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ABSTRACT

Tensor robust principal component analysis (RPCA), which seeks to
separate a low-rank tensor from its sparse corruptions, has been cru-
cial in data science and machine learning where tensor structures are
becoming more prevalent. While powerful, existing tensor RPCA
algorithms can be difficult to use in practice, as their performance
can be sensitive to the choice of additional hyperparameters, which
are not straightforward to tune. In this paper, we describe a fast and
simple self-supervised model for tensor RPCA using deep unfold-
ing by only learning four hyperparameters. Despite its simplicity,
our model expunges the need for ground truth labels while maintain-
ing competitive or even greater performance compared to supervised
deep unfolding. Furthermore, our model is capable of operating in
extreme data-starved scenarios. We demonstrate these claims on a
mix of synthetic data and real-world tasks, comparing performance
against previously studied supervised deep unfolding methods and
Bayesian optimization baselines.

Index Terms— tensors, robust principal component analysis,
self-supervised learning, deep unfolding, fine tuning

1. INTRODUCTION

Becoming increasingly pervasive in data science and machine learn-
ing, tensors are powerful data structures that capture interactions be-
tween elements in higher dimensions. These structures lead to in-
herent properties that can be exploited for tasks that seek to analyze
and process tensors. One such task is robust principal component
analysis (RPCA), the problem of recovering a low-rank tensor that
has been sparsely corrupted, which has found numerous applications
such as surveillance, anomaly detection, and more.

Compared with its matrix counterpart, tensor RPCA faces some
unique challenges, as many ideas from matrix RPCA begin to fall
apart. First, blindly applying a matrix RPCA algorithm to a flattened
tensor can destroy structural information [1]. Second, convex formu-
lations, typically done with the nuclear norm as a convex relaxation
to the rank constraint, is NP-hard for tensors [2]. Third, there are
multiple notions of tensor decomposition and rank. As such, prov-
able tensor RPCA algorithms have been developed for low multilin-
ear rank [3], tubal rank [4,5], and CP-rank [6, 7] decompositions.

In this paper, we focus on the Tucker decomposition with low
multilinear rank, though we believe our approach is also extendable
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to other tensor decompositions. While powerful, existing efficient
tensor RPCA algorithms, e.g. based on iterative scaled gradient up-
dates as in [3], can be difficult to use in practice, as their performance
is sensitive to the choice of hyperparameters, such as learning rates
and thresholds. In addition, tuning these hyperparameters can be dif-
ficult, since the number of hyperparameters scales with the desired
number of iterations.

Leveraging deep unfolding, the process of unrolling an iterative
algorithm into a deep neural network introduced in [8], there have
been considerable efforts in learning algorithmic parameters with
backpropagation to improve the performance of the original algo-
rithm. Deep unfolding for RPCA can be found in ultrasound imag-
ing [9, 10], background subtraction [11], and the special case of pos-
itive semidefinite (PSD) low-rank matrices [12]. To generalize this
idea, [13] designed a deep unfolded architecture for matrix RPCA,
extendable to infinitely many RPCA iterations. However, many ex-
isting approaches [9-11, 13] train on ground truth labels which may
be limited or nonexistent in practice. Though only applied to PSD
low-rank matrices, [12] addressed this with an unsupervised model.

Motivated by the need to broaden the applicability and improve
the performance of tensor RPCA in practice, we describe a fast and
simple self-supervised model for tensor RPCA by unfolding the re-
cently proposed algorithm in [3], due to its appealing performance.
Our contributions are as follows.

1. We propose a novel self-supervised model for tensor RPCA,
which can be used independently or as fine tuning for its su-
pervised counterpart. Furthermore, it scales to an arbitrary
number of RPCA iterative updates with only four learnable
parameters by leveraging theoretical insights from [3].

2. Synthetic and real-world experiments on video surveillance
and materials microscopy data show that our self-supervised
model matches or exceeds the performance of supervised
learning without the need for ground truth, especially in
data-starved scenarios.

Paper organization. The rest of this paper is organized as follows.
We build up the tensor RPCA algorithm from [3] in Section 2 which
will be used in our learned tensor RPCA method described in Section
3. Then, we present synthetic and real-world experimental results in
Section 4, followed by final remarks in Section 5.

Notation and basics of tensor algebra. Throughout this pa-
per, we represent tensors with bold calligraphic letters (e.g. X)
and matrices with bold capitalize letters (e.g. X). For tensor
A € RMXm2Xm3 . A, (A) is the tensor matricization along
the k-th mode (i.e. dimension of the tensor), kK = 1,2,3, and
[Aiy ig,is is the (i1,42,13)-th entry of LA. A fiber is a vec-
tor obtained by fixing all indices except one in the tensor (e.g.
[A]i; .-.i5)- Let the inner product between two tensors A and B be
(A, B) = Zil,ig,ig [Ali iz .i5 [Bliy in.iz» and [[A]le = 1/ (A, A)
and ||A|l, = > Ali, is,i5| denote the Frobenius norm

11,12,13 ‘[
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and the ¢;-norm, respectively. Furthermore, suppose a tensor
X € R™*"2X"3 hag multilinear rank » = (r1,72,73), and its
Tucker decomposition is given by X = (U(l),U(Z), U(3)) -G
with U®) € R X" and G € R™ *"2%"3 it follows that

(Xirsinis = D ( I1 [U(k)]ik,jk>[gb1,j2,j3-

J1,92,93 \k=1,2,3

Last but not least, given any X € R"™*"2*"3_jts rank-r higher-
order singular value decomposition (HOSVD) H.,. (X) is given by
He (X) = (UD,UP U, G), where U*) € R"**"* contains
the top r singular vectors of My (X)) and the core tensor G =
(U(UT, U(2)T7 U(3)T) X,

2. BACKGROUND ON TENSOR RPCA

2.1. Problem formulation

Suppose we observe a corrupted tensor Y € R™*"2%"3 of the form
y=X,+8,, )]

where X, is a low-rank tensor with the multilinear rank r =
(ri,72,73), whose Tucker decomposition is given by X, =
wPuP UuP)y.g, with UM e R for k = 1,2,3,
and G, € R™*7™2%"3_ Moreover, S, is an a-sparse corruption
tensor, i.e. S, contains at most 0 < « < 1 fraction nonzero values
along each fiber. Given Y and 7, the goal of tensor RPCA aims to
accurately obtain X', and S.,.

2.2. Tensor RPCA via ScaledGD

Recently, Dong et al. [3] proposed a fast and scalable method for
tensor RPCA with provable performance guarantees. Specifically,
they try to minimize the objective function

L(F,S) = % H(U“>,U<2>, U®).g+8— yHi ©)

where FF = (UM, U® U® G) and S are the estimates of the
factors of the low-rank tensor and the sparse tensor, respectively.
The algorithm proceeds by iterative updates of the factors F' via
scaled gradient descent (ScaledGD) [14—17], followed by filtering
the outliers S using the shrinkage operator 7¢(-), defined as

[Te(X)]isk = sgn([X]i k) - max(0, [X]ijk| — ). (3)
The details of the proposed ScaledGD algorithm are summarized
in Algorithm 1. Beginning with a careful initialization using the
spectral method, given by

(Us". U U5 Go) = e V=T, (¥), &)

for each iteration, ScaledGD makes the following updates:
Sii1=Torns (y ~ (UM, U®,u) .gt) 7 (52)
UL = U" =0V 00 L(F, Se0) (UPTOM) T (sb)

fork =1,2,3, and

gt+1 =G, — n (Ut(l),015(2)7 Uf(S)) 'Vgt‘C(Ft>st+1)7 (50)

Algorithm 1 ScaledGD for 3rd order tensor RPCA

Input: the observed tensor Y, the multilinear rank », learning
rate 7, and threshold schedule {¢;}7_.
mit: (UY, U™ U, Go) = Ho (¥ = Te, (V).
fort=0,1,...,7 —1do

Update S;+1 via (5a);

Update Fy11 = (Ut(}r)17 Ut(i)l, Ut(i)u gtﬂ) via (5b) and (5¢);
end for
Output: Fr = (U, UY UY Gr).

where 17 > 0 is the learning rate, and {Ct}tT:o is the threshold sched-
ule up to 7 iterations. Here,

U =0 oUP)Mi(G)T,
U = U U )Ma(G,) ",
U® =0 oUM)Ms(G,) ',

and UM = (UPTUM) ™, k = 1,2,3, where ® denotes the
Kronecker product. In [3], it is shown ScaledGD perfectly recovers
the low-rank tensor X', and the sparse tensor S under mild assump-
tions as long as the low-rank tensor is incoherent and the corruption
level « is not too large. Moreover, ScaledGD converges at a linear
rate independent of the condition number of X', [3], making it more
appealing than the vanilla gradient descent approach that is much
more sensitive to ill-conditioning. However, translating the theoreti-
cal advantage into practice requires carefully tuned hyperparamters,
n and {Q}?zo, which unfortunately are not readily available.

3. PROPOSED METHOD

We aim to greatly broaden the applicability of Algorithm 1 with
learned hyperparameters by leveraging self-supervised learning
(SSL) under a deep-unfolding perspective [8] of Algorithm 1.

3.1. Unrolling-aided hyperparameter tuning

Based on the insights from theoretical analysis [3, Theorem 1], we
use a threshold schedule that decays at every iteration to reduce the
number of hyperparameters. In other words,

Ct+1 = pCt

fort > 1and 0 < p < 1, so there are only 4 hyperparameters
that need tuning: (o, 1, p, and 7. By unrolling Algorithm 1, we
obtain an unfolded version of Algorithm 1, where (o, (1, p, and 7
are learnable; see Fig. 1 for more details. The model consists of a
feed-forward layer and a recurrent layer to model the initialization
and iterative steps of Algorithm 1.

It remains to specify the loss function used to learn the hyper-
parameters. One immediate idea is to optimize the performance in
reconstructing the true tensor X', by minimizing

HX* — (U, U, U®) .gH2
fali) = EAL F
*|lf

; (6)

which we refer to as supervised learning (SL) similar to [13]. While
this is possible when trained on synthetic data—where we have ac-
cess to the ground truth—it may not be applicable in general in the
absence of ground truth.
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Fig. 1: Network architecture. Y and r are fed into the first layer, the
initialization step in Algorithm 1. Subsequent recurrent layers follow
Algorithm 1 to update X'y = (Ut(l)7 Ut(2), Ut<3)) -G;. Recurrent
layers require the iteration count ¢ due to our definition of the (t41)-
th thresholding parameter, (;+1 = (1p’ for t > 0. We use softplus
activations to ensure (o, (1, > 0 and the sigmoid function to make
0<p<l

One might naturally wonder if (2) can be used to optimize the
hyperparameters. Unfortunately, with the decaying threshold sched-
ule, (2) can be trivially solved as we increase the number of itera-
tions 7" or choosing p close to 0, since the threshold ¢; will rapidly
approach 0, making S; =~ Y — X by (5a). Hence, the objective
function (2) is no longer appropriate in learning the hyperparame-
ters. As such, we will instead use the following loss function:

1
LostlB) = 32
F

to encourage sparsity of the corruption tensor [12, 18]. We refer to
(7) as the self-supervised learning (SSL) loss since it does not require
the ground truth and therefore, more amenable to real-data scenarios.

y-uOuPu?)g o

3.2. From supervised learning to self-supervised learning

Depending on the loss function, our model can be used for both su-
pervised or self-supervised learning of the hyperparameters. For
supervised learning, suppose we have access to X', for all tensor
RPCA problem instances in a training dataset, then the hyperparam-
eters can be tuned by optimizing (6).

A drawback of a purely supervised approach is the assumption
of a “one size fits all” set of hyperparameters that can be applied to
other similar tensors. In fact, tensor inputs into RPCA are excep-
tionally complex and in general, cannot be adequately described in a
few features such as their sparsity levels, ranks, and condition num-
bers. Luckily, tuned hyperparameters obtained from training serve
as warm starts for further refinements. Similar to [12], we first learn
a fixed set of hyperparameters on the training data (when available),
which will be fine tuned during test time by minimizing (7) individ-
ually for each tensor, leading to a self-supervised learning paradigm.

4. EXPERIMENTS

We conduct synthetic and real-world data experiments to corroborate
the effectiveness of the proposed learned tensor RPCA approach.
Our code is available at https://github.com/hdong920/
Tensor_RPCA_ScaledGD.

4.1. Synthetic data

We explore the effect of fine tuning with SSL for each combi-
nation of @ € {0,0.1,...,0.9} and » € {10,20,...,70} with
fixed n = 100. When a rank (r,r,7) tensor Y € R™*"*"
needs to be sampled, we first randomly generate factor matrices

,El), ,52), U® € R™*" with orthonormal columns and core ten-
sor G, where [G,]iii = k= “/"D for k = 5 and 0 elsewhere

10 20 30 40 50 60 70
rank

10 20 30 40 50 60 70 10 20 30 40 50 60 70

(a) Baseline (b) Supervised (c) Fine tuning

% for each
*llF

combination of o and r of Algorithm 1 using hyperparameters found
by the baseline, supervised learning, and supervised learning with

self-supervised fine tuning.

Fig. 2: The log mean relative recovery error,

to construct X, = (US), U,EQ), U,EB)) - G,. In addition, Sy is a
sparse tensor with a-fraction of its entries drawn from a uniform
distribution in (—6, ), where 6 := 3 || X, ||,. All experiments in
this section were run for 7" = 100 iterations of Algorithm 1.

First, we perform supervised learning by minimizing (6) simi-
lar to [13] for each combination of « and 7. For each gradient step,
we generate a new sample (a tensor RPCA problem instance). We
train for 1000 gradient steps with a decaying learning rate scheduler.
Next, we perform SSL for 500 gradient steps to fine tune the hyper-
parameters for 20 samples generated for each combination of o and r
by minimizing (7). As the baseline, we use Optuna [19], a Bayesian
optimization-based hyperparameter tuning package, to minimize (7)
individually for 20 samples. We run Optuna for 500 iterations for
each sample over a search space containing the learned hyperparam-
eters. Fig. 2 shows that the baseline accurately recovers X, across
a wide range of cases, though it can be unstable in low rank and
high sparsity scenarios. Supervised learning improves the stability
of these scenarios but performs slightly worse along the edge of the
phase transition. Although fine tuning adds more computation, we
simultaneously obtain more stable results than the baseline and gain
a significant improvement on recovering X', over supervised learn-
ing, especially along the edge of the phase transition.

During self-supervised fine tuning, we track the percent change
of the RPCA hyperparameters’ fined tuned values relative to their
final values from supervised learning. Table 1 contains the quartiles
of these percent changes for samples that observed a more than a
90% reduction in recovery error after fine tuning. We see that RPCA
hyperparameters can be quite sensitive where tuning by grid search
would require very fine sampling. Fine tuning adapts to this sensi-
tivity which supervised learning alone cannot address.

Quartile Co 1 n p

Ql 0.93% 3.06% -14.03% | 3.36%
Q2 5.17% 28.91% -3.38% 6.20%
Q3 15.73% 36.56% 7.85% 6.68%

Table 1: Fine tuning parameter percent change quartiles for samples
with greater than 90% reduction in recovery loss after fine tuning.

4.2. Background subtraction in video surveillance

Next, we apply learned tensor RPCA from scratch on the back-
ground subtraction task using the Background Models Challenge
real videos dataset [20], which contains 9 videos of varying shapes.
We use the first 6 to train two separate models via supervised learn-
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(b) Self-supervised learning

Fig. 3: Background subtraction of a video containing a moving train
and worker. From left to right, the columns are the input video,
extracted sparse foreground, and low-rank background.

ing and SSL with 7" = 150 for 15 epochs, which are tested on the
last 3 videos. Models assumed rank 1 along the time dimension and
full rank for all others. For SSL, it minimizes (7). However, for
supervised learning, as this dataset includes only ground truth bi-
nary foreground masks (Boolean labels that indicate if a pixel is part
of the foreground), we cannot use (6). Defining M to be the binary
foreground mask of the same shape as Y, we know S, and M share
the same support. Letting © be the Hadamard product, we use

H (y _ (U(l),U(Q),U(?’)) . g) ©01- M)Hi
Iy o1 -m;

»CSM (F) =

for supervised learning since Y © (1 - M) = X, © (1 —M). Be-
cause we only assume low rank along the time dimension, iterative
updates of Algorithm 1 are skipped for other modes to save computa-
tion. Fig. 3 display no significant visual difference between results
from the two models, suggesting the benefit of SSL in alleviating the
need of labeled training data for this task. This is backed up by their
similar masked average relative recovery test errors, v/ Lsm(Fr).
‘We observe that as the assumed time dimension rank increased, the
more fine tuning improved relative recovery error.

4.3. Electron backscatter diffraction microscopy

We compare our SSL-based tensor RPCA method and the base-
line (tuned by Optuna [19] using the loss (7)) on high-dimensional
microscopy data from [21]. To provide context, data collection
involved iteratively performing electron backscatter diffraction
(EBSD) on a nickel-based superalloy. EBSD collects an image
where the orientation of the local crystal, represented as Euler an-
gles, is stored on each pixel. The superalloy was mechanically
polished after each EBSD image collection, removing approxi-
mately 1 micron of material. This was repeated many times to
obtain a sequence of slices containing orientation measurements,
with an in-plane pixel spacing of 1 micron. The result is a volume of
orientation information that can be considered as a high-dimensional
tensor. See Fig. 4a for a visualization of consecutive slices. Note this
dataset has no inherent notion of ground truth that we can perform
supervised learning on for RPCA and contains only one sample.
The motivation of applying RPCA here is that materials scien-
tists usually arduously parse through these these slices manually.
Based on Fig. 4a, changes from slice to slice are very subtle. Be-
ing able to separate the large slow moving sections from the sparse
rapidly evolving parts could allow materials scientists to quickly

nt produced by SSL

(c) Sparse compon

‘3\\; ¥

(e) Sparse component produced by Baseline

Fig. 4: The tensor RPCA outputs on example EBSD slices.

identify critical rare events with implications on life-limiting be-
havior. Due to the dataset’s significant amount of structure, we
train our model for only 10 iterations of hyperparameter updates on
(250 x 250 x 250 x 3) samples where we identify unique param-
eters for each sample using » = (250, 25,250,3) and 7' = 10,
again skipping updates along full rank modes. From Fig. 4b and 4c,
our method extracts sparse components that capture detailed changes
across slices and low-rank components that contain macro-scale pat-
terns. We repeat the experiment for 50 iterations of the baseline
method, with the results shown in Fig. 4d and 4e. Although the
baseline resulted in similar loss values and captured similar quality
low rank and sparse structures, it took many more iterations (about
5 times more) to obtain these results. Furthermore, we note that the
per-iteration hyperparameter update runtimes of the baseline and our
model were very similar, so our model also ran about 5 times faster.

5. CONCLUSIONS

We have illustrated and empirically shown two ways deep unfolded
SSL can be used to improve current approaches to tensor RPCA.
First, a deep unfolded version of Algorithm 1 with a new ¢;-based
loss function to train the hyperparameters can perform equivalently
with supervised models and quickly provide satisfactory results in
tasks where supervision is inapplicable. Second, self-supervised fine
tuning improves recovery by finding a unique set of RPCA hyper-
parameters for each RPCA problem instance. Altogether, we have
simultaneously extended the applicability of tensor RPCA to data-
starved settings and enhanced its performance. Possible future adap-
tations include extending our method to design similar models for
tensor algorithms that are centered around reconstruction like tensor
completion. It would also be of interest to replace our recurrent lay-
ers with other architectures for sequential inputs like transformers.
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