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In Alzheimer-prone brain regions, metabolism
and risk-gene expression are strongly
correlated

®Fengdan Ye,"z’3 Quentin Funk,3 (®Elijah Rockers,3 Joshua M. Shulman,"’s"’-"8
®Joseph C. Masdeu,® and (®Belen Pascual® for the Alzheimer’s Disease Neuroimaging
Initiative*®

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report.

A complete listing of ADNI investigators can be found at: http:/adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.

Neuroimaging in the preclinical phase of Alzheimer’s disease provides information crucial to early intervention, particularly in people with
a high genetic risk. Metabolic network modularity, recently applied to the study of dementia, is increased in Alzheimer’s disease patients
compared with controls, but network modularity in cognitively unimpaired elderly with various risks of developing Alzheimer’s disease
needs to be determined. Based on their 5-year cognitive progression, we stratified 117 cognitively normal participants (78.3 + 4.0 years of
age, 52 women) into three age-matched groups, each with a different level of risk for Alzheimer’s disease. From their fluorodeoxyglucose
PET we constructed metabolic networks, evaluated their modular structures using the Louvain algorithm, and compared them between
risk groups. As the risk for Alzheimer’s disease increased, the metabolic connections among brain regions weakened and became more
modular, indicating network fragmentation and functional impairment of the brain. We then set out to determine the correlation between
regional brain metabolism, particularly in the modules derived from the previous analysis, and the regional expression of Alzheimer-risk
genes in the brain, obtained from the Allen Human Brain Atlas. In all risk groups of this elderly population, the regional brain expression of
most Alzheimer-risk genes showed a strong correlation with brain metabolism, particularly in the module that corresponded to regions of
the brain that are affected earliest and most severely in Alzheimer’s disease. Among the genes, APOE and CD33 showed the strongest
negative correlation and SORL1 showed the strongest positive correlation with brain metabolism. The Pearson correlation coefficients
remained significant when contrasted against a null-hypothesis distribution of correlation coefficients across the whole transcriptome
of 20 736 genes (SORL1: P=0.0130; CD33, P=0.0136; APOE: P =0.0093). The strong regional correlation between Alzheimer-related
gene expression in the brain and brain metabolism in older adults highlights the role of brain metabolism in the genesis of dementia.
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ADAS11 = Alzheimer’s disease assessment Scale 11 tasks; ADAS13 = Alzheimer’s disease assessment Scale 13 tasks;
ADNI = Alzheimer’s Disease Neuroimaging Initiative; AHBA = Allen Human Brain Atlas; CDR-SB = clinical dementia rating sum of

boxes; CN =cognitively normal; FDG = fluorodeoxyglucose;

MCI=mild cognitive impairment;

MMSE = mini-mental state

examination; MOCA = Montreal Cognitive Assessment; ROI=region of interest; SUVR = standardized uptake value ratio
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Alzheimer’s disease affects regional brain glucose metabol-
ism early in the course of the disease and with a characteristic
anatomic distribution, including posterior cingulate and
temporo-parietal cortex.'* Measured in vivo with fluoro-
deoxyglucose ('®F-FDG) PET, regional metabolism has
been used to predict the conversion of mild cognitive impair-
ment (MCI) to Alzheimer’s disease and even the likelihood
that a cognitively normal (CN) individual will develop
MCI or, later, Alzheimer’s disease.*

Construction and analysis of brain metabolic networks
using FDG PET have recently gained momentum in studying
MCI and Alzheimer’s disease.”” Here, we used this
technique to study CN individuals separated in groups
with different risk of progression. We aimed to determine
whether the strength of the brain metabolic connections
could clarify aetiology and predict prognosis. This analysis
yielded several metabolic brain modules, one of which

and is most extensive in Alzheimer’s disease, such as the med-
ial temporal lobe.

Next, we set to define whether metabolism in these mod-
ules is genetically determined. More than 25 risk genes
have been identified for Alzheimer’s disease, with APOE4
contributing the highest risk.® Besides examining the associ-
ation of genetic variants with risk for Alzheimer’s disease,’
several post-mortem studies of human brain report differen-
tial expression of implicated candidate genes in Alzheimer’s
disease, including APOE and CD33.'%!" Many studies have
explored brain imaging findings, including brain metabol-
ism, in cognitively unimpaired individuals with various gen-
otypes related to risk for Alzheimer’s disease, particularly of
APOE."*™"7 However, there is a dearth of studies focusing
on the relationship between the anatomic distribution in
the brain of risk-gene expression and molecules related to
Alzheimer’s disease, such as p amyloid and tau,'®' and
none related to brain metabolism, which is likely key in the
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pathogenesis of Alzheimer’s disease.”” To determine whether
risk-gene expression in various regions of the brain, and, par-
ticularly in the modules identified above, has an effect on
brain metabolism, we used the Allen Human Brain Atlas
(AHBA)*' to compare the regional gene expression of the
main Alzheimer-risk genes with regional brain metabolism
determined by '*F-FDG PET.

Material and methods

The present study first analysed metabolic data from cogni-
tively unimpaired individuals in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.e-
du). The ADNI was launched in 2003 as a public—private
partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers and
clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early Alzheimer’s
disease. For up-to-date information, see www.adni-info.org.
FDG PET scans collected when the participants had a CN
diagnosis were selected. Depending on the diagnosis in the sub-
sequent 5 years, scans were filtered into three groups: partici-
pant remained CN (‘CN to CN’), participant progressed to
MCI but not Alzheimer’s disease (‘CN to MCI’), and partici-
pant progressed to Alzheimer’s disease (‘CN to AD’).
Participants that lacked sufficient data to determine the
5-year progression were discarded. In addition, we studied an
Alzheimer’s disease patient group (‘AD’) consisting of partici-
pants that were already diagnosed with Alzheimer’s disease at
baseline and selected the FDG PET scans closest to the partici-
pants’ baseline evaluation dates. For the ‘AD’ group, only par-
ticipants with APOE genotype 3/3, 3/4, or 4/4 were considered.
A diagram illustrating the pipeline of data collection, classifica-
tion and inspection is provided in the Supplementary Fig. 1.
All FDG PET scans were downloaded from ida.loni.usc.e-
du in their fully pre-processed form. These pre-processed
FDG PET scans had already gone through frame
alignment and averaging and had been reoriented into a
standard 160 x 160 x 96 voxel image grid, with 1.5 mm cubic
voxels. All images were also smoothed to a uniform isotropic
resolution of 8 mm full width at half maximum, the approxi-
mate resolution of the lowest resolution scanners used in
ADNI. Using the pre-processed FDG PET scans vastly re-
duced the heterogeneity in the ADNI data, which were ob-
tained using different scanners and reconstruction protocols.
The closest-in-time T-weighted MRI to each FDG PET
scan was downloaded in the original format and was pro-
cessed using FreeSurfer 5.3 to obtain cortical parcellation
and subcortical segmentation. The quality of the parcellation
and segmentation was carefully inspected. If the quality
proved unsatisfactory, other repeats of the same MRI scan
session were inspected. If no repeat exhibited acceptable
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quality, an alternative FDG PET scan from the same partici-
pant was chosen if it belonged to the same group, and its
closest-in-time T;-weighted MRI was inspected as described
above. If all alternatives failed, the participant was removed
from the dataset.

Each FDG PET scan was co-registered to its correspond-
ing T1-weighted MRI using SPM12 in MATLAB R2019b.
The goodness of alignment between the co-registered FDG
PET and T; MRI was then visually assessed, and the quality
of the FDG PET scans was examined to make sure no anom-
aly existed. Any images that failed the inspection were dis-
carded. The T-weighted MRI was then normalized to the
standard space using SPM12, bringing along its parcella-
tion/segmentation and the co-registered FDG PET. The
participant-specific pons mask was obtained by finding the
overlap between the participant-specific brainstem and a
general pons mask in standard space. The quality of the nor-
malization and the accuracy of the pons mask were then visu-
ally inspected. The average standardized uptake values
(SUV) in the pons were then obtained for each FDG PET
scan, and SUV ratio (SUVR) levels were obtained by dividing
the SUV of each and all brain voxels by the pons average.

Given the large size of the ADNI database and its multi-
site nature, it is essential to verify the data quality and the
diagnosis of the participants. As mentioned above, FY in-
spected the quality of T-weighted MRI and FDG PET scans,
as well as the segmentation output by FreeSurfer. Two
clinicians (BP and JM) carefully reviewed the diagnosis of
each participant in the ‘CN to MCI’, ‘CN to AD’ and ‘AD’
groups. Data reviewed for each participant included age,
clinical dementia rating sum of boxes (CDR-SB), and its
components, Alzheimer’s disease assessment Scale 11 tasks
(ADAS11), 13 tasks (ADAS13), mini-mental state exam
(MMSE), Montreal Cognitive Assessment (MOCA), average
FDG PET SUVR (of angular, temporal and posterior cingu-
late cortex), amyloid positivity, CSF AB, CSF Tau, CSF
p-Tau, NPI-A (delusions), NPI-B (hallucinations), as well
as all FDG PET and T-weighted MRI scans available from
each potential participant in our study throughout their par-
ticipation in ADNI. Any participant that did not show signs
of MCI or Alzheimer’s disease in the 5-year progression or
showed signs of other types of dementia (e.g. Lewy Body
Dementia) was removed from the ‘CN to MCI’ or ‘CN to
AD’ group. Similarly, any participant that did not show
any patterns for Alzheimer’s disease or showed patterns for
other types of dementia were removed from the ‘AD’ group.
Participant removal was a consensus process, with agree-
ment by both clinicians. The ‘CN to CN’ group was not re-
viewed to this extent as its definition was the most
straightforward and controlled, leaving less room for error.

After all inspections were finished, the ‘CN to CN’ and
‘CN to MCPT groups were age-matched to the ‘CN to AD’
group, removing the youngest participants until the mean
ages matched. No age-matching was done on the ‘AD’
group. In the end, there were 81 participants in the ‘CN to
CN’ group, 21 participants in the ‘CN to MCI’ group, 15
participants in the ‘CN to AD’ group, and 150 participants
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in the ‘AD’ group. Age, sex, years of education, MMSE,
MOCA, CDR-SB, ADAS11, ADAS13 and amyloid positivity
were calculated for each group and significance testing was
carried out for demographics. Note that age was calculated
at the time the FDG PET scan was collected. Amyloid posi-
tivity was calculated from Florbetapir or Pittsburgh com-
pound B (PIB) PET data available within 1 year from the
FDG PET scan date (and 5 years later). ADNI provided
Florbetapir and PIB scores, i.e. average SUVR in regions of
interest (ROI), and the corresponding thresholds to deter-
mine positivity. A participant was considered amyloid posi-
tive if any Florbetapir and/or PIB PET scans within 1 year
scored above the pre-determined threshold (Florbetapir
threshold: 1.11 if normalized by whole cerebellum, 0.79 if
normalized by composite reference region; PIB threshold:
1.50). Participants who did not have Florbetapir or PIB
PET data available within 1 year from FDG PET scan date
(and 5 years later) were excluded from the calculation of
positive amyloid PET ratio. MMSE, MOCA, CDR-SB,
ADAS11 and ADAS13 were calculated from data available
within 90 days from FDG PET imaging date (and 35 years la-
ter). Participants who did not have MMSE, MOCA,
CDR-SB, ADAS11 and ADAS13 evaluation within 90 days
from FDG PET imaging date (and 5 years later) were ex-
cluded from the corresponding calculation of mean and
standard deviation.

A whole-brain FDG PET network was constructed for each
group with 72 ROIs as nodes, which included the 68 cortical
regions in the Desikan-Killiany cortical atlas,** plus hippo-
campus and amygdala bilaterally, as segmented by
Freesurfer. A full list of the 72 ROIs can be found in
Supplementary Tables 3-15. The mean SUVR was obtained
for each ROI and the FDG PET network was then con-
structed by calculating the Pearson correlation between all
pairs of ROIs across all participants in the group. The meth-
od produced a 72 by 72 correlation matrix for each group.
Sex-specific correlation matrices were also obtained.

The Louvain algorithm?? was subsequently run on each cor-
relation matrix to cluster the FDG PET networks. The algo-
rithm partitions ROIs into modules to maximize modularity,
M. This maximization process clusters regions with strong
connections into the same module, and regions with weak con-
nections into separate modules. Since the correlation matrix
can contain negative correlations, we adopted a modified def-
inition of modularity specifically designed for correlation ma-

. . . . 4
trices derived from neuroimaging data®*:
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The weight of a positive connection between nodes i and j is
denoted as w;E(O, 1), w;=0. In the present study, wj; is
the value of the Pearson correlation coefficient. The weight
of a negative connection between nodes 7 and j is denoted as

w;€(0, 1), wiJ;:O, where w; is the absolute value of the

ij
Pearson correlation coefficient. The strength of node i is the

sum of positive or negative weights of 7, s¥= 3w The total
j
weight of the network is the sum of all positive or negative con-

nection weights, v*=)" wi Due to matrix symmetry, connec-
ij

tion weights are counted twice for each connection when

calculating v*. Total number of nodes n=72. d(;, ;) =1 if

node i and j are in the same module, and d(g;, ;) = 0 otherwise.

This definition of modularity supports placement of posi-
tively connected pairs of nodes in the same module, and
placement of negatively connected pairs of nodes in distinct
modules. Maximization of M is a balance between maximiz-
ing M*, which encourages placement of positive connections
within modules, and maximizing M~, which encourages
placement of negative connections between modules. The
contribution of M~ to this balance is proportional to the ra-
tio of negative links [(v7)/(v* +v7)]. If there is zero negative
connection in the network, the maximization of M is entirely
dependent on maximization of M*. If there are equal num-
ber of negative and positive connections, then M* has twice
the influence as M. Therefore, this modularity definition
assumes that negative connections only play an auxiliary
role in network structure, as compared with positive
connections.”*

The Louvain algorithm is a stochastic process. Running
the Louvain algorithm multiple times might lead to slightly
different partitions of the same network. To find the stable
partition that multiple runs of Louvain algorithm converge
to, we adopted the method of consensus clustering.”> The
Louvain algorithm was run 100 times for the same network,
and subsequently 100 partitions were obtained. A 72 by 72
agreement matrix A was then established, where A; was
the frequency where node i and node j were assigned the
same module across the 100 partitions. Note that the
Louvain algorithm outputs a set of hierarchical partitions
and the lowest hierarchical level partition was used to gener-
ate the agreement matrix. This is because the lowest hier-
archical level of the Louvain output has been shown to
have better performance than higher hierarchical outputs
on a set of benchmark networks.*®*” The Louvain algorithm
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was then run on the agreement matrix. This produced an-
other set of 100 partitions from which a new agreement ma-
trix was built. The above process was repeated with the new
agreement matrix until the partitions had converged to a sin-
gle stable partition. We report the stable partition and the
corresponding modularity value.

Implementation of the method described above
was provided by the Brain Connectivity Toolbox (http:/

28

www.brain-connectivity-toolbox.net)”® and was run in

MATLAB R2019b.

To determine gene expression in the modules calculated
above, we used the AHBA.?' The AHBA provides regional
transcription profiles of 20 736 protein-coding genes, based
on a complete transcriptome dataset consisting of 58 692
measurements of gene expression in 3702 brain samples ob-
tained from six individuals. French and Paus*’ converted
the raw AHBA data to a median expression profile across
donors in the Desikan-Killiany atlas. The present study
used this converted AHBA gene expression data for
analysis.

We studied genes that have been previously reported to
be related to Alzheimer’s disease®°~>* and especially those
in Sepulcre et al.'® We further filtered the genes by only
keeping the ones with high consistency score (>0.446)
in AHBA, as described in French and Paus.”” A gene
expression profile with higher consistency score is more
representative of the six donors. Ten Alzheimer-risk
genes remained after filtering: APOE, BIN1, CD33,
CLU, CELF1 (previously known as CUGBP1), MAPT,
MEF2C, FERMT2 (previously known as PLEKHCI),
SORL1 and TREM?2.

A mean FDG profile was obtained for each group by aver-
aging the mean FDG PET SUVR for each ROI across all par-
ticipants in the group. Pearson correlation was then
calculated between the median gene expression profile and
the mean FDG PET SUVR across ROIs.

Two-sample two-tailed t-tests with unequal variance were
used to determine significant age differences between men
and women in each group and between groups, as well as sig-
nificant differences in years of education between groups.
The two-tailed z-test for proportions was used to determine
significant sex differences between groups.

Two-tailed P-values for the Pearson correlation between
gene expression and mean FDG PET SUVR are reported.
To better gauge the significance of the correlations,
Pearson r-values were contrasted against a null-hypothesis
distribution of correlation coefficients across the whole tran-
scriptome of 20 736 genes. An effective one-tailed P-value p,
was calculated for each correlation from its corresponding
z-value in the null distribution.
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The data that support the findings of this study are openly
available in the ADNI database at adni.loni.usc.edu. The
list of participant IDs used in the analysis as well as all
code that was developed by the authors will be available
upon direct request to the corresponding author and review
by all authors.

Results

Age, sex, years of education, MMSE, MOCA, CDR-SB,
ADAS11, ADAS13 and amyloid positivity for each group
are summarized in Table 1. Violin plots of MMSE,
MOCA, CDR-SB, ADAS11 and ADAS13 scores at baseline
and 5 years later are shown in Fig. 1. No significant differ-
ences in demographics were found between the three CN
groups. However, there were significant differences between
the Alzheimer’s disease group and the CN groups
(Supplementary Table 1).

Most connections in the whole-brain FDG PET correlation
matrices for the four groups (Fig. 2A) were positive. The
strongest negative correlation was only —0.453, as compared
with the strongest positive correlation at 0.990.

The overall connection strength weakened as risk for
Alzheimer’s disease increased. Notably, in the ‘CN to CN’
group, the entorhinal cortex of both hemispheres had the
weakest connection with the rest of the network. The same
observation held true for the ‘CN to AD’ group, except the
correlation was now negative. Overall, hippocampus and
amygdala had weaker connections with the neocortical brain
as compared with the connections between cortical regions
(see the yellow ‘stripes’ in the first four rows and columns
in all four matrices, Fig. 2A). As risk for Alzheimer’s disease
increased, however, some connections within cortical re-
gions became as weak as the hippocampus-cortex and
amygdala-cortex connections. In the Alzheimer’s disease pa-
tient group, the entire network was weak and only a few con-
nections remained strong.

The Louvain algorithm yielded three modules in all
four groups (Fig. 2B), which were mapped onto 3D brain
(Fig. 2C). The module composition differed across
groups, however, the regions first affected by
Alzheimer’s disease, such as hippocampus, amygdala,
and entorhinal cortex were always included in Module
3. As inter-module connections weakened, the whole-
brain FDG PET network became monotonically more
modular from the ‘CN to CN’ group (M=0.0209) to
the ‘AD’ group (M =0.0570).
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Figure | Cognitive tests MMSE, MOCA, CDR-SB, ADASI | and ADASI 3 scores at baseline and 5 years later. The size of each
group is listed in Table |. For each test, the y-axis represents the participants’ raw scores in the respective test. The grey whiskers show extrema,
while the white circles represent mean. Coloured areas show the distribution of values. ADASI |, Alzheimer’s disease assessment Scale || tasks;
ADASI 3, Alzheimer’s disease assessment Scale |3 tasks; CDR-SB, clinical dementia rating sum of boxes; MMSE, mini-mental state examination;

MOCA, Montreal Cognitive Assessment.

Sex impacted the modular organization of the networks
(Fig. 2D-E). In the ‘CN to CN’, ‘CN to AD’ and ‘AD’ groups,
the metabolic networks of women were weaker and more
modular, that is, more fragmented, than those of men. The
‘CN to MCI group did not show significant difference be-
tween women and men. The clustered correlation matrices
and the mapping of modules onto brain for both sexes are
provided in Supplementary Fig. 2. Two-tailed #-test found
no significant differences in age between men and women
within each group, except for the ‘AD’ group where men
were significantly older than women (men: 74.7 +£7.6,

women: 71.5+ 7.7, P-value=0.0097). ‘CN to CN’ (men:
78.4+4.5, women: 78.2+3.7, P-value=0.85), ‘CN to
MCI’ (men: 78.1 +3.7, women: 78.4 + 3.2, P-value=0.80)
and ‘CN to AD’ (men: 77.5+4.8, women: 79.0+4.6,
P-value=0.55) did not reach significance in #-tests.

Correlation between brain gene
expression and metabolism

The mRNA expression of most Alzheimer-related genes cor-
related strongly with the mean FDG PET SUVR in all four
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the FDG PET networks. ROls are ordered by module allegiance. The coloured squares represent modules. (C) Brain maps of modules. The
colours here match the coloured squares in B. (D) The original correlation matrices, from women only. Modularity for the optimal partition is
provided in text right below the matrices. (E) The original correlation matrices, from men only. Modularity for the optimal partition is provided in
text right below the matrices. A full list of the 72 ROls in the matrices can be found in Supplementary Tables 3—15.
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Figure 3 Pearson correlation between the mRNA expression of Alzheimer-risk genes and brain metabolism. Brain metabolism
was calculated as the mean FDG PET SUVR averaged across all participants in each group. Genes were ordered based on correlation strength,
from most positive to most negative. Significance level is defined as: *P < 0.05, **P < 0.01, ***P <0.001, ****P <0.0001.

groups, as well as a combination of all CN groups (‘CN to
CN’, ‘CN to MCP’ and ‘CN to AD’ combined, referred
to as ‘all CN” group; Fig. 3). In all groups, APOE showed
the strongest negative correlation with FDG PET SUVR
(r £-0.733, P<0.0001), and SORL1 showed the strongest
positive correlation with FDG PET SUVR (r>0.677,
P < 0.0001). Similar analyses were carried out for partici-
pants by APOE genotype but no significant correlations
were found (Supplementary Fig. 3).

All groups followed the same correlation pattern: (i) all
genes showed significant correlations with FDG PET
SUVR, except for CELF1 and MAPT; (ii) SORL1 and
MEF2C positively correlated with FDG PET SUVR, while
(iii) BIN1, CLU, TREM2, PLEKCH1, CD33, and APOE
negatively correlated with FDG PET SUVR. The absolute va-
lues of the correlation between APOE expression and FDG
PET SUVR monotonically increased from ‘CN to CN’ group
(=0.733) to ‘CN to MCT’ group (—0.758) and to ‘CN to AD’
group (—0.778) (Fig. 3).

To gauge the significance of the correlation for the 10
Alzheimer-related genes, as compared with all 20736 genes
available in the AHBA, the correlation between the expression
of the 20 736 genes and mean FDG PET SUVR of all CN par-
ticipants was calculated. The resulting 20736 correlation
coefficients formed a bell-like distribution (Fig. 4A). Most
Alzheimer-related genes’ correlations with brain metabolism
were at least one standard deviation away from the
mean of the distribution. Among them, SORL1 (z=2.228,
p.=0.0130), CD33 (2=-2.208, p,=0.0136) and APOE
(z=-2.353, p.=0.0093) were more than two standard devia-
tions above/below the mean (lzl > 2), showing exceptionally
strong correlation. The z-scores and p, for all Alzheimer genes
studied can be found in Supplementary Table 2.

Brain regions with high APOE and CD33 expression had
low FDG PET SUVR, and regions with high SORL1 expres-
sion had high FDG PET SUVR (Fig. 4B). APOE and CD33

expressions were especially high (and SORL1 expression
and FDG PET SUVR were especially low) in regions most sus-
ceptible to Alzheimer’s disease, such as para-hippocampus and
entorhinal cortex. For APOE, CD33 and SORL1, scatter plots
between brain metabolism and gene expression exhibited
strong linearity (Fig. 4B). Maps of mRNA expression for all
genes studied and their correlations with regional metabolism
are provided in Supplementary Fig. 4. Overall, most genes ex-
hibited a strong linear relationship with brain metabolism. For
genes whose expression was positively correlated with FDG
PET SUVR, their expression in Alzheimer’s-disease-related re-
gions were lower. Contrarily, for genes whose expression was
negatively correlated with FDG PET SUVR, their expression in
Alzheimer’s-disease-related regions were higher.

Correlation between brain gene
expression and metabolism by
modules

Metabolism in the Louvain algorithm-derived module con-
taining regions related to Alzheimer’s disease drove the
strong correlation between APOE expression and brain me-
tabolism (Fig. 5, Module 3). APOE expression in Module 1
showed the weakest correlation with brain metabolism while
the correlation for Module 2 was lower than for Module 3
but remained significant. For the remaining genes, while spe-
cific correlations varied with the gene and the participant
group under question, Module 2 and Module 3 frequently
exhibited a stronger correlation, whereas Module 1 exhib-
ited a weaker correlation (Supplementary Fig. 5).

Discussion

Our work yielded two main original findings: (i) metabolic
brain networks are progressively disrupted as the risk for
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Figure 4 APOE, CD33 and SORL| showed especially strong correlation with brain metabolism. (A) Distribution of 20 736 Pearson
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cut-off of +£2.0, SORL/, CD33 and APOE showed strong correlation when compared with the distribution. (B) Left, in rectangular frame: mean FDG
PET SUVR across all CN participants mapped to the 68 cortical ROls. Right, top panel: expression of SORLI, CD33 and APOE, mapped to the 68
cortical ROls, respectively. Right, bottom panel: scatter plots showing the correlation between mean FDG PET SUVR and gene expression of

SORLI, CD33 and APOE, respectively. A linear fit is also provided in each scatter plot. FDG SUVR for each cohort and for each gender can be found

in Supplementary Tables 16—19.

developing Alzheimer’s disease increases; (ii) particularly in
areas of the brain prone to be affected by Alzheimer’s disease
there was a correlation between risk-gene expression and
metabolism.

We detected a monotonic increase in modularity of brain meta-
bolic networks in four groups of elderly participants with in-
creasing risk for Alzheimer’s disease: ‘CN to CN’, ‘CN to
MCP, ‘CN to AD’ and ‘AD’ (Fig. 2B), driven by weakened con-
nections between the 72 ROIs. While the increase of FDG PET
network modularity from CN controls to Alzheimer’s disease
patients was previously reported,® here we focused on a strati-
fied CN cohort based on risk for Alzheimer’s disease.

The challenges faced by Alzheimer’s disease studies using
FDG PET networks are two-fold. First, the interpretation of

a PET network is less intuitive than a conventional function-
al MRI network, as correlation between regions are calcu-
lated across participants instead of time points. Second, a
more continuous definition of risk for Alzheimer’s disease
is needed to validate any trend of the local or global measures
of network structure observed in research with binary par-
ticipant classification (e.g. CN controls versus Alzheimer’s
disease patients).

The present study addresses both challenges. We inter-
preted the correlation in FDG PET networks as metabolic
co-activation. The underlying hypothesis is that for a group
of participants sharing certain characteristics (e.g. participants
with high risk for Alzheimer’s disease), their brain metabolic ac-
tivities share a common pattern. Metabolic activity of each par-
ticipant serves as a single data point observed from this pattern,
much like a time point observed in the time-series data of func-
tional MRI. The correlation across these data points describes
the shared functional pattern of brain metabolism.

This hypothesis calls for a clear definition of participant
groups and rigorous quality control, as any noise introduced
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Figure 5 Module-wise correlation between APOE expression and brain metabolism. The four columns, from left to right, show on the
top the four aspects of the brain with the modular regions calculated for ‘CN to CN’, ‘CN to MCI’, ‘CN to AD’ and ‘AD’ group, respectively. For
each group, in the lower section of the figure, the Pearson correlation (r) between gene expression and brain glucose metabolism is shown for each
module. Module definition is identical to Fig. 2C. Due to the lack of gene expression data for subcortical regions, the correlations were only
calculated on the 68 cortical regions. Significance level of r is defined as: *P < 0.05, **P <0.01, **P <0.001, ***tP < 0.0001.

into each group threatens to hinder the observation of a com-
mon metabolic pattern. We here stratified CN participants
based on their S-year progression (Supplementary Fig. 1)
and inspected our participants with considerable care. Our
stratification differs from previous studies that adopted vary-
ing follow-up lengths, usually due to the different lengths
that participants stayed in the study. For instance, a CN par-
ticipant at baseline that developed Alzheimer’s disease at the
tenth year of follow-up is unlikely to be very different from a
CN participant at baseline that stayed CN for 3 years but
then left the study. However, many studies would classify
the two participants into two different groups, as they had
‘different future progression’.*>** Our selection of CN par-
ticipants avoided the ambiguity brought by varying follow-
up lengths.

While within-module connections dropped slightly from
the ‘CN to CN’ group to the ‘AD’ group, it was the drastic
decrease in between-module connections that raised modu-
larity. Such changes are linked to the concept of ‘network
fragmentation’,*> which refers to the splitting of an inte-
grated network into poorly connected modules, usually
due to a substantial loss of connectivity between brain re-
gions or a targeted attack against hub nodes. The fragmen-
tation is speculated to cause a lack of communication
between brain regions and thus interrupt the integrated
function of the system. We argue that modularity is an ac-
curate measure of the fragmentation of brain metabolic net-
work, and the increased modularity in our participants at
risk for Alzheimer’s disease aligns well with the notion
that the human brain goes through network failure as
Alzheimer’s disease progresses.>®

The 5-year follow-up chosen in the present study is longer
than for many comparable studies,>**” and while other stud-
ies followed some participants for a longer period of time,
the varying follow-up lengths made interpretation diffi-
cult.>*3* On the other hand, our strict definition of risk for
Alzheimer’s disease led to limited sample sizes, especially in
the ‘CN to MCI’ and ‘CN to AD’ groups. Future efforts in
expanding sample size under similar group definition are
crucial to validate the results presented here.

The effect of sex on metabolic
networks of participants at risk for
Alzheimer’s disease

The level of network fragmentation differed by sex (Fig. 2D
and E and Supplementary Fig. 2). For ‘CN to CN’, ‘CN to
AD’ and ‘AD’ groups, women consistently exhibited more
modular metabolic patterns and weaker overall connection
strength than men. Two-tailed #-test found no significant dif-
ferences in age between men and women in all but the ‘AD’
group where men were significantly older than women.
Previous studies reported that women are at higher risk for
Alzheimer’s disease than men®® and neurodegeneration and
clinical symptoms may evolve more rapidly in women once
a diagnosis is suspected.>” While a longer life expectancy
of women might be the reason for the sex-specific risk for
Alzheimer’s disease, increasing evidence argues for neuro-
biological differences between the sexes.*® One such sex dif-
ference may be a diverse metabolic network strength with
aging, as determined by the present study. The small sample
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sizes of ‘CN to MCI’ and ‘CN to AD’ groups limited the gen-
eralization of our finding, and the same analysis should be re-
peated in larger samples. Further research is needed to
pinpoint the exact cause of the difference in modularity
and connection strengths between men and women.
Furthermore, it should be stressed that we studied older indi-
viduals; FDG PET network modularity may be different in
younger samples.

The brain expression of 8 of the 10 Alzheimer-related genes
had a significant correlation with brain metabolism across all
four groups, and among them SORL1, FERMT2, CD33 and
APOE showed a stronger absolute correlation with brain
metabolism as risk for Alzheimer’s disease increased in CN
participants (Fig. 3). Four of the ten genes are related to
the immune system: CD33, CLU, MEF2C and TREM2.
Contrasting gene correlation values against a null-hypothesis
distribution revealed three genes with exceptionally
strong correlation with brain metabolism (Fig. 4): APOE
(r =-0.746), SORL1 (r=0.710) and CD33 (r=-0.700).

Apolipoprotein E (APOE) genotype is well-known to be
related to late onset Alzheimer’s disease. Its isoform, APOE
€4, is the strongest genetic risk factor for Alzheimer’s dis-
ease.*! Though most studies focused on isoform-specific dif-
ferences in structure and function, the main function of the
ApoE protein, the redistribution of lipoproteins and choles-
terol, is not sufficient to explain APOE’s detrimental effect
in Alzheimer’s disease. Consequently, studying the mRNA
expression of APOE could potentially provide a new perspec-
tive on the understanding of the pathology of Alzheimer’s dis-
ease. Several post-mortem brain studies reported elevated
RNA expression of APOE in Alzheimer’s disease patients re-
gardless of APOE genotype.'"* In APOE €3/e3 human
brain, APOE-mRNA levels were significantly increased in
brains affected by Alzheimer’s disease compared with con-
trols.!! Concordantly, we demonstrated that APOE had a
strong negative correlation with brain glucose metabolism
in an older population (Fig. 3). By splitting participants into
3/3, 3/4 and 4/4 genotypes, we found that such strong nega-
tive correlation did not depend on the participants’ APOE
genotype (Supplementary Fig. 3). Granted, the mRNA ex-
pression data used in the present work are from the AHBA,
and the donor’s APOE genotype was not collected. Ideally,
mRNA expression and imaging data should be collected
from the same participants.

Sortilin related receptor 1 gene (SORL1) showed the
strongest positive correlation with brain metabolism across
all four groups. SORL1 encodes a mosaic protein of the low-
density lipoprotein receptor family. Scherzer et al.* sug-
gested that SORLT interacts with APOE as an encoder of
the mosaic ApoE receptor. They observed a significant re-
duction in SORLI1 expression in brain tissue of

F. Yeetal.

Alzheimer’s disease patients, postulating a protective effect
of SORLI1. Our results support this postulate, as we ob-
served the strongest positive correlation between SORL1
mRNA expression and brain glucose metabolism, opposite
the direction of correlation between APOE and metabolism.

CD33 is a sialic acid-binding immunoglobulin-like lectin
that regulates innate immunity. In the brain, CD33 is mainly
expressed in microglial cells. In a study that involved both
CD33 knockout mice and human brain samples, the density
of CD33-immunoreactive microglia positively correlated
with AB burden and Alzheimer’s disease patients had a
S-fold increase in CD33 mRNA relative to controls.'”
Another study reported that the risk allele is associated
with a 7-fold increase in CD33 cell surface expression of cir-
culating monocytes.** The strong negative correlation be-
tween CD33 expression and FDG PET SUVR observed
here (Fig. 3) echoed the finding that elevated CD33 expres-
sion may increase risk for Alzheimer’s disease. Higher
CD33 expression corresponds to hypometabolism in the
brain, which is associated with Alzheimer’s disease, though
no causal relationship can be derived from the correlation.

The prevalence of immunity-related genes identified in our
analysis is consistent with recent genome-wide association
studies (GWAS) indicating that many risk genes for
Alzheimer’s disease are part of the innate immune response
pathways,***® which has led to a growing branch of
Alzheimer’s disease research focusing on neuroinflamma-
tion.*” The strong correlations observed between immune
system-related gene expression and FDG PET SUVR suggest
that these genes may contribute to risk for Alzheimer’s dis-
ease through interaction between immune response and me-
tabolism. Metabolic processes regulate immune cell
responses, and inappropriate immune activation can dysre-
gulate cellular metabolism.?® Several groups have studied
Alzheimer’s disease in the context of immunometabolism
and suggested that defects in energy metabolisms caused
microglia dysfunction in the disease.””*®* MEF2C and
TREM2 are associated with immunometabolism.***° The
gene correlation observed in the present study supports the
speculation that immune response and brain metabolism
interact with each other through a set of risk genes for
Alzheimer’s disease, contributing to disease development.
However, only Ulland ez al.’° observed an immunometabolic
interaction in post-mortem human brain, and how such
interaction leads to the correlation observed in the current
work remains unclear.

Itis important to note that the correlations between gene
expression and metabolism we report here were observed
in an older, cognitively unimpaired, population and in peo-
ple with Alzheimer’s disease. It is possible that they may
have been quite different in a younger sample. The correla-
tions in older age may reflect the additive metabolic impact
through the years of the genetic makeup of the people in-
cluded in our sample. Some features of Alzheimer’s disease
are similar to those of normal aging®' and age is the stron-
gest risk factor for the development of Alzheimer’s
disease.’”
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The above observations should be validated with gene ex-
pression and imaging data obtained in the same participants.
Due to a lack of gene expression data in the ADNI database,
the present study could not take into consideration the
change of gene expression as risk for Alzheimer’s disease in-
creased. Further, what drives the differential expression of
these genes across the brain® is a question beyond the scope
of the current study.

Alzheimer’s disease does not affect all the brain uniformly,
but some regions are well-known to be affected earlier and
more profoundly.” These regions largely coincided with
Module 3 (Fig. 2C), identified by the data-driven, modular
partition of the brain metabolic networks, confirming that
modularity maximization leads to functionally meaningful
partitions. Furthermore, for most AD-related genes, metab-
olism in regions related to Alzheimer’s disease drove the
strong correlation between gene expression and FDG PET
SUVR (Fig. 5 and Supplementary Fig. 5). For APOE, the cor-
relation was strongest in Module 3, which contained regions
most susceptible to Alzheimer’s disease, particularly the
anteromedial temporal region.>®> Such correlation was se-
cond strongest in Module 2, which contained regions af-
fected by Alzheimer’s disease, but usually at a later stage in
disease development. The specific composition of this mod-
ule varied considerably with risk groups. Module 1, on the
contrary, contained regions largely unaffected by
Alzheimer’s disease pathology, and showed very weak cor-
relation between APOE expression and brain glucose metab-
olism. SORL1 showed largely the same pattern
(Supplementary Fig. 5).

While others have investigated differential expression of
APOE®* and SORL1°® between brain regions susceptible
to Alzheimer’s disease and brain regions resistant to
Alzheimer’s disease, evidence presented here point out that
these genes may contribute to the regional vulnerability of
human brain to Alzheimer’s disease pathology’® through
interaction with brain metabolism. Unique to APOE, the
gene’s correlation with brain glucose metabolism monoton-
ically increased from ‘CN to CN’ to ‘CN to AD’ group for
both Module 2 and Module 3 (Fig. 5). We speculate that
the correlation between APOE gene expression and brain
metabolism, especially among regions most affected by
Alzheimer’s disease, could be another indicator of risk for
the disease. However, although the correlation between re-
gional metabolism and the expression of the genes conferring
the highest risk was strongest in participants with the highest
risk, even those with the lowest risk showed a high correl-
ation in Module 3. This commonality could be related to old-
er age, shared by all participants. If this is the case, younger
individuals may show a different pattern. This analysis
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would further clarify the relationship of regional metabolism
and gene expression across the lifespan.

Conclusions

Evidence presented here shows that modularity of the human
brain metabolic network can serve as an indicator of the level
of dysfunction caused by network fragmentation, and that lar-
ger modularity correlates with higher risk for Alzheimer’s dis-
ease among CN individuals. Unprecedentedly, the brain
expression of most Alzheimer-related genes was shown to sig-
nificantly correlate with regional brain metabolism across all
risk groups, with APOE showing the strongest negative cor-
relation and SORL1 showing the strongest positive correl-
ation, particularly in the metabolic module including brain
regions earliest affected in the disease. These novel results em-
phasize the importance of brain metabolism in potentially me-
diating the effect of Alzheimer’s risk genes.
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