We have computed a comprehensive set of features for
every conflict event. A feature in this context is an individual
measurable property or characteristic of a conflicting event.
The following is a list of the key features that we compute:

1. Standard near-miss attributes: We compute the common
risk assessment metrics such as TTC and PET for every
event.

2. Signal phase information: The fused video and ATSPM
dataset is used to determine features such as the ongoing
vehicle signal, ongoing pedestrian signal, and if the event
occurs during the beginning, middle, or end of the current
signaling phase.

3. Trajectory features: The trajectory-related features are the
trajectory’s movement, phases, and lanes.

4. Speed features: These include the current speeds and
accelerations for vehicle-vehicle interactions.

5. Distance: Spatial distance between two users at the time
of the conflict.

B. Categorization of Severe Events

The categorization of the vehicle-vehicle and pedestrian-
vehicle conflicts are described in this section.

1) Pedestrian-vehicle (P2V) Events:

The following are the main conflict events between
vehicles and pedestrians at signalized intersections:

e Conflict Types | and 2: Right-turning vehicle with the
pedestrian in an adjacent parallel crosswalk (Fig. 2a)
and near-side crosswalk (Fig. 2d), respectively.

e Conlflict Types 3 and 4: Left-turning vehicle with the
pedestrian in the far-side crosswalk (Fig. 2b) and near-
side crosswalk (Fig. 2d), respectively.

e Conflict Types 5 and 6: Through vehicle with
pedestrian in the far-side crosswalk (Fig. 2c) and the
near-side crosswalk (Fig. 2d) respectively.

Among these conflicts, Conflict Types | and 3 are
feasible conflicts between pedestrians and vehicles at
signalized intersections if all vehicles and pedestrians strictly
follow the traffic rules (assuming a three- or four-leg
intersection, which are the most common).

2) Vehicle-vehicle (V2V) Events: As the primary purpose
of signalization is to reduce or eliminate conflicting
movements on the intersection, the following are the feasible
conflicts between vehicles at signalized intersections if all
vehicles strictly follow the traffic rules (assuming a three- or
four-leg intersection, which are the most common):

e  Left turn and opposing through (LOT): A left-turning
vehicle in a permitted phase conflicts with an opposing
through movement (Fig. 2e).

e U-turn and opposing through: A U-turning vehicle in
a permitted phase conflicts with an opposing through
movement (Fig. 2f).

e  Through and right turn (RMT): A right-turning vehicle
merging on the same lane as a through vehicle (Fig.
2g).

e U-turn and a following left-turn (UFL): A leading U-
turn with a following left-turning vehicle (Fig. 2h).

e Right turn and a following through (RFT): A leading
right-turning vehicle with a following through vehicle
(Fig. 21).

e Lane change and adjacent through (LCC): A lane-
changing vehicle conflicting with adjacent through
(Fig. 2j).

e Rear-end conflicts: A leading vehicle moves slower
than the following vehicle on the same lane.

e A U-turn and an adjacent right turn.

If one or more vehicles do not strictly follow the traffic
rules (e.g., run the red light), other conflicts are also possible,
namely, adjacent through movements and left turn and
adjacent through.

Some conflict types may be inherently more dangerous
than the other types. For example, the left-turn and opposing
through conflicts may lead to a more serious crash than a
merging, a diverging, or a rear-end conflict. Further, the left
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(g) V2v: RMT
Figure 2. Pedestrian-vehicle (P2V) and vehicle-vehicle (V2V) conflicts at signalized intersections. Some conflicts are infeasible if
the road users are strictly following the traffic rules. However, such an assumption is far from reality and in our analysis, we
pick up quite a handful of conflicts that happened because the road users did not follow the basic traffic rules.

(f) Vav: uoT (h) V2V: UFL

All
Pairwise Interactions
Macrofilter - used to eliminate
interactions that are very unlikely
to be traffic events

Potentially Severe
Pairwise Interactions

Microfilter - used to keep events
of interest to traffic engineers and
policymakers
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Pairwise Interactions

o Multi-attribute Decision Tree for

Collision Prediction
Highly Scored
Severe Events

Figure 3. Event filtering sieve. The macrofilter checks for
movement phases of conflicting trajectories, the timing,
and distance features. The microfilter checks finer aspects
such as whether yields were properly given.

turn and opposing through conflict is dangerous when the slow
left-turning vehicle is the first one to cross the conflict point.
The less dangerous and common occurrence is when the left-
turning vehicles yield to the through vehicles before
completing the turn.

C. Event Filtering

Fig. 3 shows the multistage event filter we employ to prune
the set of events. The macrofiltering stage checks the
following conditions for two road users who happen to be at
the intersection in the same time frame: (1) Are they in a
conflicting traffic phase? (2) Is the TTC or PET within a user-
defined threshold, say, 10 seconds? (3) Are they spatially
within or close to the intersection and within a user-defined
threshold, say, 10 meters from each other? and (4) Are both
the road users moving?

When all these conditions are satisfied, the event passes
through to the microfilter. The first check for vehicle-vehicle
interactions in the microfilter is whether an event is recorded
more than once from separate TTC and PET computations. If

{e) V2v: LOT

] L™ =
(d) P2V: Conflict Types 2, 4,6
=Y :

(i) Vav: RFT

(i) v2v: LGC

the event did not result in a post-encroachment and there is no
corresponding PET, the event must last for more than one
decisecond for it to be considered severe. The second check
for vehicle-vehicle interactions is whether the vehicles
properly yielded to the other as per the traffic rules in case of
a conflicting movement. If so, the event is filtered away.

For pedestrian-vehicle interactions, the first check in the
microfilter is to find if the pedestrian is violating the
pedestrian signal, and if so, the event is considered severe,
even if there are no vehicles nearby. Highlighting the
behavior allows practitioners to be aware if there is a pattern
and adjust signal timing if needed. Suppose the pedestrian
follows the signal, yet the event already made it through the
macrofilter (indicating a conflicting maneuver), in that case,
the microfilter checks if the distance between the pedestrian
and the vehicle is 5 meters or less. If so, then the event is
considered severe. On the other hand, if the pedestrian is
about to enter the crosswalk and the vehicle is close by, the
filter checks if the pedestrian's distance is less than 1 meter,
and in that case, the event is considered severe.

All the thresholds mentioned in this section are easily
configurable by the user based on specific intersection
geometry and user characteristics.

Figure . Four pedestrian phases, P2, P4, P6, and P8,
and the eight vehicle phases, 1,2, 3,4, 5, 6, 7, and 8,

are shown for University Ave & 13t St.

S
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TABLE 1: DESCRIPTION OF THE SIX INTERSECTIONS THAT WERE THE SUBJECT FOR OUR ANALYSIS, INCLUDING THE LOCATION OF
THESE INTERSECTIONS, THEIR SPEED LIMITS ALONG THE MAJOR AND THE MINOR STREETS, TOTAL TRAFFIC OBSERVED OVER A
WEEK, THE PERCENTAGE OF PEDESTRIAN TRAFFIC, WHETHER THE INTERSECTION SERVED PROTECTED, PERMISSIVE, OR A

COMBINATION OF THE PROTECTED AND PERMISSIVE LEFT.

D. Event Modeling

Although the event filters were efficient in pruning the
event set, manually reviewing the filtered videos still
constitutes a significant investment of human resources. For
this reason, we utilize a simple algorithm to determine high-
intensity regions in the feature space for severe events, where
these events have been annotated manually. Since the event
count after applying the filters is small compared to the total
number of features for the events, there is a high chance of
over-fitting if a feature space with all the features is
considered. So, to determine the high-intensity regions, we
use only three features: the speed, acceleration, and TTC or
PET, as appropriate for that event. The algorithm plots 2D
scatter plots of the events for each pair of features from the
three-feature set and then sweeps the 2D space with a straight
line to find the best intercept for which the line separates the
severe and the non-severe events. The straight-line acts as a
separator of the 2D feature space, and we consider several
such lines with different slopes to arrive at a near-optimal
partitioning. This process is repeated for each of the two
partitions if a partition is not purely from one class of events
and contains a good mix of severe and non-severe events. In
any case, the process is repeated up to a maximum of three
levels of recursion. This algorithm could lead to more than
one high-intensity region for the same dataset, which once
identified, can be conveniently used as a classifier for severe
events. An example is presented in the experiments section.
Human ratings of events are used to validate the model’s
predictions.

IV. EXPERIMENTS

We applied our video processing algorithms end-to-end on
six different intersections for the first week in November
2021. We collected data between 6 AM and 7 PM for each
intersection, so a total of 546 hours of video data were
processed using our software and analyzed for intersection
safety. Table 1 gives the intersection details. Based on video
analysis, Table 1 also presents the total traffic and the
percentage of pedestrians versus drivers. Three intersections
are on an arterial adjacent to a university (ID: 1, 2, 3), one
intersection is adjacent to a high school (ID: 4), and the two
other intersections are in a city (ID: 5, 6). Though all these
intersections have right-hand-drive traffic, our algorithms can
also analyze intersections with left-hand-drive traffic.

3121
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D Intersection City OtajorNino "% of total traffey | Volume Left Turn Type

1 University Ave & 13" St Gainesville 35/25 18.5 146,133 Protected

2 University Ave & 17" St Gainesville 25/25 41.8 67,550 Protected/Permissive
3 | University Ave & 20" Dr Gainesville 25/25 2.9 105,590 Protected/Permissive
4 |NW 23" Ave & NW 55 St Gainesville 45/30 1.6 97,173 Protected/Permissive
5 Post Office & Rhinehart Orlando 45/45 1.2 61,530 Protected/Permissive
6 Lake Mary & Rhinehart Orlando 45/45 0.2 55,889 Protected

We present our results on conflict analysis separately for
pedestrians and vehicles in Sections IVA and 1VB,
respectively. While Table 1 gives an aggregate volume of the
total number of pedestrians observed during the study period,
we can further disaggregate the pedestrian count by the
pedestrian phases and by day of the week and hour of the day.
We present this analysis for the intersection of University Ave
& 13™ Street, but the other intersections may be analyzed
similarly. The four pedestrian phases P2, P4, P6, and P8, and
the eight vehicle phases, 1-8, for the University Ave & 13
Street intersection are shown in Fig. 4.

Fig. 5 shows the pedestrian volumes for the four
pedestrian phases at the University Avenue & 13™ Street
intersection by day of week and hour of the day. We observe
that (i) the volume on phase 4 is the highest, (ii) the volume on
a Saturday, November 13, 2021, is the highest because there
was a football game at the University stadium on the
University Avenue, (iii) the volumes on Monday and Tuesday
are higher than the rest of the weekdays, and (iv) this
intersection is large, so the pedestrians on the closest
crosswalks are the best processed by the video processor. The

Pedestrian Volume for Phase 2 280

Monday

Tuesday 200

Wednesday
150
Thursday

Day of Week

Friday 100

Saturday 50
Sunday

10 12

Hour of Day

14 16 18

Pedestrian Volume for Phase 4

250
Monday

Tuesday 200

Wednesday 150

Thursday

Friday 100

Day of Week

EEET EEE |

10

Saturday 50
Sunday

12 14 18
Hour of Day

16

Figure S. Pedestrian volumes by the four pedestrian phases
at the University Avenue & 13 Street intersection. Among
the weekdays, Monday and Tuesday are busier at this
intersection. On Saturday, November 13, 2021, pedestrian
traffic was especially high because of a football game being
held at the University Stadium.
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Figure 6. The pedestrian-vehicle conflict events are categorized into six conflict types and counted by day of the week and hour of
the day. Figures (a), (b), and (c) give the raw event count for Conflict Types 1, 3, and 5, while figures (d), (e), and (f) give a count
of signal cycles with at least one conflict. Conflict Type 1 occurs most frequently and is more likely to happen between 12 and 2 pMm.
Saturday, November 13,2021, was a game day, and there was an uptick on the conflict counts from (c). However, these conflicts are
clustered and fewer signal cycles are affected as can be seen from (d), Conflict Type 5, which is through vehicle with pedestrian in
the far-side crosswalk, a dangerous conflict that happens more frequently during 1-4 pM.

crosswalks may be ordered as phases 4, 2, 6, and 8 by their
proximity to the camera.

A. Pedestrian-vehicle Conflict Analysis

Fig. 6 counts pedestrian-vehicle conflicts by the conflict
type and conflict cycles on the University Avenue & 13%
Street intersection. The conflicts are shown by day of the
week and hour of the day. We observe: (i) Conflict Type 1,
which is a right-turning vehicle with a pedestrian on the
adjacent parallel crosswalk, occurs most frequently; (ii)
Conflict Type 1 happens throughout the day but are more
likely to happen around 12-2 pM; (iii) Conflict Type 3, which
is a left-turning vehicle with a pedestrian on the far-side
crosswalk, happens most frequently on game day; (iv)
Conflict Type 5, which is a through vehicle with a pedestrian
on the far-side crosswalk, a dangerous conflict, happens more
frequently during 1-4 PM.

Each conflict type can be analyzed further by the vehicular
movements, and Fig. 7 shows a sample of such an analysis.
We observe that the afternoons and weekends are when
pedestrians are more prone to violate the traffic light and
undertake dangerous crossings. We found that for Conflict
Type 1, the movements west-bound right (WBR) and south-
bound right (SBR) happen most frequently, and these events
happen on both weekdays and weekends.

Such detailed analysis of pedestrian-vehicle conflicts
could give insights into countermeasures that could lead to
reduced conflicts.

B. Vehicle-vehicle Conflict Analysis

Table 2 shows the number of potentially conflicting
interactions over a week and the performance of the two-level
macro- and microfilters in filtering the events. The events
include both vehicle-vehicle and pedestrian-vehicle conflicts.
All pedestrian-vehicle events that remain after applying the
microfilter are considered severe by default because of the
vulnerable nature of pedestrians. We manually verified for
vehicle-vehicle events that between 30%—-60% of these may

be regarded as severe. We further applied our multi-attribute
decision tree algorithm for classifying an unseen event
automatically as severe or non-severe. The results of this step
are presented in the Vehicle-Vehicle Multi-Attribute Decision
Tree (V2V MADT) column that further reduces the count of
severe events, which then may be quickly evaluated manually
for insights into applicable countermeasures. Thus, starting
from millions of potential conflict interactions, our filtering
scheme reduced the events to a small set of severe events.
Table 3 categorizes the vehicle-vehicle conflict types into
the previously defined classes. There were some conflicts that
did not belong to any of our defined conflict types. Among the
known conflict types, left opposing through is the most severe
as it could lead to significant damage to life and property if any
of the conflicts results in a collision. The other conflict types
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Figure 7. Volume of pedestrian-vehicle Conflict Type 5 by
vehicle movement. This conflict type, between a through
vehicle and a pedestrian in the far-side crosswalk, is the
most dangerous. In almost all these cases, we have watched
the video and found that pedestrians are violating their
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TABLE 2. TOTAL NUMBER OF POTENTIALLY CONFLICTING INTERACTIONS OVER A WEEK FOR DIFFERENT INTERSECTIONS AND PERFORMANCE
OF THE TWO-LEVEL MACRO- AND MICROFILTERS IN FILTERING THE EVENTS TO A HANDFUL FOR FURTHER MANUAL ANALYSIS. THE COLUMN
V2V MADT CONTAINS THE EVENT COUNTS AFTER APPLYING OUR MULTI-ATTRIBUTE DECISION TREE ALGORITHM.

Intersection Conflicts Macrofilter Microfilter P2V Events v2v V2V MADT
University Ave & 13t St 1,918,822 5152 888 722 166 125
University Ave & 17" St 459,995 5370 1045 959 86 42
University Ave & 20t Dr 2,247,395 5433 403 259 144 85
NW 23 Ave & NW 55 St 947,921 5938 217 63 154 112
Post Office & Rhinehart 362,354 344 95 67 28 28
Lake Mary & Rhinehart 1,279,019 956 28 0 28 28

TABLE 3: TOTAL VEHICLE-VEHICLE CONFLICTS BY CONFLICT TYPE AND AGGREGATED AS (I) TOTAL, WHICH IS THE SUM OF ALL
CONFLICTS, (1) WEIGHTED, WHICH IS A WEIGHTED TOTAL OF CONFLICTS WITH A WEIGHT OF 4 ASSIGNED TO THE LEFT OPPOSING THROUGH AND 1
TO THE REST OF THE CONFLICTS, BASED ON POTENTIAL SEVERITY OF THE CONFLICT, (111) NORMALIZED, WHICH IS OBTAINED BY DIVIDING THE
WEIGHTED CONFLICTS BY THE CORRESPONDING EXPOSURE METRIC, AND MULTIPLYING BY 10,000, TO GIVE THE NUMBER OF WEIGHTED CONFLICTS
PER 10,000 VEHICLES MAKING THE SAME MANEUVERS.

Intersection Left Opposing | Right Merging | Right Following | Rear-End | Others | Total | Weighted | Normalized
Through Through Through Conflict
University Ave & 13" St 15 2 37 28 84 166 211 24
University Ave & 17" St 33 2 15 9 27 86 185 21
University Ave & 20" Dr 91 5 9 3 36 144 417 62
NW 23" Ave & NW 55t 73 6 22 6 47 154 373 43
Post Office & Rhinehart 12 0 7 1 8 28 64 15
Lake Mary & Rhinehart 1 1 0 2 24 28 31 14

TABLE 4: TRAFFIC EXPOSURE METRIC SUITABLE FOR EACH TYPE OF CONFLICTING MOVEMENT COMBINATION. FOR EXAMPLE, FOR LEFT OPPOSING
THROUGH CONFLICTS, WE DEFINE THE EXPOSURE METRIC AS THE SUM OF VEHICLES MAKING LEFT TURNS AND OPPOSING THROUGH MOVEMENTS.

Intersection Left Opposing Through ng;ll:xs;}gllng ngl%thl:zggxlng RCez:;;'lEi::ltd Total Vehicles
University Ave & 13" St 53,484 27,663 72,735 191,788 146,133
University Ave & 17% St 99,974 28,030 63,826 179,082 67,550
University Ave & 20 Dr 66,774 59,706 31,596 121,966 105,590

NW 23" Ave & NW 55" St 97,810 45,988 36,814 63,782 97,173
Post Office & Rhinehart 47,759 23,568 20,459 23,294 61,530
Lake Mary & Rhinehart 8450 8884 N/A 11,542 55,889

are merging or diverging conflicts, and any resulting collision (a) All Data (b) Data in Region B

yields a very low impact crash. So, event categorization helps

emphasize only the more dangerous conflict types by placing 40 = _y=1'73”5'27 sofl—— Y=0.84x+-0.23] | o
more weight on the dangerous conflict types. For example, in B30/ . %30 .
Table 3, the column titled "Total" is a simple sum of all @ 20| k"1 " @ ‘ e
conflict types, whereas the column titled "Weighted" gives a g7 %, el gzo‘ OIS A
weighted total, where the left opposing through conflicts have 10 -5 ye¥ 10‘ ; z@(ov‘: et
been assigned a weight of 4. The "Normalized" column [ 2 a 6 10 20 30
computes the conflict volume per 10,000 road users. These T maxDeceleration
numbers are obtained by dividing the weighted conflicts by the (c) Data in Region C g0, d) Datain RegionD
corresponding exposure metric (explained in the next 25| S\ —— y=-5.67x+28.54 N y=-2.14x+70.13
paragraph) and multiplying by 10,000. The “Normalized” 820|' -\\ 240 i "y
conflicts allow us to rank the intersections by safety. For 4 "-". N 2 Nt .
example, we can conclude from Table 3 that the Lake Mary & é“| s . . ézo‘ . et
Rhinehart intersection is the safest. 1°| - \ \
Table 4 shows the exposure metrics for the known conflict 5 : : = > o
types. The exposure metric was computed as the sum of the = e ., S

total number of vehicles participating in either of the two
movements that are involved in a conflict. For example, if
there is a conflict between north-bound left (NBL) and south
bound through (SBT), then the exposure metric for left
opposing through will have a component that is the sum of all
vehicles making NBL and SBT maneuvers. The exposure
metric serves as a denominator in normalizing the conflict
volume.

Fig. 8 shows the steps in our algorithm for isolating the
high-intensity regions in the three-dimensional space of
(maxSpeed, maxDeceleration, minTime). For a conflict,

Figure 8. The steps in finding high intensity regions of severe
events: (a) all data and the line that separates them. In this
diagram, the red dots represent severe events, while the blue
dots represent non-severe events. The data here are from the
NW 23 Avenue & NW 55 Street intersection. Region A
consists of non-severe points, while in (b), Region B is further
split into regions C and D. Splitting regions C and D again, in
(c) and (d) respectively, gives us high-intensity regions.

maxSpeed defines the maximum speed of the two vehicles
involved, while maxDeceleration is the maximum brake
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applied by either of the two vehicles. minTime is the minimum
time for TTC or PET, which comes from the point
representation of the involved vehicles and a bounding box
representation of these vehicles. We take the minimum of
these two times. The data used in Fig. 8 are from the NW 234
Ave & NW 55% Street intersection. The steps in the algorithm
are demonstrated in Fig. 8(a—d). The high-intensity region is
obtained from randomly processing 80 of 100 filtered events
from the intersections. The remaining 20 events are used to test
the classifier. We manually annotated the 100 filtered events
as severe or non-severe. The accuracy of this scheme is 90%,
with a 92% recall and 90% precision. We used our algorithm
separately for each intersection. The splits as shown in Fig. 8
are different for each intersection because the intersections
have different characteristics such as speed limits, presence of
a school nearby, etc. The column V2V MADT in Table 2
shows the volume of events that were further pruned by our
algorithm to find high-intensity regions. We didn’t apply the
MADT algorithm to P2V events because pedestrians are
vulnerable users and all conflicts that remain after applying the
filters are considered as severe by default. The accuracy of the
MADT algorithm depends on the accuracy of video processing
algorithms as video processing plays a crucial role in the
computation of the safety features such as speed, deceleration.

V. CONCLUSIONS

This paper developed a systematic and novel
methodology for analyzing intersection safety based on video
analysis. We developed algorithms that use video analysis and
signal timing data to perform accurate event detection and
categorization in terms of the phase and type of conflict for
both pedestrian- vehicle and vehicle-vehicle interactions. We
introduced a new surrogate safety measure, severe event
which is quantified by multiple existing metrics such as TTC
or PET as recorded in the event, deceleration, and speed. We
developed an efficient multistage event filtering approach
followed by a multi-attribute decision tree approach that
prunes the extensive set of conflicting interactions to a robust
set of severe events.

Using our analysis and based on the limited number of
intersections, we found that the dominant conflicts at
intersections with heavy pedestrian use are right-turning
vehicle on the adjacent parallel crosswalk. We could identify
the specific right-turn directions that contribute to this
problem and the hours during the week when the problem
peaks. Categorization of vehicle-vehicle interactions showed
that for intersections with permissive left turns, the more
common conflict is that between a left-turning vehicle and a
through vehicle. The intersections with protected left-only
displayed some merging and diverging conflicts which are
inherently less severe conflicts.

We believe that our approach provides a systematic
approach to diagnose key safety issues on an intersection.
This information can then be used to make changes in signal
timing and conduct before and after studies to see potential
improvements. This is part of our ongoing work.
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