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Abstract:

State-of-art deep neural networks (DNN) are vulnerable to
attacks by adversarial examples: a carefully designed small pertur-
bation to the input, that is imperceptible to human, can mislead
DNN. To understand the root cause of adversarial examples, we
quantify the probability of adversarial example existence for
linear classifiers. Previous mathematical definition of adversarial
examples only involves the overall perturbation amount, and we
propose a more practical relevant definition of strong adversarial
examples that separately limits the perturbation along the signal
direction also. We show that linear classifiers can be made robust
to strong adversarial examples attack in cases where no adversarial
robust linear classifiers exist under the previous definition. The
results suggest that designing general strong-adversarial-robust
learning systems is feasible but only through incorporat-
ing human knowledge of the underlying classification problem.
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1 Introduction

The deep neural networks (DNN) are widely used as the
state-of-art machining learning classification systems due to its
great performance gains in recent years. Meanwhile adversarial
examples, first pointed out in [9], emerges as a novel peculiar
security threat against such systems: a small perturbation that is
unnoticeable to human eyes can cause the DNNs to misclassify.
Various adversarial algorithms have since been developed to
efficiently find adversarial examples [1, 3, 4]. Various defense
methods have also been proposed to prevent adversarial example
attacks: Adversarial training [3, 9]; Minmax robust training [4,
8]; Input transformation [11]. However, many of the defenses
are quickly broken down by new attacking methods.

For two classes of data distributed with bounded probability
densities on a compact region of a high dimensional space, [7]
showed that no classifier can both have low misclassification
rate and be robust to adversarial examples attack. So are we left
hopeless against the threat of adversarial examples? Theoretical
analysis for understanding adversarial examples is needed to
address this issue. [2, 3] pointed out that susceptibility of DNN
classifiers to adversarial attacks could be related to their locally
linear behaviours. The existence of adversarial examples is not
unique to DNN, traditional linear classifiers also have adver-
sarial examples. In this paper, we extend the understanding
of adversarial examples by quantifying the probability of their
existence for a simple case of linear classifiers that performs
binary classification on Gaussian mixture data.

In previous literature, a data point = is mathematically defined
as having an adversarial example 2’ = x + v when the pertur-
bation amount ||v|| is small and 2’ is classified differently from
x. This definition does not exclude genuine signal perturbation.
For example, if a dog image x is perturbed to an image x’ that is
classified as a cat by both human and the machine classifier, then
2’ should not be an adversarial example even if ||v] = ||2’ — z||
is small. The proper definition needs to capture the novelty of
adversarial examples attack: while a human would consider
two images z’ and x very similar and consider both clearly as
dogs, a machine classifier misclassifies =’ as a cat. While defin-
ing genuine signal perturbation for general learning problems
is difficult mathematically, the signal perturbation is clear in
the binary linear classification for Gaussian mixture data. We
therefore propose a new definition of strong-adversarial exam-
ples that limits the perturbation amount in the signal direction
separately from the limit on overall perturbation amount.

In this paper, we derive quantitative formulas for the probabil-
ities of adversarial and strong-adversarial examples existence in
the binary linear classification problem. Our quantitative anal-
ysis shows that an adversarial-robust linear classifier requires



much higher signal-to-noise ratio (SNR) in data than a good
performing classifier does. Therefore, in many practical appli-
cations, adversarial-robust classifiers may not be available nor
are such classifiers desirable. On the contrary, useful strong-
adversarial-robust linear classifiers exists at the SNR similar to
that required by the existence of any useful linear classifiers,
however, they require better designed training algorithms.

2 Adversarial Rates Analysis of Linear Binary Clas-
sifier on Gaussian Mixture Data

We first introduce our definitions of adversarial and strong-
adversarial examples, and then we characterize their existence
through defining sets. Using the defining sets, we derive explicit
probability rates of (strong-)adversarial examples existence for
linear classifiers on Gaussian mixture data.

2.1 Definition of Adversarial and Strong-Adversarial
Examples

The classical adversarial examples are defined as follows:

Definition 1. ' Given a classifier C, an s-adversarial example of
a data vector x is another data vector «’ such that ||z — 2’| < e

but C(z) # C(2)).

Without loss of generality, in this paper we focus on /5 norm
perturbations. If not specified, ||-|| in the following refers to the
¢3 norm. The general £, norm (p > 1) perturbation is similar,
and the results will be stated in the discussion section.

For a general machine classification problem, it is reasonable
to only consider adversarial examples since the signal direction
is often not easily definable mathematically. Here we consider
the simple binary linear classification of Gaussian mixture data
where the signal direction can be clearly distinguished. For two
classes labeled ‘4’ and ‘—’ respectively, a linear classifier is
C(z;w,b) = {w-x+b > 0} where ‘-* denotes the inner product
of two vectors. Here the parameters w and b are respectively the
weight vector and the bias term. For the classical Gaussian mix-
ture data problem, for each of the two classes, the d-dimensional
data vector z comes from a multivariate Gaussian distribution
N(u;,021,),i= ‘4 or ‘. Notice the optimal ideal classifier
here is the Bayes classifier C(x; u, i) = {p - (x — i) > 0}?
where p1 = 3 (pit — p-), o = 5(ps +p-).

For this problem, the data distributions of the two classes only
differ in their means p4 and p—. Thus the signal direction is

'We don’t distinguish the targeted and untargeted adversarial examples here
because for binary classification they are the same.

2Here we just use the optimal Bayes classfier for balanced case since we are
focusing on the balanced case in the following text.

to = o/ ||p]|- Adding 2 |||l amount of perturbation along the
signal direction changes the ‘—’ class data distribution to the
‘4’ class data distribution exactly, rending all classifiers unable
to defend against such a perturbation.

In previous literature, the adversarial examples definition does
not limit perturbation along the signal direction, therefore we
propose a new definition that limits the perturbation along the
signal direction separately by an amount ¢, we will refer these
examples as strong-adversarial examples .

Definition 2. Given a classifier C, an (g, 0)-strong-adversarial
example of a data vector x is another data vector x' such that
|z — 2’| <eand|(x —x') - po| < 8§ but C(x) # C(z').

To illustrate the difference between the adversarial examples
and the strong-adversarial examples, we consider the following
examples visualized in Figure 1. Here, Figure 1(a) shows a data
vector = of dimension d = 19 x 19 = 361 from the ‘4’ class.
To visualize, each component of the data vector is mapped onto
[0, 1] via function % (tanh 22 + 1) and then displayed in grey
scale as a 19 x 19 image [1].

The two means p4 and p_ are chosen to be zero at every
component of the vector except the component corresponding to
center grid cell (shown with red boundary in Figure 1). Hence
the optimal Bayes classifier identifies the image as from ‘4’
(or ‘=") class when the center grid cell within the red boundary
appears to be white (or black). With a perturbation amount of
€ = 0.3 x 19 = 5.7, Figure 1(b) shows a randomly perturbed
2’ which is hardly distinguishable from the first image x to the
human eye. This confirms that, in defending against realistic
threats, ¢ of magnitude O(+/d) needs to be studied. (Detailed
discussion of ¢ order is in subsection 2.3.)

For a trained support vector machine (SVM) classifier, Fig-
ure 1(c) and (d) shows two adversarial examples with the same
€ = 5.7, but only the last one in (d) is strong-adversarial for
0 = 1.2. The adversarial attacks present a novel threat: a ma-
chine classifier misclassifies the perturbed data points that a
human would not have noted the difference. We can see that
our strong-adversarial example definition focus attention on this
novel threat. In contrast, under the traditional definition, the
adversarial examples include examples similar to Figure 1(c)
that would indeed be classified by human into another class.
We now quantitatively analyze the existence of adversarial and
strong-adversarial examples.

For more general classification problems, the signal direction
is harder to define. But the concept of adversarial versus strong-
adversarial examples still applies. Figure 2 shows an image
of ’1’ from the MNIST data set, and two images with added
perturbations. (b) shows an adversarial example obtained by
the CW-attack [1] algorithm, that is misclassified by a DNN. (c)



FIGURE 1. (a) a data point = from the ‘4’ class; (b) a randomly perturbed z’; (c) an adversarial =’ but not strong-adversarial; (d) a strong-adversarial z’.

!

All three perturbations are of the same amount. The center grid cell within the red boundary contains the real class signal.
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FIGURE 2. MNIST images of "1’: (a) the original image, (b) an adversarial example, (c) an adversarial but not strong-adversarial example

shows an image we made with a smaller perturbation amount. If
a classifier is adversarial-robust at this level, then it needs to clas-
sify both images (b) and (c) as ’1’. However, classifying image
(c) as ’1’ clearly contradicts what a human would do, render-
ing the usefulness of the classifier for practical applications in
doubt. Generally, we should pursue a strong-adversarial-robust
classifier, not an adversarial-robust one.

2.2 The Defining Sets

Here we characterize the defining sets where the (strong-)
adversarial examples exist. Then we quantify the probability of
data falling into these defining sets in the next subsection 2.3.

We denote 2. = {x : x has an e-adversarial example} and
Q.5 = { : z has an (g, §)-strong-adversarial example}. Fur-
thermore, for a fixed perturbation n, we denote the set where
n changes classification as Q(n) = {z € R? : O(x +n) #

For any data point z in €, there exists a n with ||n|| < ¢
such that  + n is classified differently from z. In other words,
the distance of = from the classifier’s decision boundary is less
than e. For a linear classifier C'(z;w,b) = {w -z + b > 0},
the normal direction of its decision boundary is ng = w/ ||w||.
Thus, perturbing = by € amount along one of the two directions
ng or —ng will cross the linear decision boundary. That is,

Q. C Q(eng)UN(—eng). Since it is obvious from the definition
that Qe = U, <. 2(n) 2 Q(eno) U Q(—enyp), we have . =
Q(eng) U Q(—enp). In summary, to judge if x € Q., we only
need to check the perturbation along the normal direction ny.

In contrast, our definition of strong-adversarial examples
only allows ¢ amount of perturbation along the signal nota-
tion pg, hence it is not sufficient to only check perturbations
eng and —eng for judging if x € Q. ;. Let 6 denote the de-
flected angle between 1y and ng. Then we can decompose ng
into two components along and orthogonal to the signal direc-
tion pg respectively. That is, ng = cos8ug + sin fng where
n = ng— (no - o)to and ng = n/||n|. When ecosf < 9,
the adversarial example resulting from the eng perturbation is
also strong-adversarial by definition. When € cos 6 > §, how-
ever, eng is no longer an allowable perturbation in the strong-
adversarial example definition. Then we need to check whether
classification change is caused by a perturbation of § amount
along pg direction and /2 — 42 amount along n direction.
That is, to judge if = € (), 5, we need to check perturbations
Uy = dpg + Ve2 — 02ng and —us. We summarize the defining
sets characterization in the following lemma.

Lemma 1. The defining sets for e-adversarial and (e, §)-strong-
adversarial examples are given by:

Qe = Qeng) UN(—eng);  Qes = Quz) UQ(—uz) (1)



where us = B + /€2 — 32ng, 8 = min(e cos b, 9).

Next, we use these defining sets to quantify the probabilities
of (strong-)adversarial example existence.

2.3 Adversarial and Strong-Adversarial Rates

For the binary classification problem, a random data vec-
tor comes from the Gaussian mixture distribution p(z) =
Aty (x) + A_p_(x), where p;(x) is the probability density
function of the multivariate Gaussian N (11;,021,) and )\; is the
probability that the data vector belongs to the class of ¢ = ‘4’
or ‘—’. For simplicity, we focus on the balanced classes case of

A+ =A_=0b5andalsoocy =0_ =o0.

Adversarial Rate For a random data vector x from the ‘4’
class, it has an e-adversarial example z’ if it is classified cor-
rectly by w-x 4+ b > 0 and x € Q(—enyp). Thus the adversarial
rate from the ‘+’ class is

0.5prw-z+b>0,w-(x—eng)+b<0|py(x)]

2
=05pr0 <w-z+b<elwl |pi(x)) @

Under the multivariate Gaussian N (p14, 0214) distribution
@4 (x), w - x + bis univariate Gaussian with mean w - py + b
and variance ||w||® o2, hence the above quantity becomes

0.5[®(€Ilw|(w~u++b)>_®((w‘u++b)>] .

[wll o [wll o

Here ®(-) denotes the cumulative distribution function (CDF)
of the standard Gaussian distribution N(0,1). Similarly, the
adversarial rate from the ‘—’ class is

0.5pr[—¢ ||| < w- 2 +b < 0p_(z)]
o () (-

Recall p = (g — p), i = 3(py + p—). If we denote
b = w - i + b, then we can rewritten the expressions as w -
p+ +b=dw-p+b. Combining Eqn. (3) and (4), we have
the overall adversarial rate as

. / . /
Pado =0.5[q>(w “+b)_<1>(w pib _E>
[w|| o [wlfo o
Lo wopu—b _ & w-p=b e
[w|[ o [wlo o

Notice that the misclassification rates from the two classes
are 0.5{1 — ®[(w - p+ V") /(|w||o)]} and 0.5{1 — ®[(w - p —

—w-pu_ + bﬂ
[w] &

“)

®)

b)/(JJw|| o)]}. Thus the overall misclassification rate is

pm:1_0.5[q><w'u+bl>+q><w'/‘_b/>} (6)
wll o [wllo

We combine Eqn. (5) and (6) into the following Theorem.

Theorem 1. The overall adversarial rate of a linear classifier
for the balanced Gaussian mixture data is

. b/ . _b/
Dot = 1—pp—0.5 |0 L HTY _EN oL r =0 £
Jwllo o lwllo o
@)

To be robust against adversarial attacks, a linear classifier
needs a low adversarial rate. For the classifier to be useful, it
also needs a low misclassification rate. Hence we should look
at the sum of misclassification rate and adversarial rate, which
we call the adversarial-error rate:

Perr = Padv + Pm

. / . _l
:1_0_5[¢(W_8)+¢)(W_5>}
|wl[o o [wlle o
8)

Comparing Eqn. (8) with (6), we can see why adversarial-
robustness is hard to achieve. Firstly, the misclassification rate
Eqn. p,, in (6) is minimized by the Bayes classifier with &’ = 0
and w-p = ||w|| ||p||- Hence the best p,,, value is 1 —®(||i|| /o).
There exists useful classifiers when ||u|| /o is big enough to
make 1 —®(||p|| /o) small. This is achieved for ||u|| /o = O(1).
For example, when ||4]| /o = 3, the misclassification rate of the
Bayes classifier is around 0.1%.

However, to achieve a low adversarial-error rate in Eqn. (8),
the required SNR ||u|| /o can be much bigger. When w - p1 >
¢ |lw||, a lower bound for the adversarial-error rate is

perv»21—¢<w—€>21—¢<w—€> )

lwl|e o o o

Therefore, the existence of a useful adversarial-robust linear
classifier requires ||u|| /o — /o = O(1) instead. Notice that,
for this Gaussian mixture data setup, the noise in each class
follows the N (0,0%1,) distribution with an expected ¢ norm
square of do?. Therefore, for a positive constant n, < 1, the
perturbation amount of & = 7,v/do is smaller than the average
noise in data and generally is hard to detect. Hence, for the
typical high-dimensional data applications, an adversarial-robust
linear classifier needs to protect against perturbation amount of
e = O(V/d) which implies that ||u|| /o = O(V/d) is needed
from Eqn. (9). Next, we show that this high SNR requirement
is not needed for a strong-adversarial-robust linear classifier.



Strong-Adversarial Rate The derivation of the strong-
adversarial rate is very similar to that of the adversarial rate.
From Eqn. (1), the difference between the adversarial defin-
ing set and the strong-adversarial defining set is only that eng

is replaced by us = Bug + /€2 — 82ng. Hence the strong-
adversarial rate from the *+’ class is

0.5pr[0 <w-x+b < w-uzlpy(x)].

Since w - o ||w]| cos and w - ng lw]| sin 6, we

have w - uy = (Bcosf + /e2 — $2sinf) |jw| where 8 =

min(e cos 6, 6). We denote

9(e,6,60) = Bcos® + /2 — 32sinb

Thus replacing ¢ ||w|| by g(e, 9, 8) ||w]| in Eqn. from (3) to
(8), we have the following Theorem.

(10)

Theorem 2. The overall strong-adversarial-error rate of a lin-
ear classifier is

. /
Ps—err = Ps—adv + Pm = 1 — 0.5[q,(w ptb g(e,&,@))
Jwll o o

+(I)(w-,u—b’ B g(a,é,@))}
[w]l o o
1D

Compared to the analysis above, the existence of a useful
strong-adversarial-robust linear classifier requires ||| /o —
g(g,6,0)/0 = O(1) instead. Besides the overall perturbation
amount &, the function g(g, 6, §) in Eqn. (10) is also affected by
two other factors: the signal direction perturbation amount § and
the angle 6 between the classifier and the ideal Bayes classifier.
What is the practical relevant amount § we should study? Let
d = nspr = ns||pl|. When n, > 1, a § amount perturbation
along the signal direction to all *+4’ class data points will make
more than half of them be classified as ’—’ by the Bayes clas-
sifier (also to human eye, e.g., Figure 1(c)). Therefore, when
studying real strong-adversarial perturbations (imperceptible to
human but confuses machine) mathematically, we need to focus
onns < 1. Thatis, d = O(1). Compared to the overall pertur-
bation amount € = O(+/d) discussed earlier, we see that § < ¢
for typical high-dimensional data applications. When § < ¢,
9(e,0,0) ~ §cosf + esinf. Hence if the linear classifier is
well-trained to have small 6 and small bias b’ (i.e., very close
to the Bayes classifier), then its strong-adversarial-error rate is
approximately 1 — ®[(1 — n;)||1]| /o], which can be made small
when SNR ||| /o is of order O(1). That is, with good training,
we can find a useful strong-adversarial-robust linear classifier
when ||p|| /o = O(1). In contrast, no training can make the

linear classifier to be useful and adversarial-robust unless the
SNR ||1|| /o is much bigger, at the order of O(\/d).

The conclusion for the analysis using £, norm is similar. One
can apply the similar analysis method and show that there exists
a useful strong-adversarial-robust linear classifier for constant
order SNR ||p4]| /o = O(1), but a useful £,-adversarial-robust
linear classifier only exists when SNR is much bigger, at the
order of O(d™m(1/p:1/2)),

3 Discussions and Conclusions

In this paper, we provide clear definitions of adversarial and
strong adversarial examples in the linear classification setting.
Quantitative analysis shows that adversarial examples are hard
to avoid but also should not be of concern in practice. Rather, we
should focus on finding strong-adversarial-robust classifiers. We
now consider the implications of these results on studying ad-
versarial examples for general classifiers, and their relationship
to some recent works in literature.

Shafahi et al. [7] shows that no classifier can achieve low
misclassification rate and also be adversarial-robust for data
distributions with bounded density on a compact region in a
high-dimensional space. Our analysis does not match exactly
with their impossibility statement because we are studying the
Gaussian mixture case, which has positive density on the whole
space. However, in spirit our results have similar implications:
for the usual SNR O(1) that allows low misclassification rate,
generally it is impossible to be also adversarial-robust (for which
a much bigger SNR O(+/d) is required).

Our results, however, do show that there can be adversarial-
robust classifiers under the traditional definition when the SNR
is very big. Schmidt et al. [5] has also shown that, for Gaussian
mixture classification problem and a particular training method,
the adversarial-robustness is achievable but requires more train-
ing data than simply achieving the low misclassification rate
only. Our formula indicates that useful adversarial-robust classi-
fier do exist at the SNR level they assumed. Our study is more
focused on the fundamental issue of when useful adversarial-
robust classifiers exist, not which training method and what data
complexity will find such a classifier. However, our formulas
do indicate that an adversarial-robust classifier has to satisfy
a stricter requirement than a good performing classifier. Thus
either a better training method or a higher data complexity is
needed for finding a useful adversarial-robust classifier, agreeing
with the general theme of Schmidt et al. [5].

Our results on the existence of adversarial examples do not
change qualitatively when using other £, norm to measure the
perturbation: under traditional definition, useful adversarial-



robust classifier exists only when the data distribution has a very
big SNR of O(d™(1/P:1/2)) " For many applications where
good classifiers exists (SNR of only O(1)), we can not pursue
adversarial-robust classifier under the traditional definition 1.
The current defense strategies based on such adversarial exam-
ple definition likely will still be suspect to more sophisticated
adversarial attacks. For certifiable adversarial-robust classi-
fiers [4, 8], the robustness is achieved only for the perturbation
amount € high enough so that they differ from human in classi-
fying images like those in Figure 1(c) and Figure 2(c). Thus a
paradigm change is needed: we should train a classifier to be
strong-adversarial-robust rather than adversarial-robust.

While the signal direction is obvious in the linear classifica-
tion, the signal direction and the definition of strong-adversarial
examples in general classification warrants further study. The
signal direction in the linear classification here is the direc-
tion where the likelihood ratio of the two classes changes
most rapidly. One reasonable extension is to define the sig-
nal direction at any data vector x as the gradient direction
of the likelihood ratio at z. Then similar to definition 2, the
strong-adversarial example for general classifier also restrict
the change along this signal direction to the amount §. The
strong-adversarial-robust classifiers therefore are likely to be
very close to the Bayes classifier. Some recent works have at-
tempted training DNN to be close to the Bayes classifier: Wang
et al. [10] uses a nearest neighbors method, and Schott et al. [6]
applies the generative model techniques. In particular, Schott
et al. [6] applied their method on MNIST dataset, and when
applying a specifically designed attack on such a trained DNN,
the adversarial examples found are semantically meaningful for
humans. That is, these adversarial examples are adversarial in
traditional definition but likely not strong-adversarial. The new
strong-adversarial examples framework can allow theoretical
quantification of the robustness for these training methods. The
analysis of strong-adversarial-robustness for general classifiers
such as DNN can provide a new research direction on how to
defend against realistic adversarial attacks.
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