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Abstract:

State-of-art deep neural networks (DNN) are vulnerable to

attacks by adversarial examples: a carefully designed small pertur-

bation to the input, that is imperceptible to human, can mislead

DNN. To understand the root cause of adversarial examples, we

quantify the probability of adversarial example existence for

linear classifiers. Previous mathematical definition of adversarial

examples only involves the overall perturbation amount, and we

propose a more practical relevant definition of strong adversarial

examples that separately limits the perturbation along the signal

direction also. We show that linear classifiers can be made robust

to strong adversarial examples attack in cases where no adversarial

robust linear classifiers exist under the previous definition. The

results suggest that designing general strong-adversarial-robust

learning systems is feasible but only through incorporat-

ing human knowledge of the underlying classification problem.
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1 Introduction

The deep neural networks (DNN) are widely used as the

state-of-art machining learning classification systems due to its

great performance gains in recent years. Meanwhile adversarial

examples, first pointed out in [9], emerges as a novel peculiar

security threat against such systems: a small perturbation that is

unnoticeable to human eyes can cause the DNNs to misclassify.

Various adversarial algorithms have since been developed to

efficiently find adversarial examples [1, 3, 4]. Various defense

methods have also been proposed to prevent adversarial example

attacks: Adversarial training [3, 9]; Minmax robust training [4,

8]; Input transformation [11]. However, many of the defenses

are quickly broken down by new attacking methods.

For two classes of data distributed with bounded probability

densities on a compact region of a high dimensional space, [7]

showed that no classifier can both have low misclassification

rate and be robust to adversarial examples attack. So are we left

hopeless against the threat of adversarial examples? Theoretical

analysis for understanding adversarial examples is needed to

address this issue. [2, 3] pointed out that susceptibility of DNN

classifiers to adversarial attacks could be related to their locally

linear behaviours. The existence of adversarial examples is not

unique to DNN, traditional linear classifiers also have adver-

sarial examples. In this paper, we extend the understanding

of adversarial examples by quantifying the probability of their

existence for a simple case of linear classifiers that performs

binary classification on Gaussian mixture data.

In previous literature, a data point x is mathematically defined

as having an adversarial example x′ = x+ v when the pertur-

bation amount ‖v‖ is small and x′ is classified differently from

x. This definition does not exclude genuine signal perturbation.

For example, if a dog image x is perturbed to an image x′ that is

classified as a cat by both human and the machine classifier, then

x′ should not be an adversarial example even if ‖v‖ = ‖x′ − x‖
is small. The proper definition needs to capture the novelty of

adversarial examples attack: while a human would consider

two images x′ and x very similar and consider both clearly as

dogs, a machine classifier misclassifies x′ as a cat. While defin-

ing genuine signal perturbation for general learning problems

is difficult mathematically, the signal perturbation is clear in

the binary linear classification for Gaussian mixture data. We

therefore propose a new definition of strong-adversarial exam-

ples that limits the perturbation amount in the signal direction

separately from the limit on overall perturbation amount.

In this paper, we derive quantitative formulas for the probabil-

ities of adversarial and strong-adversarial examples existence in

the binary linear classification problem. Our quantitative anal-

ysis shows that an adversarial-robust linear classifier requires



much higher signal-to-noise ratio (SNR) in data than a good

performing classifier does. Therefore, in many practical appli-

cations, adversarial-robust classifiers may not be available nor

are such classifiers desirable. On the contrary, useful strong-

adversarial-robust linear classifiers exists at the SNR similar to

that required by the existence of any useful linear classifiers,

however, they require better designed training algorithms.

2 Adversarial Rates Analysis of Linear Binary Clas-
sifier on Gaussian Mixture Data

We first introduce our definitions of adversarial and strong-

adversarial examples, and then we characterize their existence

through defining sets. Using the defining sets, we derive explicit

probability rates of (strong-)adversarial examples existence for

linear classifiers on Gaussian mixture data.

2.1 Definition of Adversarial and Strong-Adversarial
Examples

The classical adversarial examples are defined as follows:

Definition 1. 1 Given a classifier C, an ε-adversarial example of

a data vector x is another data vector x′ such that ‖x− x′‖ ≤ ε
but C(x) 6= C(x′).

Without loss of generality, in this paper we focus on `2 norm

perturbations. If not specified, ‖·‖ in the following refers to the

`2 norm. The general `p norm (p ≥ 1) perturbation is similar,

and the results will be stated in the discussion section.

For a general machine classification problem, it is reasonable

to only consider adversarial examples since the signal direction

is often not easily definable mathematically. Here we consider

the simple binary linear classification of Gaussian mixture data

where the signal direction can be clearly distinguished. For two

classes labeled ‘+’ and ‘−’ respectively, a linear classifier is

C(x;w, b) = {w·x+b > 0} where ‘·’ denotes the inner product

of two vectors. Here the parameters w and b are respectively the

weight vector and the bias term. For the classical Gaussian mix-

ture data problem, for each of the two classes, the d-dimensional

data vector x comes from a multivariate Gaussian distribution

N(µi, σ
2
i Id), i = ‘+’ or ‘−’. Notice the optimal ideal classifier

here is the Bayes classifier C(x;µ, µ̄) = {µ · (x − µ̄) > 0}2

where µ = 1
2 (µ+ − µ−), µ̄ = 1

2 (µ+ + µ−).
For this problem, the data distributions of the two classes only

differ in their means µ+ and µ−. Thus the signal direction is

1We don’t distinguish the targeted and untargeted adversarial examples here

because for binary classification they are the same.
2Here we just use the optimal Bayes classfier for balanced case since we are

focusing on the balanced case in the following text.

µ0 = µ/ ‖µ‖. Adding 2 ‖µ‖ amount of perturbation along the

signal direction changes the ‘−’ class data distribution to the

‘+’ class data distribution exactly, rending all classifiers unable

to defend against such a perturbation.

In previous literature, the adversarial examples definition does

not limit perturbation along the signal direction, therefore we

propose a new definition that limits the perturbation along the

signal direction separately by an amount δ, we will refer these

examples as strong-adversarial examples .

Definition 2. Given a classifier C, an (ε, δ)-strong-adversarial

example of a data vector x is another data vector x′ such that

‖x− x′‖ ≤ ε and |(x− x′) · µ0| ≤ δ but C(x) 6= C(x′).

To illustrate the difference between the adversarial examples

and the strong-adversarial examples, we consider the following

examples visualized in Figure 1. Here, Figure 1(a) shows a data

vector x of dimension d = 19 × 19 = 361 from the ‘+’ class.

To visualize, each component of the data vector is mapped onto

[0, 1] via function 1
2 (tanh

2x
3 + 1) and then displayed in grey

scale as a 19× 19 image [1].

The two means µ+ and µ− are chosen to be zero at every

component of the vector except the component corresponding to

center grid cell (shown with red boundary in Figure 1). Hence

the optimal Bayes classifier identifies the image as from ‘+’

(or ‘−’) class when the center grid cell within the red boundary

appears to be white (or black). With a perturbation amount of

ε = 0.3 × 19 = 5.7, Figure 1(b) shows a randomly perturbed

x′ which is hardly distinguishable from the first image x to the

human eye. This confirms that, in defending against realistic

threats, ε of magnitude O(
√
d) needs to be studied. (Detailed

discussion of ε order is in subsection 2.3.)

For a trained support vector machine (SVM) classifier, Fig-

ure 1(c) and (d) shows two adversarial examples with the same

ε = 5.7, but only the last one in (d) is strong-adversarial for

δ = 1.2. The adversarial attacks present a novel threat: a ma-

chine classifier misclassifies the perturbed data points that a

human would not have noted the difference. We can see that

our strong-adversarial example definition focus attention on this

novel threat. In contrast, under the traditional definition, the

adversarial examples include examples similar to Figure 1(c)

that would indeed be classified by human into another class.

We now quantitatively analyze the existence of adversarial and

strong-adversarial examples.

For more general classification problems, the signal direction

is harder to define. But the concept of adversarial versus strong-

adversarial examples still applies. Figure 2 shows an image

of ’1’ from the MNIST data set, and two images with added

perturbations. (b) shows an adversarial example obtained by

the CW-attack [1] algorithm, that is misclassified by a DNN. (c)



FIGURE 1. (a) a data point x from the ‘+’ class; (b) a randomly perturbed x
′; (c) an adversarial x′ but not strong-adversarial; (d) a strong-adversarial x′.

All three perturbations are of the same amount. The center grid cell within the red boundary contains the real class signal.

FIGURE 2. MNIST images of ’1’: (a) the original image, (b) an adversarial example, (c) an adversarial but not strong-adversarial example

shows an image we made with a smaller perturbation amount. If

a classifier is adversarial-robust at this level, then it needs to clas-

sify both images (b) and (c) as ’1’. However, classifying image

(c) as ’1’ clearly contradicts what a human would do, render-

ing the usefulness of the classifier for practical applications in

doubt. Generally, we should pursue a strong-adversarial-robust

classifier, not an adversarial-robust one.

2.2 The Defining Sets

Here we characterize the defining sets where the (strong-)

adversarial examples exist. Then we quantify the probability of

data falling into these defining sets in the next subsection 2.3.

We denote Ωε = {x : x has an ε-adversarial example} and

Ωε,δ = {x : x has an (ε, δ)-strong-adversarial example}. Fur-

thermore, for a fixed perturbation n, we denote the set where

n changes classification as Ω(n) = {x ∈ R
d : C(x + n) 6=

C(x)}.

For any data point x in Ωε, there exists a n with ‖n‖ ≤ ε
such that x+ n is classified differently from x. In other words,

the distance of x from the classifier’s decision boundary is less

than ε. For a linear classifier C(x;w, b) = {w · x + b > 0},

the normal direction of its decision boundary is n0 = w/ ‖w‖.

Thus, perturbing x by ε amount along one of the two directions

n0 or −n0 will cross the linear decision boundary. That is,

Ωε ⊆ Ω(εn0)∪Ω(−εn0). Since it is obvious from the definition

that Ωε =
⋃

‖n‖≤ε Ω(n) ⊇ Ω(εn0) ∪ Ω(−εn0), we have Ωε =

Ω(εn0) ∪ Ω(−εn0). In summary, to judge if x ∈ Ωε, we only

need to check the perturbation along the normal direction n0.

In contrast, our definition of strong-adversarial examples

only allows δ amount of perturbation along the signal nota-

tion µ0, hence it is not sufficient to only check perturbations

εn0 and −εn0 for judging if x ∈ Ωε,δ. Let θ denote the de-

flected angle between µ0 and n0. Then we can decompose n0

into two components along and orthogonal to the signal direc-

tion µ0 respectively. That is, n0 = cos θµ0 + sin θn0 where

n = n0 − (n0 · µ0)µ0 and n0 = n/ ‖n‖. When ε cos θ ≤ δ,

the adversarial example resulting from the εn0 perturbation is

also strong-adversarial by definition. When ε cos θ > δ, how-

ever, εn0 is no longer an allowable perturbation in the strong-

adversarial example definition. Then we need to check whether

classification change is caused by a perturbation of δ amount

along µ0 direction and
√
ε2 − δ2 amount along n0 direction.

That is, to judge if x ∈ Ωε,δ, we need to check perturbations

u2 = δµ0 +
√
ε2 − δ2n0 and −u2. We summarize the defining

sets characterization in the following lemma.

Lemma 1. The defining sets for ε-adversarial and (ε, δ)-strong-

adversarial examples are given by:

Ωε = Ω(εn0) ∪ Ω(−εn0); Ωε,δ = Ω(u2) ∪ Ω(−u2) (1)



where u2 = βµ0 +
√

ε2 − β2n0, β = min(ε cos θ, δ).

Next, we use these defining sets to quantify the probabilities

of (strong-)adversarial example existence.

2.3 Adversarial and Strong-Adversarial Rates

For the binary classification problem, a random data vec-

tor comes from the Gaussian mixture distribution p(x) =
λ+ϕ+(x) + λ−ϕ−(x), where ϕi(x) is the probability density

function of the multivariate Gaussian N(µi, σ
2
i Id) and λi is the

probability that the data vector belongs to the class of i = ‘+’

or ‘−’. For simplicity, we focus on the balanced classes case of

λ+ = λ− = 0.5 and also σ+ = σ− = σ.

Adversarial Rate For a random data vector x from the ‘+’

class, it has an ε-adversarial example x′ if it is classified cor-

rectly by w · x+ b > 0 and x ∈ Ω(−εn0). Thus the adversarial

rate from the ‘+’ class is

0.5pr[w · x+ b > 0, w · (x− εn0) + b < 0 |ϕ+(x)]

=0.5pr[0 < w · x+ b < ε ‖w‖ |ϕ+(x)]
(2)

Under the multivariate Gaussian N(µ+, σ
2Id) distribution

ϕ+(x), w · x+ b is univariate Gaussian with mean w · µ+ + b

and variance ‖w‖2 σ2, hence the above quantity becomes

0.5

[

Φ

(

ε ‖w‖ − (w · µ+ + b)

‖w‖σ

)

−Φ

(−(w · µ+ + b)

‖w‖σ

)]

(3)

Here Φ(·) denotes the cumulative distribution function (CDF)

of the standard Gaussian distribution N(0, 1). Similarly, the

adversarial rate from the ‘−’ class is

0.5pr[−ε ‖w‖ < w · x+ b < 0|ϕ−(x)]

=0.5

[

Φ

(−(w · µ− + b)

‖w‖σ

)

− Φ

(

− ε

σ
− −w · µ− + b

‖w‖σ

)]

(4)

Recall µ = 1
2 (µ+ − µ−), µ̄ = 1

2 (µ+ + µ−). If we denote

b′ = w · µ̄ + b, then we can rewritten the expressions as w ·
µ± + b = ±w · µ + b′. Combining Eqn. (3) and (4), we have

the overall adversarial rate as

padv =0.5

[

Φ

(

w · µ+ b′

‖w‖σ

)

− Φ

(

w · µ+ b′

‖w‖σ − ε

σ

)

+Φ

(

w · µ− b′

‖w‖σ

)

− Φ

(

w · µ− b′

‖w‖σ − ε

σ

)] (5)

Notice that the misclassification rates from the two classes

are 0.5{1− Φ[(w · µ+ b′)/(‖w‖σ)]} and 0.5{1− Φ[(w · µ−

b′)/(‖w‖σ)]}. Thus the overall misclassification rate is

pm = 1− 0.5

[

Φ

(

w · µ+ b′

‖w‖σ

)

+Φ

(

w · µ− b′

‖w‖σ

)]

(6)

We combine Eqn. (5) and (6) into the following Theorem.

Theorem 1. The overall adversarial rate of a linear classifier

for the balanced Gaussian mixture data is

padv = 1−pm−0.5

[

Φ

(

w · µ+ b′

‖w‖σ − ε

σ

)

+Φ

(

w · µ− b′

‖w‖σ − ε

σ

)]

(7)

To be robust against adversarial attacks, a linear classifier

needs a low adversarial rate. For the classifier to be useful, it

also needs a low misclassification rate. Hence we should look

at the sum of misclassification rate and adversarial rate, which

we call the adversarial-error rate:

perr = padv + pm

= 1− 0.5

[

Φ

(

w · µ+ b′

‖w‖σ − ε

σ

)

+Φ

(

w · µ− b′

‖w‖σ − ε

σ

)]

(8)

Comparing Eqn. (8) with (6), we can see why adversarial-

robustness is hard to achieve. Firstly, the misclassification rate

Eqn. pm in (6) is minimized by the Bayes classifier with b′ = 0
and w ·µ = ‖w‖ ‖µ‖. Hence the best pm value is 1−Φ(‖µ‖ /σ).
There exists useful classifiers when ‖µ‖ /σ is big enough to

make 1−Φ(‖µ‖ /σ) small. This is achieved for ‖µ‖ /σ = O(1).
For example, when ‖µ‖ /σ = 3, the misclassification rate of the

Bayes classifier is around 0.1%.

However, to achieve a low adversarial-error rate in Eqn. (8),

the required SNR ‖µ‖ /σ can be much bigger. When w · µ >
ε ‖w‖, a lower bound for the adversarial-error rate is

perr ≥ 1− Φ

(

w · µ
‖w‖σ − ε

σ

)

≥ 1− Φ

(‖µ‖
σ

− ε

σ

)

(9)

Therefore, the existence of a useful adversarial-robust linear

classifier requires ‖µ‖ /σ − ε/σ = O(1) instead. Notice that,

for this Gaussian mixture data setup, the noise in each class

follows the N(0, σ2Id) distribution with an expected `2 norm

square of dσ2. Therefore, for a positive constant ηa < 1, the

perturbation amount of ε = ηa
√
dσ is smaller than the average

noise in data and generally is hard to detect. Hence, for the

typical high-dimensional data applications, an adversarial-robust

linear classifier needs to protect against perturbation amount of

ε = O(
√
d) which implies that ‖µ‖ /σ = O(

√
d) is needed

from Eqn. (9). Next, we show that this high SNR requirement

is not needed for a strong-adversarial-robust linear classifier.



Strong-Adversarial Rate The derivation of the strong-

adversarial rate is very similar to that of the adversarial rate.

From Eqn. (1), the difference between the adversarial defin-

ing set and the strong-adversarial defining set is only that εn0

is replaced by u2 = βµ0 +
√

ε2 − β2n0. Hence the strong-

adversarial rate from the ’+’ class is

0.5pr[0 < w · x+ b < w · u2|ϕ+(x)].

Since w · µ0 = ‖w‖ cos θ and w · n0 = ‖w‖ sin θ, we

have w · u2 = (β cos θ +
√

ε2 − β2 sin θ) ‖w‖ where β =
min(ε cos θ, δ). We denote

g(ε, δ, θ) = β cos θ +
√

ε2 − β2 sin θ (10)

Thus replacing ε ‖w‖ by g(ε, δ, θ) ‖w‖ in Eqn. from (3) to

(8), we have the following Theorem.

Theorem 2. The overall strong-adversarial-error rate of a lin-

ear classifier is

ps−err = ps−adv + pm = 1− 0.5

[

Φ

(

w · µ+ b′

‖w‖σ − g(ε, δ, θ)

σ

)

+Φ

(

w · µ− b′

‖w‖σ − g(ε, δ, θ)

σ

)]

(11)

Compared to the analysis above, the existence of a useful

strong-adversarial-robust linear classifier requires ‖µ‖ /σ −
g(ε, δ, θ)/σ = O(1) instead. Besides the overall perturbation

amount ε, the function g(ε, δ, θ) in Eqn. (10) is also affected by

two other factors: the signal direction perturbation amount δ and

the angle θ between the classifier and the ideal Bayes classifier.

What is the practical relevant amount δ we should study? Let

δ = ηsµ = ηs ‖µ‖. When ηs > 1, a δ amount perturbation

along the signal direction to all ’+’ class data points will make

more than half of them be classified as ’−’ by the Bayes clas-

sifier (also to human eye, e.g., Figure 1(c)). Therefore, when

studying real strong-adversarial perturbations (imperceptible to

human but confuses machine) mathematically, we need to focus

on ηs < 1. That is, δ = O(1). Compared to the overall pertur-

bation amount ε = O(
√
d) discussed earlier, we see that δ � ε

for typical high-dimensional data applications. When δ � ε,

g(ε, δ, θ) ≈ δ cos θ + ε sin θ. Hence if the linear classifier is

well-trained to have small θ and small bias b′ (i.e., very close

to the Bayes classifier), then its strong-adversarial-error rate is

approximately 1−Φ[(1− ηs)‖µ‖/σ], which can be made small

when SNR ‖µ‖ /σ is of order O(1). That is, with good training,

we can find a useful strong-adversarial-robust linear classifier

when ‖µ‖ /σ = O(1). In contrast, no training can make the

linear classifier to be useful and adversarial-robust unless the

SNR ‖µ‖ /σ is much bigger, at the order of O(
√
d).

The conclusion for the analysis using `p norm is similar. One

can apply the similar analysis method and show that there exists

a useful strong-adversarial-robust linear classifier for constant

order SNR ‖µ‖ /σ = O(1), but a useful `p-adversarial-robust

linear classifier only exists when SNR is much bigger, at the

order of O(dmin(1/p,1/2)).

3 Discussions and Conclusions

In this paper, we provide clear definitions of adversarial and

strong adversarial examples in the linear classification setting.

Quantitative analysis shows that adversarial examples are hard

to avoid but also should not be of concern in practice. Rather, we

should focus on finding strong-adversarial-robust classifiers. We

now consider the implications of these results on studying ad-

versarial examples for general classifiers, and their relationship

to some recent works in literature.

Shafahi et al. [7] shows that no classifier can achieve low

misclassification rate and also be adversarial-robust for data

distributions with bounded density on a compact region in a

high-dimensional space. Our analysis does not match exactly

with their impossibility statement because we are studying the

Gaussian mixture case, which has positive density on the whole

space. However, in spirit our results have similar implications:

for the usual SNR O(1) that allows low misclassification rate,

generally it is impossible to be also adversarial-robust (for which

a much bigger SNR O(
√
d) is required).

Our results, however, do show that there can be adversarial-

robust classifiers under the traditional definition when the SNR

is very big. Schmidt et al. [5] has also shown that, for Gaussian

mixture classification problem and a particular training method,

the adversarial-robustness is achievable but requires more train-

ing data than simply achieving the low misclassification rate

only. Our formula indicates that useful adversarial-robust classi-

fier do exist at the SNR level they assumed. Our study is more

focused on the fundamental issue of when useful adversarial-

robust classifiers exist, not which training method and what data

complexity will find such a classifier. However, our formulas

do indicate that an adversarial-robust classifier has to satisfy

a stricter requirement than a good performing classifier. Thus

either a better training method or a higher data complexity is

needed for finding a useful adversarial-robust classifier, agreeing

with the general theme of Schmidt et al. [5].

Our results on the existence of adversarial examples do not

change qualitatively when using other `p norm to measure the

perturbation: under traditional definition, useful adversarial-



robust classifier exists only when the data distribution has a very

big SNR of O(dmin(1/p,1/2)). For many applications where

good classifiers exists (SNR of only O(1)), we can not pursue

adversarial-robust classifier under the traditional definition 1.

The current defense strategies based on such adversarial exam-

ple definition likely will still be suspect to more sophisticated

adversarial attacks. For certifiable adversarial-robust classi-

fiers [4, 8], the robustness is achieved only for the perturbation

amount ε high enough so that they differ from human in classi-

fying images like those in Figure 1(c) and Figure 2(c). Thus a

paradigm change is needed: we should train a classifier to be

strong-adversarial-robust rather than adversarial-robust.

While the signal direction is obvious in the linear classifica-

tion, the signal direction and the definition of strong-adversarial

examples in general classification warrants further study. The

signal direction in the linear classification here is the direc-

tion where the likelihood ratio of the two classes changes

most rapidly. One reasonable extension is to define the sig-

nal direction at any data vector x as the gradient direction

of the likelihood ratio at x. Then similar to definition 2, the

strong-adversarial example for general classifier also restrict

the change along this signal direction to the amount δ. The

strong-adversarial-robust classifiers therefore are likely to be

very close to the Bayes classifier. Some recent works have at-

tempted training DNN to be close to the Bayes classifier: Wang

et al. [10] uses a nearest neighbors method, and Schott et al. [6]

applies the generative model techniques. In particular, Schott

et al. [6] applied their method on MNIST dataset, and when

applying a specifically designed attack on such a trained DNN,

the adversarial examples found are semantically meaningful for

humans. That is, these adversarial examples are adversarial in

traditional definition but likely not strong-adversarial. The new

strong-adversarial examples framework can allow theoretical

quantification of the robustness for these training methods. The

analysis of strong-adversarial-robustness for general classifiers

such as DNN can provide a new research direction on how to

defend against realistic adversarial attacks.
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