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ABSTRACT Epithelial-mesenchymal transition (EMT) is a biological process that plays a central role in embryonic develop-
ment, tissue regeneration, and cancer metastasis. Transforming growth factor-b (TGFb) is a potent inducer of this cellular tran-
sition, comprising transitions from an epithelial state to partial or hybrid EMT state(s), to a mesenchymal state. Recent
experimental studies have shown that, within a population of epithelial cells, heterogeneous phenotypical profiles arise in
response to different time- and TGFb dose-dependent stimuli. This offers a challenge for computational models, as most model
parameters are generally obtained to represent typical cell responses, not necessarily specific responses nor to capture popu-
lation variability. In this study, we applied a data-assimilation approach that combines limited noisy observations with predictions
from a computational model, paired with parameter estimation. Synthetic experiments mimic the biological heterogeneity in cell
states that is observed in epithelial cell populations by generating a large population of model parameter sets. Analysis of the
parameters for virtual epithelial cells with biologically significant characteristics (e.g., EMT prone or resistant) illustrates that
these sub-populations have identifiable critical model parameters. We perform a series of in silico experiments in which a
forecasting system reconstructs the EMT dynamics of each virtual cell within a heterogeneous population exposed to time-
dependent exogenous TGFb dose and either an EMT-suppressing or EMT-promoting perturbation. We find that estimating
population-specific critical parameters significantly improved the prediction accuracy of cell responses. Thus, with appropriate
protocol design, we demonstrate that a data-assimilation approach successfully reconstructs and predicts the dynamics of a
heterogeneous virtual epithelial cell population in the presence of physiological model error and parameter uncertainty.
SIGNIFICANCE Epithelial-mesenchymal transition (EMT) is a biological process that represents the transdifferentiation
of an epithelial cell to a mesenchymal cell, which includes losing epithelial-type cell-cell adhesion and gaining
mesenchymal-type enhanced cell motility. Recent experimental studies have shown heterogeneous phenotypical profiles
were associated with different responses to EMT-suppressing/promoting parametric perturbations. Data-assimilation is a
technique in which observations are iteratively combined with predictions from a dynamical model to provide an improved
estimation of system states. We use this approach to improve the accuracy of predictions of cell population responses to
time-dependent EMT perturbations. We show that data-assimilation can reconstruct population-specific responses to
perturbations in the presence of physiological levels of parameter uncertainty.
INTRODUCTION

Epithelial-mesenchymal transition (EMT) is a fundamental
biological process during which an epithelial cell transdiffer-
entiates into a mesenchymal-like cell, losing epithelial cell
state characteristics, such as tight cell-cell adhesion, and
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acquiring mesenchymal cell state characteristics, such as
increasing cell motility and enhanced migratory behavior
(1,2). The regulation of EMT and its reverse process, mesen-
chymal-epithelial transition (MET), play a central role in
many physiological processes, such as tissue morphogenesis
during development, embryogenesis and gastrulation, and
wound healing (2–4). On the other hand, the dysregulation
of EMT has been observed to be a pivotal factor in patholog-
ical conditions, such as cancermetastasis and fibrotic diseases
of the liver, kidney, and heart (2). EMT can be induced by
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multiple signaling factors, and one of themost potent inducers
of this cellular transition is transforming growth factor-b
(TGFb) (5–8). In recent years, studies have highlighted that
the presence of multiple intermediate or partial phenotypical
cell states (i.e., hybridE/Mstates), forwhich the cell expresses
features of both epithelial andmesenchymal cells, is an impor-
tant characteristic of EMT and MET. Recent work has impli-
cated that these partial EMT states play a critical role in the
actualization of collective cell migration in cancer cells
(9–11). This is a paradigm shift from viewing TGFb-induced
EMTas an all-or-none switch to amulti-step process, inwhich
the phenotypical cell fates during TGFb-induced EMT result
in an epithelial state (E), an intermediate or partial EMT state
or states (P), or amesenchymal state (M). In the setting ofpath-
ological conditions, it is crucial not only to understand what
drivesEMT to better understand the pathology but to addition-
ally develop techniques to predict the phenotypical fate of
cells undergoing EMT, with an eye toward developing effec-
tive therapies to alter EMT progression. That is, it would be
desirable to develop tools to perturb EMT progression in a
predictable manner.

Many signaling pathways that drive EMT in physiolog-
ical and pathological conditions have been identified
(12–14); however, the ability to predict the phenotypical
fate of a cell undergoing EMT remains a challenge, in
particular at the level of predicting a population of cells.
One of the main complications with making such predic-
tions is the limited number of EMT-associated markers
that can be observed experimentally in an individual live
cell experiment; i.e., measurements that can be made contin-
uously in time without terminating the experiment. More
broadly, any subset of experimental measurements inher-
ently provides an incomplete snapshot of the cell state at a
given moment in time. Further, recent experimental studies
have shown that, within a population of epithelial cells,
highly variable phenotypical profiles were associated with
different time- and dose-dependent responses to TGFb
during EMT and MET (15–17). This inherent biological
variability and limited real-time measurements in in vitro
experiments present an obstacle to predict cellular responses
during EMT, and, more importantly, how these cellular re-
sponses may change in response to specific perturbations
to either enhance or suppress EMT.

Computational models of the signaling pathways that
regulate EMT are valuable tools for deepening understating
of cell signaling mechanisms and predicting cell fates during
EMT dynamics. However, computational models inherently
face critical obstacles in the process of reconstructing
and predicting the responses of a population of cells, as
observed in typical in vitro experiments. In particular, simu-
lations tend to be parameterized or fit to successfully recon-
struct the ‘‘typical’’ cellular behavior or responses, but fail to
capture the variability across a population with heteroge-
neous responses to particular perturbations. This limitation
partially arises due to the fact that model parameter values
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are often a compilation of means and extrapolations from a
wide range of experimental settings and conditions. The pres-
ence of this physiological model error can cause long-term
computational predictions to greatly deviate from in vitro
dynamics, due to even a small degree of uncertainty in
parameters and the nonlinear nature of biological systems.

More broadly, the interactions between model simulations
and experiments are generally sequential. For example, in
many cases, a series of experiments are performed to
construct a model and fit parameters. The model is subse-
quently simulated under specific perturbations, beyond the
initial scope of the model development, and experiments
are performed to validate or refute the model predictions.
In this setting, if the experiments are performed on an inher-
ently heterogeneous population (e.g., many cells), the model
is most likely fit based on experimental means or medians. In
this work, we perform a series of studies in which experi-
ments and simulations interact in a more direct and iterative
manner. Consider the following thought experiment: a het-
erogeneous cell population undergoes an experimental proto-
col for a set period of time, during which the model is
iteratively ‘‘improved’’ based on the most recent experi-
mental observations (with the definition of improved clari-
fied below). Importantly, this process occurs for each
population member individually, such that each member is
associated with a different model state and potentially
different model parameters. At the end of this set period of
time, the response of each population member to a specific
perturbation is predicted. In this approach, model and exper-
iment are combined in a way that the response to a perturba-
tion is predicted before it is applied, such that, for example, a
subset of the population can be selected based on their pre-
dicted response to that perturbation or the magnitude of the
perturbation is designed for each individualmember to evoke
a desired response. That is, the model predictions directly
guide experimental design. This study is a proof of concept
for this approach thatmore broadly could have significant ap-
plications in fields such as drug design and diagnostics.

The ‘‘improvement’’ noted above is based on a technique
known as data assimilation. Data assimilation is an iterative
algorithm that uses a Bayesian statistical modeling approach
to integrate noisy and sparse experimental observations with
high resolution but imperfect dynamical model predictions
(18). This statistical tool functions by iteratively updating a
previous state estimate of system dynamics (known as the
background) based on new observations of the ‘‘true’’ system
(albeit noisy measurements) to generate an improved state
estimate (known as the analysis), which is the system state
maximum likelihood estimate. These updated and improved
state estimates are then used as the initial conditions for the
dynamical model to generate a forecast to a future time point
until the next observation, and the process then repeats itera-
tively. One critical feature of this data-assimilation approach
is that all state variables of the forecasting system are updated
and corrected, even if the observations are based on a small
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subset of the system; i.e., measurements of the system state
are sparse in addition to being noisy. This is feasible, since
the dynamics of all state variables are coupled, enabling pre-
diction of the evolution of unmeasured system states.

In our recent work, we conducted a series of in silico exper-
iments that demonstrated that we can incorporate incomplete
cell marker measurements (accounting for experimental
noise) into a data-assimilation approach to reconstruct
TGFb-induced EMT dynamics of a single virtual epithelial
cell in the presence of minimal physiological model error
(19). The data-assimilation algorithm accurately predicted
cell fates (i.e., phenotypes) and reconstructed both measured
and unmeasured key EMT cell marker expression levels.
Further, the approach successfully predicted the timing of
EMT-associated state transitions. We also identified ideal
data-assimilation algorithmic parameters that resulted in the
best predictive accuracy. In this current study, we expand on
our prior work and perform a series of computational experi-
ments in which we apply a data-assimilation approach to
reconstruct EMT dynamics of several distinct heterogeneous
virtual cell populations. We mimic the heterogeneity inher-
ently observed in epithelial cell populations by generating a
large population of model parameter sets. The cell population
is exposed to a time-dependent exogenous TGFb dose and
either an EMT-suppressing or EMT-promoting parametric
perturbation. With appropriate protocol design, we demon-
strate that a data-assimilation approach can successfully
reconstruct and predict the dynamics of a heterogeneous vir-
tual epithelial cell population in the presence of physiological
model error and parameter uncertainty. Further, we find that
augmenting the data-assimilation approach, specifically incor-
porating estimation of population-specific critical parameters,
improves the prediction accuracy of phenotypical responses to
EMT-suppressing or EMT-promoting perturbations.
METHODS

The data-assimilation methodology used in this study comprises four main

components: an epithelial virtual cell (the ‘‘truth’’ system), a data-assimila-
tion algorithm (ensemble Kalman filter), a forecasting system, and a set of

observations of selected cell markers of the virtual cell. The core regulatory

network of the TGFb-induced EMTdynamics of the virtual cell and the fore-

casting system are governed by the model proposed by Tian et al. (20)

(described below). To establish the performance of the data-assimilation

approach, we perform synthetic experiments of the virtual cell response to

a time-varying TGFb dose and signaling perturbation (either EMT-promot-

ing or -suppressing), inducing first EMTand, in some simulation conditions,

the reverse EMT process, MET. As described further below, in this synthetic

experiment, the true system is described by the same dynamical system

model as the forecasting system, such that the predictive accuracy can be

quantified. However, parameters between the true and forecasting system

greatly differ, representing physiological levels of model error.

During the forecasting process, at the end of a given time interval, the

data-assimilation algorithm (described in more detail below) generates

the analysis, an improved state estimate of the virtual cell based on 1)a

limited and noisy observation of the virtual cell and 2) the predicted virtual

cell system state produced by the forecasting system. The improved state

estimate then provides the initial conditions for the next forecast. The

data-assimilation state estimates are implemented iteratively for each sub-

sequent time interval. A schematic of the data-assimilation process is illus-

trated in Fig. 1.
Computational model of EMT

We use the mathematical model proposed by Tian et al. to represent the core

regulatory network of TGFb-induced EMT for a single epithelial cell (20).

The model consists of a system of nine ordinary differential equations that

govern the concentrations of endogenous TGFb, snail1 mRNA, SNAIL1

protein, miR34, zeb mRNA, ZEB protein, miR200, E-cadherin, and

N-cadherin. E-cadherin and N-cadherin are cell markers for epithelial

and mesenchymal cell states, respectively. Each differential equation is

composed by a basal production term, a degradation rate term, and a trans-

lation/production rate governed of a Hill function (Eq. 1). This model de-

scribes the TGFb-induced EMT core regulatory network dynamics as two

coupled or cascading bistable switches; i.e., EMT is represented as a

two-stage progression. Each bistable switch is regulated by a double-nega-

tive feedback loop, and these are governed by the interplay between the pro-

duction of transcription factors SNAIL 1/2 and ZEB1/2, and their respective

inhibitors, the microRNAs miR-34 and miR-200. Model initial conditions

(corresponding to the epithelial phenotype) and baseline parameters are

given in Tables S1 and S2, respectively.

d½T�
dt

¼ k0T þ kT

1þ
�
½R200�
JT

�nr200 � kdT ½T�; (1a)
FIGURE 1 Schematic of the data-assimilation

approach. Synthetic observations are generated

from ratiometric measurements of E-cadherin-to-

ZEB from the truth system, plus the addition of

Gaussian noise. The numerical model governing

EMT dynamics (20) generates forecast ensembles.

Combining the model forecasts and noisy observa-

tions, the ensemble Kalman filter yields the

maximum likelihood estimator for the system state

(the analysis), which provides initial conditions for

the next iteration. To see this figure in color, go on-

line.
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d½E� kE1 kE2
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�
½S�
JE1

�ns þ
1þ

�
½Z�
JE2

�nz � kdE½E�; (1h)

d½N� kN1 kN2

dt

¼
1þ

�
½S�
Jn;1

�ns þ
1þ

�
½Z�
Jn;2

�nz � kdN½N�: (1i)

The core regulatory network of TGFb-induced EMT is activated by

exogenous TGFb ([T]e), which increases the production of snail1 mRNA

([s]), activating the first double-negative feedback loop and upregulating
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the translation of SNAIL1 protein ([S]). Increased production SNAIL1 pro-

tein inhibits miR-34 ([R34]) production, the inhibitor of SNAIL1 transla-

tion, completing the first double-negative feedback loop. SNAIL1

activates the second double-negative feedback loop by increasing the

production of zeb mRNA ([z]), upregulating translation of ZEB protein

([Z]), which inhibits the production of the inhibitor of ZEB translation,

miR-200 ([R200]). SNAIL1 and ZEB suppress epithelial marker

E-cadherin ([E]) and promotes mesenchymal marker N-cadherin ([N]).

Finally, the suppression of miR-200 promotes endogenous TGFb produc-

tion, enhancing a positive feedback that promotes the irreversibility of

the EMT progression for baseline model parameters.

Simulations with baseline model parameters demonstrating the represen-

tative EMT transdifferentiation of a virtual cell from an epithelial to a

mesenchymal phenotypical state are shown in Fig. 2, for varying exogenous

TGFb doses and epithelial cell initial conditions. For a constant low TGFb

dose (blue), there are minimal changes in SNAIL1, ZEB, E-cadherin, and

N-cadherin. For a constant moderate TGFb dose (red), SNAIL1 is upregu-

lated but with minimal change in ZEB, which yields expression of both

E-cadherin and N-cadherin, consistent with a partial or hybrid E/M state.

For a constant high TGFb dose (green), SNAIL1, ZEB, and N-cadherin

are maximally enhanced, while E-cadherin is fully suppressed, consistent

with a mesenchymal state.

The steady-state N-cadherin levels are shown as a function of exogenous

TGFb dose in Fig. 2 E for different cell state initial conditions. Changing

TGFb dose from either epithelial (blue) or partial state (red) initial condi-

tions results in a step-like transition from epithelial-to-partial-to-mesen-

chymal states, albeit with some initial state dependence (i.e., hysteresis).

However, for baseline model parameters, the initial mesenchymal state

(green) is irreversible; i.e., N-cadherin levels remain high for all TGFb

doses, including the absence of TGFb.
Data-assimilation

We utilize a class of algorithms denoted as data-assimilation methods

that are used to improve the state estimation and forecasting of dynamical

systems by combining observations of the system with numerical model-

derived forecasts. Applications of data-assimilation algorithms are well

established in the atmospheric science community (21–25) in the develop-

ment of numerical weather prediction. Several data-assimilation ap-

proaches have been developed to estimate and reconstruct selected

parameters of a true system, increasing the utility of such algorithms

(26–40).
FIGURE 2 TGFb induces EMT via a partial or in-

termediate EMT-state transition. (A–D) The time

course of key epithelial and mesenchymal markers

are shown as a function of time, following the addi-

tion of 1, 1.8 and 3 mM constant exogenous TGFb

dosages. (E) The expression level of N-cadherin on

day 20 is shown as a function of the exogenous

TGFb dose, for different initial conditions (ICs).

The step-like response illustrates distinct cell states,

corresponding with epithelial, partial or intermediate

EMT, and mesenchymal states. To see this figure in

color, go online.
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Ensemble Kalman filter

In this work, we use the ensemble transform Kalman filter (ETKF), which is

an extension of the linear Kalman filter for nonlinear problems (18). The

ETKF offers an estimate of the most likely state of the system given a prior

estimate of the state, a set of observations of the system (potentially sparse

and noisy), and uncertainty estimates for both the observations and the state

space predictions.

For this problem, the state space at time t is a column vector of the nine

model variables at this time:

xtðtÞ ¼ ð½T�ðtÞ; ½s�ðtÞ; ½S�ðtÞ; ½R34�ðtÞ; ½z�ðtÞ; ½Z�ðtÞ;

½R200�ðtÞ; ½E�ðtÞ; ½N�ðtÞÞT : (2)

In most simulations, we expand this approach to also incorporate param-

eter estimation; i.e., a specific parameter is also estimated during the data-

assimilation process. To do so, the state space vector is augmented to

include the specific parameter p(t),

xtðtÞ ¼ ð½T�ðtÞ; ½s�ðtÞ; ½S�ðtÞ; ½R34�ðtÞ; ½z�ðtÞ; ½Z�ðtÞ;

½R200�ðtÞ; ½E�ðtÞ; ½N�ðtÞ; pðtÞÞT ; (3)

where p(t) is the selected parameters to be reconstructed by the data-assim-

ilation algorithm and has trivial dynamics; i.e., dp/dt ¼ 0.

For a given time step n, where t ¼ nDtobs, where Dtobs is the time interval

between observations, the prior state space estimate is produced by an

ensemble of forecasting systems called the background state and is denoted

xbn . That is, multiple versions of the EMT model, or an ensemble, are simul-

taneously simulated to estimate the background state, and xbðiÞn represents

the state space vector of the ith ensemble member. The estimation of the

uncertainty on the forecast state space is denoted Pb
n. To generate this esti-

mation of the background uncertainty, it is assumed that the probability dis-

tribution of the ensemble of forecasts is Gaussian and the mean and

covariance are parameterized by a small number of model states. A similar

assumption is made in the Monte Carlo approach; one critical difference is

that the ETKF uses fewer ensemble members to fully sample the space.

Following the notation of Hunt et al. (18), given a set of background

states xbðiÞn , the background is computed as the mean of the ensemble

members,

xbn ¼ 1

k

Xk

i ¼ 1

xbðiÞn ; (4)

where k is the ensemble size, i is the index of the ensemble members, and

the covariance is given by the ensemble sample covariance,

Pb
n ¼ 1

k � 1

Xk

i ¼ 1

�
xbðiÞn � xbn

��
xbðiÞn � xbn

�T
: (5)

The ETKF determines the state that minimizes the cost function

Jð~xnÞ ¼ �
~xn � xbn

�T�
Pb
n

�� 1�
~xn � xbn

�

þ �
yon � Hð~xnÞ

�T
R� 1

n

�
yon � Hð~xnÞ

�
;

(6)

where H is a map from the model space to the observation space (which is

typically lower dimensional), yon is the vector of observations, and Rn is the

covariance of these observations. The analysis, denoted as Xa
n, represents

the state that minimizes the cost function in the subspace spanned by the

ensemble members. The analysis error covariance matrix in ensemble
space, ~P
a

n, can be computed in ensemble space as ~P
a

n ¼
½r� 1ðk � 1ÞI þ YbT

n R� 1
n Yb

n�
� 1

, where r is a multiplicative inflation param-

eter that allows the algorithm to compensate for the fact that the small

ensemble size tends to lead to underestimation of the true background un-

certainty. Multiplying the covariance matrix by a constant greater than 1 (r

here) is a computationally efficient way of correcting for this underestima-

tion. The inflation factor r is a tunable parameter for the assimilation algo-

rithm. The columns of the Yb
n matrix are the perturbations of the

background ensemble members mapped into observation space. Mathemat-

ically, the jth column of Yb
n is yb;jn ¼ HðxbðjÞn Þ � ybn, where

ybn ¼ 1
k

Pk
j¼ 1HðxbðjÞn Þ is the mean of the background ensemble in observa-

tion space. Here, unless otherwise stated, the map H takes the form

HðxbðjÞn Þ ¼ ½E�ðjÞn =½Z�ðjÞn , where ½E�ðjÞn and ½Z�ðjÞn are the concentrations of

E-cadherin and ZEB from the jth ensemble at time step n (described further

below).

The analysis covariance is then used to transform the background

ensemble perturbations into analysis ensemble perturbations according to

Xa
n ¼ Xb

n½ðk � 1Þ~Pa

n�
1=2

: Finally, the new analysis mean is computed as

xan ¼ xbn þ Xb
n
~P
a

nY
bT

n R� 1
n

�
yon � ybn

�
: (7)

The analysis mean is added to each column of Xa
n to generate the analysis

ensemble members. The analysis ensemble members then become the

initial conditions for the next set of forecasts using the EMT model

(Eq. 1), simulated for duration Dtobs and producing the next background

states x
bðiÞ
nþ1, and then this entire process is iteratively repeated (i.e., incorpo-

rating the subsequent observation yonþ1 to calculate xanþ1). Numerical simu-

lations are performed in MATLAB (Mathworks, Natick, MA) using the

ode15s ordinary differential equation solver. Descriptions of the variables

in the ETKF method are provided in Table S3 (removing the subscript n

for clarity). A more detailed description of the algorithm, including deriva-

tions, can be found in Hunt et al. (18). Based on our prior work (19), in this

study we utilize ensemble size k of 50, multiplicative inflation factor r of

1.4, and observation interval (i.e., intervals between analysis steps) Dtobs
of 6 h.
Generation of cell population

We generate a synthetic heterogeneous population of epithelial cells,

following our prior approach and others (19,41). Specifically, a large pop-

ulation of model parameter sets is generated to reproduce the biological

variability in phenotypical cell states that is observed in in vitro experi-

ments, in which multiple states (i.e., epithelial, partial, or mesenchymal

state) are observed in the cell population in response to a specific TGFb

dose concentration and duration (16). To generate a population of model

parameter sets, random scaling factors are chosen from a log-normal distri-

bution (with median of 1 and distribution parameter s ¼ 0.075) and multi-

plied with the baseline parameter values for key parameters, specifically

basal and regulated production, transcription, translation rates, and degra-

dation rates, for endogenous TGFb, snail1 mRNA, SNAIL1, miR-34, zeb

mRNA, ZEB, and miR-200. We draw 5000 random parameter sets that

represent a heterogeneous population of virtual epithelial cells (Fig. 3),

illustrated by phenotypical variation for different TGFb dose and duration.

As described in more detail below, subsets of this population are identified,

and the accuracy of phenotypical state predictions in response to time-vary-

ing TGFb doses and EMT perturbations are measured.
Numerical experiments

For a given data-assimilation trial, we perform a computational simulation

for which we reconstruct the EMT cellular dynamics of a virtual epithelial

cell and predict its response to a parametric perturbation. Both the true vir-

tual cell and forecasting system are governed by the core regulatory

network model of TGFb-induced EMT proposed by Tian et al. (20). The
Biophysical Journal 121, 3061–3080, August 16, 2022 3065



FIGURE 3 Population of model parameter sets reproduces experimental heterogeneity in cell state. (A–E) The percentages of cells in the epithelial (E,

green), partial (P, red), and mesenchymal (M, blue) state are shown as a function of time for increasing exogenous TGFb doses (0.3, 1.3, 2.2, 2.9, and

9 mM). We identify four cells sub-populations (dashed line boxes): EMT prone, EMT resistant, P-M resistant, and MET-prone cells. To see this figure in

color, go online.
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true virtual cell simulations use model parameters that are drawn from the

cell population, as described above. However, to mimic parameter uncer-

tainty, the forecasting system ensemble member simulations use baseline

model parameters. That is, while the governing dynamics of the true system

and forecasting system are the same, nearly all key model parameters differ

between the true and forecasting systems. Specifically, we vary 28 out of 45

parameters, with the remaining unchanged 17 parameters comprising Hill

coefficients and parameters for E-cadherin and N-cadherin, which can be

regarded as system outputs that do not feedback on the overall system

dynamics. In each trial, the virtual cell is exposed to a series of time-varying

inputs of exogenous TGFb doses and, at a selected time point, an EMT-sup-

pressing or EMT-promoting perturbation is applied to the virtual cell. We

note that the time-varying TGFb dose was applied to specifically enhance

the heterogeneous response of the population subset. The data-assimilation

algorithm reconstructs and predicts the EMT dynamics of a given virtual

cell at set time intervals. As described above, at the end of each such

time intervals, the data-assimilation algorithm generates an improved state

estimate of the truth system using an observation of the virtual cell (yon) and
the forecast state (xbn).

The data-assimilation algorithm iteratively reconstructs both the system

state and (in most simulations) a specified parameter. EMT-promoting or

EMT-suppressing single parametric perturbations were applied to the

virtual cell at a selected time threshold (day 30). The perturbations were

applied by multiplying the selected parameter value of the virtual cell by

a scaling factor. Importantly, at this same time threshold, system state cor-

rections from the data-assimilation algorithm are no longer applied, such

that prediction accuracy of the final cell phenotype is determined from

the forecast of the last analysis step. Thus, this experimental design repre-

sents observing a cell population subset for a period of time and predicting

the response of the population to a specific perturbation only based on

observations before the perturbation.

The virtual cell was initialized with all state variables in the epithelial

state. To initialize each ensemble member of the background, a separate

model simulation was performed, with a random TGFb dose (uniformly
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sampled between 0 and the given dose for that trial), for a random duration

(uniformly sampled between 0 and 20 days). The final state variable con-

centrations were chosen for the ensemble initial state. Similarly, the estima-

tion of the selected parameter was initialized by multiplying the true

parameter value of the virtual cell with a scaling factor for each ensemble

member. The value of the scaling factor was sampled from a logarithmic

uniform distribution, such that the scaling factor was distributed between

0.5 and 2. To emulate realistic experimental measurements, the observation

is defined by the ratio between the concentrations of the epithelial cell

marker E-cadherin and the transcription factor ZEB, based on a recent

novel stable dual-reporter fluorescent sensor of these two key EMT

regulating factors (42). The choice of this observation measurement, i.e., ra-

tiometric measures from a recently developed reporter, is motivated by the

possibility of performing data-assimilation studies in real epithelial cells.

Observational measurement noise or error was reproduced by adding

Gaussian noise of mean 0 and standard deviation 10% of the true ratio

magnitude. Minimum E-cadherin and ZEB concentrations were set to

1.1 � 10�50 mM, to avoid negative or undefined ratio values.

To assess the accuracy of the reconstruction of the virtual cell dynamics

for a given data-assimilation trial, we calculate the root-mean-square

deviation (RMSD) between the true system and the average of the analysis

ensembles, summing over all state variables, as a function of time:

RMSDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
j ¼ 1

�
xaj ðtÞ � xtjðtÞ

�2
vuut ; (8)

where xaj ðtÞ and xtjðtÞ are the jth element of the analysis and truth m-dimen-

sional vectors, respectively, at time t. We calculate the area under the RMSD

versus time curve to quantify error for a single trial. Further, the accuracy of

the long-term predictions generated by our data-assimilation approach is

determined by comparing the predictions of the final phenotypical cell state

with the true virtual cell state (i.e., epithelial, partial, and mesenchymal).
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RESULTS

Sub-population identification and characteristics

A primary objective of this in silico study is to use a data-
assimilation approach to predict and reconstruct cellular
systems responses to specific perturbations in the presence
of physiological error and population heterogeneity. As
noted above, we first generate a population of model param-
eters to reproduce the phenotypical variability observed
experimentally in a population of epithelial cells (16). We
simulate the virtual cell population response to a series of
constant dosages of exogenous TGFb for a duration of
15 days, measure the phenotype (epithelial, partial, mesen-
chymal) based on N-cadherin expression levels, and quan-
tify the changes of the percentages of virtual cells in each
cell state (Fig. 3).

For a low dose, all virtual cells remain in the epithelial
state (Fig. 3 A). For a moderately low dose (Fig. 3 B), we
observe more heterogeneous phenotypes, with most virtual
cells in either the epithelial or partial state by day 15. Impor-
tantly, we identify the presence of a small fraction of 125
virtual cells (2.5% of the population) that undergo the full
EMT progression, with a final mesenchymal phenotypical
state, and categorize this sub-population of virtual cells as
EMT prone. For a slightly larger moderate dose (Fig. 3
C), we again observe population heterogeneity, with most
virtual cells in either the partial or mesenchymal steady state
by day 15. However, we also identify a fraction of 95 virtual
cells (1.9% of the population) that remain in the epithelial
state and categorize this sub-population as EMT-resistant
cells. For a large dose (Fig. 3 D and E), a progressively
larger fraction of the population progresses to the mesen-
chymal state. In spite of a high-dose exogenous TGFb, we
identify a sub-population of 345 cells (6.9% of the popula-
tion) that remains in the partial state, categorized as P-M
resistant. Additionally, for each cell that progresses to the
mesenchymal state, we perform an additional simulation
in which exogenous TGFb is removed once the population
of cells reaches the mesenchymal state. For the baseline
model parameters, as noted above, mesenchymal cells irre-
versibly remain in this state even after removing TGFb.
However, within this population, a subset of 170 virtual
epithelial cells (3.4% of the population) undergoMET, iden-
tified as MET-prone cells. Note that there is small overlap
between the P-M-resistant cells and the EMT-resistant
sub-populations; similarly, we observed a small overlap be-
tween MET-prone cells and the EMT-resistant cells. For the
remainder of the study, we focus on these four sub-popula-
tions, as they each have highly identifiable features of bio-
logical interest.

We next compare the parameters associated with the four
sub-populations of virtual cells: MET prone, EMT prone,
EMT resistant, and P-M resistant. Since all population pa-
rameters are scaled versions of the baseline parameters,
we analyze the scaling factor distribution for each parameter
for each sub-population and statistically compare with the
baseline (corresponding to a value of 1) using a series of un-
paired t-tests. A boxplot for each parameter and sub-popula-
tion is shown in Fig. 4. For each sub-population, we denote
the specific parameters that differ from the baseline as crit-
ical parameters (shown as red boxplots).

We find that the number of critical parameters varies with
cell sub-population, such that, for EMT-prone cells, 20 out of
the 28 parameters are critical, while, for EMT-resistant cell,
only eight parameters are critical. Interestingly, we find both
similarities and differences in the critical parameters be-
tween the sub-populations. The production and degradation
rates of the mRNA snail1 and the degradation rate of the pro-
tein snail1 are critical parameters for all four sub-popula-
tions. All cell sub-populations have at least three critical
parameters that are degradation rates, with all degradation
rates critical for EMT-prone cells (Fig. 4 A). We also find
that most of the baseline production rates are non-critical pa-
rameters. Interestingly, MET-prone cells are the only sub-
population for which endogenous TGFb production rate
(kt) is a critical parameter, with a lower production rate
compared with the baseline value (Fig. 4 D), consistent
with the reversibility of themesenchymal state. Further, there
is quite a bit of variability in the Hill coefficient parameters.
Sub-population heterogeneity

We next investigate the EMT dynamics of the four identified
sub-populations in response to a time-varying exogenous
TGFb dose. The time-varying dose is applied primarily
for two reasons: 1) the time-dependent changes in TGFb
are comparable with a series of perturbations that produce
heterogeneity even within each sub-population (Fig. 5);
and 2) the changes in TGFb induce multiple phenotypic
transitions, which enhances the data-assimilation recon-
struction. We first consider the MET-prone sub-population
of virtual cells, which we expect to be the most difficult to
reconstruct, given that the baseline model predicts irrevers-
ible EMT dynamics (i.e., the baseline model does not un-
dergo MET).

We apply a time-dependent dose of exogenous TGFb to
each virtual cell in the MET sub-population across a simu-
lation of 40 days (Fig. 5 A). An initial moderate TGFb dose
results in some cells transitioning to the partial state, fol-
lowed by a higher dose, which ultimately results in nearly
all cells in the mesenchymal state by day 20, albeit with
each virtual cell exhibiting a heterogeneous N-cadherin
expression and phenotypic time course (Fig. 5 B and C).
Removal of TGFb results in MET, again with significant
sub-population variability in timing, followed by a moderate
dose that produces a mixed sub-population comprising vir-
tual cells in all three states by day 40. We conduct similar
time-varying TGFb doses for the other sub-populations to
produce heterogeneous sub-populations (Fig. S1).
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FIGURE 4 Critical parameters deviate from the baseline model for distinct sub-populations. (A–D) Boxplots display the parameter scaling factor (relative

to baseline of 1, dashed horizontal black line) distribution for four identified sub-populations (EMT prone, EMT resistant, P-M resistant, and MET prone).

Critical parameters that significantly deviate from baseline are shown in red, and non-critical parameters are shown in blue. To see this figure in color, go

online.
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Data-assimilation reconstruction of
heterogeneous sub-populations

We next perform data reconstruction during the time-vary-
ing TGFb dose, using a forecasting system with baseline pa-
rameters, for each virtual cell of the MET sub-population.
One critical aspect of this reconstruction is the definition
3068 Biophysical Journal 121, 3061–3080, August 16, 2022
of a data-assimilation correction window, which specifically
defines the time period (days 0–30) for which the data-
assimilation algorithm is applied. On day 30, the final
data-assimilation reconstruction essentially defines a new
set of initial conditions, which are utilized to simulate the
final 10 days of the simulations (days 30–40). Note that
the end of this window also corresponds with the timing
FIGURE 5 MET-prone cells display heteroge-

neous responses to time-dependent exogenous

TGFb dose. (A) Time course of the exogenous

TGFb dose applied to the MET-prone sub-popula-

tion as function of time. (B) N-cadherin expression

for the MET-prone cell sub-population members is

shown in response to the time-dependent exoge-

nous TGFb dose. (C) The percentage of MET-

prone cells in the epithelial (E, green), partial (P,

red), and mesenchymal (M, blue) state are shown

during the time-dependent exogenous TGFb proto-

col. The sub-population exhibits heterogeneous

phenotype throughout the in silico experiment.

To see this figure in color, go online.
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of the TGFb dose change from none to moderate TGFb.
Thus, this protocol is comparable with observing a cell dur-
ing a defined correction period, applying a final experi-
mental condition change (here, the return of a moderate
TGFb dose) and predicting the cell response 10 days later.
Thus, one could in practice apply this protocol in parallel,
in which many cells are simultaneously observed during
an initial observation/correction period and then a subset
of cells is selected based on their predicted response to addi-
tional perturbation(s) at some later time point. Later analysis
will consider more complex experimental condition
changes, including both changes in TGFb dose and an
EMT-suppressing or -promoting perturbation.

We illustrate three representative virtual cells (cells 15, 2,
and 7) from the MET-prone cell sub-population, which
reach a final epithelial, partial, and mesenchymal phenotyp-
ical state, respectively, when exposed for 40 days to the
same time-dependent exogenous TGFb protocol (Fig. 6).
Note that the baseline model (black) does not undergo
MET and remains in the mesenchymal state following the
high TGFb dose. To quantify the accuracy of the reconstruc-
tion and prediction of the virtual cell EMT and MET dy-
namics, we calculate the RMSD error between the virtual
cell dynamics and the forecasting system predictions during
the entire simulation.

The data-assimilation reconstruction for the three virtual
cells (blue), and the comparison with predictions without
data-assimilation (red), are shown in Fig. 7, for which the
truth system (black line) represents the dynamics of the
three MET-prone virtual cells described above. We find
that the approach in general accurately reconstructs each
cell’s dynamics for the first 20 days (Fig. 7 A–C), during
the initial EMT progression, as quantified by the low
RMSD error (Fig. 7 D–F). However, at day 20, the recon-
struction and truth systems diverge, as the baseline model
fails to reproduce the MET process. This ultimately results
in a failure to predict the final phenotypic state, except for
the virtual cell (cell 7), which ultimately returns to the
mesenchymal state. Thus, these initial simulations illustrate
that the forecasting system fails to reconstruct and predict
the dynamics of phenotypically different virtual cells, in
particular in the context of model error associated with the
MET process.
Parameter estimation in the data-assimilation
reconstruction improves predictive accuracy

We next sought to improve the accuracy of our data-assim-
ilation approach, and we hypothesized that incorporating
parameter estimation into the state space of the forecasting
model can account for model error and parameter uncer-
tainty and ultimately improve predictive accuracy. As
described in the section ‘‘methods,’’ a single parameter is re-
constructed during the data-assimilation algorithm. We
initially chose the mRNA snail degradation rate, kds, as it
was highlighted as a critical parameter for the MET-prone
cell sub-population. With this inclusion, we find that the
data-assimilation approach successfully reconstructs both
the EMT and MET dynamics of all three virtual cells
(Fig. 8), with a reduced RMSD error throughout the simula-
tion. However, interestingly, despite the accurate prediction
of the phenotype, the reconstruction does not predict the true
value of the kds parameter for all cases (Fig. 8 G–I).

In Fig. 9, we next perform the same analysis for the
entire sub-population of MET-prone cells and predict the
virtual cell phenotypical distribution for comparison with
the true sub-population distribution, which is shown in
Fig. 5 C. Similar to the results shown in Fig. 7, the fore-
casting system completely fails to predict the phenotypical
distribution of the cell population in the absence of data-
assimilation corrections (Fig. 9 A). The data-assimilation
reconstruction without parameter estimation reconstructs
FIGURE 6 Representative EMT and MET dy-

namics of the MET-prone sub-population.

N-cadherin expression of three MET-prone cells

(15, orange; 2, yellow; and 7, purple) and the base-

line model (black) are shown during the time-depen-

dent exogenous TGFb protocol. Note all three MET-

prone cells exhibit the full EMT progression but

differing MET kinetics result in different final

phenotypical states at the end of the protocol. The

data-assimilation (DA) correction window, in which

the DA reconstruction iteratively estimates the cell

state, from day 0–30 is indicated. Predictions from

day 30–40 do not include DA reconstruction. To

see this figure in color, go online.

Biophysical Journal 121, 3061–3080, August 16, 2022 3069



FIGURE 7 DAwithout parameter estimation fails to the reconstruct MET dynamics for physiological model error. (A–C) The true N-cadherin expression for

thevirtual cells (black),DAensemblemean (dashed blue), and ensemblemeanwithoutDAcorrections (red) are shownduring the time-dependent TGFbprotocol.

The end of the DA correction window at day 30 is denoted with a vertical dashed black line. (D–F) RMSD error with (blue dashed line) and without (red) DA.

Parameters: truth system, parameter set from MET-prone cells 15, 2, and 7; forecasting system, baseline parameter set. To see this figure in color, go online.
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fairly well the initial EMT process but not MET and subse-
quent final phenotype (Fig. 9 B). Importantly, the fore-
casting system successfully reconstructs the EMT and
MET dynamics of the MET-prone cell sub-population
when data-assimilation reconstructions incorporate param-
eter estimation of the critical parameter mRNA snail1
degradation (Fig. 9 C). Comparison of the predicted final
phenotype with the truth yields accurate predictions in
95% of the MET-prone sub-population (Fig. 9 D), a signif-
icant improvement over the approaches without data-
assimilation or parameter estimation.

We next investigate the changes in predictive accuracy
for different parameters incorporated into the data-assimi-
lation reconstruction, with the hypothesis that parameters
that greatly deviate from the baseline value within the
sub-population (i.e., critical parameters) will improve pre-
dictive accuracy, more so than non-critical parameters. For
each parameter, we simulate the entire MET-prone sub-
population response to the time-varying TGFb dose and
quantify the accuracy of the final phenotypic state predic-
tion (Fig. 10). Note that critical parameters are denoted
with an asterisk. We first find that incorporating any param-
eter estimation into the reconstruction results in greater ac-
curacy, compared with data-assimilation without parameter
estimation (dashed gray line). In general, there is vari-
ability between the predictive accuracy for different param-
eters, in particular the ability to accurately predict the
epithelial and partial EMT states. However, several param-
eter choices result in correct predictions for nearly all of
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the 170 MET-prone cells, many of which are the critical
parameters.
Critical parameter estimation in data-assimilation
reconstruction

The previous results illustrate that, in general, predictive
accuracy improved with reconstruction with critical parame-
ters. Summarizing these findings for theMET-prone sub-pop-
ulation, the proportion of correct predictionswas significantly
greater for reconstructionswith critical parameters, compared
with non-critical parameters (Fig. 11A). Further, we compare
to what extent each parameter deviated from the baseline
model (i.e., how critical the parameter is) with the percentage
of correct predictions (Fig. 11B).We find that, although there
are counter-examples (i.e., high accuracy for non-critical pa-
rameters and lower accuracy for critical parameters), there is a
generally positive albeit moderate correlation (Pearson corre-
lation coefficient r ¼ 0.44) between the predictive accuracy
and the parametric deviation from baseline. That is, the
greater the deviation of the parameter from thebaselinemodel
within the sub-population, there is a trend for greater predic-
tive accuracywhen incorporating that parameter into the data-
assimilation reconstruction.

The prior analysis illustrates that incorporating parameter
estimation into the reconstruction dramatically improves
prediction accuracy, yet Fig. 8 G–I also illustrates that
parameter estimation does not necessarily predict the true



FIGURE 8 DA with parameter estimation successfully reconstructs EMT and MET dynamics for physiological model error. (A–C) The true N-cadherin

expression for the virtual cells (black), DA ensemble mean (dashed blue), and ensemble mean without DA corrections (red) are shown during the time-depen-

dent TGFb protocol. The end of the DA correction window at day 30 is denoted with a vertical dashed black line. (D–F) RMSD error with (blue dashed line)

and without (red) DA. (G–I) DA estimate of snail mRNA degradation parameter (kds, blue) and true kds value (dashed black) are shown. Note that the true kds

value for the three cells are slightly different but similar. Parameters: truth system, parameter set from MET-prone cells 15, 2, and 7; forecasting system,

baseline parameter set. Estimated parameter: kds. To see this figure in color, go online.
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value of the parameter estimated. For all simulations with
parameter estimation across the entire MET-prone sub-pop-
ulation, we analyze the error of the estimated parameter and
the true parameter value to assess if there is a relationship
between this error and final phenotype predictive accuracy
(Fig. 12). Histograms illustrate the parameter estimation
error percentage for the sub-population, showing the error
after the first analysis step (6 h, blue) and at the data-assim-
ilation correct window (30 days, orange). Interestingly, the
error tends to be lower after the first analysis step compared
with the correction window end, and this is true for both the
parameter with the worst (k3, the micro-RNA 34 production
rate) and the best (kds, the snail1 RNA degradation rate) pre-
diction accuracy (Fig. 12 A and B). At the end of the correc-
tion window, the error is higher for the worst-performing
parameter, compared with the best performing, although
the error for the best performer is substantial with a mean
near 50%. A scatter plot of the average of the correction
window end parameter estimation error magnitude and the
final phenotypical predictive accuracy is shown in Fig. 12
C. Across all parameters, there is a generally negative cor-
relation (r ¼ �0.43) between the predictive accuracy and
average parameter estimation error.
Perturbations to promote or suppress EMT
dynamics

The data-assimilation approach has successfully recon-
structed and predicted the EMT and MET dynamics of a
different virtual cell in the presence of time-varying TGFb
doses within the MET-prone sub-population. For a final se-
ries of experiments, we investigate the accuracy of predict-
ing the response to a specific perturbation that either
promotes or suppresses EMT. We modify the experimental
design of the previous simulations to also incorporate a
parametric perturbation at the end of the data-assimilation
correction window (day 30), in which specified parameters
are scaled accordingly to reproduce associated changes in
EMT state: EMT is suppressed (i.e., E-state promoting) by
increasing the miRNA-34 production rate, and EMT is pro-
moted (i.e., M-state promoting) by increasing the zeb
mRNA translation rate. A representative set of simulations
of these perturbations is shown in Fig. 13. The same scaling
factor is incorporated into forecasting system, although due
to model error, the true value (from the MET-prone sub-pop-
ulation) and forecasting system value (the scaled baseline
parameter) differ.
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FIGURE 9 DAwith parameter estimation successfully reconstructs the heterogeneous response of the MET-prone sub-population. The forecast percentage

of MET-prone cells in the epithelial (E, green), partial (P, red), and mesenchymal (M, blue) state are shown as a function of time (A) without DA corrections,

(B) with DA, and (C) with DA including parameter estimation (kds). The true cell state percentage is shown in Fig. 5 C. (D) Correct (blue) and incorrect

(orange) predictions of the final cell states for the MET-prone sub-population (out of 170 cells). Parameters: truth system, MET-prone cell sub-population;

forecasting system, baseline parameter set. Parameter estimated: kd,s. To see this figure in color, go online.
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For all cells in the sub-population, we apply a perturba-
tion to promote either an epithelial, partial, or mesenchymal
final steady state. The phenotype distribution time courses
illustrate the shift in each state following the E-, P-, and
M-state-promoting perturbations (Fig. 14 A–C). We perform
the above data-assimilation reconstruction for all possible
parameters, and the predictive accuracy of the final pheno-
type is summarized in Fig. 14 D–F. For all three perturba-
tions, predictive accuracy increases with the incorporation
of parameter estimation, relative to data assimilation
without parameter estimation. Similar to the above analysis,
estimation of critical parameters resulted in significantly
greater predictive accuracy, compared with non-critical pa-
rameters, for all three perturbations. Further, the best-per-
forming parameter was the degradation rate of snail1
mRNA (kds) for all three perturbations, and its predictive
accuracy is nearly perfect for all perturbations as well. Addi-
tionally, predictive accuracy with critical parameters is
similar for all three perturbations.

We also consider how estimations of the parameters
that are perturbed affect reconstruction accuracy. The
P-state-promoting perturbation parameter (kdz) is a critical
parameter, while the E- and M-state-promoting perturbation
parameters (k34 and kz, respectively) are not. Interestingly,
the accuracy of the E- and P-state-promoting perturbation re-
constructions was not improved, relative to the non-critical
parameter and critical parameter averages, respectively,
while, for the M-state-promoting perturbation parameter,
the accuracywas improved relative to the non-critical param-
eter average. Thus, surprisingly, overall estimating the
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perturbation parameter did not consistently improve predic-
tion accuracy.
Predictive accuracy of the perturbation response
for multiple sub-populations

Finally, we perform the above analysis on the three other
identified sub-populations (EMT prone, EMT resistant, and
P-M resistant), in the absence or presence of one of the afore-
mentioned perturbations. The predictive accuracy of the final
phenotype is shown without data assimilation, with data
assimilation but no parameter estimation, with data assimila-
tion incorporating estimation of either non-critical or critical
parameters, and the best performer (Fig. 15). Note that the ac-
curacy of the MET-prone sub-population, shown above in
Figs. 11 A and 14 D–F, is presented here for comparison.
For the EMT-prone and P-M-resistant cell sub-populations,
a P-state-promoting perturbation was not applied, since the
baseline of these two sub-populations displayed a large pro-
portion of the sub-population in the partial state at day 30
(Fig. S1).

Importantly, for all sub-populations and in the presence or
absence of perturbations, predictive accuracy was increased
for reconstruction with parameter estimation, compared
with data-assimilation without parameter estimation. Inter-
estingly, while predictive accuracy was similar for the
different perturbations for the MET-prone sub-population,
this was not the case for all sub-populations. Specifically,
accuracy was generally higher predicting the phenotype
following P- or M-state-promoting perturbations in the



FIGURE 10 Predictive accuracy of DA approach depends on the estimated parameter. Bar plot displays the number and phenotype of accurate final pheno-

typical states predicted by the DA algorithm out of the 170 cell MET-prone sub-population for different parameters estimated. Parameters: truth system,

MET-prone cell sub-population; forecasting system, baseline parameter set. To see this figure in color, go online.
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EMT-resistant sub-population, compared with E-state pro-
moting or no perturbation, although these differences were
more pronounced for reconstructions using non-critical pa-
rameters (Fig. 15, third column). Interestingly, for the P-M-
resistant sub-population, accuracy of the data-assimilation
reconstruction without parameter estimation was worse
than predictions without data assimilation at all (Fig. 15,
fourth column). Most importantly, for all cases, predictive
FIGURE 11 Estimation of critical parameters improves predictive accuracy. (A

for critical and non-critical parameters. Error bars represent the standard deviatio

for non-critical parameters (*p < 0.05). (B) Scatter plot of the percentage of cor

parameter). Prediction accuracy generally positively correlated (r¼ 0.44) with ho

eter was). To see this figure in color, go online.
accuracy was high (above 90%) for the data-assimilation
reconstruction with a critical parameter, with the best
performer near perfect in all cases. We also importantly
note that the best performer was always a critical parameter
for each sub-population (which differ between the sub-popu-
lations as shown in Fig. 3). A list of the top five best per-
formers for each of the 14 cases (different sub-populations
and presence/absence of perturbations) is shown in Table S4.
) Bar plot displays the mean number of correct final phenotype predictions

n. The proportion of critical parameter predictions is significantly larger than

rect predictions and the parametric deviation from baseline (shown for each

wmuch a parameter deviated from the baseline (i.e., how critical the param-
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FIGURE 12 DA does not reconstruct the estimated parameter values. Histogram of the parameter estimation error at the start of the DA (blue) and at the

end of the DA correction window (orange) for the (A) worst-performing parameter (k3) and (B) best-performing parameter (kds). (C) Scatter plot of the per-

centage of correct final predictions and the parameter estimation error at the end of the DA corrections window. Predictive accuracy was generally negatively

correlated (r ¼ �0.43) with DA parameter estimation error. To see this figure in color, go online.
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DISCUSSION

In this study, we emulated the heterogeneity inherently
observed in epithelial cell populations by generating a large
population of virtual cells with different parameter sets. We
subsequently categorized the population into four sub-pop-
ulations: MET prone, EMT prone, EMT resistant, and
P-M resistant. Analysis of these parameter sets revealed a
series of critical parameters for which each sub-population
differs significantly from the baseline. Subsequently, we
performed a series of computational experiments in which
we successfully applied a data-assimilation approach to
accurately reconstruct EMT dynamics of heterogeneous vir-
tual cell populations in the presence of physiological model
error and parameter uncertainty. We found that the predic-
tive accuracy of our data-assimilation approach significantly
improves when coupled with single parameter estimation.
Furthermore, predictive accuracy of the data-assimilation
approach was further enhanced by incorporating the estima-
tion of population-specific critical parameters, which, to our
knowledge, is novel and has not been previously
demonstrated.

One of the main goals of this study was to test the capa-
bilities of the data-assimilation approach to predict the
response of a heterogeneous epithelial cell population to a
specific parametric perturbation. To test this goal, we per-
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formed multiple data-assimilation simulations for which
parametric perturbations that promoted either epithelial,
partial, or mesenchymal final cell states were applied to
the four different cellular sub-populations. The data-assim-
ilation algorithm successfully reconstructed the EMT and
MET dynamics of the population, while generating accurate
predictions of the population-specific responses to these per-
turbations. As just noted, the accuracy of the data-assimila-
tion algorithm was consistently improved when coupled
with single parameter estimation. Furthermore, the estima-
tion of a critical parameter yielded on a statistically
significant improvement of the mean accuracy rate of the
data-assimilation algorithm. Interestingly, the snail1
mRNA degradation rate parameter (kds) was common as
a top performer across multiple sub-populations and
perturbations.

This series of in silico numerical experiments functions as
a proof of concept for computational methods generating ac-
curate long-term predictions of heterogeneous populations
to complex inputs (e.g., time-varying stimuli and time-
dependent parametric perturbations). It is noteworthy that
to maximize the accuracy of computational predictions of
population dynamics, it is an effective strategy to estimate
a single population-specific critical parameter. Interestingly,
one might speculate that estimating all parameters simulta-
neously would result in the greatest predictive accuracy.



FIGURE 13 Parametric perturbations promote

transitions to specific final phenotypical states.

N-cadherin expression is shown for no perturbation

(blue), and an M- and E-state-promoting perturba-

tion (dashed red and green, respectively) during

the time-dependent TGFb protocol. The perturba-

tion is applied at the end of the DA correction

window (day 30, dashed black line). The E-state-

promoting perturbation is increasing the miRNA-

34 production rate k34 (scaling factor of 3). The

M-state-promoting perturbation is increasing the

zeb mRNA translation rate kz (scaling factor of

1.7). To see this figure in color, go online.

Predicting EMT population responses
However, perhaps counter-intuitively, this approach not
only does not increase predictive accuracy of the cell state
but also does not reconstruct the true parameter values either
(Fig. S2), reinforcing the hypothesis that targeted parameter
estimation can offer greater improvement in computational
predictive algorithms. Additionally, as data assimilation is
specifically based on observations that are a subset of the
full system space, applying this approach to virtual cells
inherently provides insights into what cell signaling
network component(s) (i.e., what is observed) yield useful
information about the overall system state. These in turn
motivate potentially new experiments designed to measure
specific cellular components or properties. Here, we note
that the specific form of the observation (i.e., the ratio of
E-cadherin and ZEB) utilized in our study was motivated
by a recent dual-reporter sensor that incorporates informa-
tion from both stages of the two-stage EMT progression
(42). However, additional simulations in which different
observations are utilized, in particular ratiometric measure-
ments involving only the first or only the second stage of the
EMT progression, demonstrate less accurate and noisier
reconstruction (Fig. S3).

In our previous work (19), we tested the capabilities of a
data-assimilation approach to reconstruct and forecast the
EMT dynamics of a single virtual epithelial cell under
different degrees of parameter uncertainty and model error.
The current study builds upon our previous single-cell data-
assimilation simulations in several significant manners to
expand the scope and applications of this approach, specif-
ically reconstructing and predicting heterogeneous popula-
tion EMT dynamics in the presence of 1) physiological
levels of parameter uncertainty, 2) time-dependent stimuli,
and 3) parametric perturbations that alter cell phenotype.
The simultaneous expression of multiple EMT cell states
by a cell population observed in numerical experiments mir-
rors the phenotypical heterogeneity observed in in vitro and
in vivo cell population studies (15,17,43–45). Furthermore,
the presence of cell sub-populations with different genetic
profiles that influence their EMT dynamic trajectory resem-
bles the variance in plasticity and stemness observed in
epithelial cell populations in the setting of pathological con-
ditions such as carcinogenic tumors (43,46). This genetic
and phenotypic heterogeneity has been hypothesized to be
one of the main contributors to the generation of diverse
tumor cell populations, thus enhancing cancer aggressive-
ness and therapy resistance (47,48). Additionally, the
time-dependent TGFb and perturbation protocol applied in
our computational study emulates recent in vitro investiga-
tions of EMT dynamics (15,49). We note that our simula-
tions predict that suppression or enhancement of zeb
mRNA promotes either the epithelial or mesenchymal state,
respectively, consistent with the cell population response
observed in in vitro studies (50,51). Similarly, the EMT-sup-
pressing effects of miR34 overexpression have also been
observed in vitro (52), consistent with model predictions.

Our study illustrates how a data-assimilation approach can
be viable tool for the reconstruction and prediction of dynam-
ical responses of heterogeneous cell populations in the pres-
ence of biochemical perturbations. This is particularly useful
for the study of cellular dynamics in pathological conditions
such as tumorigenesis and cancer metastasis, as phenotypic
heterogeneity has been observed to be one of the main drivers
of cancer aggressiveness and therapy resistance (47,48).
Combined with the appropriate experimental measurements,
a data-assimilation approach can offer the possibility of
improving a patient-specific dynamical prediction of these
pathological cellular processes and the response to EMT-pro-
moting or -suppressing perturbations. Thus, accurate fore-
casting systems can be a powerful tool for the development
of potential therapeutic strategies. Data-assimilation ap-
proaches have been traditionally used to reconstruct high-
dimensional systems for weather forecasting (53); however,
a few prior studies have applied data-assimilation approaches
to different biological systems. In particular, data-assimilation
Biophysical Journal 121, 3061–3080, August 16, 2022 3075



FIGURE 14 DAwith parameter estimation successfully predicts the population response of MET-prone cells to specific phenotypical-state-promoting per-

turbations. The forecast percentages of MET-prone cells in the epithelial (E, blue), partial (P, red), and mesenchymal (M, blue) state are shown as a function

of time in the presence of (A) an epithelial-state-promoting perturbation (k34 scaling factor of 3), (B) partial EMT-state-promoting perturbation (kdz scaling

factor of 1.8), and (C) a mesenchymal-state-promoting perturbation (kz scaling factor of 1.7). (D–F) Bar plots of the number of correct (blue) and incorrect

(orange) predicted final cell states for the MET-prone sub-population, out of 170 cells, reconstruction without DA, with DA (without parameter estimation),

the mean for DAwith non-critical parameter estimation, the mean for DAwith critical parameter estimation, and the best-performing parameter. For all three

perturbations, predictive accuracy is significantly greater for critical parameters, compared with non-critical parameters. (*p < 0.05). Parameters: truth sys-

tem, MET-prone cell sub-population; forecasting system, baseline parameter set. Parameter estimated: kds. To see this figure in color, go online.
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approaches have been mainly used in a biological context for
the reconstructing of excitable cell dynamics with oscillatory
and bursting behavior for various levels of scale and
complexity. Ullah and Schiff applied data assimilation to
reconstruct unobserved state variables in small neural net-
works (34,35). A data-assimilation approach was used for re-
constructing the unobserved dynamical behavior of single
cardiac cells, such as intracellular ionic concentrations (54).
Furthermore, a similar data-assimilation approach as used in
this study, but with an ensemble Kalman filter that integrates
spatial components, was used to reconstruct complex electri-
cal rhythms inone-dimensional and three-dimensional cardiac
tissues (36,37).

Bayesian parameter estimation methods are an important
tool for accurately reconstructing unknown biological sys-
tem parameters (55,56). We note that data assimilation em-
ploys a Bayesian inference approach to reconstruct and
predict system behaviors (18), with one of the most notable
differences between data assimilation with parameter esti-
mation and other Bayesian parameter estimation methods
being that data-assimilation estimates (and ultimately ap-
plies corrections to) both the state space and parameter
space at the same time, whereas other Bayesian parameter
3076 Biophysical Journal 121, 3061–3080, August 16, 2022
estimation methods generally only fit the model parameters.
Additionally, in general, Bayesian parameter estimation
methods are performed post hoc and require critical assump-
tions in the form of the prior probability distribution. The
ensemble form of the data-assimilation algorithm provides
a framework for generating an adequate prior probability
distribution and estimating the uncertainty in model predic-
tions. Specifically, the ensemble Kalman filter generates a
prior distribution using a mechanistic model to generate
an ensemble of forecasts and using the forecast distribution
as the prior distribution (performed each iteration). Further,
the uncertainty can be estimated using the covariance matrix
of the ensemble forecasts. Thus, the data-assimilation algo-
rithm is both based on and builds upon Bayesian parameter
estimation approaches.

As we show here, coupling the reconstruction algorithm
for the state space with parameter estimation is a useful
tool for improving data-assimilation predictions. A general
approach to implement parameter estimation for a data-
assimilation algorithm usually includes augmenting the state
space of the forecasting system with the selected parameters
that will be set to be estimated. However, we note that previ-
ous work using data-assimilation with parameter estimation



FIGURE 15 DA with parameter estimation successfully predicts the response of multiple sub-populations to specific phenotypical-state-promoting per-

turbations. Each panel shows bar plots of the number of correct (blue) and incorrect (orange) predicted final cell states for the MET-prone sub-population,

out of 170 cells, reconstruction without DA, with DA (without parameter estimation), the mean for DAwith non-critical parameter estimation, the mean for

DAwith critical parameter estimation, and the best-performing parameter. Columns 1–4 show results for the four different cell sub-populations: MET prone,

EMT prone, EMT resistant, and P-M resistant cells. Rows 1–4 correspond with no perturbation, and perturbations promoting the E, P, and M states, respec-

tively. For all perturbations, predictive accuracy is significantly greater for critical parameters, compared with non-critical parameters. (*p< 0.05). To see this

figure in color, go online.
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focused on the reconstruction of the unknown parameters in
the presence of varying degrees of model error. Some
examples of these studies include the work by Moye et al.,
in which they apply this expanded data assimilation to
improve the estimates of both neural cell states and model
parameters for different types of neuron spiking bifurcation
behavior (38). A similar data-assimilation approach was
used to reconstruct unknown parameters from phosphotyro-
sine-dependent signaling networks in the epidermal growth
factor receptor (EGFR) pathways (57). Furthermore,
coupling between state space corrections and parameter esti-
mation has been applied to reconstruct the parameter and
state space of blood glucose levels (39), mammalian sleep
dynamics (40), and neuron signaling and neuronal net-
works (58–60). Importantly, we note that, in contrast to these
studies, our study does not typically result in accurate predic-
tion of the estimated parameters, but rather incorporating
parameter estimation provides additional degrees of freedom
to the data-assimilation reconstruction. Indeed, this result is
perhaps expected, with hindsight, as successful prediction
of the estimated parameter would still result in model error
arising from the other 27 out of 28 unknown parameters. A
similar approach known as stochastic model parameter
selection was applied by one of the authors of this study in
Marcotte et al. (25), in which a subset of parameters are
drawn from a random distribution for each ensemble and
each assimilation interval; this approach similarly found
that the accuracy of the data-assimilation reconstruction of
the state space was improved, without accurate reconstruc-
tion of model parameters. One hypothesis for how these
results are obtained is that our approach takes advantage
of the model’s ability to produce constrained predictions
with loosely constrained parameter sets. Sethna and co-
workers refer to this phenomenon as ‘‘sloppiness’’ in a
modeling framework, which in practice means that a region
of the parameter space can reconstruct the same system dy-
namics. It has been suggested that this property can be advan-
tageous for the generation of predictions of the state space of
a biological system, but not for the reconstruction of the
parameter space (61–63). To our knowledge, the integration
of parameter estimation into the data-assimilation recon-
struction to improve the state prediction, but not the unknown
parameter itself, is a novel application.

This study is a proof-of-concept demonstration of applying
data assimilation to predict cell population dynamics;
however, there are several key limitations to be addressed in
Biophysical Journal 121, 3061–3080, August 16, 2022 3077
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future studies. At present, the cell population simulations
focus on the core regulatory biochemical signaling pathways
and do not integrate spatial and multicellular interactions
occurringwithin a tissue during EMT. The challenge ofmodel
development of the spatial interactions during the EMT pro-
cess is an area of ongoing work within our laboratory
(64,65) and others (66–68). Following the methods describe
by Hunt et al. (18), we plan to extend the approach demon-
strated here to account for spatial localization and interacting
spatial dynamics in multicellular tissues in the future. Addi-
tionally, our work utilized a single signaling network (Tian
et al. model) to represent the core regulatory pathway of
TGFb-induced EMT. The mathematical relationships pro-
posed by this model are based on key experimental findings
of the interactions of critical microRNAs and transcription
factors regulating the EMT process (20); however, other
EMT regulation signaling pathways, such as Wnt and b-cate-
nin signaling (69,70), are not accounted for. For future work,
our approach is highly generalizable and can be applied to
other models of EMT (44,45,71).
CONCLUSIONS

In this computational study, we use a data-assimilation
approach to reconstruct and predict the responses of a pheno-
typically heterogeneous population of epithelial cells to a
time-dependent EMT-inducing stimulus and EMT-suppress-
ing or -promotingperturbations.The use of a data-assimilation
approach incorporating the estimation of population-specific
critical parameters greatly increased the predictive accuracy,
facilitating the prediction of the responses to biochemical per-
turbations in real time,with future applications to cell diagnos-
tics and patient-specific therapies.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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