
t r a i n ; v a l

1

A Guessing Entropy-based Framework for Deep
Learning-Assisted Side-Channel Analysis

Ziyue Zhang, A. Adam Ding, and Yunsi Fei Member, IEEE

Abstract—Recently deep-learning (DL) techniques have been
widely adopted in side-channel power analysis. A DL-assisted
S C A generally consists of two phases: a deep neural network
(DNN) training phase and a follow-on attack phase using the
trained DNN. However, currently the two phases are not well
aligned, as there is no conclusion on what metric used in the
training can result in the most effective attack in the second
phase. When traditional loss functions such as negative log-
likelihood (NLL) are used in training a DNN, the trained
model does not yield optimal follow-on attack. Recently some
information theoretical S C A leakage metrics are proposed, either
as the validation metric to stop the DNN training with traditional
loss functions, or as both the validation metric and the training
loss function. None of those proposed metrics, however, directly
measures the S C A effectiveness. We propose to conduct DNN
training directly with a common S C A effectiveness metric, Guess-
ing Entropy (GE). We overcome the prior practical difficulty of
using G E in DNN training by utilizing the G E E A estimation
algorithm introduced in C H E S 2020. We show that using G E E A
as either the validation metric or the loss function produces
DNN models that lead to much more effective follow-on attacks.
Our work consolidates the DL-assisted S C A framework with a
consistent metric, which shows great potential to be adopted as
the universal SCA-oriented DNN training framework.

Index Terms—Side-channel Analysis, Deep learning, Guessing
Entropy, Evaluation metric.

I . INTRODUC T I ON

Over the past several years, deep learning (DL) has been
adopted to assist power side-channel attacks (SCAs). DL-
assisted SCAs can break devices protected by countermeasures
such as masking and hiding [MPP16], [CDP17]. Secure imple-
mentations of different ciphers are all cracked by DL-assisted
SCAs [CCC+ 19], [WPB19]. The common DL-assisted SCAs
generally consist of two phases. In the training phase, side-
channel leakage traces from a device with a known key are
used to train a deep neural network (DNN) classifier whose
output labels reflect key-dependent intermediate values in the
cipher. In the attack phase, traces from the device with an
unknown key are fed as inputs to the pre-trained DNN to
predict the labels, and the key is derived as the one among all
key candidates that most agrees with the predicted result.

However, how to train the DNN so as to yield an op-
timal model for S C A is still an unresolved issue. DNN is
traditionally trained to minimize a loss function, such as
negative log-likelihood (NLL), mean squared error (MSE), and

This work was supported in part by the National Science Foundation under
Grant No. CNS-2212010, SaTC-1929300, and IUCRC-1916762.

Ziyue Zhang, Aidong Adam Ding and Yunsi Fei are with Northeastern
University, Boston, MA 02115, USA. (emails: zhang.ziyue@northeastern.edu;
a.ding@northeastern.edu; y.fei@northeastern.edu)

cross-entropy (CE). Experimental results demonstrate that the
optimal DNN trained under such a loss function often does
not deliver the best S C A as measured by S C A effectiveness
metrics such as guessing entropy (GE) and success rate
(SR) [CDP17], [PHJ+19].

In deep learning practices, to prevent model overfitting, a
common technique is to stop the learning via monitoring a val-
idation metric. The data set is split into a training set S T r and a
validation set SV al . While the learning algorithm optimizes the
training loss on S T r , a validation metric is evaluated on SV a l

to check overfitting. Typically, the validation metric is the same
loss function. We call such procedurehomogeneous train-ing.
The procedure using a validation metric different from the loss
function is called heterogeneous training. Heterogeneous
training is often used when the desired optimization quantity is
not differentiable and therefore not viable for numerical
optimization in model training. For example, for a classifier,
the common optimization metrics include accuracy, precision
and recall, all dependent on true positive rates and true
negative rates etc. These metrics can not be used directly
in loss functions but can be used as the validation metric to
monitor learning based on traditional loss functions, such as
NLL, MES and CE.

Neither optimizing for these classification metrics with het-
erogeneous training nor optimizing traditional loss functions
with homogeneous training will lead to optimal DL-assisted
S C A [PHJ+19]. This phenomenon has prompted many propos-
als on new S C A related information-theoretic metrics for DNN
learning. For heterogeneous training, metrics such as empirical
mutual information and d [PBP20], [RZC+ 20] have
been proposed as the validation metric. For homogeneous
training, Cross Entropy Ratio (CER) [ZZN+ 20] and Ranking
loss(RkL) [ZBD+ 20] are proposed for both the loss function
and the validation metric. While these proposals resulted in
S C A effectiveness improvement over traditional DNN training
in experiments on some example datasets, none ensures the
optimality of the follow-on SCA.

A universally accepted optimal training procedure for DL-
assisted SCAs is still missing. As in common deep learning
practices, to achieve optimal S C A effectiveness, conceptually
we should use a S C A effectiveness metric such as GE either as
the validation metric in heterogeneous training or as the loss
function in homogeneous training. Using the average rank of
the correct key, which is empirical GE, in heterogeneous DNN
training has been suggested before [PHJ+19], [WVdHG+20].
However, using such an empirical GE as the validation metric
suffers due to the instability and inaccuracy of the empirical
GE estimation. Since the empirical GE is not differentiable, it

ix p (x)P
j j

1 i N P

P

P

A

S
k g g A A

S
g

S
k g

S
k g

k g

g

g g

g

2

cannot be used as the training loss function directly in homoge-
neous training. In this paper, we explore a practical procedure
of DNN training to directly optimize the corresponding SCA’s
GE by using the recently proposed Guessing Entropy Esti-
mation Algorithm (GEEA) estimator in CHES2020 [ZDF20].
Through an adjustment to batch training, we ensure efficient
and accurate practical GE estimation for first time during the
training process. We demonstrate that GEEA can be used in
either heterogeneous training or homogeneous training. It finds
the DNN for the follow-on attack which minimizes the S C A
metric GE.

The rest of the paper is organized as follows. In Section II,
we first describe background information on DNN structures
and the framework of DL-assisted SCAs. In Section III,
we elaborate our GEEA-based DNN training framework for
SCAs. We implement the proposed GEEA-based training
framework and compare with existing training frameworks
over public datasets in Sections I V and V. We first present
results of the heterogeneous training framework and demon-
strate the advantage of using the GEEA function as the
validation metric. We then use the GEEA function directly
as the loss function and demonstrate the advantage of our
proposed GEEA-based homogeneous training framework over
other existing homogeneous training frameworks. Finally we
conclude the paper in Section V I with some discussions.

I I . BAC K G RO U N D

In this section, we provide the background of common DNN
structures used in S C A and the procedure of profiled DL-
assisted SCA.

A. Deep Neural Networks for Side-channel Attacks
A neural network is composed of the first input layer,

the last output layer (which outputs predictions), and hidden
layers in between. Within each layer, computation neurons
perform operations on the input to the layer and a set of
trainable parameters. Different types of hidden layers are
designed with unique operation so that a neural network
can achieve specific functionality with proper combinations
of layers. Generally, the architecture of a neutral network
is determined by the type and number of its layers as
well as the number of neurons contained in each layer. To
find the optimized parameters, a neural network has to be
trained with a training set S T r . A loss f unction that
measures the classification error of f over the training set
is minimized using an optimizer (e.g., Stochastic Gra-dient
Descent [Rob07] [KW52] [BCN18], RMSprop, and Adam
[KB17]).

Two model families are most commonly used for SCAs:
Multi-Layer Perceptrons (MLPs) and Convolutional Neural
Networks (CNNs).

1) MLP: An MLP is efficiently computable, composed
of fully-connected layers and activation functions. A fully-
connected layer performs an affine transformation y = w x
+ b of its input x with a weight matrix w and a bias vector
b. The activation function is a non-linear function, such as
sigmoid, RELU, and SELU function, that will follow the

affine transformations and be applied to each coordinate of the
feature map. To solve a classification problem, the last fully-
connected layer is commonly followed by a special activation
function, sof tmax, s(x) i = e

ex p (x) . The role of s is to
normalize the output scores in such a way that they define a
probability distribution.

2) CNN: A CNN is composed of two parts: a convolu-
tional part for feature selection and a fully-connected part for
classification. The convolutional part is composed by several
convolutional blocks, each of which includes a series of one
convolutional layer followed by an activation layer and ends
with a pooling layer. The fully-connected part has the same
architecture as an MLP model.

A convolutional layer performs convolutional operations
on the input with multiple convolutional f ilters. The filter
kernel can be configured with some hyperparameters - width
and height of the filter, and parameters - weights in the filter
are trainable. A pooling layer is a non-linear layer that reduces
the dimension of the input while preserves the most relevant
information. The hyperparameter is the pooling window size.
The window tiles through the input to select elements where
the pooling function will be applied onto. M ax pooling and
Average pooling are the most commonly used pool functions.

B. Deep Learning-Assisted Profiled Attack
The most common type of DL-assisted SCAs is the profiled

attack. In a profiled attack, a dataset S P = (x i ; z i) is
collected to train the network, where the traces x i are acquired
on the victim device with the key known. The target label zi
= G(kc ; pi) is the sensitive information leakage, and the
select function G(;) is over the key and public variable pi .
Commonly used select functions include Hamming Weight
(HW), Hamming Distance (HD), and SBox Output, etc.

In the first training phase, a DNN is trained (with its
internal parameters updated) to match the model output y S P

() = (f (x i)) 1 i N with the target label z S P = (z i)1 i N
on the profiled dataset. Then in the attack phase, the attacker
collects an attack dataset S A containing N A measurement
traces of the victim device, with unknown cor-rect key kc and
the known variable (p i)1 i N . For each key candidate kg 2
K , the attacker calculates all the labels z A = (z i ; k)1 i N

= (G(kg ; pi))1iN over the attack
dataset. The attacker then chooses the key candidate kg that
yields the best matching labels z k

A with the DNN model
outputs y S A () on the attack dataset S A , measured by a score
function d A = d(z A ; y S A ()).

In literature, there are two types of score functions used in
the attack phase to measure the discrepancy between the DNN
model predicted outputs and the assumed labels z S A given a
key candidate.

 N L L Attack: Most existing attacks are of this type. Here
the model output y i () is a probability-like score vector for
the input sample x i , reflecting the likelihood of each
possible label class. For the assumed class label zi ;k ,
denote yi;k = yi (; z i ; k) as the component of y i ()
corresponding to the zi ;k -th class, i.e. the likelihood for
the zi ; k g -th class outputted by the DNN model for the

^
A

k N A

N A

k kg g

=
N A

N A

N NA A

P PN NA A2 2

^

^

k c

t r a i n ; v a l

3

i-th trace x i . The key is distinguished using the whole
dataset log-likelihood which is an additive score.

dS
g

=
1 X

l o g 2 [y i ; k g]: (1)
i = 1

 COR Attack: In a COR Attack [RQL19], a trained
DNN model outputs a one-dimension encoding yi which
represents a continuous prediction value for the class
labels (e.g., HW of a single-byte SBox output), given the
i-th input sample x i . In the follow-on S C A key recovery,
the correlation

d S A = (y ; z S A)
 1 P

i = 1 (y i y) (z i ; k g zk g)

[1
i = 1 (y i y) 2]

1
[1

i = 1 (z i ; k g zk g)2]
1

(2)
between the encodings and assumed labels under each
candidate kg 2 K is computed, and the key with the
highest correlation is deemed to be the correct key. This
attack requires to also minimize the COR loss function
during the training.

For one byte-key, the attacker can work with the 256 classes
(one for each possible key values) or 9 classes of the HW/HD
values. The COR attack can only work with continuous labels
thus it requires a correct specification of leakage model such as
HW in the 9 classes attack. The N L L attack do not require a
continuous label and can work as either the 256 classes attack
or the 9 classes attack.

An unresolved problem is what is the best training proce-
dure so that the trained DNN will result in the most effective
S C A (for either score function). We discuss the training
procedure in the next section.

I I I . T R A I N I N G F R A M E W O R K S OF DNN IN DL - A S S I S T E D
S C A S

Traditionally, in view of the second-phase of NLL/COR
attack, the first-phase of training a DNN in DL-assisted SCAs
aims to optimize the score function on the profiling dataset.
This follows the usual DL training procedure to minimize a
loss function L evaluated on the profiling dataset S P . For a
DNN model f , a loss function L measures the discrepancy
between the model output y S P () and the target label z. The
model parameters, , are updated iteratively so as to minimize
the loss function value L (y S P () ; z S P), with some algorithms
such as Gradient Descent algorithm.

Simply training DNN to minimize the loss L (y S P () ; z S P)
often leads to overfitting. To avoid overfitting, a common
machine learning technique splits the profiling dataset into a
training set S T r and validation set SV al . While the train-ing
algorithm follows the gradient direction for the loss L T r ()
= L (y S T r () ; z S T r) on the training dataset S T r to update the
parameters, the evaluation metric MV a l () = M (y S V a l

() ; zS V a l) on the validation dataset SV a l is moni-tored to
decide when the training process should be terminated. The
DNN parameters, , are trained to converge to values that
optimize MV a l through certain stopping rule rather than values
that minimize L T r . That is, the current DNN training practice
can be formulated as:

Scheme 1: (Current Training Practice) The attacker
monitors the evaluation metric MV a l () on the validation
dataset SV a l and aims to select the model f such that

 = argoptM V a l ()

while updating using gradient of L T r () .
Ideally the loss function should be consistent with the

validation metric. However, for the classification problems
which most machine learning methods aimed to solve, val-
idation metrics (e.g., classification accuracy) often are not
differentiable and therefore cannot be directly used as a loss
function, and instead some surrogate loss function has to be
used. We classify the training framework into two types:
Homogeneous Training F ramework where the loss function on
the training dataset is the same as the evaluation metric on the
validation dataset, i.e. MV a l () = L V al (); Heterogeneous
Training F ramework where the loss function differs from the
validation metric.

When applying deep learning for SCAs, a research question
is what training loss function and what validation evaluation
metric should be used in DNN training for SCAs. Earliest
DL-assisted SCAs optimized the attack score function under
the true key kc. Since most existing attacks use the likelihood
for distinguishing scores, this becomes homogeneous training
of DNN with the widely used machine learning loss function
Negative log-likelihood (NLL), i.e., d S A in (1). [MDP20]
theoretically relates minimizing the N L L to maximizing the
perceived leakage information.

However, the performance of follow-on SCAs involves the
comparison of the scores under the true key kc versus other key
candidates kg, and is usually measured by Gaussian Entropy
(GE) or Success Rate (SR). Maximizing the N L L under true
key kc does not always lead to optimal GE or optimal SR
of follow-on SCAs, and the deficiency is particularly obvious
when there are imbalances among the classes labels [PHJ+19].
The root-cause of the mismatch is that NLL, as the training
loss function and the validation evaluation, does not directly
relate to GE or SR. A natural way of curing this mismatch is
to focus the DNN training to optimize GE or SR. However,
there has not been a practical way to do this up to now.
Previously, the GE is estimated empirically: averaging ranks
of the correct key kc from S C A over multiple independent
subsets partitioned from the validation dataset. Using this em-
pirical GE as the validation was attempted in [WVdHG+20].
However, the empirical GE is not reliable nor efficient for
DNN training to accurately optimize the GE. We will discuss in
detail the issues about its performance in the later section. The
empirical estimation of the SR is similarly slow and
inaccurate for DNN training. Others proposed to use empirical
quantities indirectly related to GE or SR: GEBVD [vdVP19],
Mutual Information [PBP20] and d [RZC+ 20] as the
validation metric in the heterogeneous training framework. For
homogeneous training, loss functions such as Cross Entropy
Ratio (CER) [ZZN+ 20] and Ranking loss (RkL) [ZBD+ 20]
were similarly proposed as related metrics. The RkL is shown
as related to a bound of SR so that minimizing RkL can
approximately maximize SR. However, no consensus has been

S
k g

h X

k kg c

P
k kg c

^

N

X

N

N

k g k c

d

d
q

d
q

d

d
q

k g k c

A A k kg c

S
k

S
k q

P q
i = 1

A

g k g k c

k
S S 1

k g

 1
i = 1q

 1 P j S j
k

(5)

d k

^ S

4

reached on what are the most appropriate validation metrics
and loss functions to use in DNN-assisted SCA.

We propose to conduct the DNN training with a specific
goal of optimizing the GE of the follow-on SCA, and show
that this is achievable practically using GEEA estimator.

A. GE minimization for DNN-Assisted SCA

The DNN training should be cognizant of the follow-on
SCA, since the goal of training is to discover a good DNN
model suitable for key distinguishing by the SCA. A common
performance metric, Guessing entropy (GE), is the expected
value of the true key ranked by attackers, which reflects the
average computing cost for a SCA.

Definition 1: (Guessing Entropy) Given a randomly col-
lected attack dataset S A from the victim device with size
jSA j = q, the attack DNN model f gives a score d A for each
key candidate kg 2 K . The key candidates are ranked
according to the scores, and Guessing Entropy, GE q (f) , the
expected rank of the correct key kc, can be computed as
follows:

G E q (f) = E S A : j S A j = q [r ank(kc jSA ; f)]
i

(3a)

= 1 + E S A : j S A j = q 1d S A > d S A

(3b)
k g 2 K = k c

where rank(kc jSA ; f) = 1 + k g 2 K = k c
1d S A > d S A is one

plus the number of wrong key guesses that have a higher score
than the correct key.

Using GE as the attack performance measure, we can
formulate the goal of the DNN training for S C A as:

Scheme 2: (Attack Optimization) Training the DNN model f
is to find the parameter such that, for a specified attack dataset
of size q

 = argminGEq (f):

Considering the different training frameworks, the attack op-
timization can be achieved either by using an GE estimator as
the validation evaluation metric in the heterogeneous training
framework, or using the GE estimator as both the loss function
and the validation evaluation metric in the homogeneous
training framework.

Empirically, GE can be estimated by the average rank of
the true key over N independent attack datasets (S A ; i) 1 i N each
of which is at the same size q. That is the empirical GE:

G E q (f) =
1 N

rank(kc jSA;i ; f)] (4a)
i = 1

= 1 +
1 X h X

1
d

S A ; i > d
S A ; i

i
(4b)

i = 1 k g 2 K = k c

The empirical GE GE q , also call Average Rank, has been
commonly used to evaluate the S C A effectiveness. Using the
G E q as a validation metric in the heterogeneous training has
been suggested before [PHJ+19], [WVdHG+20]. However,
as we will show in Section IV-B, the empirical GE G E q is

very inaccurate. Thus the heterogeneous DNN training using
empirical GE G E q is unreliable. The calculation of empirical
GE is also inefficient [ZDF20].
Instead, we propose a practical implement of DNN train-ing

using the GEEA estimator [ZDF20], GE q () , given in
Equation (6). Within the heterogeneous training framework,

we monitor the G E
V a l

() over the validation dataset while
the DNN model is being updated in training with the gradient
descent algorithm for any loss function. This allows to find

the optimal DNN model that yields the best G E
V a l

() value.
Furthermore, unlike the empirical GE GE q , the GEEA
estimator G E q () is differentiable with respect to . Hence

the GEEA can also be used in the homogeneous training

framework: we can evaluate G E
T r

() on the training dataset
S T r , and use its gradient (with respect to) to guide the
parameter updating.

B. GEEA Estimator

The GEEA estimator is built on the inherent relationship
between GE and pairwise success rates, given in the prior
work [ZDF20]:

G E q (f) = 1 +
X

P S A : j S A j = q (d S A > d S A

)]: k g = k c

where PS : j S j = q (d S A > d S A) is the probability that, over
all possible attack datasets S A at the size of q, a wrong key
candidate kg is mistakenly chosen over the correct key value
kc according to the score function d A . Most of the SCAs use
an additive distinguisher, that is, d A = 1 di;k
where di;k is the score of key value k based on the i-th
side-channel measurement trace in the dataset S . For an
additive distinguisher, k = d S A d S A asymptotically follows
a univariate Gaussian distribution. Given a dataset S of side-
channel measurement traces and an attack model f which
computes the additive ranking scores, the mean and the standard
deviation of this univariate Gaussian distribution can
be estimated as

^ S
g

= j S j (dk g
 dk c

) = j S j
P j S j (di ; k g di ;k c);

^ S = j S j i = 1 (d i ; k g di ;k c ̂ S
g
)2:

Using the estimated means and standard deviations, GEEA
estimator becomes:

GE q (f ; S) = 1 +
X

(
p q ^ S

g); (6)
k g = k c k g

where () denotes the cumulative distribution function (CDF) of
the standard Gaussian distribution N (0; 1).

The formula (6) can be applied on any dataset. As needed
in our training framework, we can apply the formula (6) on
the training set S T r and on the validation data set SV al . T o
evaluate the effectiveness of the trained DNN for SCA, we
can also apply it on the attack dataset S A .

Particularly, we use the GEEA formula on the two types of
DNN-assisted attacks described in Section II-B with different
score functions:

g

g

1
q

P q
i = 1 k

q

P
i = 1

g

g q

P
i = 1 g k g

k
1

jS j

X
cor cor

S

u
t 1 X

cor cor S

i ; k k

d

d

d
q

d
q

d
q

d

d
d

d
d

d d

d
d

d

5

 G E E A estimation in N L L attack: The N L L attack is an
additive distinguisher, with its score function di;k =
log2(yi;k) given in Equation (1). Therefore, given a
DNN model f , the N L L attack GE is estimated using (6)
with the mean and the variance computed in (5).

 G E E A estimation in COR attack: The COR attack is
not an additive distinguisher. However, it is known that
the COR attack is asymptotically an additive dis-
tinguisher with uniformly distributed public variable pi .
In such a case, (zi ; k g z g

)2 where zi ; k g is the
label function converges to a constant, V ar(z), for all
kg 2 K . The expected model output, 1 q (yi y)2, is
independent of kg. Hence the COR attack using the
correlation score (y ; zk) as shown in Equation (2) is
asymptotically equivalent to an attack using the additive
score of Cov(y; zk) = 1 q (yi y)(zi;k z).
Hence the COR attack GE is estimated using (6) with
the mean and the variance in (5) computed as:

j S j

^ S
g = (di ;k g di ;kc); (7a)

v i = 1

u j S j

^kg =
jS j

i = 1

(d i ; k g
 di ;k c

 ̂ k g
)2 (7b)

where dcor = (yi y)(zi;k z)

C. GEEA Based Implementation of Training F ramework
We now discuss two practical issues in the implementation

of training frameworks: selecting the size q of attack dataset
and the batch size.

Note that the G E q varies with q value and the attacker
has to decide for what q value to optimize the G E . Due to
the instability of the empirical GE discussed in detail of
Section IV-B, the selection of q value would affect the trained
model greatly. However, the GEEA GE q () is a smooth
decreasing function of q, the selection of q does not affect the
final convergent state of except for numerical accuracy. GE q ()
is a nonlinear bounded function, and the changes would be
very small at both ends - when q is very small
or q is very large. In the heterogeneous training, to observe

the changes in G E
V a l

() clearly, a q value needs to be

found experimentally so that G E
V a l

() is sensitive enough for
changes in . Our experience is that the change is indeed
sensitive enough to be observed over a wide range of q values.

In homogeneous training, the gradient of G E
T r

() is also
used. Choosing different q values do not change the gradient
direction but only the magnitude. So changing the q value
essentially changes the learning rate. In practice, the value q
should be selected together with the learning rate to allow
convergence of training.

Another important practical issue involves the adaption to
batched training. Nowadays the standard DNN training is
conducted in batches: the training dataset is separated into
batches (subsets) and the DNN weights are updated based on
the gradient of the loss function computed on each batch. An

epoch of training is finished when the weight updates iterate
through all batches once. The batched training is necessary for
DNN training over large data sets due to resources (such as
memory) restriction, and also speeds up the convergency of
weights.

However, the correctness of the batched training is based
on the addictiveness of the loss function while GEEA is not
additive. The standard loss function such as the N L L (1) is
additive: averaging the loss calculated on each traces over all
traces results in the loss of the whole dataset. This ensures
that averaging batch loss over all batches equals the loss of
the whole data set. DNN training is based on the gradient
of the loss function. Additive loss function also insures that
averaging batch loss gradients over all batches equals the loss
gradient of the whole data set, thus no bias is introduced in
the batched training. On the other hand, GEEA is not additive
since the averaged quantity is further passed through nonlinear
operations in equations (5) and (6), thus more care are needed.

For heterogeneous training, at the end of an epoch, the
validation metric can be calculated over the whole data set.
Thus using GEEA as a validation metric in batched training
is not an issue. However, for homogeneous training, the
parameters are updated based on loss gradient calculated on
each batch. A bias in the loss gradient may be introduced
to the training process when a small batch size is used in
evaluating the non-additive GEEA loss GE q . If the bias is big,
the training can end up with lower efficiency (more training
epochs are required), worse quality end model or even failure
to converge.

We study the effect of batch sizes on the bias introduced by
comparing G E q evaluated on the whole data set versus
GE q ; ba t c h , the average of GEEA estimates evaluated on each
batch over all batches. As the batch size increases, GE q ; b a t c h

converges to GE q . However, for small batch size, the bias
can be big. It turns out that the bias is smaller for the more
effective DNN model (thus smaller GE for the follow-on
SCA). As an illustration, we compare GE q ; b a t c h to G E q for
three DNN models during different stages in a successful
training for ASCADRand data set, an example described in the
later section IV. We saved the three DNN models on the 15-th
(early stage), 35-th (middle stage) and 50-th (late stage) epoch
during the training phase. For each model, we then calculate
the GE q ; b a t c h for various batch sizes where q equals to 20.

Figure 1 plots GE q ; b a t c h for the three models versus various
batch sizes. The dotted line shows the G E q calculated on the
whole data set. The bias is the largest for the least predictive
model at the early stage (15-th epoch). The bias, as expected,
decreases when batch size increases. Since a small batch size
introduces very large bias, it can cause serious degradation
of training process. We showed the validation GE during the
training progress of this example using different batch sizes in
Figure 2.

From Figure 2, a small batch size of 10 leads to the failure
of training due to the large bias it introduced. A batch size of 50
does lead to a successful training in this case, but requires
much more epoches than the training with batch size 200. With
batch size 200, the validation GE reaches its minimum at the 7-

f u l lk G k 1

d
d

d
q

work

Homo-

work

d d

NL L NL L

6

Fig. 1: Batched GEEA versus GEEA on whole training dataset
of ASCADRand

Fig. 2: Training phase on ASCADRand with different batch size

th epoch, the training will stop according to the usual stopping
rule since the rebound in validation GE indicating overfitting
after the 8-th epoch. When using an even larger batch size of
500, a similar quality DNN model can be reached after more
than 20 epoches. Although a larger batch size ensures less
bias thus the correctness of training, the advantage of batch
training is lost when the batch size becomes too big.

T o see directly the effect of batch size on the loss gradient,
the quantity used in parameters update, we show the relative
difference k G f u l l G b a t c h k 1

during training in Figure 3. Here

kk1 denotes the L 1 norm of the vector. The relative difference
between the batched average gradient, Gbatch , of GE q ; b a t c h

and the whole data set gradient, G f u l l , of G E q is large when
the batch size is small. As batch size exceeds 200, the relative
gradient differences are greatly reduced and accurate training
can be conducted.

In general, we propose to select a batch size of at least
200 traces for the GEEA-based homogeneous training. For

Fig. 3: Relative difference between G f u l l and Gb a t c h when
using GEEA loss function

the heterogeneous training, validation G E
V a l

() is calculated
on the whole validation dataset S v a l at the end of an epoch.

In the next two sections, we will compare our proposed
GEEA-based training framework with other existing training
frameworks. In Section IV, we use GEEA as a validation
metric and compare it with other heterogeneous training
validation metrics. The N L L and C E R loss functions are used
as the loss functions respectively for 256 classes and 9 classes
attacks as they achieve the start-of-art S C A effectiveness of
prior literatures in each setting. In the comparison with other
homogeneous training frameworks in Section V, we use GEEA
as both training loss function and metric function. T able I
summarizes the training frameworks that we compared in
following experiments.

TA B L E I: Experiment summary of (hetero)homo-geneous
framework comparison

Attack types Sbox(256 classes) HW/HD(9 classes)
Hetero- Loss function Metrics Loss function Metrics
geneous G E E A G E E A
Frame- NL L EMP-MI C E R EMP-MI

t r a i n ; v a l t r a i n ; v a l
Loss & Metrics Loss & Metrics

geneous G E E A G E E A

Frame- C E R C E R
RkL RkL

COR

I V . F R A M E W O R K CO MPA R I S O N ON P U B L I C DATA S E T S

In this section, we illustrate the implementation of heteroge-
neous training framework using GEEA as a validation metric
on several public datasets. We first illustrate why empirical
GE G E q and its variant GEBVD [vdVP19] are not suitable
validation metrics for heterogeneous training. Compared to
the empirical GE GE q , the GEEA estimator is much more
stable and will be used in the rest of comparison studies. We
then compare GEEA versus other validation evaluation metrics

q

q

q

d
q

q

d

G E q
d

q

d
q

7

in literature for heterogeneous training. The resulting DNN
model under the GEEA validation metric leads to follow-on
SCAs with much lower GE.

A. Public Datasets
We use two public open databases of side-channels mea-

surement traces, which both are for AES-128 implementations
on different platforms and have been widely used in S C A
literature.

 A E S HD1 dataset is introduced in [PHJ+ 19] which pro-
vides EM measurements of an unprotected implementa-
tion of AES-128 on FPGA. A total of 100; 000 EM traces
were measured and 1; 250 features are included in each
trace.

 ASCAD database2 is widely used as a benchmark
for side-channel power analysis. It targets a software
protected A E S implementation on an 8-bit AV R AT-
Mega85153 microcontroller, and the base dataset contains
60; 000 power traces in total. Each raw trace contains
100; 000 time samples and within which 700 time sam-
ples are related to the operations of the third masked
SBox in the first round. These traces have no first-order
key leakage unless the masks are leaked, as verified
in [BPS+ 20]. We use two version of ASCAD dataset,
i.e. ASCADFix and ASCADRand , which are generated by
a fixed key value and random key values respectively.
T wo sets of desynchronized traces are also provided with
the jitter window maximally of 50 and 100 time samples,
respectively.

In the following experiments, we split each dataset into
three subsets: the training dataset S T r , validation dataset SV a l
and the testing dataset S T . During training, a loss function is
evaluated on the training dataset S T r to guide the parameter
updating and a validation metric is evaluated on the validation
dataset SV al . The resulting DNN is then used to launch S C A
on the testing dataset S T , with the S C A effectiveness measured
by GE evaluated on S T . T able I I shows the partition for the
two datasets.

TA B L E II: Partition of datasets
dataset total S T r S V a l S T

A E S HD 100,000 60,000 20,000 20,000
ASCADF ix 60,000 35,000 15,000 10,000
ASCADRand 60,000 35,000 15,000 10,000

We also conducted experiments on two other open datasets:
TeSCASE 3 and A E S RD 4. The results are qualitatively
similar. Here we only report the results on the EM traces of
A E S HD dataset and the power traces of the ASCAD datasets.

B. Efficiency and stability of GEEA over Empirical GE
The empirical GE based on average ranks, GE q , has been

widely used for evaluating the effectiveness of DNN-assisted

1https://github.com/AESHD/AES HD Dataset
2https://github.com/ANSSI-FR/ASCAD
3https://chest.coe.neu.edu/
4https://github.com/ikizhvatov/randomdelays-traces

SCAs. There has been consideration of using G E V a l as a
validation metric in the heterogeneous training. However, there
are two main issues that make it unsuitable for usage in
training validation.

 High computational overhead: For the G E V a l to be
accurate, it requires a very large validation dataset that
can be partitioned into a large number of independent
subsets. When such a large validation dataset is used,
the empirical GE requires a significant amount of com-
putational overhead [ZDF20], [PBP20]. According to the
result of T able 1 in [ZDF20], to reach similar accuracy,
G E V a l needs a computational effort that is at least 104

times of the effort needed by GEEA G E
V al

.
 Local partition dependency: Aside from the high compu-

tational overhead, a serious problem of using empirical
GE G E V a l as the validation evaluation metric is that
the value of empirical GE is highly dependent on the
particular partition of the validation dataset SV a l into
independent subsets. Thus the training results also vary
with which partition is taken during the evaluation. In
contrast, as an theoretical estimation, GEEA G E q does
not require any empirical data partition and is a fixed
constant given the validation dataset SV al .

T o understand how dataset partitioning would influence the
empirical GE computation and the stopping criteria, we im-
plement the heterogeneous training with empirical GE(EMP-

GE) V a l and GEEA G E
V a l

as the evaluation metric,
respectively, to decide when the training should stop.

In this experiment, we target the A E S HD dataset, and study
a DNN model proposed by Lennert Wouters et al. [WAGP20].
The model is composed of a specialized pre-processing filter
that conducts horizontal standardization and a follow-on MLP
with two fully-connected layers. On the validation dataset,

we calculate the GEEA G E
V a l

and empirical GE G E q for
q = 200. The validation dataset is randomly partitioned into
50 independent subsets when computing the empirical GE, and
the whole validation dataset is used to profile the Gaussian
distribution for GEEA computation. We repeat the random
partition 100 times. For each partition into 50 independent
subsets, we conduct a heterogeneous training using G E q

computed based on the partition as the validation metric. N L L is
used as the loss function to drive the training process. Thus we
have 100 training each using G E q based on one partition. We
observe that they do not stop at the same epochs.

For each data partition, the corresponding empirical GE is
computed in each of the 100 training epochs, and the training
should stop at the epoch where the corresponding empirical
GE (under this data partition) reaches its minimum. Figure 4
plots the histogram of the stopping epochs chosen by empirical
GEs under varying data partitions. The distribution is widely
spread out, over 38 distinct epoch values, showing that such
stopping rule based on the empirical GEs is highly unstable
across random data partitions. In contrast, when using GEEA
as the validation metric, the training stops at a unique epoch
value.

We compare the 38 EMP-GE based end models with our

t r a i n ; v a l

t r a i n ; v a l

d d

d
t r a i n

d
t r a i n

d
v a l

i

1
N

X
i

8

GEEA is much faster and as a validation metric ensures
the selection of minimum GE model during heterogeneous
training with another loss function. In the following, we
further compare GEEA with two other non-EMP-GE related
validation metric for heterogeneous training.

Fig. 4: Histogram of training epochs stopped by EMP-GE

Fig. 5: GEEA based stopping rule versus EMP-GE based
stopping rule

proposed GEEA end model and present the result in Figure 5.
Each curve depicts how the GE value changes along the
size of the attack dataset for each model. It shows that, the
effectiveness of attacking models selected by the EMP-GE
metric could have large variation. For example, in order to
reduce the GE value less than 20, the number of traces required
by EMP-GE selected models could range between 253 and
497. Therefore, it is highly possible that a sub-optimal model
ends up being selected. However, the GEEA criteria stops the
training at a the optimal epoch where the end model leads to
most effective follow-on S C A measured by GE.

Another related metric, Guessing Entropy Bias-V ariance
Decomposition (GEBVD) [vdVP19], takes this inherent vari-
ation of EMP-GE into consideration. GEBVD separates the
bias and the variance of EMP-GE, and tries to minimize the
bias as well as the variance. However, GEBVD as a validation
metric does not guarantee selection of the DNN model with
the minimum GE in the training process, while the GEEA
validation metric directly ensures minimization of the GE. In
addition, the computational complexity of GEBVD is much
higher than even the EMP-GE.

Compared to those EMP-GE related validation metrics,

C. Comparison between GEEA-based and other metric-based
heterogeneous training

T wo other non-EMP-GE related validation metrics, namely
EMP-MI and d , have also been proposed for the
heterogeneous training framework on DNN-assisted SCAs.
We conduct numerical experiments to compare them with our
GEEA-based heterogeneous training framework.

 EMP-MI Metric: As Guilherme Perin et al. proposed, the
mutual information between internal representations of
the DNN model output layer and its labels can be used
as another reliable evaluation metric [PBP20]. A
histogram based empirical method is used to estimate the
mutual information in a lightweight way.

 d Metric: In the work of Damien et al
[RZC+ 20], a new metric is used to monitor the ef-

fectiveness of the attacking model. t r a i n ; v a l = jNv a l

N j, where N ; N measure the minimal num-
ber of traces that a model needs in order to reach an
90% first-order success rate on the training and validation
dataset, respectively.

The comparison of our GEEA-based training framework
and the above two training framework are conducted on the
A E S HD and ASCAD datasets. The experimental setup is as
follows.

 Labeling function: We conduct two sets of experiments
using 9 classes HW labeling function and 256 classes
SBox output labeling function, respectively, to compute
the label for model training and evaluation;

 Loss function: For the 256 classes and the 9 classes
labels, we respectively used the N L L and C E R loss
functions defined below. Over a given dataset S =
(x i ; z i)1 i N and corresponding DNN outputs y S () =
(y S ()) 1 i N ,

1) Negative log-likelihood (NLL) is defined as
N

N L L = log2 [yS (; zi)]: (8)
i = 1

For the 256 classes labels, we use the N L L loss
since it has been used to train the model to achieve
state-of-art follow-on S C A performance [WAGP20],
[ZBHV20]. However, for a dataset which is unbal-
anced across the classes (which occurs often for the
9-class HD/HW leakage models), the NLL-based
training may lead to a non-optimal DNN for the
follow-on S C A or even lead to an unsuccessful
follow-on S C A [PHJ+19], [ZZN+ 20].

2) Cross Entropy Ratio (CER) is recently proposed
at CHES 2020 [ZZN+ 20] to train DNN for SCAs
when the training dataset is unbalanced. While N L L
only focuses on the correct key (and the correspond-
ing class), C E R computes the ratio between the N L L

 1 P N S

1 1P PR N
i i

i

t r a i n ; v a l

t r a i n ; v a l

t r a i n ; v a l

t r a i n ; v a l

d

d
t r a i n ; v a l

9

of the correct key and the average N L L over all
other wrong keys.

C E R = N i = 1 log2 [yi (; zi)]
R r = 1 N i = 1 log2 [yS (; zr)]

(9)
where z r = (z r)1 i N is a random shuffle of z. We
use C E R as the loss function to train the 9
class HW/HD labeled models in the heterogeneous
training simulations here. (a) GE, 256 classes (b) Traces Ratio, 256 classes

 Model structures: On each public dataset and for
each labels/losses combination, we apply the state-of-
art DNN model selection methodology for S C A given
in [WAGP20] to search and select the combination of
model architectures and hyper-parameters. The detailed
results are provided in the supplemental materials.

 Training and Evaluation: The DNN training is repeated
with various combination of hyperparameters described
in table III, and the hyperparameters are selected to
minimize the validated loss value within 100 epochs using
grid search. At each epoch, we evaluate the three different
validation metrics EMP-MI, d and GEEA. For
each of the validation metrics, an end DNN model is
generated with the model parameters values at the epoch
for which the validation metric is optimized. The end
models are applied onto the testing dataset for SCAs,
and we compare the attack results.

TA B L E III: Choice of Model hyperparameters for heteroge-
neous framework comparison

Hyperparameter Candidates
Optimizer Adam [KB17], RMSprop, Adamax

Weight Initialization HeUniform [HZRS15]
RandomUniform, RandomNormal

Learning Rate 10 4 , 5 10 4 , 10 3

Batch Size 20, 50, 200, 500

Fig. 6 shows the comparison results on the A E S HD
dataset. Fig. 6(a) plots the testing GE for each end-model
versus number of attack traces used, for attack based on the
256 classes SBox output. While all models lead to successful
S C A with enough attack traces, the most effective S C A comes
from the GEEA-based training. T o illustrate the magnitude of
improvement, we plot in Fig. 6(b) the ratio of the number of
traces to achieve the same GE value for each metrics-based
training versus the GEEA-based training. Note that GE=128
indicates an attack that is no better than a random guess, and no
traces are needed to achieve that. The ratio of number of traces
needed to achieve GE close to 128 would get closer to one
between any two methods. Also, to achieve GE=1, all methods
would need infinite number of traces, so the ratio is not very
meaningful there either. Compared with GEEA-based
training, EMP-MI-based training needs more than 1.9 times
traces to achieve the same GE for most of GE values. The d

-based training requires more than 1.6 times
number of traces than for the GEEA-based training.

Fig. 6(c) and (d) plots the results for comparison for
SCAs based on the 9 classes Hamming Weights. Here the

(c) GE, 9 classes (d) Traces Ratio, 9 classes

Fig. 6: Heterogeneous training frameworks comparison on
A E S HD dataset

EMP-MI-based training beat the d -based training, in
contrast to the 256 classes attack. Compared with GEEA-
based training, EMP-MI-based and d -based training
respectively need more than 1.6 times and 1.9 times traces to
achieve the same GE=2.

Figure 7 shows the comparison results on the ASCADFix

dataset. For the 256 classes attack, compared to that from
the GEEA-based heterogeneous training, the EMP-MI based
heterogeneous training needs about 1.7 times number of traces
and t r a i n ; v a l 2.1 times, to achieve GE=2. For the 9 classes
attack, about 1.8 times (EMP-MI) and 2 times ()
number of traces as that of GEEA-based heterogeneous train-
ing is needed to achieve GE=2.

Figure 8 displays the comparison results on the ASCADRand

dataset (random key for each encryption). Overall they all
require higher ratios of traces to GEEA-based training than
the prior synchronized dataset.

V . CO MPA R I S O N OF G E E A - B A S E D HOMOGENEOUS
TR A I N I N G F R A M E W O R K AND OT H E R HOMOGENEOUS

TR A I N I NG F R A M E W O R K S

In this section, we compare homogeneous training frame-
works for DL-assisted S C A using loss functions in literature
with the GEEA-based homogeneous training framework. In
the homogeneous training frameworks, while updating the
parameter values according to the training loss L T r () , the
validation loss L V a l () is monitored at the same time and used to
decide when to stop the training. Before our work, there are at
least four existing loss functions that has been used to train
DNNs for conducting SCAs. In addition to the N L L (8) and
the C E R (9) that we introduced in section IV-C, we lists two
more loss functions.

S

P

P N P S S

P N P S

S
qP PN N 2

(

d
q

d
q

k kg g

d
q

d
q

10

(a) GE, 256 classes (b) Traces Ratio, 256 classes

(c) GE, 9 classes (d) Traces Ratio, 9 classes

Fig. 7: Heterogeneous training frameworks comparison on
ASCADFix dataset

(a) GE, 256 classes (b) Traces Ratio, 256 classes

(c) GE, 9 classes (d) Traces Ratio, 9 classes

Fig. 8: Heterogeneous training frameworks comparison on
ASCADRand dataset

 Ranking loss (RkL) is asymptotically related to the
success rate of the follow-on SCA, and is proposed by
Gabriel Zaid et al. [ZBD+ 20] as:

h

R k L = k 2 K ; k = k c
log2 1 i

+ e (i = 1 y i (; z i ; k c) y i (; z i ; k)) ;
(10)

where is a constant set by the attacker.
 Correlation loss function (COR) is proposed specially for

COR-attack [RQL18]. In such an attack, the model output

yi () is a scalar (e.g., HW/HD) and

C O R = q i = 1 (y i () yS ())(zi z)

i = 1 (y i () yS ())2
i = 1 (z i z)

11)
We conduct the homogeneous training of DNN using the

above four loss functions on the A E S HD, ASCADFix , and
ASCADRand datasets used in last section. That is, the end DNN
model’ s weights are set at values at the epoch corresponding to
the minimum validation loss value. T o assess the performance
of each training framework, we conduct a grid search on three
variation of model structures proposed by Lennert Wouters
et. al [WAGP20] in combination of rest hyperparameters de-
scribed in table II I for each homogeneous training framework,
and the test GE values of the best end model is used as
the assessment. The experiments are conducted for attacks
using 9-class HW labeling function and 256-class SBox output
labeling functions, respectively. The COR loss function is used
to train a DNN for a COR-attack while the other three loss
functions are used to train DNNs for an NLL-attack. Since the
COR-attack only works for the 9-class attack, only the 9-class
labeling is used for the COR-based training, while training
with the other loss functions is used for both 9-class and 256-
class labeling.

For comparison, we implemented homogeneous training of
DNN for NLL-attack using GEEA loss function on both the

9 classes and the 256 classes. The proposed GEEA G E
T r

()
loss function has one distinct difference from other standard
loss functions. Usually the loss function is defined for each
data point: the loss between a DNN output and the target
output. Commonly the DNN training over a large dataset is
done in batches: on each batch, the loss can be calculated
as the sum of the losses over all data points in the batch. In

contrast, for the loss function G E
T r

() , it requires all the data
points to participate all together to derive the Gaussian means
^ S T r and standard deviations ^ S T r (shown in Equation (5)),
and then plug them in Equation (6). T o enable the batch
training with GEEA loss, we calculate the batch GEEA

GE
b a t c h

() over the datapoints in each batch. The gradient

of GE
b a t c h

() is used in the batch training of Scheme 1.
Figure 9 plots the comparison results on the A E S HD

dataset. Fig. 9(a) plots the testing GE for each end-model
versus number of attack traces used, for attack based on the
256 classes SBox output. Fig. 9(b) plots the corresponding
ratios of the number of traces to achieve the same GE value
versus the number of traces needed by GEEA-based training.
We can see that GEEA-based homogeneous training results in
the most effective DL-assisted SCA. T o achieve a GE=2, the
other homogeneous training needs more than 3.5 times (RkL)
, 2.5 times (CER) and 1.5 times (NLL) number of traces.

In the GEEA-based homogeneous training, the GEEA is
used as both the loss function and the validation metric. T o
further study how much improvement is due to its usage as
the loss function versus how much the improvement is due to
its usage as the validation metric, we also compare the
GEEA-based homogeneous training S C A effectiveness versus
the heterogeneous training S C A effectiveness from using the

11

GEEA validation metric with each of the other three loss
functions. Those SCAs from heterogeneous training, compared
to that from the GEEA-based homogeneous training, need
about 3 times (RkL) , 2 times (CER) and 1.3 times (NLL)
number of traces to achieve GE=2. So using GEEA as the
loss function, rather than using GEEA as the validation metric,
accounts for majority of the improvement.

Fig. 9(c) and (d) plots the results for SCAs based on the 9-
class HW labeling. For the 9-class HW model, the GEEA can
be calculated for both NLL-attack and COR-attack, and we
found that the end models when trained with GEEA result in
attacks with very similar GEs for either case. The two plotted
GE curves virtually overlap with each other. Hence, we only
plot the GE curve for the N L L attack with GEEA-loss training.
We also plot GE curves for attacks with models trained using
the other four loss functions in equations (8) to (11). Note the
NLL-loss training leads to an attack much worse compared
with the training using other loss functions: the S C A using
the NLL-loss trained end model would need about 20 times
more traces to achieve the same GE as the S C A using the
GEEA-loss trained end model. We have to omit the plot for
the ratio of NLL-loss training in (d) as it is at very different
scale from others (in the range of [2, 2.8]).

Another finding for the four loss functions is that there
is no one consistently outperforming others under different
scenarios. In 256-class attacks where there is no class imbal-
ance issue, the traditional N L L loss training works very well,
beating the other two loss-functions (CER and RkL) while
the COR loss cannot be applied here. However, in 9-class
attacks, NLL-based training performs poorly while the COR-
based training results in the most effective SCA. The GEEA
loss training, however, beats all other loss function trainings
for either the 256-class or the 9-class attacks. Since GEEA
loss training directly tries to minimize the GE of follow-on
SCA, it automatically leads to the best DNN for follow-on
S C A in all cases.

Figure 10 shows the comparison results on the ASCAD syn-
chronized dataset. Note that the relative performance among
the RkL, C E R and N L L does not follow the same pattern as
on the A E S HD dataset. The RkL loss training now beats
the C E R training. For 9-class attacks, the NLL-based training
again performs very poorly. The SCAs from training under
other three loss functions performs very similarly, and all
needs about 40% more number of traces than GEEA-loss
training to achieve the same GE.

Figure 11 shows the comparison results on the ASCAD
desynchronized N50 dataset (with maximally 50 time samples
random shifting amount). The relative performance among
the non-GEEA loss training differs from that on the two
previous datasets. Now the NLL-based training also results in
the worst S C A effectiveness for 256-class attacks. The COR-
based training now performs worse than the RkL/CER loss
training for 256-class attacks, the opposite pattern as observed
on the A E S HD dataset. The GEEA-based training still leads
to the most effective SCA.

From the experiments, we see that there is no clear pattern
among the performance of training under non-GEEA loss
functions. The best performing method varies from datasets to

(a) GE, 256 classes (b) Traces Ratio, 256 classes

(c) GE, 9 classes (d) Traces Ratio, 9 classes

Fig. 9: Homogeneous Training frameworks comparison on
A E S HD dataset

(a) GE, 256 classes (b) Traces Ratio, 256 classes

(c) GE, 9 classes (d) Traces Ratio, 9 classes

Fig. 10: Homogeneous Training frameworks comparison on
ASCADFix dataset

datasets, and varies from 256 classes attack to 9 classes attack.
The GEEA-based homogeneous training consistently results
in the most effective SCA, and demonstrates great potential to
be adopted as the standard training procedure for SCA-related
DNN training.

A. Further Evaluations between the F rameworks and on Suc-
cess Rate

The optimization of GE can be achieved either using GEEA
as the validation metric in the heterogeneous training or using

12

(a) GE, 256 classes (b) Traces Ratio, 256 classes (a) Heterogeneous
Frameworks

Training (b) Homogeneous Training
Frameworks

Fig. 13: Success Rate comparison among training frameworks
on ASCADRand dataset

(c) GE, 9 classes (d) Traces Ratio, 9 classes

Fig. 11: Homogeneous Training frameworks comparison on
ASCADRand dataset

(a) A E S HD (b) ASCADFix (c) ASCADRand

Fig. 12: GEEA-based Training Frameworks comparison
among multiple datasets

GEEA as both the loss function and the validation metric in
homogenous training. Intuitively, the homogenous training is
more directly aimed at GE optimization and should achieve
more effective S C A (i.e., lower GE). We plot in Figure 12 the
GE curve of SCAs using heterogeneous training and the GE
curve of SCAs using homogenous training from the above
studies. The homogenous training does lead to SCAs with
lower GE but not by much.

Success rate (SR) is another commonly used performance
metric of SCAs. A more effective S C A with lower GE often
also has higher SR. We also compared the SR of all DL-SCA
in the above experiments, and the GEEA-training based DL-
SCA has highest SR for all the comparison settings on all data
sets described in Sections I V and V. Figure 13 shows such
comparisons on ASCADRand dataset: the SR curves for DL-
SCAs using both heterogeneous training and homogeneous
training frameworks. We can see that the SR for the GEEA-
trained DL-SCA (the red curve) is significantly higher than all
other existing training methods. Noticeably, although optimiz-
ing the RkL metric theoretically is equivalent to optimizing
the asymptotical SR [ZBD+ 20], the S C A for model trained
with RkL has lower SR than the GEEA-trained SCA. This
is likely due to the fact that asymptotical conditions for the

theoretical equivalency are far from holding on the real data
sets.

Although the GEEA-based training do lead to SCAs with
SR higher than all existing methods in all our experiments, we
do not claim that GEEA-based training optimize the SR of the
follow-on S C A since theoretically SR and GE do not always
have a monotone relationship. T o ensure optimizing SR of the
follow-on SCAs, methods aiming directly at SR still need to
be developed.

V I . DI S C U S S I O NS AND CO N C L U S I O N S

DL-assisted SCAs have outperformed traditional S C A in
many cases, and have become the state-of-art analysis method
used in side-channel security and countermeasure evaluation.
However, there lacks a consensus on what are the most appro-
priate loss function and validation metric when training DNN
for usage in SCAs. Training with traditional loss functions
and classification validation metrics has been shown to work
poorly for the follow-on SCAs, particularly for unbalanced
dataset. This has prompted many proposals on SCA-aware loss
functions and validation metrics. However, as we demonstrate
in the paper by both theoretical analysis and experimental
results, the existing loss functions are not robust - the best
performing loss function varies with the attack models and
datasets.

We propose to establish a standard training framework
specifically focusing on the S C A metric - Guessing entropy.
Using the recently proposed GEEA estimator for fast online
GE evaluation, we can train the DNN to optimally support
the follow-on SCA. The proposed GEEA-based homogeneous
training framework consistently yields the most effective S C A
across various attack models and datasets.

Another commonly used S C A metric is success rate (SR).
In principle we can similarly design DNN training methods
to focus on optimizing the SR of follow-on SCAs. However,
the technical difficulty we face for SR focused training is that
there is no analytic formula for SR that is differentiable against
the weights in DNN. Literature has given analytic formulas
for SR based on a multivariate Gaussian distribution, which
involve high-dimensional integral that can not be evaluated
easily. Empirical evaluation of that formula is fast but non-
differentiable, rendering it infeasible to use as a training loss
function. Some approximate SR formulas do not guarantee

´

´
´

´
´

´

¨ ´

´

13

maximum SR in training. In contrast, GEEA reduces the
GE evaluation from the multivariate Gaussian distribution to
a sum of univariate Gaussian probabilities. Thus the GEEA
provides a fast differentiable formula, allowing its use as the
loss function and the validation metric which can guarantee
training for the minimum GE of follow-on SCA.

R E F E R E N C E S

[BCN18] Leon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimiza-
tion methods for large-scale machine learning, 2018.

[BPS+ 20] Ryad Benadjila, Emmanuel Prouff, Remi Strullu, Eleonora
Cagli, and Cecile Dumas. Deep learning for side-channel
analysis and introduction to ascad database. Journal of
cryptographic engineering, 10(2):163–188, 2020.

[CCC+ 19] Mathieu Carbone, Vincent Conin, Marie-Angela Cornelie,
François Dassance, Guillaume Dufresne, Cecile Dumas, Em-
manuel Prouff, and Alexandre Venelli. Deep learning to
evaluate secure RSA implementations. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages
132–161, 2019.

[CDP17] Eleonora Cagli, Cecile Dumas, and Emmanuel Prouff. Con-
volutional neural networks with data augmentation against
jitter-based countermeasures. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 45–
68. Springer, 2017.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
December 2015.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017.

[KW52] J. Kiefer and J. Wolfowitz. Stochastic estimation of the
maximum of a regression function. Annals of Mathematical
Statistics, 23:462–466, 1952.

[MDP20] Loıc Masure, Cecile Dumas, and Emmanuel Prouff. A
comprehensive study of deep learning for side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 348–375, 2020.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel
Prouff. Breaking cryptographic implementations using deep
learning techniques. In International Conference on Security,
Privacy, and Applied Cryptography Engineering, pages 3–26.
Springer, 2016.

[PBP20] Guilherme Perin, I. Buhan, and S. Picek. Learning when to
stop: a mutual information approach to fight overfitting in
profiled side-channel analysis. IACR Cryptol. ePrint Arch.,
2020:58, 2020.

[PHJ+ 19] S Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and
Francesco Regazzoni. The curse of class imbalance and
conflicting metrics with machine learning for side-channel
evaluations. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(1):1–29, 2019.

[Rob07] H. Robbins. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 2007.

[RQL18] Pieter Robyns, Peter Quax, and Wim Lamotte. Improving
cema using correlation optimization. Transactions on Cryp-
tographic Hardware and Embedded Systems, 2019(1), 2018.

[RQL19] Pieter Robyns, Peter Quax, and Wim Lamotte. Improving
CEMA using correlation optimization. IACR Trans. Cryp-
tographic Hardware & Embedded Systems, 2019(1):1–24,
2019.

[RZC+ 20] Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian
Bossuet, and Amaury Habrard. Online performance evalu-
ation of deep learning networks for side-channel analysis.
Cryptology ePrint Archive, Report 2020/039, 2020. https:
//ia.cr/2020/039.

[vdVP19] Daan van der Valk and Stjepan Picek. Bias-variance de-
composition in machine learning-based side-channel analysis.
Cryptology ePrint Archive, Report 2019/570, 2019. https:
//eprint.iacr.org/2019/570.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and
Bart Preneel. Revisiting a methodology for efficient cnn
architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2020(3):147–
168, Jun. 2020.

[WPB19] Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace
is all it takes: Machine learning-based side-channel attack
on EdDSA. In International Conference on Security, Pri-
vacy, and Applied Cryptography Engineering, pages 86–105.
Springer, 2019.

[WVdHG+ 20] Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia,
David Oswald, Benedikt Gierlichs, and Bart Preneel. Dis-
mantling dst80-based immobiliser systems. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems,
2020(2):99–127, Mar. 2020.

[ZBD+ 20] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury
Habrard, and Alexandre Venelli. Ranking loss: Maximizing
the success rate in deep learning side-channel analysis. Trans-
actions on Cryptographic Hardware and Embedded Systems,
2021(1), 2020.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexan-
dre Venelli. Methodology for efficient cnn architectures
in profiling attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(1):1–36, 2020.

[ZDF20] Ziyue Zhang, A. Adam Ding, and Yunsi Fei. A fast and
accurate guessing entropy estimation algorithm for full-key
recovery. Transactions on Cryptographic Hardware and
Embedded Systems, 2020(2), 2020.

[ZZN+ 20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and
Nenghai Yu. A novel evaluation metric for deep learning-
based side channel analysis and its extended application to
imbalanced data. Transactions on Cryptographic Hardware
and Embedded Systems, 2020(3), 2020.

