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The number of noisy images required for molecular reconstruction in single-particle
cryoelectronmicroscopy (cryo-EM) is governed by the autocorrelations of the observed,
randomly oriented, noisy projection images. In this work, we consider the effect of
imposing sparsity priors on the molecule. We use techniques from signal processing,
optimization, and applied algebraic geometry to obtain theoretical and computational
contributions for this challenging nonlinear inverse problem with sparsity constraints.
We prove that molecular structures modeled as sums of Gaussians are uniquely
determined by the second-order autocorrelation of their projection images, implying
that the sample complexity is proportional to the square of the variance of the noise.
This theory improves upon the nonsparse case, where the third-order autocorrelation
is required for uniformly oriented particle images and the sample complexity scales
with the cube of the noise variance. Furthermore, we build a computational framework
to reconstruct molecular structures which are sparse in the wavelet basis. This method
combines the sparse representation for the molecule with projection-based techniques
used for phase retrieval in X-ray crystallography.

single-particle cryoelectron microscopy | method of moments | crystallographic phase retrieval |
sparsity | projection-based algorithm

Sparsity is a ubiquitous prior in many linear inverse problems, including regression (1, 2),
compressed sensing (3–5), and various image processing applications (6), to name a few.
While sparse priors are also used for nonlinear inverse problems, their applicability
and theoretical foundations are limited to a few specific (usually linear and quadratic)
models, e.g., (7–10). Motivated by single-particle cryo-EM—an imaging technology
for determining the 3-D structure of biological molecules—this paper uses modern
techniques from signal processing, optimization, and applied algebraic geometry to
provide theoretical analysis and computational methods for a challenging nonlinear
inverse problem with sparsity constraints.

Cryo-EM has garnered increasing interest in the past decade due to a series of
technological and algorithmic breakthroughs, driving a striking improvement in the
obtainable resolution, up to the level where individual atoms can be distinguished.
This has in turn opened new scientific horizons and led to many biological discoveries,
e.g., refs. 11–13.

In a cryo-EM experiment, a solution containing molecules to be imaged is rapidly
frozen into a thin ice layer, which is then placed in an electron microscope. Next,
the microscope acquires an image, called micrograph, which contains multiple 2-D
tomographic projection images of the molecules. The 3-D orientations of individual
projection images are unknown and random. To avoid damaging the samples, the
electron dose must be kept low, resulting in a low signal-to-noise ratio (SNR). The
cryo-EM computational problem is reconstructing the 3-D molecular structure from
these projection images (14).

The renewed interest in cryo-EM led to a thorough investigation of its mathematical
and statistical foundations (15, 16). In particular, a crucial challenge from a statistical
perspective is understanding the sample complexity of cryo-EM, i.e., the number of images
that are required to obtain accurate reconstructions. A remarkable result revealed an
intimate connection between the sample complexity of cryo-EM (and related statistical
models) and the method of moments in the low SNR regime. If the distribution of
the 3-D rotations is uniform, the method of moments reduces to autocorrelation
analysis. In particular, it was shown that if d is the lowest degree moment of the
observations (i.e., the randomly oriented tomographic projections) that determines the
molecular structure uniquely, a necessary condition for recovery is n = ω(σ 2d ), (namely,
n/σ 2d

→ ∞ as n → ∞) where σ 2 is the variance of the noise (17, 18). Specifically,
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if the distribution of rotations is uniform, then the third-
order autocorrelation is the lowest order autocorrelation that
determines a generic 3-D structure, implying a sample complexity
of n = ω(σ 6) (19). This agrees with long-standing empirical
evidence (20).

Autocorrelation analysis was first introduced to cryo-EM by
Zvi Kam more than 40 y ago (21). Kam showed that the second-
order autocorrelation of the projection images (which can be
estimated with n = ω(σ 4) observations) determines the 3-D
structure up to a set of orthogonal matrices, under the assumption
that the rotations are drawn from a uniform distribution. A few
methods have been proposed to resolve the missing orthogonal
matrices based on typically unavailable side information, such
as homologous models with known structure, or a few clean
projections images, in order to construct ab initio models (22–
24). These ab initio models can then be refined using expectation-
maximization: the prevalent algorithmic framework for the
cryo-EM reconstruction problem that aims to maximize the
nonconvex posterior distribution (20, 25, 26). In addition, it was
recently shown that if the distribution of rotations is nonuniform,
then there is at most a finite list of structures that agree
with the second moment of the observations (27). Techniques
that are inspired by Kam’s method were also proposed as
a solution to the molecular reconstruction problem in X-ray
free-electron lasers (XFEL), which, akin to the reconstruction
problem in cryo-EM, involves recovering a 3-D structure from
its randomly oriented diffraction images (28–31). In contrast to
cryo-EM, in XFEL the rotations are more likely to be uniformly
distributed for particles with nearly uniform dimensions and the
reconstruction problem is more involved since the measurements
consist of the magnitudes of Fourier coefficients without their
phases.

The first contribution of this paper is proving that if the
sought-for molecular structure can be described as a sparse
combination of Gaussian functions, then the structure can be
determined uniquely from the second-order autocorrelation of
the observations, even if the rotations are distributed uniformly.
This eliminates the orthogonal matrix ambiguity in Kam’s
original paper (21). This result is a theoretical guarantee for
unique recovery from the second moment. It combines the
sparsity assumption with proof techniques from real algebraic
geometry, substantially reducing the sample complexity of the
cryo-EM reconstruction problem from n = ω(σ 6) to n =
ω(σ 4). The argument is constructive in the sense that it
provides a polynomial-time recovery algorithm. However, the
said algorithm is tailored to the specific model of point mass
functions. It is not well-suited to data discretized into pixels or
voxels because it hinges on the ability to cluster points in the
support of the second moment into certain distinct components;
see Remark 12. (Accurate clustering becomes difficult when
data are discretized and the components are close to each
other.)

The second contribution of this paper is a practical algorithm,
fusing the second-order autocorrelation of the projections with
a sparse representation of the molecular structure, and requiring
only n = ω(σ 4) observations. The algorithm builds on the
realization that a typical 3-D structure can be represented
by only a few coefficients in a suitable basis. Similar sparsity
assumptions have been leveraged in a wide variety of scientific
and engineering applications, including compressed sensing (3–
5), image processing (6), and phase retrieval (7–10, 32), to name
a few. In cryo-EM, there have been several attempts to represent
the 3-D structure as either a sparse mixture of Gaussians (33–39)

or using alternative bases (40). In particular, in settings with
sufficiently high SNR where it is possible to identify the
Gaussian mixtures within individual projection images, the
inverse problem simplifies and can be solved (41, 42). Yet, the
sparsity property has still not been fully harnessed to represent
and recover 3-D molecular structures, and it is not part of the
standard computational pipeline of cryo-EM.

The technique is based on a connection between Kam’s
theory for cryo-EM and the crystallographic phase retrieval
problem—recovering a sparse signal from its Fourier magnitudes.
In particular, we adapt projection-based algorithms that were
designed for the crystallographic phase retrieval problem to the
cryo-EM setting. These algorithms were extensively validated on
experimental X-ray crystallography datasets by prior researchers,
e.g., refs. 9, 43–46. Here, we demonstrate on simulated data that
they are also useful in constructing ab initio models in cryo-EM.
They can be used to mitigate computational and model bias issues
associated with the nonconvexity of the cryo-EM reconstruction
problem (26, 47, 48). This computational approach opens the
door to merging more aspects of the phase retrieval and cryo-EM
fields in future work.

The rest of the paper is organized as follows. In Section 1, we
provide background on the reconstruction problem in cryo-EM,
the method of moments, Kam’s theory, and the crystallographic
phase retrieval problem. In Section 2, we prove that a structure
composed of an ensemble of ideal point masses subject to uniform
rotations can be recovered from the second-order autocorrelation,
implying a sample complexity of n = ω(σ 4). Section 3 outlines
the practical computational framework and presents numerical
results. Section 4 concludes the paper and discusses potential
theoretical and computational extensions.

1. Preliminaries

A. The Cryo-EM Problem. Cryo-EM reconstruction seeks to
determine a 3-D molecular structure8 from its 2-D noisy tomo-
graphic projections, taken at random viewing angles. In this work,
we focus on the case of uniformly random rotations. Uniformity
is often taken as a baseline model, was the setting in Kam’s paper
(21), and is harder than the case of a nonuniform distribution
of rotations in the sense that it requires asymptotically more
images (without sparsity priors) (19, 27). Formally, let µ be the
Haar probability measure on the compact group SO(3) of 3-D
rotations, representing the uniform distribution. Assuming that
we observe i.i.d. 2-D images of 8 after it has been randomly
rotated according to µ and then tomographically projected to
the plane, each projection image is modeled as:

IR(x, y) =
∫
∞

z=−∞
(R ·8)(x, y, z)dz + ε(x, y), R ∼ µ, [1]

where ε(x, y) is a white Gaussian noise with known variance σ 2,
and R ·8 denotes the action of rotation R on8. Here, typically,
the variance of the noise σ 2 is much greater than the magnitude
of the clean projection.

The cryo-EM problem is to estimate the molecular structure
8 from n realizations of Eq. 1, i.e., from the 2-D observations
IR1 , IR2 , . . . , IRn . In Section 4, we discuss how the proposed
framework can be extended to account for additional aspects
in the generative model for cryo-EM images.

B. TheMethod of Moments. Our theoretical and computational
contributions are based on the method of moments—a basic
statistical inference technique tracing back to the seminal paper
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of Karl Pearson in the end of the 19th century. Specifically, we
use the second moment of the observations Eq. 1, and relate it
to the sought-for 3-D structure.

The (debiased) second observable moment is given by

M2((x1, y1), (x2, y2)) =
1
n

n∑
i=1

IRi(x1, y1)IRi(x2, y2)− B(σ 2),

[2]

where B(σ 2) is a bias term that depends only on the noise
variance. For large enough n, we have

M2((x1, y1), (x2, y2)) ≈ M2((x1, y1), (x2, y2)), [3]

where

M2((x1, y1), (x2, y2)) :=
∫

SO(3)
IR(x1, y1)IR(x2, y2)dµ(R)− B(σ 2),

[4]
denotes the (debiased) population second moment, which is a
function of 8 through Eq. 1. More precisely, for n = ω(σ 4) it
holds M2 = M2 + o(1) with high probability.

The idea of the method of moments is to find a structure
8, which matches the observable moments. It is an alternative
to other standard statistical estimation methods, e.g., maximum
likelihood estimation (MLE). That said, a recent paper suggests
that in the low SNR regime, the method of moments approxi-
mates the MLE (49).

C. Kam’s Method. We detail a specific approach to autocorre-
lation analysis in cryo-EM, introduced by Kam (21). To this
end, we need to introduce a convenient basis for representing a
3-D structure 8, the spherical Bessel basis (50). An expansion
of maximum degree L is defined by first expanding the Fourier
transform F(8) of 8 in spherical harmonics as

F(8)(k, θ ,ϕ) ≈
L∑
`=0

∑̀
m=−`

A`m(k)Y m
` (θ ,ϕ), [5]

where k denotes the radial frequency and Y m
` (θ ,ϕ) are the spher-

ical harmonics. In addition, the spherical harmonics coefficients
A`m(k) are expanded by spherical Bessel functions, up to degree
S`, as

A`m(k) ≈
S∑̀

s=1
a`msj`s(k). [6]

The functions j`s(k) are the normalized spherical Bessel func-
tions. By allowing L and S` to grow unboundedly, any ban-
dlimited function with bandlimit 1 can be represented in this
basis. However, when expanding 3-D molecular structures from
discretized projection images, the Nyquist criterion applied to the
projection images limits the amount of extractable information.
This determines bounds on the maximally allowable truncation
parameters L and S`; see SI Appendix for a detailed description.

We aim to recover coefficients a`ms (up to rotation and
reflection in R3). As will be shown next, it is convenient to
gather the coefficients into matrices A`, of size S`× (2`+ 1), via
A`(s, m) := a`ms, for each ` = 0, . . . , L.

Provided that the distribution of viewing angles is uniform,
Kam (21) showed that the second moment of the Fourier

transform of the projection images yields estimates for the
following S` × S` matrices:

C`(s1, s2) :=
∑̀

m=−`

A`(s1, m)A`(s2, m) = A`A∗` . [7]

Applying the Cholesky decomposition to each C` in Eq. 7 and
imposing 8 to be real-valued, knowledge of Eq. 7 identifies
each matrix of coefficient A` up to an unknown real, orthogonal
transformation, provided S` ≥ 2`+ 1. That is, we can compute
A`O` for some unknown orthogonal matrix O` in the group
O(2` + 1). Therefore, the second moment determines 8 up to
a set of orthogonal matrices. To recover these matrices, and thus
the 3-D structure, additional information is required. In this
paper, we suggest using a sparsity assumption.

D. Crystallographic Phase Retrieval. One of the contributions
of this paper is to relate the cryo-EM reconstruction problem
to crystallographic phase retrieval. Phase retrieval is the main
computational challenge in X-ray crystallography, which is still a
leading method for elucidating the atomic structure of molecules.
The prevalence of crystallography is witnessed by the remarkable
fact that 25 Nobel Prizes have been awarded for work directly
or indirectly involving crystallography (51). Although there
exist additional important phase retrieval applications (e.g., refs.
30, 52–54), X-ray crystallography is by far the most widely
investigated application.

The crystallographic phase retrieval problem entails recovering
a sparse signal x from its periodic autocorrelation (or, equiva-
lently, from its Fourier transform magnitudes, namely, its power
spectrum). While simply stated, and despite its importance,
the theoretical foundations of this problem continue to evolve.
In particular, it was recently conjectured that a generic sparse
signal can be recovered from its periodic autocorrelation if the
number of nonzero entries is smaller than half the signal’s
length (55). This conjecture was verified for a few cases. The
relation of the crystallographic phase retrieval problem with the
beltway problem from combinatorial optimization is explored in
ref. 56. Our theoretical reconstruction guarantees in the following
section can be viewed as analogous results in the setting of
cryo-EM.

The standard algorithms for crystallographic phase retrieval
build on two projection operators: one onto the measured data
(the power spectrum) and the second onto the space of sparse
signals. While simple algorithms that alternate between these
two projections tend to quickly stagnate, a more sophisticated
family of algorithms, based on reflections, shows excellent
performance, though their running time is exponential in the
sparsity level (9, 57). These algorithms are tightly related to
splitting methods, such as Douglas–Rachford and the alternating
direction method of multipliers (ADMM), and have been applied
to a wide variety of problems (46). A main contribution of this
paper is a modification of these algorithms to autocorrelation
analysis for cryo-EM. In particular, we focus on one such
algorithm, called relaxed–reflect–reflect (RRR), but alternative
algorithms, such as Fienup’s hybrid input–output algorithm (43),
the difference map algorithm (44), and the relaxed averaged
alternating reflections algorithm (45), can be adapted to cryo-EM
by the same strategy. Importantly, if the model is accurate (e.g.,
no noise and the correct sparsity level is known) RRR iterations
halt only when they find a solution that satisfies both constraints
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(defined by the projection operators). Thus, RRR does not suffer
from local minima as gradient-based algorithms do.

2. Superior Sample Complexity: The Second
Moment Suffices for Sums of Point Masses

This section presents our main theoretical result: The second
moment suffices to recover an idealized sparse volume, i.e., a
volume given as a weighted sum of point masses. We deduce
that the second moment also suffices for a pixelated and blurred
variant of the model. Our theorems imply an associated sample
complexity of n = ω(σ 4). This stands in contrast to previous
results, which do not assume sparsity. There, the third moment
is required for recovery, and the associated sample complexity is
n = ω(σ 6) (19, 58).

A. Models and Main Theoretical Results. We use an atomistic
representation of a molecule. In our first idealized model, an atom
is specified by a weighted Dirac delta function, and a molecule is
a sum of such point masses. In more detail, let a1, . . . , ap ∈ R3

be the 3-D points representing atom locations, and w1, . . . , wp
be positive weights corresponding to the scattering potentials of
the individual atoms. Then,

8 :=
p∑

i=1
wiδai , [8]

is the molecule composed of the atoms (ai, wi). Relabeling if
necessary, we assume that the `2-norms ‖ai‖ are in descending
order.

We model each projection image IR as a mixture of p Dirac
delta functions on R2 plus noise:

IR(x, y) :=
p∑

i=1
wiδπRai(x, y) + ε(x, y). [9]

Here π : R3
→ R2 denotes coordinate projection onto the first

two coordinates, and ε is white Gaussian noise with (known)
variance σ 2. Given n 2-D images as in Eq. 9, the reconstruction
problem is to recover atoms (ai, wi) in Eq. 8 up to a global
rotation and reflection. (The reflection ambiguity exists because
a molecule and its reflection in the microscope’s image plane are
indistinguishable given cryo-EM data, e.g., ref. 14.) See Fig. 1
for an illustration of the setup.

Under this model the (debiased) second population moment,
obtained by substituting Eq. 9 into Eq. 4, reads:

M2((x1, y1), (x2, y2)) =

p∑
i=1

p∑
j=1

wiwj

×

∫
SO(3)

δπRai (x1, y1)δπRaj (x2, y2)dµ(R),

[10]

where µ is the uniform distribution. Note that M2 is a measure
on R2

× R2.
We introduce two assumptions on the atom locations:

A1. The vectors ai are pairwise linearly independent;
A2. The norms ‖ai‖ are distinct.

We remark that conditions A1 and A2 are quite restrictive, e.g.,
ruling out molecules with nontrivial point-group symmetries.

Our first main theoretical result is stated as follows.

Theorem 1. Consider the model given by Eqs. 8-9. Assume that
conditions A1-A2 hold. Then, the support of the second moment
M2 uniquely determines the set of triples {(‖ai‖

2, ‖aj‖
2, 〈ai, aj〉) :

i, j = 1, . . . , p}. Therefore, M2 (Eq. 10) uniquely determines the set
of atom locations {ai : i = 1, . . . , p} up to a rotation and reflection
in R3.

Theorem 1 is proven in Subsection C, after auxiliary results are
given in Subsection B.

Building on the uniqueness in Theorem 1, we obtain the
following constructive result as well.

Theorem 2. Consider the model given by Eqs. 8-9. Assume that
p ≥ 3 and conditions A1-A2 hold. Then, Algorithm 1 (described
in Subsection D) recovers the set of atoms {(ai, wi) : i = 1, . . . , p}
up to a rotation and reflection of the atom locations in R3 from the
second moment M2 (Eq. 10) in O(p2) flops.

Theorem 2 is proven in Subsection D. In fact the model of Eqs.
8-9 can be extended to Gaussians of nonzero width of the form

8(x) :=
p∑

i=1
wik(x − ai), [11]

where k(x) = e−
‖x‖2

2κ2 is an isotropic Gaussian with SD κ > 0.
Our results guarantee unique recovery from the second moment
also for this model. The proof of the following result is given in
SI Appendix.

A B

C

Fig. 1. (A) Example of a structure of the form in Eq. 8. For this illustration, the size of each dot is proportional to the weight wi . (B and C) Two examples of
tomographic projections of rotated versions of (A), with no noise (Leftmost), signal-to-noise ratio 0.04 (Middle) and signal-to-noise ratio 0.01 (Rightmost).
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Theorem 3. Consider the model given by Eq. 11. Assume that
conditions A1-A2 hold. Then the second moment MG

2 of the
projection images formed from the model in Eq. 11 uniquely
determines the set of atom locations and weights {(wi, ai) : i =
1, . . . , p} up to a joint rotation and reflection of the atom locations
in R3.

We next discuss an additional extension of the model of Eq. 8-9.
Prior works on the sample complexity of cryo-EM (18, 19, 59)
do not directly apply to the models above. The principal reason
is that the measurement formation defined by Eq. 9 is not finite-
dimensional. Therefore, we consider a pixelated and blurred
variant of the model. The molecule is still specified by a collection
of atoms {(ai, wi) : i = 1, . . . , p}. However, each projection
image now consists of 2m

× 2m pixels:

I [m]
R (j1, j2) :=

∫ (j2+1)τ

j2τ

∫ (j1+1)τ

j1τ

( p∑
i=1

wiδπRai(x, y)

)
∗ k(x, y)dxdy + ε(j1, j2). [12]

Here, we discretized [−1, 1]2 into equi-sized squares, where
j1, j2 ∈ {−2m−1,−2m−1 + 1, . . . , 2m−1

− 1} and τ = 1/2m−1.
Also, ∗ denotes convolution and k(x, y) is the isotropic Gaussian

kernel with fixed variance κ2, i.e., k(x, y) = e
−x2
−y2

2κ2 . Last, the

noise satisfies ε(j1, j2)
i.i.d .
∼ N (0, σ 2).

In the pixelated model, the (debiased) second population
moment equals:

M [m]
2 ((j1, j2), (j3, j4)) =

∫ (j4+1)τ

j4τ

∫ (j3+1)τ

j3τ

∫ (j2+1)τ

j2τ

∫ (j1+1)τ

j1τ

M2((x1, y1), (x2, y2))∗(k(x1, y1)k(x2, y2)) dx1dy1dx2dy2.
[13]

We now state our main result for the pixelated model. Its proof
relies on Theorems 1 and 2.

Theorem 4. Consider the model given by Eq. 12. Fix an integer
p ≥ 3 and real numbers r > 0 and w+ > w− > 0. Assume that
A1-A2 hold, and for each i = 1, . . . , p we have ‖ai‖ ≤ r and
w− ≤ wi ≤ w+. Then, there exists m′ = m′(p, r, w+, w−) with
the following property. Whenever m ≥ m′ and 2m

× 2m pixels are
used in Eq. 12, then the second moment M [m]

2 (Eq. 13) uniquely
determines the set of atoms {(ai, wi) : i = 1, . . . , p} up to a rotation
and reflection in R3.

As the details are technical, we prove Theorem 4 in SI
Appendix. We only use two properties of the Gaussian kernel
k: that it is real-analytic and that its Fourier transform does not
vanish.

Corollary 5. Assume the setting of Theorem 4 with m ≥ m′. Then,
the sample complexity for generic unique recovery (in the sense of ref.
19) is n = ω(σ 4) as σ →∞.

The rest of the section provides the proofs of Theorems 1 and
2, with Theorem 4, Corollary 5 and supporting results shown in
SI Appendix. We emphasize that Algorithm 1 is a theoretical
algorithm, not intended for use in practice due to its noise
sensitivity as explained in Remark 12. By contrast, Algorithm 2
in the subsequent section is built for practical situations.

B. Support of M2. To recover the atoms from M2, the main
information that we use is actually qualitative. Specifically, we rely
on the particular structure of the support of the second moment
M2 in R2

×R2. To describe this, we need to first understand the
possible images of one pair of atoms.

Definition 6. For i, j = 1, . . . , p, let θij : SO(3) → R2
× R2

be the map given by θij(R) = (πRai,πRaj).

Definition 7. For i, j = 1, . . . , p, let Sij ⊆ R2
×R2 be the image

of θij, i.e., Sij = {(x1, x2) ∈ R2
×R2 : ∃R ∈ SO(3) s.t. πRai =

x1,πRaj = x2}.

The next lemma characterizes Sij ⊆ R2
× R2 as the solution

set to a system of polynomial equations and inequalities. This
will enable proof techniques from real algebraic geometry.

Lemma 8. Assume i 6= j. Then the set Sij is connected, compact,
and semialgebraic. Letting ((x1, y1), (x2, y2)) be variables on
R2
× R2, Sij is cut out by one quartic equation and two quadratic

inequalities:(
‖ai‖

2
− x2

1− y2
1
)(
‖aj‖

2
− x2

2− y2
2
)
=
(
〈ai, aj〉− x1x2− y1y2

)2,
x2

1 + y2
1 ≤ ‖ai‖

2 and x2
2 + y2

2 ≤ ‖aj‖
2. [14]

It has dimension 3 as a semialgebraic set if condition A1 holds.

A few different examples of the sets Sij are illustrated in Fig. 2,
for varying values of 〈ai, aj〉 and ‖ai‖, ‖aj‖. There, we show the
projection of Sij to R3 when y2 is dropped.

The next result is immediate from Definitions 6 and 7.

Lemma 9. The second moment is

M2 =
k∑

i,j=1
wiwj(θij)∗(µ), [15]

where the subscripts indicate the pushforward measure defined by
(θij)∗(µ)(·) = µ

(
θ−1

ij (·)
)

. In particular, the support of M2 is

∪
p
i,j=1Sij.

C. Information-Theoretic Uniqueness: Proof of Theorem 1. We
begin by proving Theorem 1. The key is a converse to Lemma 8.
While Lemma 8 implies the quartic equation in Eq. 14 (plus the
quadratic inequalities there) determine set Sij, we need that Sij
determines the quartic. The proof of this converse uses results
from real algebraic geometry (60).

Lemma 10. Assume that condition A1 holds. Let i 6= j. Then, the
ideal of the real Zariski closure of Sij in R2

× R2 is principal and
generated by the quartic polynomial qij:(
‖ai‖

2
− x2

1− y2
1
)(
‖aj‖

2
− x2

2− y2
2
)
−
(
〈ai, aj〉− x1x2− y1y2

)2
=
(
‖ai‖

2
‖aj‖

2
− 〈ai, aj〉

2)
− ‖aj‖

2x2
1 − ‖aj‖

2y2
1

− ‖ai‖
2x2

2 − ‖ai‖
2y2

2 + 2〈ai, aj〉x1x2 + 2〈ai, aj〉y1y2

+ x2
1y2

2 + y2
1x2

2 − 2x1y1x2y2. [16]

Further, qij is irreducible over R.
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Fig. 2. Illustration of the semialgebraic sets Sij described in Lemma 8, projected onto (x1 , y1 , x2)-space. Upper row from left to right: ‖ai‖ = ‖aj‖ = 1 and
〈ai ,aj 〉 = cos �

2 , cos �
4 , cos �

6 , cos �
20 , respectively. Lower row from left to right: 〈ai ,aj 〉 = ‖aj‖ cos �

3 , ‖ai‖ = 1 and ‖aj‖ = 1,0.9,0.8,0.7, respectively. By Lemma 9,
these sets make up the support of M2, which is the basis of our theory.

Corollary 11. Assume that conditions A1-A2 hold. Then, the
irredundant irreducible decomposition of the Zariski closure of the
support of M2 is

{(x1, x2) : x1 = x2} ∪
⋃
i 6=j

Sij. [17]

We can now prove the information-theoretic uniqueness.

Proof of Theorem 1: The support of M2 determines the real
radical prime ideal of each of top-dimensional irreducible
component of its Zariski closure. By A1-A2, Corollary 11 and
Lemma 10, these ideals are 〈qij〉 = {qijh : h ∈ R[x1, y1, x2, y2]}
for i 6= j. The ideal 〈qij〉 uniquely determines qij, since
the coefficient of x2

1y2
2 in Eq. 16 is 1. Extracting the co-

efficients of x2
2 , x2

1 , x1x2 in Eq. 16, qij determines the triple
(‖ai‖

2, ‖aj‖
2, 〈ai, aj〉). Ranging over i, j, we have proven that

the support of M2 fixes the set:

{(‖ai‖
2, ‖aj‖

2, 〈ai, aj〉) : i 6= j}. [18]

By A2 and our assumption that the norms ‖ai‖ are descending,
knowledge of Eq. 18 lets us fill in the Gram matrix:

G = A>A ∈ Rp×p, [19]

where
A =

(
a1 . . . ap

)
∈ R3×p. [20]

However G determines A up to left multiplication by a
3× 3 orthogonal matrix. Indeed considering a truncated rank-3
eigendecomposition, we write

G = QDQ>, [21]

where Q ∈ Rp×3 has orthonormal columns and D ∈ R3×3 is
diagonal and positive-semidefinite. Then,

A = OD1/2Q>, [22]

for some O ∈ O(3). Therefore, the atoms’ locations ai are
determined up to a global rotation and reflection. �

D. Recovery Algorithm: Proof of Theorem 2. Now, we move
forward and prove Theorem 2. We present Algorithm 1 for
efficiently recovering the atoms (ai, wi) from M2. The algorithm
is theoretical in that it relies on oracle access to the following
information.

Assumption 1. We assume oracle access to:

O1. {sample(Sij) : i 6= j}, where sample(Sij) consists of four or
more Zariski-generic points on Sij;

O2. the value of measure M2 on the set Sij for all i 6= j.

Remark 12. In principle, O1 and O2 could be estimated from
the sample moment M2 in Eq. (2) if n = ω(σ 4). It would
require the ability to identify points in the support of M2
and cluster them according to the components Sij. However,
this encounters difficulty when dealing with noisy moments
discretized in pixels. The next section is dedicated to a different
computational framework, which is suited for practical settings.

Proceeding, Algorithm 1 interpolates sample(Sij) to recover qij
from Lemma 10, Eq. 16.

Lemma 13. Assume that condition A1 holds, and O1 is known.
Let sample(Sij) = {((x1k, y1k), (x2k, y2k)) : k = 1, . . . , |sample
(Sij)|}. Consider the matrix

6 of 12 https://doi.org/10.1073/pnas.2216507120 pnas.org
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
1

x2
1k + y2

1k
. . . x2

2k + y2
2k . . .

x1kx2k + y1ky2k

x2
1ky2

2k + y2
1kx2

2k − 2x1ky1kx2ky2k


>

. [23]

Then it has rank 4, with kernel spanned by
‖ai‖

2
‖aj‖

2
− 〈ai, aj〉

2

−‖aj‖
2

−‖ai‖
2

2〈ai, aj〉

1

 . [24]

By Lemma 13, we compute the triples
{(‖ai‖

2, ‖aj‖
2, 〈ai, aj〉) : i 6= j} in O(p2) time, by forming the

matrices in Eq. 23 and computing their kernels. We then fill
in the Gram matrix in Eq. 19 as in the proof of Theorem 1.
The atoms’ locations ai are recovered from the truncated
eigendecomposition as in Eq. 22.

The calculation of the weights wi is based on the following.

Lemma 14. Assume that conditions A1-A2 hold. Then, for each
i 6= j, the measure of Sij with respect to M2 is

M2(Sij) = wiwj. [25]

Therefore, O2 tells us all off-diagonal entries of ww>∈ Rp×p.
We complete this uniquely to a rank-1 matrix by using

(ww>)ii =
(ww>)ij′(ww>)ji

(ww>)jj′
, [26]

where j, j′ are any indices such that i, j, j′ are all distinct. (This
step requires p ≥ 3.) The weights wi are lastly recovered either
by computing the leading eigenvector/eigenvalue pair of ww> or
as the square root of the diagonal of ww>, using the fact that the
w are nonnegative.

Remark 15. We note that Eq. 26 is a particular case of the
problem of recovering a low-rank matrix with corrupted diagonal
entries; see e.g., refs. 61–63 for more on that problem.

We summarize the procedure of this section in Algorithm 1.

Proof of Theorem 2: The considerations above show that
Algorithm 1 correctly recovers the set of atoms {(ai, wi) : i =
1, . . . , p} from M2 (up to a rotation and reflection in R3). It
costs O(p2) in flops and storage once O1 and O2 are available
if we use a randomized algorithm (64) to compute the truncated
decomposition in Eq. 21. �

3. Kam’s Method with Sparsity Constraints

This section introduces a computational framework to leverage
sparsity in recovering the underlying molecular structure. The
goal is to devise a principled way to compute ab initio approxi-
mations of the underlying structures, that can then be improved
further in a refinement step which is typically performed using
expectation-maximization (25, 26) or used for model validation.
In this section, we maintain the assumption that the distribution
µ of viewing angles is uniformly distributed. Ifµ is a nonuniform

Algorithm 1: Recovering a sparse structure from its second
moment
Input: Second population moment M2 as in Eq. 10
Output: Atoms {(ai, wi) : i = 1, . . . , p} up to a rotation and

reflection in R3

1. Access O1 in Assumption 1
2. Recover the unordered set {(‖ai‖

2, ‖aj‖
2,〈ai, aj〉): i 6= j}

using Lemma 13
3. Fill in the Gram matrix G = A>A with A from Eq. 20
4. Recover ai up to orthogonal transformation by comput-

ing a truncated eigendecomposition of G as in Eq. 22
5. Access O2 in Assumption 1
6. Fill in the off-diagonal entries of ww> using Lemma 14
7. Complete ww> using Eq. 26
8. Recover wi from ww>

return {(ai, wi) : i = 1, . . . , k}

distribution, it is known that there is at most a finite list
of structures that are consistent with the observed second-
order moment (27); employing sparsity to aid in the recovery
problem with nonuniform distribution will be considered in
future work.

We use projection-based optimization techniques from the
related problem of crystallographic phase retrieval, coupled with
information extracted from the second moment of the projection
images. Without imposing the underlying sparsity, the second
moment of the projection images determines the structure up to
an ambiguity encoded by a set of unknown orthogonal matrices.
The key idea of the algorithm is to alternatingly project the
molecular structure onto constraints encoded by the sparsity and
by the projection image moments, respectively.

Analogously to Eq. 10, the moments of the projection images
furnish information about the underlying 3-D structure. Unlike
our theoretical results, however, we consider a general 3-D
structure 8 expanded in a spherical Bessel basis as in Section C.
As in the previous section, Gaussians (and mixtures of a small
number of Gaussians) are often used as first approximation to
the scattering potential of individual atoms. These Gaussians
have the majority of their energy concentrated in a region of
finite support. They can therefore be approximated by a small
number of localized basis functions, such as the Haar wavelets.
The sparse mixtures of Gaussians from the preceding sections
can therefore be viewed as having a sparse representation in
a wavelet basis, which offers computational advantages. This
section therefore assumes that 8 can be represented by only
a few wavelet coefficients. We also mention that recent work
appearing after this paper was submitted shows that, for almost
any basis, the second moment determines the structure uniquely,
if the structure is sparse when expanded in the basis (65). The
next section introduces wavelet bases, and later we provide the
details of the projection-based algorithm.

A. Wavelet Bases. We encode sparsity of a 3-D molecular struc-
ture 8 by a sparse expansion in wavelets (66)—a popular choice
of sparsifying, localized bases in a wide range of applications (67).
Our algorithm can easily be adapted to any specific wavelet
basis, and, more generally, to any choice of basis, for instance,
sparsifying bases learned through data.

We denote the multilevel wavelet basis by fm,n, where
m = 1, . . . , mmax denotes the level of the wavelet and n =
1, . . . , nmax(m) the index of the function within the level. As a
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shorthand, we define W : RM×M×M
→ Rmmaxnmax(m) as the

map sending a 3-D structure to its vector of coefficients when
expanded in the wavelet basis, i.e.,

W (8) = (〈8, fm,n〉)
mmax,nmax(m)
m,n=1 . [27]

Likewise, W−1 : Rmmaxnmax(m)
→ RM×M×M then maps a

wavelet coefficient vector into its 3-D expansion by

W−1
(
(cm,n)

mmax,nmax(m)
m,n=1

)
=
∑
m,n

cm,nfm,n. [28]

An additional advantage of using wavelet bases is that W and
W−1 can then be applied in linear time O(M3) using a fast
wavelet transform (68).

B. Projection-Based Algorithm. For a discretized 3-D struc-
ture 8 of size M × M × M , we define the mapping SB :
RM×M×M

→
∏L
`=0 CS`×(2`+1) of the structure into its

coordinates in the spherical Bessel basis by

SB(8) = (A0, A1, . . . , AL) . [29]

The inverse mapping SB−1 :
∏L
`=0 CS`×(2`+1)

→ RM×M×M

then expands a set of coefficients in the spherical Bessel basis into
its corresponding 3-D structure:

SB−1 (A0, . . . , AL) = F−1

∑
`,m,s

a`msj`s(k)Y m
` (θ ,ϕ)

 . [30]

As discussed in Section 1, Kam’s method identifies matrices
A`O`, for O` an unknown orthogonal matrix, for each ` with
S` ≥ 2` + 1. By possibly reducing the value of L to the largest
index with this property, we will for ease of notation assume that
this property holds for ` = 0, . . . , L. Therefore, at the onset
of the algorithm, we have access to a set of coefficient matrices
B = (B0, . . . , BL) satisfying

B` = A`O`, O` ∈ O(2`+ 1), [31]

for unknown orthogonal matrices O`. Our algorithm aims to
recover an approximation of these unknown orthogonal matrices,
which leads to an approximation of 8. This orthogonal matrix
retrieval problem is an analogue to the problem of the missing
phases in the phase retrieval problem (69). We therefore adapt a
popular algorithm from the phase retrieval literature into the
problem of cryo-EM. The algorithm repeatedly utilizes two
projections onto the set of structures with a given sparsity
level and a set determined by the projection images. These two
projections are the main pillars of the algorithm and can be used
in different ways, as explained next. But first, we define the two
projection operators.
B.1. First projection: Moment constraint. We begin by defining
the first projection operator, denoted by ρ1, as the projection
onto the set defined by the C` matrices in Eq. 7. Let SB(8) =
(A0, . . . , AL) in

∏L
`=0 CS`×(2`+1) be the ordered collection of

matrices of coefficients in the spherical Bessel basis. Define ρ1(8)
as the projection

ρ1(8) = SB−1 (D0, . . . , DL) , [32]

where the matrices D` are defined by

(D0, . . . , DL)= argmin
(D0,...,DL)

{
‖A`−D`‖F : D`D∗` = C`

}
, [33]

with C` from Eq. 7. Eq. 33 is an instance of the Orthogonal
Procrustes problem. Although it is a nonconvex optimization
problem, it can be solved in closed form in terms of the singular
value decomposition of BT

` A`, see e.g., ref. 70. In the implemen-
tation, the matrices defining the operations SB and SB−1 are
precomputed. The computational complexity of subsequently
solving an instance of Eq. 32 is then O(L4 +

∑L
l=0 S``2 +

M3 log M + M3∑
` `S`) = O(L4 + M3 log M + M3L3), since

typically S` = O(L).
B.2. Second projection: Sparsity constraint. The projection ρ2
promotes sparsity in a given local wavelet basis. For a structure8
and an integer K , define ρ2(8, K ) as the structure with wavelet
coefficients obtained by retaining the K largest components of
W (8) and replacing the remaining elements by zero, i.e.,

ρ2(8, K ) = W−1
(
(αm,ncm,n)

mmax,nmax(m)
m,n=1

)
, [34]

where the coefficients are defined by W (8) = (cm,n)
mmax,nmax(m)
m,n=1

and αm,n = 1 if cm,n has magnitude among the K largest
magnitudes of the cm,n, and zero otherwise. The computational
complexity of this step is O(M3). We again emphasize that,
generally, any localized basis or frame can be used to define ρ2,
and we fix a wavelet basis for the sake of definiteness.
B.3. Algorithm. A straightforward algorithm to attempt to recover
8 is through alternating projections. This procedure is described
by fixing a sparsity level K and iterating the two projections ρ1
and ρ2 in turn. The use of the two projections in an alternating
fashion is intended to promote convergence to an intersection
point of the two sets. In the case of projecting onto convex
sets, convergence results are known (71), but convergence is
not guaranteed for the nonconvex projections in Eqs. 32 and
34. Indeed, for nonconvex sets, alternating projection schemes
frequently suffer from convergence to local minima, and a
method to escape the local minima is required. To achieve this,
the phase retrieval literature details different iteration schemes
combining the two projections ρ1 and ρ2 in different ways,
for instance using the relaxed–reflect–reflect (RRR) algorithm
(9, 76). In terms of the projection operators, this iterative scheme
can be written out as

8(n+1/3) = ρ1

(
8(n)

)
,

8(n+2/3) = ρ2

(
28(n+1/3)

−8(n), K
)

, [35]

8(n+1) = 8(n) + β
(
8(n+2/3)

−8(n+1/3)
)

,

where β ∈ (0, 2) is a scalar hyperparameter. The algorithm is
summarized in Algorithm 2. As aforementioned, other phase
retrieval algorithms which are based on two projection operators,
such as the difference map algorithm and the relaxed averaged
alternating reflections algorithm, can be adapted to cryo-EM in
the same fashion.

C. Simulation Results. We apply Algorithm 2 to two structures
from the online EM data bank (72), EMD-0409 (73) and EMD-
25892 (74), as well as the Shepp–Logan phantom (75). For each
structure, we run Algorithm 2 for a given value of L and K to
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Algorithm 2: Recovering 8
Input: Projection images, sparsity level K , maximum number

of iterations N , hyperparameter β.
Output: Estimated structure 8

1. Form the matrices C` from Eq. 7
2. Compute the Cholesky factorizations of the C` to

produce matrices B` in Eq. 31
3. 8(0) = SB−1 (B0, . . . , BL)
4. For n = 0, . . . , N − 1 do

• 8(n+1/3) = ρ1

(
8(n)

)
• 8(n+2/3) = ρ2

(
28(n+1/3)

−8(n), K
)

• 8(n+1) = 8(n) + β
(
8(n+2/3)

−8(n+1/3)
)

return 8(N−2/3)

obtain a reconstruction. To measure the reconstruction quality,
we follow the standard procedure in the cryo-EM community,
and compute the Fourier shell correlation (FSC) between the
estimated structure and the ground truth. Specifically, the FSC
of two structures 81 and 82 is defined by

FSC(k) =

∑
ri:‖ri‖=k F (81) (ri)F (82) (ri)√∑

‖ri‖=k |F (81) (ri)|2
∑
‖ri‖=k |F (82) (ri)|2

.

[36]
where one structure is the estimated structure, the second is the
ground truth, andF denotes Fourier transform. The FSC is real-
valued because of symmetry of the summation. The resolution is
determined when the FSC curve drops below 0.5.

EMD-0409 has dimensions 128×128×128, with each voxel
having physical length of 1.117 Å. EMD-25892 has dimensions
320 × 320 × 320, and voxel size 1.68 Å. The volumes were
downsampled by a factor of 2 and 5, respectively, to give
structures of size 64 × 64 × 64. The ground truth matrices
were generated exactly and matrices B` in Eq. 31 were generated
using O` chosen uniformly at random. To fix the units for the
Shepp–Logan phantom, we assume the voxels to have side length
1 Å. The simulations used Haar wavelets to define W . The
simulations set the values of the hyperparameters to β = 0.5
and K = 5, 000, 4, 000, 4, 000, for EMD-0409, EMD-25892,
and the Shepp–Logan phantom, respectively.

One iteration in Step 4 of Algorithm 2 took around 4.6 s on
a 2017 MacBook Pro with a 3.1 GHz Intel Core i5 processor
and 16 GB of memory. Therefore, 10,000 iterations take around
13 h.

The result of applying Algorithm 2 to each structure is shown
in Fig. 3. For all three example structures, during a run of the
algorithm, the resolution initially rapidly improves. Afterward,
the improvement slows down and exhibits an exploratory and
oscillating behavior. This is typical for RRR-type algorithms,
which frequently exhibit a rapid improvement in the early stages
of the algorithm, followed by a long exploratory phase, where no
improvement is made in the cost function, and then eventually
followed by a final phase of rapid improvement. See figure 5
in ref. 9 for an example in the context of phase retrieval. The
results of Algorithm 2 exhibit the rapid initial improvement, but
seem to not finish the exploration phase within the considered
number of iterations. However, rather than expending more
calculation time, Fig. 3 shows that Algorithm 2 obtains a
reasonable ab initio model within roughly 1,000 iterations,

which can then be refined using other software packages like
RELION or cryoSPARC (20, 25, 26).

One could expect the obtained resolution to partly be limited
by the sparsity constraint, since sparsity truncation will remove
the finer details, i.e., high-frequency information, although the
algorithm compensates for this by projecting back onto the
correct correlation. A few variations of Algorithm 2 could be
considered, inspired by different alternatives to RRR in the phase
retrieval literature (e.g., ref. 45), and one could alternatively allow
for values of K that increase with the iteration number in order
to gradually increase the resolution.

The FSC curves in Fig. 3 differ qualitatively from those
obtained by other techniques, with values that typically approx-
imately equal 1 at low resolutions and then fall off sharply at
medium frequencies. This behavior is expected whenever the
image rotations are accurately estimated. However, we operate
at a much lower SNR for which rotations cannot be accurately
assigned, leading to the different appearance of the FSC curves.

During the run of the algorithm, the optimal resolutions
obtained for the three structures were 17.2 Å, 20.52 Å, and
4.59 Å, respectively, and the resolutions at the initialization of
the algorithm were 21.3 Å, 329.8 Å, and 8.4 Å, respectively.
As a comparison, the resolutions between the ground truth
structures and their truncation into the spherical Bessel bases
with the chosen values of L are 6.0 Å, 18.50 Å, and 2.20 Å,
respectively; these resolutions are bounds on the optimally
obtainable resolutions.

Fig. 4 also shows a comparison of EMD-0409 with its
reconstruction, truncated to different values of L. Visually, the
reconstructed element captures the relevant features of the ground
truth although limited by the resolution expected from Fig. 3,
for each value of L, and the resolution increases with L.

SI Appendix, Movie S1 visualizes the reconstructed volume as
a function of the iteration number. Note that the reconstruction
at each step is visually similar to the ground truth, although
the computed resolution noticeably improves during the run
of the algorithm. This implies that even knowledge of the
coefficients A`O` with the wrong rotation matrices O` provides
some information about the ground truth.

We additionally show the result of running Algorithm 2 on
EMD-25892 with moments estimated from noisy projection
images, which are also affected by contrast transfer functions
(CTFs). We generate projection images according to the model

IRi(x, y) = hi(x, y) ∗
∫
∞

z=−∞
(Ri ·8)(x, y, z)dz + ε(x, y), [37]

where hi is a point-spread function. The images were generated
using signal-to-noise ratios 1,0.1 and 0.01, with the number of
images used ranging between 102 and 107. All projection images
used voltage 300 kV and spherical aberration 2 mm. The defocus
values ranged between 1 μm and 4 μm. When using at most 105

projection images, the images used distinct defocus values. For
106 and 107 images, we divided the images into 104 and 103

defocus groups, respectively.
We estimate the second moment using the approach in ref. 86.

The result is shown in Fig. 5, with accuracy comparable to that
of Fig. 3 when using ω(σ 4) projection images. The simulations
used β = 0.5 and K = 5, 000.

4. Discussion

The contribution of this paper is twofold. As the first contri-
bution, our theoretical results imply that a sparse mixture of
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A C D E

B

Fig. 3. Reconstruction results when applying the proposed algorithm to three example structures. (A) Resolution of the reconstructed volumes as a function
of the number of iterations. The resolution is determined by the 0.5 cutoff of the Fourier shell correlation (FSC). (B) Example FSC curves for reconstructed
volumes as function of nondimensionalized frequency. (C–E) Visualization of the reconstructed volumes for the three example structures: EMD-0409 (73),
EMD-25892 (74), and the Shepp–Logan phantom (75), respectively. (Top) Ground-truth structure. (Middle) Truncation of ground-truth structure into the spherical
Bessel basis using L = 8,12,12, respectively. (Bottom) Reconstructed volume returned by Algorithm 2 using L = 8,12,12, respectively. The visualizations were
rendered by UCSF Chimera (77).

point masses can be uniquely recovered from the second-order
moment, even in the case of a uniform distribution of viewing
angles, whereas previous work has only proven recovery using
the third-order moment. Thus, fewer images are required for
reconstruction. This has a number of potential experimental
implications. First, since microscope time is expensive, this may
greatly reduce the cost of the experimental part of the cryo-EM
pipeline. This might be especially important for XFEL, where

throughput is a major bottleneck and viewing directions are more
likely to be uniformly distributed (78, 79). Second, it may enable
reconstruction of structures where a limited number of projection
images can be captured. This might be the case, for example, when
the molecule may appear in several conformational states, and a
limited number of images will be available for each conformation.

The second contribution is an algorithm for ab initio
modeling, which can be used as a starting point for iterative

Fig. 4. (Bottom) Reconstruction results for EMD-0409 truncated with truncation parameter L varying from 2 (Leftmost) to 8 (Rightmost). (Top) Ground truth
structure truncated with truncation parameter L varying from 2 to 8.
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A B C D

Fig. 5. (A) Resolution of reconstructed volume using second moment estimated from noisy projection images. (B–D) Sample CTF-affected and noisy projection
images for SNR 1, 0.1, and 0.01, respectively.

refinement procedures and additionally provides another way
to validate reconstruction results obtained by different compu-
tational techniques. The computational framework introduced
in this article opens the door to incorporating a number of
promising techniques from crystallographic phase retrieval into
cryo-EM algorithms. There is, for instance, flexibility in choosing
the projection operators ρ1 and ρ2. It may include biologically
oriented priors, such as minimum atom–atom distance or Wilson
statistics (80, 81), or data-driven priors based on previously
resolved structures (82). A systematic study of adapting these
techniques will be initiated in coming work. Additional future
work includes extending the use of sparsifying priors in other parts
of the cryo-EM reconstruction pipeline, for instance in existing
approaches to iterative refinement (25) or in autocorrelation
analysis using micrographs without particle picking (83–85).
However, we do not expect sparsity to have as dramatic an impact
on the sample complexity in the case of reconstruction directly
from micrographs without particle picking. When expanding
L× L projection images in a steerable basis such as the Fourier–
Bessel basis (86), the second-order moment of picked particles has
O(L3) independent entries. This is comparable to the number
of parameters required to describe the 3-D structure. Still, in
the case of uniform distribution of viewing directions Kam
(21) showed that the second-order moment is insufficient for
3-D structure recovery, but this paper shows that additional
sparsity assumptions ensure unique recovery of a 3-D structure
from the second-order moment. For autocorrelation analysis of
entire micrographs, the second-order moment is a 1-D profile
equivalent to a rotationally invariant power spectrum. Therefore,
the number of entries is clearly insufficient for 3-D reconstruction
and information from the third-order moment needs to be
incorporated as well. The sparsity constraint may potentially
improve the quality of recovery, but the sample complexity is
asymptotically the same, proportional to σ 6.

Yet another important direction is to incorporate the sparsity
prior into reconstruction by the method of moments when there
is a nonuniform distribution of viewing directions (27).

Molecular reconstruction using the method of moments fills
an important niche in single-particle reconstruction. Existing
software packages like RELION (25), cryoSPARC (26) etc.
encounter difficulties when reconstructing small molecules (e.g.,
below 40 kDa) even though particle picking is not prohibitively
difficult at this size (87, figure 10 f–h). The methods of this
paper are therefore viable in situations where other techniques
are not expected to be. However, we emphasize that we do not
suggest the method of moments to be competitive to RELION
or cryoSPARC in terms of resolution for large molecules except
for the purpose of validation or fast ab initio modeling technique.
Moreover, we also expect that incorporating sparsity priors would
improve the sample complexity and quality of reconstruction
algorithms employed by existing software packages like RELION
and cryoSPARC. A full demonstration would be an important
direction for future work.

Data, Materials, and Software Availability. Code implementing the pro-
posed algorithm is available at https://github.com/ComputationalCryoEM/
ASPIRE-Python/tree/sparse-Kam.
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