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We consider the finite alphabet phase retrieval problem: recovering a signal whose 
entries lie in a small alphabet of possible values from its Fourier magnitudes. This 
problem arises in the celebrated technology of X-ray crystallography to determine 
the atomic structure of biological molecules. Our main result states that for generic 
values of the alphabet, two signals have the same Fourier magnitudes if and only 
if several partitions have the same difference sets. Thus, the finite alphabet phase 
retrieval problem reduces to the combinatorial problem of determining a signal 
from those difference sets. Notably, this result holds true when one of the letters of 
the alphabet is zero, namely, for sparse signals with finite alphabet, which is the 
situation in X-ray crystallography.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

X-ray crystallography is a leading technology for determining the 3-D atomic structure of biological 
molecules, such as proteins. Indeed, thousands of new crystal structures are resolved each year, and more 
than a dozen Nobel Prizes have been awarded for work involving X-ray crystallography. In X-ray crystal-
lography, the crystal—a periodic arrangement of a repeating unit—is illuminated with a beam of X-rays, 
producing a diffraction pattern, which is equivalent to the magnitude of the Fourier transform of the crystal. 
The signal to be estimated (the electron density function of the crystal) is supported only at the sparsely-
spread positions of atoms [13]. Therefore, the crystallographic phase retrieval problem entails recovering a 
sparse signal from its Fourier magnitudes. The crystallographic phase retrieval is a special case of the phase 
retrieval problem, which refers to all problems that involve recovering a signal from its Fourier magnitudes, 
see [22,1,9,3] and reference therein. A detailed mathematical model of X-ray crystallography is introduced 
in [7].

A recent paper by a subset of the authors provides the first rigorous attempt to establish a mathe-
matical theory for the crystallographic phase retrieval problem [2]. In particular, it was conjectured that 
a generic sparse signal x ∈ RN whose support has size at most K is uniquely determined, up to un-
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avoidable ambiguities, as long as K ≤ N/2. The conjecture was verified for a small set of parameters; see 
also [8,17].

In practice, however, a more accurate model of the crystallographic phase retrieval problem should 
account for sparse signals whose non-zero entries are taken from a finite (small) alphabet; this alphabet 
models the relevant type of atoms, such as hydrogen, oxygen, carbon, nitrogen, and so on. In this paper, 
we make a first step towards this direction. Specifically, we study the problem of recovering a discrete one-
dimensional periodic signal, whose entries are taken from a finite alphabet, from its Fourier magnitudes. 
We refer to this problem as the finite alphabet phase retrieval problem. We note that recovering problems 
of finite alphabet signals were studied before, but mostly under linear models [12,11,21,20].

In particular, we show that for generic choice of entries in the alphabet, the finite alphabet phase retrieval 
problem can be reduced to a combinatorial problem involving difference sets. This is similar to the situation 
for binary phase retrieval (a problem studied before [6]) but new combinatorial subtleties can occur. More 
specifically, we show that two signals with entries taken from a finite alphabet have the same Fourier 
magnitudes if and only if the associated partitions have the same difference sets; see Proposition 4.2. 
Notably, this result remains true when one of the letters of the alphabet is zero, namely, for sparse signals 
with finite alphabet; see Theorem 4.3. This is the situation in X-ray crystallography where crystals are 
typically very sparse; the non-zero values occupy only ∼ 1/100 of the signal’s support [6]. Unfortunately, 
the problem of analyzing if specific difference sets determine a set uniquely (up to unavoidable symmetries) 
is an extremely difficult combinatorial problem [19, p. 350], [18, Section 3]. Therefore, we cannot provide 
a complete characterization when a finite-alphabet signal can be recovered uniquely, up to unavoidable 
symmetries, from its Fourier magnitudes.

Remark 1.1. In this paper we follow a long tradition in the crystallography literature and restrict our 
discussion to the one-dimensional phase retrieval problem for periodic signals. This corresponds to viewing 
our signals as functions on the cyclic group ZN . As was the case in [2], much of our theory can be readily 
adapted to study functions on any abelian group such as ZN × ZN ; see Section 6.1.

The rest of the paper is organized as follows. Section 2 provides a necessary background on difference 
sets, homometric sets, and autocorrelations. Section 3 begins our analysis by studying signals whose entries 
are taken from two-letters alphabet. Section 4 presents and proves our main results about phase retrieval of 
signals whose entries are taken from a finite alphabet. Section 5 provides a few examples and introduces the 
intriguing notion of pseudo-equivalent partitions. Section 6 introduces a few possible directions for future 
research on this problem.

2. Background

We begin by introducing basic definitions about difference sets. For any i, j ∈ [0, N − 1], we define the 
cyclic distance between i and j by

d(i, j) = min{N − |i − j|, |i − j|}. (2.1)

We note that d(i, j) ∈ [0, �N/2�] as illustrated in Fig. 1.

Definition 2.1 (Difference sets). Let A, B be two subsets of [0, N −1]. We define the cyclic difference multi-set 
by

A − B = {d(i, j) | i ∈ A, j ∈ B}. (2.2)

In particular, the self difference multi-set is given by A − A = {d(i, j) | i ≤ j ∈ A}.
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Fig. 1. Illustration of the cyclic distances between the points 0 and 5 and 1 and 5 in [0, 7].

Definition 2.2 (The dihedral group). The dihedral group D2N is the group of symmetries of the regular 
N -gon. It is a group of order 2N , which is generated by two elements r (rotation) and s (reflection). The 
elements r, s satisfy the relations rN = s2 = e and rs = srN−1, where e is the identity. The group D2N acts 
on the set [0, N − 1] as follows. The element r ∈ D2N acts by cyclic shift; i.e., r(i) = (i + 1) mod N and the 
element s acts by the reflection s(i) = N − i.

Next, we define equivalence classes. Since the Fourier magnitude is invariant under cyclic shifts and 
reflection (i.e., under the dihedral group), we can only hope to determine the support of a signal from the 
signal’s Fourier magnitudes up to an action of the dihedral group D2N .

Definition 2.3. Two subsets A, B ⊂ [0, N − 1] are equivalent if there exists an element σ ∈ D2N such that 
B = σA.

Another fundamental definition is that of homometric sets: subsets with the same difference set.

Definition 2.4. Two subsets A, B are homometric if A − A = B − B.

Lemma 2.5. If A, B are equivalent then they are homometric.

Proof. The lemma is an immediate consequence of the fact that the cyclic distance d(i, j) is invariant under 
cyclic shifts and reflection. �

A key fact we use about homometric subsets of [0, N − 1] is the following result, originally stated by 
Patterson [16]. For a modern proof, see [10, Corollary 1] or [5].

Theorem 2.6 (Patterson). Two sets A, B ⊂ [0, N − 1] are homometric if and only if their complements are 
homometric as well.

We now consider the case of partitions. Let A1, . . . , AK and B1, . . . , BK be two ordered partitions of 
[0, N − 1].

Definition 2.7. Two ordered partitions A1, . . . , AK and B1, . . . , BK are homometric if Ai − Aj = Bi − Bj for 
all pairs i, j ∈ {1, . . . , K}. Two ordered partitions A1, . . . , AK and B1, . . . , BK are equivalent if there exists 
σ ∈ D2N such that Bi = σAi for all i ∈ {1, . . . , K}.

Lemma 2.5 can be directly extended to ordered partitions.

Lemma 2.8. Equivalent partitions are homometric.

Before moving to the next section, we remind the reader of a couple of definitions from signal processing.
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Definition 2.9 (Power spectrum and periodic autocorrelation). The power spectrum of a signal x ∈ CN is 
the vector |x̂|2 ∈ RN

≥0, where x̂ is the discrete Fourier transform (DFT) of x and the absolute value is taken 
componentwise. The periodic auto-correlation of x is defined by

ax[�] =
N−1∑
n=0

x[n]x[� + n], (2.3)

where all indices are taken modulo N .

A key fact, first observed by Patterson [14,15], is that the DFT of ax is the power spectrum. The phase 
retrieval problem is thus equivalent to the problem of recovering a signal from its periodic auto-correlation. 
In the sequel, we use the terms Fourier magnitudes, power spectrum and autocorrelation interchangeably.

3. Binary and two-alphabet phase retrieval

The binary phase retrieval problem is the problem of recovering a binary signal x ∈ RN from its periodic 
auto-correlation ax ∈ RN [6,4]. Let S(x) denote the support of a signal x. A well known result for binary 
signals states that ax = ax′ if and only if S(x) −S(x) = S(x′) −S(x′); i.e., the two supports are homometric 
(e.g., [2]).

Let us expand upon this result and replace the zeros and ones in the traditional binary phase retrieval 
with arbitrary scalars α and β. We refer to this problem as the two-alphabet phase retrieval problem. When 
either α or β is zero, then this problem reduces to the binary phase retrieval problem. Otherwise, we do 
not have a well-defined notion of a support set since neither one of the two letters is assumed to be zero. 
Instead, we consider the sets

Sα(x) = {i | x[i] = α} and Sβ(x) = {j | x[j] = β}.

We prove the following result.

Theorem 3.1. For a generic choice of values of α, β, the following are equivalent for signals x, x′ ∈ {α, β}N .

(i) ax = ax′

(ii) Sα(x) and Sα(x′) are homometric
(iii) Sβ(x) and Sβ(x′) are homometric
(iv) The ordered partitions (Sα(x), Sβ(x)) and (Sα(x′), Sβ(x′)) are homometric.

Remark 3.2. By generic choice of α, β, we mean that the set of α, β for which the conclusion of the theorem 
does not hold is contained in the zero set of a collection of non-zero polynomials in R[α, β]. In particular, 
the pairs (α, β) ∈ R2 for which the theorem holds has full Lesbegue measure.

Proof. Clearly (iv) implies (ii) and (iii). If we show that (ii) implies (iv) then by symmetry we can also 
conclude that (iii) implies (iv). To see that (ii) implies (iv) we use Patterson’s Theorem, Theorem 2.6. Note 
that Sβ(x) = Sα(x)c, so by Patterson’s Theorem Sα(x) and Sα(x′) are homometric if and only if Sβ(x) and 
Sβ(x′) are also homometric. To show that the partitions (Sα(x), Sβ(x)) and (Sα(x′), Sβ(x′)) are homometric 
we must show that Sα(x) − Sβ(x) = Sα(x′) − Sβ(x′). This follows from the fact that the difference sets 
Sα(x) − Sα(x), Sα(x) − Sβ(x), Sβ(x) − Sβ(x) (respectively Sα(x′) − Sα(x′), Sα(x′) − Sβ(x′), Sβ(x′) − Sβ(x′)) 
form a partition of the multi-set [0, N − 1] − [0, N − 1].

Let ax[�] and ax′ [�] be the �-th entry of ax and ax′ , respectively. Then, ax[�] = m�α
2 + n�β

2 + p�αβ, 
and ax′ [�] = m′

�α
2 + n′

�β
2 + p′

�αβ, where m� (resp. m′
�) is the multiplicity of � in Sα(x) − Sα(x) (resp. 
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Sα(x′) − Sα(x′)), n� (resp. n′
�) is the multiplicity of � in Sβ(x) − Sβ(x) (resp. Sβ(x′) − Sβ(x′)), and p�

(resp. p′
�) is the multiplicity of � in Sα(x) − Sβ(x) (resp. Sα(x′) − Sβ(x′)). Hence, if (Sα(x), Sβ(x)) and 

(Sα(x′), Sβ(x′)) are homometric then ax[�] = ax′ [�]. Thus (iv) =⇒ (i).
Conversely, suppose that ax = ax′ . This means that for each � we have that

m�α
2 + n�β

2 + p�αβ = m′
�α

2 + n′
�β

2 + p′
�αβ.

Let us define m = m� −m′
�, n = n� −n′

�, p = p� −p′
�. If the integers m, n, p are not all zero, then α, β must be 

contained in the zero set of a quadratic polynomial with integer coefficients m, n, p, each of absolute value 
at most N . This means that for a generic choice of α, β we must have that m = n = p = 0; i.e., m� = m′

�, 
n� = n′

�, and p� = p′
�, meaning that the multiplicities of � in Sα(x) − Sα(x), Sβ(x) − Sβ(x), Sα(x) − Sβ(x)

are equal to the multiplicities of � in Sα(x′) − Sα(x′), Sβ(x′) − Sβ(x′), Sα(x′) − Sβ(x′), respectively. Since 
for generic α, β this is true for every � = 0, . . . , N − 1 we conclude that the partitions (Sα(x), Sβ(x)) and 
(Sα(x′), Sβ(x′)) are homometric. Thus, (i) =⇒ (iv) for generic choice of α, β. �
4. Signals with entries taken from a finite alphabet

We now extend our analysis to account for signals whose entries are taken from a finite alphabet. Let 
S = {α1, . . . , αK} be a set K real numbers and let RS be the set of all vectors in RN whose entries are 
taken from S. A vector x ∈ RS determines a length K partition A1(x), . . . AK(x) of [0, N − 1], where 
Ak(x) = {n ∈ [0, N − 1] | x[n] = αk}.

Remark 4.1. In this paper we assume that the alphabet is taken from the reals, but the theory is unchanged 
if we consider complex alphabet entries.

Proposition 4.2. For a generic choice of α1, . . . , αK , two vectors x, x′ ∈ RS have the same auto-correlation 
if and only if the associated partitions {Ak(x)} and {Ak(x′)} are homometric.

Proof. The proof is similar to the proof of the equivalence (i) ⇐⇒ (iv) in Theorem 3.1.
Since the entries α1, . . . αK are generic we can treat them as indeterminates. By definition, ax[�] =∑N−1
n=0 x[n]x[n + �] and ax′ [�] =

∑N−1
n=0 x′[n]x′[n + �], where all indices are taken modulo N . Since the entries 

of x, x′ are taken from the set S, ax[�] and ax′ [�] are quadratic polynomials in α1, . . . , αK . The coefficient 
of αiαj in ax[�] is the multiplicity of � in the difference multi-set Ai(x) − Aj(x). Likewise, the coefficient 
of αiαj in ax′ [�] is the multiplicity of � in the difference multi-set Ai(x′) − Aj(x′). Hence, ax = ax′ if and 
only if Ai(x) − Aj(x) = Ai(x′) − Aj(x′) for all i, j. In other words, ax = ax′ if and only if the corresponding 
partitions are homometric. �

We are now ready to present our main result, which is motivated by the crystallographic phase retrieval 
problem of recovering a sparse signal, whose non-zero values are taken from a finite alphabet, from its 
autocorrelation.

Theorem 4.3 (Sparse signals). Consider two signals x, x′ with entries taken from an alphabet 0, α2, . . . , αK

with α2, . . . , αK generic. Then, ax = ax′ if and only if the partitions A(x) and A(x′) are homometric.

Remark 4.4. The significance of this result is that we no longer assume that α1 is arbitrary. Equivalently, 
our result states that if we view ax, ax′ as polynomials in the variables α1, . . . , αK , then ax(α1, . . . , αK) =
ax′(α1, . . . , αK) if and only if ax(0, α2, . . . , αk) = ax′(0, α2, . . . , αK).

Proof. If the partitions A(x) and A(x′) are homometric then clearly ax = ax′ .
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Conversely, if ax = ax′ , then for every � the coefficients of αiαj in ax[�] and ax′ [�] are equal for i, j ≥ 2. As 
before, this coefficient is just the multiplicity of � in the difference multi-sets Ai(x) −Aj(x) and Ai(x′) −Aj(x′)
respectively. Using the same reasoning as in the proof of Theorem 3.1 we see that if α2, . . . , αk are generic 
then Ai(x) − Aj(x) = Ai(x′) − Aj(x′) for i, j > 1.

We begin with the following lemma.

Lemma 4.5. A1[x] − A1[x] = A1[x′] − A1[x′].

Proof. Let B[x] = ∪K
i=2Ai[x] and B[x′] = ∪K

i=2Ai[x′]. Then, {A1[x], B[x]} and {A1[x], B[x′]} are length two 
partitions of [0, N − 1]. Now, B[x] − B[x] = �i,j≥2(Ai[x] − Aj [x]) = B[x′] − B[x′]. (Here, the notation �
refers to the additive union of multi-sets. If C1, . . . , Cr are multi-sets, then an element c ∈ �Ci appears with 
multiplicity equal to the sum of the multiplicities in each of the sets Ci.) In other words, the subsets B[x]
and B[x′] are homometric. Since A1[x] = B[x]c and A1[x′] = B[x′]c, it follows from Patterson’s Theorem 
that they also have the same difference sets. �

To complete the proof that the partitions are homometric, we need to show that the difference sets 
A1[x] − Ai[x] and A1[x′] − Ai[x′] are equal for all i > 1. To do this we can argue inductively. Assume by 
induction that A1[x] −Ai[x] = A1[x′] −Ai[x′] for i < k with the initial case k = 1 established by Lemma 4.5. 
Let Bk[x] = ∪j>kAk[x] and Bk[x′] = ∪j>kAk[x′]. We know already that Bk[x] − Bk[x] = Bk[x′] − Bk[x′]. 
Hence, by Patterson’s Theorem we know that Bk[x]c − Bk[x]c = Bk[x′]c − Bk[x′]c. But these difference sets 
are just �i,j≤kAi[x] − Aj [x] and �i,j≤kAi[x′] − Aj [x′]. We a priori know that if i, j ≥ 2 then Ai[x] − Aj [x] =
Ai[x′] − Aj [x′]. By induction, we know that A1[x] − Aj [x] = A1[x′] − Aj [x′] for j < k. Hence, by the 
pigeon-hole principle we conclude that A1[x] − Ak[x] = A1[x] − Ak[x′] for all k. �
5. Equivalent, homometric and pseudo-equivalent partitions

In the conclusion to his 1944 paper [16], Patterson noted that

in very few cases are the atoms of a crystal all of one kind and it seems very probable that the presence 
of a second kind of atom will often resolve the ambiguities which might occur in the location of the first 
if taken alone.

In the following example we illustrate this phenomenon for 1-D signals.

Example 5.1. Consider A = {0, 1, 4, 7} and A′ = {0, 1, 3, 4} as subsets of [0, 7]. These sets are homometric 
but not equivalent. Let B = Ac = {2, 3, 5, 6} and B′ = (A′)c = {2, 5, 6, 7}. Direct inspection or Patterson’s 
Theorem implies that the sets B and B′ are also homometric but not equivalent. In particular B − B =
B′ − B′ = {04, 12, 22, 3, 4} as multi-sets and any two binary signals supported on B, B′ have the same 
autocorrelation.

Now, we consider the decomposition of B and B′ into two subsets of size two B1, B2 and B′
1, B′

2, 
respectively. We can now ask which of the six possible ordered partitions A, B1, B2 are homometric 
with any of the six possible partitions A′, B′

1, B′
2. Of the six possible three-set partitions of the form 

A, B1, B2, only the partitions ({0, 1, 3, 4}, {2, 6}, {3, 5}) are homometric but not equivalent to the parti-
tions A′, B′

1, B′
2 = ({0, 1, 4, 7}, {2, 6}, {5, 7}). For example the partitions ({2, 3}, {5, 6}) and ({2, 5}, {6, 7})

are not homometric as illustrated in Fig. 2.
On the other hand, if we consider partitions of B and B′ into three subsets, respectively, then no partition 

of the form A, B1, B2, B3 is homometric with a partition of the form A, B′
1, B′

2, B′
3. This reinforces Patterson’s 

intuition that by considering a second kind of atom we increase the likelihood that the ambiguities of the 
auto-correlation can be resolved.



T. Bendory et al. / Appl. Comput. Harmon. Anal. 66 (2023) 151–160 157
Fig. 2. The ordered partition (B1, B2) = ({2, 3}, {5, 6}) is shown on the left circle with points of B1 in red and B2 in blue. The 
ordered partition (B′

1, B′
2) = ({2, 5}, {6, 7}) is shown on the right circle with the points in B′

1 in red and B′
2 in blue. These 

partitions are clearly not homometric since the distance between the red points on the left is one but in the circle on the right 
the distance is three. However, the sets B1 ∪ B2 = {2, 3, 5, 6} and B′

1 ∪ B′
2 = {2, 5, 6, 7} are homometric; see Example 5.1. (For 

interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Results of Example 5.4.

N Partition Sizes Equivalent Pairs Pseudo-equivalent pairs Total homometric pairs

6 2,2,2, 369 0 369
7 3,2,2 1218 0 1218
8 3,3,2 2005 99 2104
9 3,3,3 813 158 971
10 4,3,3 360 12 372
11 4,4,3 148 1 149
12 4,4,4 62 3 70
13 5,4,4 10 0 10

We next consider pseudo-equivalent partitions. As far as we know, this case was not considered before.

Definition 5.2. Two partitions A1, . . . , AK and A′
1, . . . , A′

K of [0, N − 1] are pseudo-equivalent if there exist 
elements σ1, . . . , σK ∈ D2N such that A′

i = σiAi

When K = 2, any pair of pseudo-equivalent partitions are automatically equivalent because in this case if 
σ1A1 = A′

1 then σ1A2 = A′
2 since A2 = Ac

1 and A′
2 = A′ c

1 , respectively. Note that if the partitions A1, . . . , Ak

and A′
1, . . . , A′

k are pseudo-equivalent then Ai−Ai = A′
i−A′

i for each i. However, in general pseudo-equivalent 
partitions need not be homometric and homometric partitions need not be pseudo-equivalent.

Example 5.3. The ordered partitions {0, 1, 4}, {7}, {3}, {2, 5, 6} and {0, 1, 4}, {3}, {7}, {2, 5, 6} are pseudo-
equivalent and also homometric but not equivalent.

Although homometric partitions need not be pseudo-equivalent and vice-versa, a numerical experiment 
seems to indicate that for approximately uniform partitions (i.e., partitions where the sets have approxi-
mately the same size) homometric partitions are in fact pseudo-equivalent.

Example 5.4. We conducted the following experiment. For a given N in the range, N = 6, . . . , 13, we 
considered a set S(N) of partitions where N1 = 
N/3�, N2 = 
N − N1/2�, N3 = N − N2 − N3. When 
N = 6, 7 we considered all partitions and when N ≥ 8 we took a random sample of size 300. (For N = 6, 7
there are fewer than 300 partitions.) Each of the 

(|S(N)|
2

)
pairs of partitions in S(N) were tested to see if 

they were homometric. As indicated in Table 1, except for the case N = 12, all homometric pairs found 
were either equivalent or pseudo-equivalent.

Unfortunately, the problem of analyzing, for a particular partition type, which partitions are homometric 
but not equivalent seems to be an extremely difficult combinatorial problem. We conclude with the following 
positive result when each atom in the alphabet appears with multiplicity exactly one. To state our result we 
introduce the following notation. An ordered partition of A1, . . . , AK of [1, N ] has type [n1, . . . , nK ], where 
ni = |Ai|.
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Proposition 5.5. Any two ordered partitions of type [N − K, 1, . . . , 1︸ ︷︷ ︸
Ktimes

] are homometric if and only if they are 

equivalent.

Proof. We use induction on K. For K = 1, any two partitions of type [N − 1, 1] are necessarily equivalent 
because the dihedral group acts transitively on the set [0, N − 1]. Hence, if (A, {α}) and (A′, {α′}) are two 
partitions of this form, then there exists σ ∈ D2N such that α′ = σ(α).

Assume by induction that the statement holds for partitions of type [N − K, 1, . . . , 1]; i.e., if 
(A′, {a′

1}, . . . , {a′
K}) and (A, {a1}, . . . , {aK}) are two homometric ordered partitions, then they are equiva-

lent. We will prove that the statement holds for partitions of type [N − K − 1, 1, . . . , 1].
The induction hypothesis implies that if (α′

1, . . . , α′
K) and (a1, . . . , aK) are any sequences of distinct 

integers in [0, N − 1] such that d(a′
i, a

′
j) = d(ai, aj) for all 1 ≤ i < j ≤ K then there exists σ ∈ D2N such 

that α′
i = σαi for i = 1, . . . , K. To establish the induction step we must prove that if (α1, . . . , αK , αK+1)

and (α′
1, . . . , α′

K , α′
K+1) are two sequences such that d(a′

i, a
′
j) = d(ai, aj) for 1 ≤ i, j ≤ K + 1, then there 

exists σ ∈ D2N such that α′
i = σαi for i = 1, . . . K + 1. By induction, there exists σ1 ∈ D2N such that 

σ1(α1, . . . , αK) = (α′
1, . . . , α′

K). In particular, we may assume that (α′
1, . . . , α′

K , α′
K+1) is equivalent to a 

sequence of the form (α1, . . . , αK , α′
K+1). Applying a suitable element of D2N we may also assume that 

α1 = 0. Hence, d(αK+1, 0) = d(α′
K+1, 0) which implies that α′

K+1 = N − αK+1 or α′
K+1 = αK+1. In the 

latter case we are done since the sequences would be equal. If α′
K+1 = N − αK then for i = 2, . . . , K we 

have that d(N − αK+1, αi) = d(αK+1, αi) This implies that either 2αK+1 ≡ 0 mod N or 2αi ≡ 0 mod N . 
Since neither αK+1 nor αi can be zero, we see that in either case N must be even and in the former case 
we have that αK+1 = N/2 so α′

K+1 = αK+1. On the other hand, the integers α2, . . . , αK are distinct so 
we cannot have that αi = N/2 for 2 ≤ i ≤ K unless K = 2. In the case of K = 2, then we see that our 
sequences would necessarily be of the form (0, N/2, α3) and (0, N/2, N − α3). However, these sequences are 
also dihedrally equivalent since they are related by the reflection α �→ N − α. �
Remark 5.6. When N − K > N/2 we expect that analogous results hold for partitions of type [N −
K, a1, . . . , aL] where L � K and the a� are approximately equal. Unfortunately, investigating this problem 
is currently beyond reach from both a computational and theoretical perspective.

6. Extensions

6.1. Finite alphabet phase retrieval in finite abelian groups

The finite alphabet phase retrieval problem can be generalized to any finite abelian group. Let G be a 
finite abelian group and let V be the vector space of functions x : A → K, where K = R or K = C. In the 
case of one-dimensional phase retrieval, G = ZN , and for higher-dimensional phase retrieval G = ZM

N is a 
product of cyclic groups. In this case, the auto-correlation is defined as a function A → K defined by the 
formula

ax[�] =
∑
�′∈A

x[�′]x[� + �′].

Given a subset A ⊂ G, we can again define the G-difference set A − A [2, Appendix E], and define the 
notion of homometric sets. The G-difference set is invariant under the action of a group DG = G � Z2, 
and we say that two subsets A, A′ are equivalent if there is an element σ ∈ DG such that A′ = σA. The 
proof of Lemma 2.5 easily generalizes to show that two equivalent subsets of G are homometric. Likewise, 
Theorem 3.1 and Proposition 4.2 generalize to partitions of finite abelian groups. However, the existing 
proofs Patterson’s theorem make use of the fact that the signals are one-dimensional; i.e., that the group 
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is ZN . A natural question for future work is to prove the analogue of Patterson’s theorem for any abelian 
group G. If such a theorem held, then Theorem 4.3 could be generalized to the case where G is an arbitrary 
finite abelian group.

6.2. Other questions

1. In our model we assume that each atom is represented by a single letter. An interesting alternative 
model to investigate is to assume that the atoms are represented by a few letters placed consecutively in 
[0, N − 1]. While this model is combinatorially more complicated, it may also be more likely to resolve 
the ambiguities of the auto-correlation.

2. Another model worth further investigation, particularly in higher dimensions, is to assume that the 
separate atoms are placed within the basic crystal structure in a regular way. For example, if G = Z2

N

and our alphabet is {a, b} we might assume that the sets Sa(x) and Sb(x) are the orbits of different 
cyclic subgroups of G. (Note that G = Z2

N has many distinct cyclic subgroups.)
3. In an X-ray crystallography experiment, the measurement is contaminated with noise, which is charac-

terized by Poisson statistics. In this case, we are not searching for a signal which is precisely consistent 
with the power spectrum (as in this paper), but only approximately consistent. Understanding the 
information-theoretic limits of this problem, namely, what is the optimal expected error regardless of 
any specific algorithm, is an important research question.
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