
This article was downloaded by: [141.217.240.177] On: 27 July 2022, At: 06:59

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:

http://pubsonline.informs.org

bsnsing: A Decision Tree Induction Method Based on

Recursive Optimal Boolean Rule Composition

Yanchao Liu

To cite this article:

Yanchao Liu (2022) bsnsing: A Decision Tree Induction Method Based on Recursive Optimal Boolean Rule Composition. INFORMS

Journal on Computing

Published online in Articles in Advance 27 Jul 2022

. https://doi.org/10.1287/ijoc.2022.1225

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-

Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)

and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual

professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to

transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

bsnsing: A Decision Tree Induction Method Based on Recursive
Optimal Boolean Rule Composition

Yanchao Liua

aDepartment of Industrial and Systems Engineering,Wayne State University, Detroit, Michigan 48202

Contact: yanchaoliu@wayne.edu, https://orcid.org/0000-0002-3256-9336 (YL)

Received: September 8, 2021

Revised: March 5, 2022; May 30, 2022;

June 24, 2022

Accepted: July 2, 2022

Published Online in Articles in Advance:

https://doi.org/10.1287/ijoc.2022.1225

Copyright: © 2022 INFORMS

Abstract. This paper proposes a new mixed-integer programming (MIP) formulation to
optimize split rule selection in the decision tree induction process and develops an efficient
search algorithm that is able to solve practical instances of the MIP model faster than com-
mercial solvers. The formulation is novel for it directly maximizes the Gini reduction, an
effective split selection criterion that has never been modeled in a mathematical program
for its nonconvexity. The proposed approach differs from other optimal classification tree
models in that it does not attempt to optimize the whole tree; therefore, the flexibility of the
recursive partitioning scheme is retained, and the optimization model is more amenable.
The approach is implemented in an open-source R package named bsnsing. Benchmark-
ing experiments on 75 open data sets suggest that bsnsing trees are the most capable of
discriminating new cases compared with trees trained by other decision tree codes includ-
ing the rpart, C50, party, and tree packages in R. Compared with other optimal decision
tree packages, including DL8.5, OSDT, GOSDT, and indirectly more, bsnsing stands out
in its training speed, ease of use, and broader applicability without losing in prediction
accuracy.

History:Accepted by Ram Ramesh, Area Editor for Data Science &Machine Learning.
Funding: This work was supported by the National Science Foundation Division of Civil, Mechanical

andManufacturing Innovation [Grant 1944068].
Supplemental Material:Data are available at https://doi.org/10.1287/ijoc.2022.1225.

Keywords: classification trees • mixed-integer programming • statistical computing • R

1. Introduction
Classification is the task of assigning objects to one
of several predefined categories. A classification tree
(or a decision tree classifier) is a predictive model rep-
resented in a tree-like structure. Without making
excessive assumptions about the data distribution,
a classification tree partitions the input space into rec-
tilinear (axis-parallel) regions and ultimately gives a
set of if–then rules to classify outputs or make predic-
tions. Starting from the root node, each internal node
is split into two or more child nodes based on the
input values. The split stops when some terminal
condition is met. The terminal nodes of the tree are
called leaves, which represent the predicted target.
Cases move down the tree along branches according
to their input values, and all cases reaching a particu-
lar leaf are assigned the same predicted value. The
tree-like structure connects naturally to the divide-
and-conquer strategy of how people judge, plan, and
decide. Therefore, the technique is widely adopted
for making decisions that bear substantial consequen-
ces for the decision maker. Example applications
include disease diagnosis (Tanner et al. 2008, Ghiasi
et al. 2020), loan approval (Mandala et al. 2012,

Alaradi and Hilal 2020), and investment selection
(Sorensen et al. 2000).

In this paper, we propose a classification tree induc-
tion method based on solving a mixed-integer pro-
gramming (MIP) model at each split of a node. This
newmethod can generate trees that frequently outper-
form trees built by other off-the-shelf tree libraries in
R, the popular statistical computing system. To achieve
this, the proposed MIP model explicitly maximizes the
reduction in the node impurity and allows a tree node
to be split by a multivariate boolean rule. Such split
rules are more flexible and, in certain cases, more effi-
cient at characterizing nonlinear patterns in data, and
in the meantime, remain highly interpretable. To con-
quer the computational challenge, we develop an effi-
cient implicit enumeration algorithm that solves the
MIPmodel faster than the state-of-the-art optimization
solvers. Experiments on an extensive collection of
machine learning data sets suggest that the method is
accurate in prediction performance and scales reason-
ably well on large training sets. The proposed frame-
work is implemented in an open-source R package
named bsnsing, available for a broad community of
data science researchers and practitioners.

1

INFORMS JOURNAL ON COMPUTING
Articles in Advance, pp. 1–22

ISSN 1091-9856 (print), ISSN 1526-5528 (online)http://pubsonline.informs.org/journal/ijoc

July 27, 2022

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

Whereas MIP techniques are used in various ways
in the recent literature for building classifiers, our
method is unique in several aspects. First, to our
knowledge, it is the first MIPmodel that is able to max-
imize the Gini reduction of a split, which is known to
be an effective split criterion, but, in the meantime, a
nonlinear nonconvex function of the split decision.
Impurity reduction is an oft-used criterion for split
selection in leading decision tree heuristics for its supe-
riority in generating well-balanced child nodes over
the accuracy maximization criterion, but it has never
been used in an optimization framework because of its
nonconvexity. Second, the MIP model is used for rule
selection at each node split, whereas other effective ele-
ments of the recursive partitioning framework, such as
split point generation, early termination, and tree
pruning, can be separately implemented with great
flexibility. Third, along with the novel formulation, we
also develop an efficient exact solution algorithm that
runs faster than commercial solver codes, making the
bsnsing package independent of any commercial
optimization solvers.

The remainder of the paper is organized as follows.
Section 2 reviews the literature on decision tree induc-
tion and particularly the recent literature on optimal
classification tree (OCT) developments based on mixed-
integer optimization. Section 3 develops the main mod-
els and algorithms that underlie the bsnsing package.
Section 4 presents computational experiments to dem-
onstrate the effectiveness of the proposed method and
software tool. Section 5 concludes the paper with
pointers for futurework.

2. Related Literature
As an extremely flexible nonparametric framework,
classification trees delegate a great deal of freedom to
algorithm design and implementation (Tan et al. 2005).
The entire search space for building the “best” tree can
be enormous. Consider, for instance, splitting a node
by a categorical variable consisting of 10 distinct levels.
There are 115,974 nontrivial ways of splitting, that is,
B10 − 1, the 10th Bell numberminus one. Moreover, for a
set of 10 single-variable split rules, there are more than
3.6 million (i.e., 10!) different ways to order them in a
decision list. It is impractical to evaluate all possible
splits and all possible ordering of rules. It is shown in
Hyafil and Rivest (1976) that the “optimal decision
tree” (ODT) problem is NP-complete, and this conclu-
sion is corroborated in many subsequent attempts at
constructing optimal decision trees using various opti-
mizationmodeling techniques.

The difficulty incurred by the enormity of the
search space is dealt with along three routes in the lit-
erature. The first route is via using greedy splitting
methods (Breiman et al. 1984, Quinlan 1993) under the

recursive partitioning framework, in which a number
of candidate splits are compared and a best one is
chosen to split a node. In this general paradigm, there
is a great variety of algorithms addressing issues such
as how the split variables are selected, how the split
points are determined, and how the split quality is
assessed, etc. Many efficient decision tree algorithms,
including C4.5 (Quinlan 1993), CHAID (Kass 1980),
CART (Breiman et al. 1984), GUIDE (Loh 2009), and
the recent Bayesian-based approach (Letham et al.
2015, Yang et al. 2017) fall under this paradigm.

The second route is to trim the overall search space
down to a reduced model space (as a surrogate) in
which global optimization is used to find an optimal
model. A popular choice of the surrogate space is the
frequent item sets, for example, results from associa-
tion rule mining algorithms (Agrawal et al. 1993, Liu
et al. 1998, Borgelt 2012). Bertsimas et al. (2012) devise
a two-step approach in which the first step is to gener-
ate an efficient frontier of L candidate item sets by solv-
ing Lmixed-integer optimization (MIO) problems, one
for each candidate item set, and then solve another
(larger) MIO problem to rank all the candidates based
on their predictive accuracy on all transactions. The
top-ranked candidate is chosen as the final classifier.
This approach is computationally demanding because
of the attempt to build the whole classifier by solving
one large MIO problem. Nijssen and Fromont (2010)
note the link between decision trees over a binary fea-
ture space and the item set lattice and build a recursive
tree learning algorithm, which does not invoke a
numerical optimization process. Angelino et al. (2017)
consider the class of rule lists assembled from pre-
mined frequent item sets and search for an optimal
rule list that minimizes a regularized risk function,
which is able to solve (and prove optimality for) fairly
large classification instances. This stream of research
is important in constructing the notion of optimality
in tree learning and exploring the use of discrete opti-
mization techniques, such as the branch-and-bound
algorithm.

The third route is using exhaustive search for compre-
hensible rules that do not involve too many clauses. The
1R algorithm (Holte 1993) searches exhaustively the
space of single-variable rules and then makes a classifi-
cation or prediction based on the best rule found. Con-
sidering its simplicity, it is a surprise that it performs
well onmany data sets. Nonetheless, the single-variable,
single-split strategy apparently sacrifices performance
in cases inwhichmore complex and subtle patterns need
to be characterized. The EXPLORE algorithm (Rijnbeek
and Kors 2010) performs an exhaustive search in the
complete rule spaces consisting of one term, two terms,
and so forth until the increment of the number of
allowed terms stops giving a better performance on the
validation set than the previous iteration. By searching

Liu: bsnsing Decision Tree Induction

2 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

all possible disjunctive normal forms (DNF), the al-
gorithm can find the best DNF rule up to a certain
complexity level. An important observation given by
this paper is that the phenomenon of over-searching
(Quinlan and Cameron-Jones 1995), that is, the hypothe-
sis that the more rules are evaluated, the greater the
chance of finding a fluke and poorly generalizable rule,
does not always hold. Even though exhaustive search is
hardly viable for large cases, this gives an encouraging
indication that aggressively seeking optimality on the
training set does not necessarily incur overfitting if the
sense of optimality is defined on a prudent metric and
the tree complexity is properly regulated, an insight that
is also presented in Bertsimas and Dunn (2017). In this
paper, we develop a more principled exhaustive search
procedure to solve the split selection problem.

Using mixed-integer optimization to tackle classifi-
cation problems has been frequently investigated in
recent years, following the seminar work of Bertsimas
et al. (2012). Malioutov and Varshney (2013) formulate
the rule-based classification problem as an integer pro-
gram and show that, under certain conditions (among
which an excessively large pool of boolean questions
needs to be generated from the original feature set),
the rules can be recovered exactly by solving the linear
programming (LP) relaxation. A probabilistic guaran-
tee of recovery is shown when the required conditions
are satisfied weakly. Goh and Rudin (2014) address the
problem of class imbalance in classification training
and propose an MIP model to find the classification
rule set that optimizes a weighted balance between
positive and negative class accuracies. They develop a
“characterize then discriminate” approach to decom-
pose the problem into manageable subproblems and,
hence, alleviate the computational challenge of solving
the full MIP. Bertsimas and Dunn (2017) cast the prob-
lem that CART attempts to solve as a global optimiza-
tion problem and instantiate the canonical problem
with two MIP models, OCT for building trees using
univariate splits, and OCT-H for trees of multivariate
splits (separating hyperplanes). The models minimize
a weighted sum of the total misclassification cost and
the number of splits in the tree and are constrained by
two hyperparameters, the tree depth and the leaf node
size. The weighting factor in the objective function
needs to be tuned via a validation set to achieve the
best performance. The robust versions of these models
are given in Bertsimas et al. (2019). The strengths of
OCT and OCT-H complement each other, and they are
able to outperform CART in many cases by significant
margins. Wang et al. (2017) focus on searching for a
small number of short rules (disjunctive of conjunc-
tives, e.g., “(A and B) or C or …” kind of a rule) by
approximately solving a “maximum a posteriori”
problem by the simulated annealing algorithm. The
authors apply the method to predict user behavior in a

recommender system and report favorable perform-
ance. Verwer and Zhang (2019) formulate the OCT
problem as an integer program in which the number of
integer (binary) decision variables does not depend on
the number of training data points (though the number
of constraints does, and big-M constraints are used).
The formulation is demonstrated to outperform pre-
vious OCT formulations, including Verwer and Zhang
(2017) and Bertsimas and Dunn (2017), on several test
data sets.

Hu et al. (2019) propose an optimal sparse decision
tree (OSDT) algorithm that extends the CORELS algo-
rithm (Angelino et al. 2017) (which creates optimal rule
lists) to create optimal trees. The algorithm attempts to
minimize the weighted sum of the misclassification
error and the number of leaves in the tree. A specialized
search procedure within a branch-and-bound frame-
work is employed for solution. A Python program that
implements OSDT is available on Hu’s Github page.
Lin et al. (2020) provide a general framework for deci-
sion tree optimization that is able to handle a variety
of objective functions and optimize over continuous
features. The authors observe orders of magnitude
speedup in decision tree construction compared with
the state of the art. A C++–based implementation,
called generalized and scalable optimal sparse decision
trees (GOSDT), as well as a Python wrapper, is avail-
able on Lin’s Github page. Aglin et al. (2020) develop a
DL8.5 algorithm that extends DL8 initially proposed in
Nijssen and Fromont (2007). DL8.5 draws upon the
association rule mining literature (Agrawal et al. 1993)
and uses branch-and-bound search along with a cach-
ing mechanism to achieve a fast training speed. It is
demonstrated that DL8.5 outruns the BinOCT method
by orders of magnitude in training speed. DL8.5 is
implemented in C++, and a Python package is publicly
available (i.e., pip install dl8.5). In Section 4.2, we per-
form computational comparisons with DL8.5, OSDT,
and GOSDT on a number of binary classification data
sets to demonstrate bsnsing’s advantage in training
speed among these latest developments in the OCT lit-
erature. Zhu et al. (2020) propose an MIP model for
supervised classification by optimally organizing a
support vectormachine type of separating hyperplanes
in a tree structure of a given depth and achieve out-
standing performance on a collection of test sets. An
earlier work of this kind can be found in Street (2005),
in which the separating hyperplane is obtained via
solving a nonlinear conconvex program. Ease of inter-
pretation (or interpretability) of such tree-like models is
clearly not an emphasis in those works. Aghaei et al.
(2020) present a flow-based MIP formulation for the
OCT problem. The formulation does not use big-M
constraints, and hence, boasts a stronger LP relaxation
than alternative formulations. The authors develop a
Bender’s decomposition paradigm to further improve

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 3

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

solution efficiency. Substantial speedup in comparison
with other OCT approaches is reported.

Existing MIP-based OCT investigations invariably
attempt to internalize (i.e., globally optimize) thewhole
process of building the (tree- or rule-based) classifier
and abandon the recursive partitioning framework.
Consequently, any posttraining modification, such as
pruning, to the optimal tree nullifies optimality in in-
tractable ways, so it is difficult to justify pruning or
other tactics aimed at improving prediction perform-
ance. Furthermore, making all decisions regarding tree
induction in a single MIP model is inevitably chal-
lenged by the dilemma that either a lot of simplifica-
tions must be imposed to the classifier to limit the size
of the search space (hence, introducing high bias) or
the decision model ends up being computationally

prohibitive. In the author’s opinion, solving an MIP
usually takes too much time to warrant its inclusion
in a meaningful hyperparameter search process that
requires training a number of candidate classifiers. For
instance, a 10-minute runtime is not uncommon for
solving a moderately sized MIP model, but it feels
somewhat long for a user of software tools, such as R,
SAS, Stata, and IBM SPSS, which are able to produce a
tree in no more than a couple of seconds (for reason-
ably sized data sets, such as those oft used for bench-
marking in the literature). As a result, software codes
for most OCT approaches, despite their potential
appeal in high-stakes applications in which training/
tuning time is less of a concern than other merits, such
as interpretability, accuracy, and rule set sparsity, etc.,
are not widely picked up by the broader statistical

Table 1. Comparison of Different Tree Structures

Illustration Characteristics Software codes

• Intuitive decision rules
• For example, {Is Age ≤ 20?}
• Split only produces (n− 1)-dimensional rectilinear half spaces

ID3, C5.0, CHAID
SLIQ, rpart, party

• Intuitive decision rules
• For example, {Is 20 ≤ Age ≤ 25 & 19 ≤ BMI ≤ 24?}
• Split can generate closed and open hypercubes of any dimension

CORELS, bsnsing

• Obscure decision rules
• For example, {Is 0:3 ∗Age-0:5 ∗BMI ≥ 3:3?}
• Split can produce half spaces of any dimension

CART, FACT
QUEST, CRUISE
GUIDE, OCT-H

• If–then rule clause
• Less efficient for multiclass problem

CART, QUEST, SLIQ, rpart, bsnsing

• If–then–else-if rule clause
• Suits multiclass problems better
• Depletes data too quickly

C5.0, CHAID, FACT
CRUISE, QUEST
party

Note. The proposed multivariable rectilinear splits are more efficient than single-variable splits in carving out nonlinear features and preserve
interpretability better than linear combination splits.

Liu: bsnsing Decision Tree Induction

4 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

learning or data science community. The bsnsing ap-
proach attempts to alleviate some of these challenges
by taking a middle ground, using MIP to optimize
only the split decision, whereas other aspects of tree
management, such as when to stop, how to generalize
candidate split points, and pruning, etc., are offloaded
to the recursive partitioning framework.

Table 1 summarizes the prevalent tree structures
available in software tools and how the proposed
bsnsing package expands the landscape. Existing
algorithms under the recursive partitioning frame-
work employ either one-variable splits that are too
restrictive for expressing nonlinear patterns or linear
combination splits that obscure interpretation. Brei-
man et al. (1984) briefly entertain the idea of construct-
ing boolean combinations of single-variable splits and
recognize the associated difficulty in split search
because the combinations are too many to enumerate.
To our knowledge, the bsnsing package is the first
decision tree package to implement boolean combina-
tions of splits in which the combinatorial difficulty is
mitigated by an efficient search algorithm.

3. Models and Methods
3.1. Preliminaries and the Framework Overview
Let X denote the input space containing all possible
input vectors x. Suppose that objects characterized by
x fall into J classes and let C be the set of classes, that
is, C � {1, : : : , J}. A classifier is a rule that assigns a
class membership in C to every vector in X . In other
words, a classifier is a partition of X into J disjoint
subsets A1, : : : ,Aj, X � ∪jAj, such that, for every x ∈ Aj,

the predicted class is j. A classifier is constructed or
trained by a learning sample L, which consists of input
data on n cases together with their actual class mem-
bership, that is, L � {(x1, j1), : : : , (xn, jn)}, where xi ∈ X

and ji ∈ {1, : : : , J} for i � 1, : : : ,n. At present, we con-
sider the binary classification problem in which J � 2
and call the two classes as being positive and negative,
respectively, that is, C � {Positive, Negative}.

Given a learning sample L available at a tree node,
the algorithm takes two steps to split the node. First,
all input variables are coded into binary features. Each
binary feature represents a question that demands a
yes/no answer based on the value of the original varia-
ble. We call this process binarization of the input space.
The outcome of this step includes (1) an n-by-mmatrix
B consisting of 0/1 entries, in whichm is the total num-
ber of binary features created in the process, and (2)
the original binary response vector y in the sampleL.

The second step determines a boolean OR clause to
split the node. Here, a boolean OR clause refers to a
set of general questions joined by the logical OR oper-
ator, for example, {Is Age > 35 or Age ≤ 28 or BMI ≥
30?}. If a case answers yes to any question in the

clause, it is classified as a positive case; otherwise, it is
classified as a negative case. The selection of questions
into the clause is the decision to be made here, which
is formulated as a combinatorial optimization prob-
lem via mixed-integer programming. Figure 1 demon-
strates how bsnsing handles these steps.

3.2. Feature Binarization
We very briefly outline the default feature binarization
approach implemented in bsnsing. It is not the empha-
sis of this paper, and it is extensible by other developers.
For a numeric variable, samples are sorted based on its
value. If the two classes are perfectly separable, that
is, the minimum value of one class is greater than the
maximum value of the other class, the split point is
returned, and both child nodes are marked as a leaf.
Otherwise, the sorted list of samples is scanned twice in
the sequential and reverse order to find “greater-than”
and “less-than” types of split conditions, respectively. In
this manner, the algorithm implements the subsump-
tion principle as described in Rijnbeek and Kors (2010)
to ensure that only potentially valuable split conditions
are generated, and ones that are not in the efficient
frontier are left out. Other approaches for binarizing
numeric features, such as using the empirical quantiles
as cut points—see, for example, Malioutov and Var-
shney (2013)—are also worth implementing in future
work. For a categorical variable of L unique levels, the
binarization process creates L binary dummy variables
when L is below a threshold (default 30). When L is
greater than the threshold, value grouping is applied
before creating dummy variables. Finally, binary fea-
tures generated by other decision tree packages can be
imported to bsnsing for optimal selection aswell.

3.3. Mixed-Integer Program to Maximize

Gini Reduction
The Gini index, developed by Italian statistician
Corrado Gini in 1912, is ameasure of variability for cat-
egorical data. It can be used to measure the impurity of
a decision tree node. In general, the Gini index for a set
of objects (e.g., cases contained in a tree node) that

come from J possible classes is given by 1−∑J
j�1 p

2
j ,

where pj is the relative frequency of the target class j,
j ∈ {1, : : : , J}, in the node. A split that produces a large
reduction in Gini (i.e., ∆Gini) is preferred. The ∆Gini
splitting criterion is first proposed in Breiman et al.
(1984). It is available in many decision tree codes such
as rpart and tree packages in R and the decision
tree method in SAS Enterprise Miner. We formulate
the ∆Gini criterion as a mixed-integer linear program
of the splitting decision. To our knowledge, no prior -
work has done so.

Let P andN denote the numbers of positive and neg-
ative cases, respectively, at the current (parent) node.

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 5

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

The Gini index of this node, denoted byG(parent), is

G(parent) � 1− P

P+N

()2
− N

P+N

()2
� 2P ·N
(P+N)2

: (1)

Suppose the node is split into two child nodes by a
split rule, that is, cases that are ruled to be positive fall
in the left node and cases that are ruled to be negative
fall in the right node. Let TP and FP denote the num-
bers of positive and negative cases, respectively, that
fall in the left node, and TN and FN denote the num-
bers of negative and positive cases, respectively, that
fall in the right node. Then, the Gini indexes of the left
and right nodes are

G(left) � 2 · TP · FP
(TP + FP)2

and G(right) � 2 · TN · FN
(TN + FN)2

:

The ∆Gini of the split is defined to be the Gini index
of the parent node minus the weighted sum of the
Gini indexes of the child nodes, whereas the weights
are the squared proportions of cases that fall in each
child node,

∆G � G(parent) − TP + FP

P +N

()2
· G(left)

− TN + FN

P +N

()2
· G(right): (2)

Note that the squared proportions are used here,
instead of the proportions as originally proposed in
Breiman et al. (1984), for ease of mathematical model-
ing. Note that the value of ∆G is not affected by the
classification labels assigned to the child nodes. For
example, if wewere to classify the left node as negative
and the right node as positive, it would only cause a
swap between TP and FN and a swap between FP and
TN in the equations, which would not affect the value
of ∆G. Equation (2) can be simplified to ∆G � (2P ·N
−2(TP · FP+TN · FN))=(P+N)2. Because P and N are
known values for the parent node irrespective of the
split, maximizing ∆G is equivalent to minimizing
TP · FP+TN · FN, which is, in turn, equivalent to mini-
mizing

P · FP+N · FN− 2 · FN · FP: (3)

Here, FP and FN are variables whose values depend
on the split rule.

Mathematical symbols used in the MIP formulation
are defined in Table 2. Let the binary variable wk indi-
cate whether question k is selected (� 1) or not (� 0);
then, the product Bikwk equals one if both question k is
selected and case i answers yes for the question.
When the selected questions form an OR clause classi-
fication rule, the case i is classified as positive (zi � 1)
if there exists a k ∈K such that Bikwk � 1. Conversely,

Figure 1. (Color online) Process Flow of the bsnsingMethod

Notes. First, a binary feature matrix B is created based on the original input variables. Each feature represents a general question that demands a
yes/no answer. Next, an MIP is solved to select the set of questions to form a boolean OR clause that would maximize impurity reduction.
Finally, the tree node is split by the selected rule(s). Detailed annotation of the bsnsing tree plot is given in the appendix.

Liu: bsnsing Decision Tree Induction

6 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

case i is classified as negative (zi � 0) if Bikwk � 0 for all
k ∈K. This classification rule is expressed by the fol-
lowing linear constraints:

Bikwk ≤ zi, ∀i ∈ I , ∀k ∈K, (4)∑
k∈K

Bikwk ≥ zi, ∀i ∈ I : (5)

We only need to enforce 0 ≤ zi ≤ 1 for i ∈ I in the for-
mulation because the integrality of variable zi is
implied by Constraints (4) and (5), the fact that each
wk is binary, and the sense (i.e., minimization) of the
optimization objective.

Using variable zi, we can express the terms in (3) as
follows:

P · FP � P ·
∑
j∈I

(1 − yj)zj �
∑
i∈P

∑
j∈N

zj

N · FN � N ·
∑
i∈I

yi(1 − zi) �
∑
j∈N

∑
i∈P

(1 − zi)

FN · FP �
∑
i∈I

yi(1 − zi)
()

∑
j∈I

(1 − yj)zj
()

�
∑
i, j∈I

yi(1 − zi)(1 − yj)zj

�
∑
i∈P

∑
j∈N

(1 − zi)zj:

Minimizing (3) rewards a greater value of FN · FP;
therefore, we can replace each term (1− zi)zj in the last

equation by a free variable θij, defined for i ∈ P and
j ∈N , and impose the following constraints:

θij ≤ 1− zi, ∀i ∈ P, ∀j ∈N , (6)

θij ≤ zj, ∀i ∈ P, ∀j ∈N : (7)

Putting everything together, the problem that opti-
mizes Gini reduction is formulated as a mixed-integer
program as follows. Let us call it OPT-G.

(OPT-G):

Minimize
∑
i∈P

∑
j∈N

(1 − zi + zj − 2θij) (8)

s: t: (4), (5), (6) and (7),

wk ∈ {0, 1}, ∀k ∈ K, (9)

0 ≤ zi ≤ 1, ∀i ∈ I , (10)

θij free ∀i ∈ P, j ∈ N : (11)

For each pair of cases i ∈ P and j ∈N , θij equals one
only when both cases are classified incorrectly. When
this happens, the corresponding objective term (1− zi +
zj − 2θij) is the same value (zero) as when both cases are

classified correctly. This corroborates the theory that
the ∆G split criterion is agnostic of the polarity of the
labels assigned to the child nodes. Equation (10) can
be further reduced to zi ≤ 1 for i ∈ P and zi ≥ 0 for i ∈N .
MostMIPmodels in the OCT literature attempt tomini-
mize misclassification (plus other terms to suppress
overfitting). The OPT-G model can be reduced to mini-
mizing misclassification simply by removing the objec-
tive terms and constraints that involve θ. Specifically,
the following model (OPT-E) explicitly minimizes the
number of misclassified cases from the split.

(OPT-E):

Minimize
∑
i∈P

∑
j∈N

(1 − zi + zj)

s: t: (4), (5), (9) and (10): (12)

The Gini-based splitting criterion is designed to purify
the class composition in the child nodes. Compared
with error-based criterion, it is conducive to more bal-
anced child nodes. This is demonstrated in the simple
example in Figure 2. Therefore, in this paper, we focus
on analyzing the OPT-G model and its solution strat-
egy. Splits based on the OPT-E model are available in
the bsnsing package through the option opt.model

� “error”. Users can choose Gurobi, CPLEX, and
lpSolve to solve the MIP model by setting the
opt.solver option in bsnsing provided that the
chosen solver and its R API package are installed.

In the tree-building process, the instance size of the
OPT-G model is largest at the root node and decreases
exponentially as the process moves down the tree
branches. For large training data sets, the root node

Table 2. Notation Definition for the Mathematical Program

Symbol Meaning

I � {1, : : : ,n}, index set of cases
P, N index sets of positive and negative cases, respectively
K � {1, : : : ,m}, index set of questions
Bik � 1 if case i answers yes for question k; zero otherwise
yi � 1 if case i is positive; zero otherwise
wk � 1 if question k is selected into the split rule; zero otherwise
zi � 1 if case i is classified as positive; zero negative
θij A binary variable for each pair of cases i and j

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 7

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

model can become computationally prohibitive for even
the commercial solvers, such as CPLEX and Gurobi. In
the next section, we propose an implicit enumeration
approach for solvingOPT-G that scales better than com-
mercial solver codes in practical settings.

3.4. Implicit Enumeration (ENUM) Algorithm for

Solving OPT-G
Each candidate solution to OPT-G can be denoted by
its corresponding index set S of the selected questions,
that is, S :� {k ∈K |wk � 1}. At a solution S, let us
denote the false positive and negative counts at the
solution by FPS and FNS , respectively, and define
ν(S) to be the objective value at the solution, that is,

ν(S) :� P · FPS +N · FNS − 2 · FPS · FNS: (13)

We know that starting at any S, selecting more ques-
tions into the solution (i.e., enlarging S) only encour-
ages extra cases to fall in the left node (i.e., answer
“yes” to the OR clause) and, hence, causes FP to
either stay at the same value or increase and causes
FN to stay at the same value or decrease. In other
words, for any S+ ⊃ S, we have FPS+ ≥ FPS and
FNS+ ≤ FNS . Leveraging this property, we can derive
a lower bound on the objective value for any possi-
ble solution that “branches out” from a given solu-
tion S.

Proposition 1. For any superset of S, denoted by S+, the
following inequalities hold:

ν(S+) ≥

ν(S), if FNS < P=2 and FPS >N=2

P · FPS , if FNS < P=2 and FPS ≤N=2

N · (P− FNS), if FNS ≥ P=2 and FPS >N=2

0, if FNS ≥ P=2 and FPS ≤N=2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Proof. In the case FNS < P=2 and FPS >N=2, we have
N − 2 · FPS+ ≤N − 2 · FPS < 0 and P− 2 · FNS+ ≥ P− 2 ·

FNS > 0; therefore,

ν(S+) � P · FPS+ + (N − 2 · FPS+) · FNS+

≥ P · FPS+ + (N − 2 · FPS+) · FNS

� (P− 2 · FNS+) · FPS+ +N · FNS

≥ (P− 2 · FNS) · FPS +N · FNS

� ν(S):
In the case FNS < P=2 and FPS ≤N=2, we have P− 2 ·
FNS+ ≥ P− 2 · FNS > 0 and N − 2 · FPS ≥ 0; therefore,

ν(S+) �N · FNS+ + (P− 2 · FNS+) · FPS+

≥N · FNS+ + (P− 2 · FNS+) · FPS

� (N − 2 · FPS) · FNS+ +P · FPS

≥ P · FPS:

In the case FNS ≥ P=2 and FPS >N=2, we have N − 2 ·
FPS+ ≤N − 2 · FPS < 0 and P− 2 · FNS < 0; therefore,

ν(S+) � P · FPS+ + (N − 2 · FPS+) · FNS+

≥ P · FPS+ + (N − 2 · FPS+) · FNS

� (P− 2 · FNS) · FPS+ +N · FNS

≥ (P− 2 · FNS+) ·N +N · FNS

� (P− FNS) ·N:

In the last case in which FNS ≥ P=2 and FPS ≤N=2,
there is insufficient information to derive a nontrivial
lower bound for ν(S+) as ν(S+) ≥ 0 always holds. w

Let us denote the lower bound for ν(S+) by τ(S) to
emphasize its sole dependence on the current solution
S and assign its value according to Proposition 1. In
the search for the optimal solution, whenever τ(S) is
greater than the best objective value found so far, any
solution that results from enlarging S can be elimi-
nated. The algorithm is outlined as follows. We start

Figure 2. Examples of Splitting a Tree Node

Notes. In contrast, OPT-G favors the one leading to more balanced child nodes. The two ways of splitting the parent node give the same number
of misclassifications; Hence, they are indistinguishable under OPT-E.

Liu: bsnsing Decision Tree Induction

8 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

with evaluating all single-variable split rules, that is,
Sk � {k}, for k ∈K by calculating their ν(Sk) and τ(Sk).
These are the “root nodes” in the search tree.1 Let νbest

be the smallest objective values encountered so far.
We can eliminate those nodes k having τ(Sk) > ν

best,
and we can terminate a node (i.e., making it a leaf in
the search tree) when τ(Sk) � ν(Sk). For each remain-
ing root node k, we evaluate all two-variable split rules
branched from it in such a way that the added varia-
ble’s index is greater than k (to avoid redundant evalua-
tions) and update the ν

best and eliminate unpromising
branches on the fly. For instance, if τ({1, 2}) > ν

best, then
the candidate solution {1, 2} ∪ K for each K ⊂ 2{3,: : : ,m}

can be eliminated. The search proceeds until all possi-
bilities are examined, at which point the νbest is the opti-
mal solution to OPT-G. Figure 3 demonstrates the
enumeration process via an example. This algorithm is
implemented in the bslearn function in the R source
code under the “enum” solver option, and we call it the
ENUM algorithm in the rest of this paper.

The ENUM algorithm, if carried out to completion,
can guarantee to return a solution having the smallest
objective value. In essence, the sequential evaluation
of candidate solutions reduces the search space from

K × P ×N to 2K. Because the cost of evaluating a can-
didate solution ramps up slowly with the size of I

(i.e., P ∪N) thanks to efficient vector operations, the
ENUM can find the optimal solution faster than the
typical branch-and-bound method of MIP solvers
when I is large and K is relatively small.

Compared with using an MIP solver, ENUM boasts
the following advantages: (1) it scales betters in terms
of memory cost because no branch-and-bound tree is
maintained; (2) the search process can be parallelized
(though it is a bit tricky to implement in R because R is
intrinsically single-threaded); (3) the search is breadth
first, meaning that split rules having fewer clauses are

evaluated before rules having more clauses get eval-
uated. Therefore, if any time the search is terminated
prematurely (e.g., because of a time limit), a simplest
possible best found rule can still be returned; in addi-
tion, if the optimal solution is not unique, one having
the fewest clauses is returned.

3.5. Complexity Regulation Constraints
When OPT-G is used to split the nodes, the classifica-
tion tree can be grown until every node is pure (i.e.,
containing observations of the same class). Such a
tree, called a maximal tree, does not generalize well
on new data. Additional constraints can be added to
OPT-G to regulate the complexity of the tree to curb
overfitting. In the bsnsing package, we leverage two
types of constraints as follows:

∑
k∈K

wk ≤ MaxRules, (14)

∑
i∈I

zi ≥ MinNodeSize, (15)

∑
i∈I

(1 − zi) ≥ MinNodeSize: (16)

The right-hand sides of these inequalities are control
parameters. Constraint (14) limits the number of ques-
tions to enter a split rule. This constraint is quite neces-
sary in practice, especially when the tree is to be used
for prediction, because, devoid of this constraint, each
split optimization step amounts to a maximal overfit-
ting of the data available in the present node—finding
a single composite split rule to maximally reduce the
Gini. In addition, this constraint also directly reduces
the solution space; thus, its presence expedites the
ENUM search. Specifically, the number of objective
function evaluations in the worst case (assuming no

Figure 3. Enumeration of All Possible Solutions in a Solution Space of Four Candidate Rules Indexed by {1,2, 3, 4}

Notes. Each node, alongwith the top-down path leading to it, represents a unique subset of the solution space. Candidate solutions are evaluated
in the breadth-first order. Proposition 1 enables opportunities to prune the search tree branches.

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 9

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

pruning and early termination opportunities exist in

the search process) reduces to
∑MaxRules

i�1
m
i

()
as com-

pared with 2m when the constraint is not present. For
instance, for a pool ofm � 98 candidate questions, Con-
straint (14) with MaxRules � 3 reduces the worst case

objective function evaluations to
98
1

()
+ 98

2

()
+ 98

3

()
�

1, 56,947 from the theoretical worst worst case of

298 � 3:17 × 1029. A demonstration is presented in Sec-
tion 4.

Constraints (15) and (16) require that each child
node from a split must contain at least MinNodeSize
(a positive number) observations. They are effective at
limiting the tree depth as well as generating well-
populated leaf nodes. In the bsnsing package, the
default value for MaxRules is two, and MinNodeSize
is, by default, set equal to the square root of n, the
number of training examples.

In certain use cases, it is customary to expect the
child nodes of a split to bear different majority classes,
that is, to require TP=(TP+ FP) ≥ 0:5 and FN=(FN+
TN) ≤ 0:5. This requirement can be translated to the
following linear constraint for the OPT-Gmodel:

∑
i∈P

zi −
∑
j∈N

zj ≥max{0, 2 ·P− n}: (17)

To include this constraint in the ENUM algorithm, we
can simply discard any candidate solution that violates
it in the search process. We comment that this con-
straint is mainly for the convenience of tree interpreta-
tion and leads to an over-regulation (i.e., creating
unnecessary bias) to the tree model. Specifically, its
inclusion in the model tends to produce simple and
shallow trees that lack fidelity in discriminating new
cases. Therefore, we choose not to enable it by default
in the bsnsing package. To enable the constraint,
the user can explicitly set the parameter no.same.

gender.children to true.
Other hyperparameters used in the bsnsing func-

tion include (1) the bin size (bin.size), which speci-
fies the minimum number of observations that must
satisfy a candidate binary question for the question to
enter the pool; (2) the stop probability (stop.prob), a
node purity threshold in terms of the proportion of the
majority class in the node which, if exceeded, the node
is not further split; and (3) the maximum number of
segments into which the range of a numeric variable
(nseg.numeric) is divided by inequalities of the
same direction. These parameters do not directly affect
the split rule optimization, but they affect the overall
efficiency of the tree-building process and the final per-
formance of the tree. Apart from generating candidate
binary questions internally, the bsnsing function is

also able to import split questions generated by other
decision tree packages (currently including C50, tree,
party, and rpart packages) into its own pool for opti-
mal selection. This option is enabled by the parameter
import.external. For a complete list of control
parameters, users can consult the help document by
typing “?bscontrol” in R.

4. Evaluation
The models and algorithms developed in this paper
are implemented in the open-source R package named
bsnsing, accessible through the Comprehensive R
Archive Network (CRAN). The source code is also
hosted at github.com/profyliu/bsnsing.

In this section, we demonstrate the computational
efficiency of solving OPT-G using different algorithms,
compare the performance of bsnsing against several
other decision tree packages available in R, and show-
case the basic usage of the bsnsing library via some
code samples. The experiments were performed in
RStudio (R version 3.6.2) on a MacBook Pro with Intel
Core i9 (8 cores) processor and 16 GB RAM.

4.1. Computational Efficiency of Solving OPT-G
We perform two sets of experiments to demonstrate
the superiority of the ENUM algorithm over the Gur-
obi solver for solving OPT-G. In the first set of experi-
ments, we generate OPT-G instances of different sizes
based on the seismic data set from the University of
California, Irvine (UCI) machine learning repository
(Dua and Graff 2017) and show how each method
scales as data size increases; in the second set of experi-
ments, we contrast the solutions by the two methods
on more classification data sets adopted from the liter-
ature to further solidify our conclusion.

4.1.1. Experiments on the Seismic Data Set. The seis-
mic data set has 1,690 observations and 18 input var-
iables, among which four are categorical variables
and 14 are numeric variables. The output is a catego-
rical variable with two levels, so it is a binary clas-
sification problem. We first binarize all inputs to
create a binary matrix B (using the binarize func-
tion in the bsnsing package), essentially substitut-
ing one or multiple binary features for each of the
original input variables. The matrix B has 1,690 rows
and 100 columns. We experiment with two scenario
factors that are critical to the computational effi-
ciency: the number of training cases n and the maxi-
mum number of rules, that is, MaxRules, allowed in
the solution. We randomly sample n rows from B
and join them with the corresponding response vari-
ables to form sets of training data with varying sizes.
For each combination of max.rules in {1, 2, 3, 4}
and n in {200, 400, : : : , 1, 600}, we solve the OPT-G

Liu: bsnsing Decision Tree Induction

10 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

model using both the Gurobi solver and the ENUM
algorithm. For example, suppose the selected rows
of matrix B are stored in matrix bx and the binary
target vector is y; the following R code was used to
learn the optimal split rule with MaxRules � 3 using
the Gurobi solver:

res <- bslearn(bx, y, bscontrol(opt.

solver � ‘gurobi’, solver.timelimit � 7200,

max.rules� 3, node.size� 1))

Note that the node.size option was set to one to
relax Constraints (15) and (16), which were irrelevant
to this experiment. For the ENUM algorithm, the
opt.solver option was set to “enum_c”.2

The results are summarized in Table 3. As expected, in
each case, both methods are able to find the same optimal
objective value, reported in the column Objval. For the
same instance, the Objval is nonincreasing with the
increase inmax.rules, which alsomatches our expectation.

The next three columns of Table 3 list the comput-
ing time in seconds. The Gurobi solver automatically
exploited multiple CPU cores available in the com-
puter (which had eight physical cores), so we report
both the CPU time (actual computing resource usage)
in column Gurobi and the elapsed time (wall time

as experienced by the user) in column Gurobi.E. The
ENUM algorithm used only one CPU core; thus, only
the elapsed time is reported. Clearly, ENUM is the
incontestable winner, running at least two orders of
magnitude faster than Gurobi in elapsed time.

For the ENUM algorithm, the number of objective

function evaluations in the worst case is
∑max:rules

i�1
100
i

()
.

However, the actual number of evaluations is signifi-
cantly fewer than the theoretical worst case. The actual
numbers of objective function evaluations as well as
their percentage of the theoretical worst case are listed in
columns Obj.Evals and Pct of All Feasible, respectively.
For example, when n � 200 and max.rule � 1, ENUM
evaluates 100 candidate solutions to find the optimal
one, and this number is 100% of all candidate solutions
in the search space.We can see that the percentage drops
significantly (hence, substantial savings in computing
accrued) with the increase in max.rules. The savings
are attributed to the bounding and early termination
strategy of Proposition 1. Similar experiments on other
data sets and other solvers (i.e., CPLEX and lpSolve)
reveal the same insight, so we forgo repeated experi-
ments on those scenarios.

Table 3. Computational Costs and Scalability of ENUM

Observations Max.rules Objval Gurobi Gurobi.E ENUM Obj. Evals Percentage of all feasible

200 1 512 5.6 2.8 0.0 100 100.0
2 492 14.5 2.9 0.0 2,959 58.6
3 420 20.4 3.8 0.1 36,998 22.2
4 378 20.0 3.7 0.5 249,951 6.1

400 1 2,324 14.5 6.8 0.0 100 100.0
2 2,046 97.7 14.9 0.0 3,163 62.6
3 1,974 188.7 27.6 0.2 46,270 27.7
4 1,974 93.3 14.8 2.0 406,135 9.9

600 1 5,044 48.5 19.7 0.0 100 100.0
2 4,710 261.1 38.6 0.0 3,332 66.0
3 4,610 421.3 59.2 0.3 49,059 29.4
4 4,610 359.4 50.5 3.8 445,965 10.9

800 1 8,494 117.6 43.9 0.0 100 100.0
2 8,153 796.7 109.2 0.1 3,308 65.5
3 7,933 1,447.3 191.8 0.6 51,389 30.8
4 7,802 787.1 108.2 5.4 463,565 11.3

1,000 1 12,410 58.5 34.2 0.0 100 100.0
2 11,946 1,359.8 188.2 0.1 3,241 64.2
3 11,652 1,727.2 233.7 0.7 50,300 30.2
4 11,382 2,498.2 327.0 6.6 442,363 10.8

1,200 1 17,027 842.7 433.8 0.0 100 100.0
2 15,840 2,370.9 316.3 0.1 3,282 65.0
3 15,457 3,094.5 409.8 0.9 54,261 32.5
4 15,316 4,143.4 543.3 9.0 535,880 13.1

1,400 1 25,354 625.7 151.4 0.0 100 100.0
2 23,302 3,299.4 442.6 0.1 3,373 66.8
3 22,794 4,856.0 639.5 1.0 53,873 32.3
4 22,578 6,905.6 895.9 10.1 540,219 13.2

1,600 1 34,664 558.9 293.4 0.1 100 100.0
2 32,460 19,969.1 2,572.5 0.1 3,282 65.0
3 31,887 21,834.1 2,804.5 1.2 54,642 32.8
4 31,737 33,050.8 4,212.2 11.2 551,884 13.5

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 11

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

4.1.2. Experiments on Selected DL8.5 Data Sets. In
validating the DL8.5 algorithm and demonstrating
its superiority over the BinOCT algorithm (Verwer
and Zhang 2019), Aglin et al. (2020) employs 24
binary classification data sets, all consisting of pure
binary features. These data sets can directly form
instances of OPT-G without the need for feature
binarization. We selected 13 from the 24 data sets by
the criteria n ≤ 1, 000 and p ≤ 200 and compare Gur-
obi and ENUM solutions to OPT-G for the root node
split rule identification on these data sets. The reason
for the selection criteria is that Gurobi cannot solve
the larger cases in a tolerable amount of time, that is,
two hours. The results are presented in Table 4. The
problem size is noted by n and m (for these cases, p �
m). Sharp contrasts in solution time—up to a ratio of
106—between the two methods persists throughout
all cases. In addition, for the Australian-credit and
tic-tac-toe cases, Gurobi fails to terminate within the
two-hour time limit, ending with a suboptimal solu-
tion in the latter case. In comparison, ENUM is able
to find the optimal solutions consistently in less than
0.1 second. In cases in which Gurobi succeeds, both
methods return the same optimal rule. These experi-
ments serve to solidify our conclusion that ENUM
should be the solver of choice when the bsnsing

package is employed in practice.

4.2. Comparison with the DL8.5, OSDT, and
GOSDT Algorithms

In this section, we compare bsnsing against three re-
cently developed ODT methods, namely, DL8.5 (Aglin
et al. 2020), OSDT (Hu et al. 2019), and GOSDT (Lin
et al. 2020). The software programs were obtained
through the Github links provided in the respective
papers. Given that the model assumptions, formula-
tion, and parameters are all different for the different
tools under comparison, we do not aim to provide a
comprehensive evaluation by, for instance, performing
problem-specific parameter tuning and model inter-
pretation or making inferences about which method is
most suitable for what kind of data and applications.
Instead, we exhibit our computational experience from
a user’s perspective, and let it convey the unique posi-
tion of bsnsing among other recent ODT tools.

We experiment on the 24 data sets (i.e., binary clas-
sification problems with binary features) used in the
DL8.5 paper (Aglin et al. 2020). The experiments were
performed as follows. The comparison experiment on
each data set was repeated 20 times. In each repeti-
tion, using an arbitrarily sequenced seed for the ran-
dom number generator (RNG), we randomly split the
data set into two parts, 70% for training and 30% for
testing. For each method, we recorded the classifica-
tion accuracy on the test set as well as the time taken

Table 4. Comparison Between Gurobi and ENUM for Root Node Split on DL85 Data Sets with max.rules � 2

n m Method CPU Elapsed Objval Rule nEval

anneal 812 93 ENUM 0.045 0.083 47,750 V60 | V67 2,204
Gurobi 9,005.889 1,181.632 47,750 V60 | V67 0

audiology 216 148 ENUM 0.023 0.027 885 V2 | V32 5,768
Gurobi 63.565 10.994 885 V2 | V32 0

australian-credit 653 125 ENUM 0.057 0.059 24,456 V34 | V76 4,493
Gurobi 56,229.196 7,204.716 24,456 V38 | V76 0

breast-wisconsin 683 120 ENUM 0.051 0.053 9,039 V21 | V77 3,427
Gurobi 5,276.419 691.689 9,039 V21 | V77 0

diabetes 768 112 ENUM 0.063 0.063 53,312 V20 | V76 3,180
Gurobi 55,471.420 7,205.700 53,312 V20 | V76 0

heart-cleveland 296 95 ENUM 0.023 0.025 7,460 V91 | V96 2,483
Gurobi 3,190.064 418.003 7,460 V91 | V96 0

hepatitis 137 68 ENUM 0.006 0.007 876 V37 | V51 1,183
Gurobi 109.495 15.128 876 V37 | V51 0

lymph 148 68 ENUM 0.008 0.008 1,655 V39 | V56 1,562
Gurobi 214.038 28.534 1,655 V39 | V56 0

primary-tumor 336 31 ENUM 0.006 0.006 7,728 V21 | V29 284
Gurobi 530.928 70.518 7,728 V21 | V29 0

soybean 630 50 ENUM 0.016 0.017 19,964 V24 | V36 997
Gurobi 2,304.774 306.424 19,964 V24 | V36 0

tic-tac-toe 958 27 ENUM 0.012 0.012 95,336 V15 378
Gurobi 14,160.407 7,202.697 105,464 V28 0

vote 435 48 ENUM 0.011 0.013 3,547 V12 631
Gurobi 1,027.852 346.244 3,547 V12 0

zoo-1 101 36 ENUM 0.002 0.002 0 V8 36
Gurobi 0.277 0.283 0 V8 0

Liu: bsnsing Decision Tree Induction

12 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

(in seconds) to train the respective models. For
bsnsing, we adopted the default parameters, specifi-
cally, opt.solver � “enum_c”, max.rules � 2,
and set the node.size to n1=4, where n is the training
sample size. For DL8.5, we adopted the default pa-
rameters as recommended in the package’s compan-
ion paper and in its online sample code, that is, “max_
depth�3, min_sup�5”. For OSDT, we adopted the
default values for all optional parameters and set the
required parameters to “lamb�0.005, prior_metric�
‘curiosity”’ by consulting the sample code provided in
the author’s GitHub page. For GOSDT, we set the
required parameter “regularization” to 0.001,3 a value
found suitable in several experiments in the extended
manuscript of the method; see the appendices of Lin
et al. (2020). In addition, for OSDT and GOSDT, we
set the time limit to five minutes (via setting the
parameter “timelimit�300” in OSDT and “time_limit
�300” in GOSDT) because we observed (which was
also acknowledged by OSDT’s developer) that the
memory usage of the OSDT and GOSDT training
process increases linearly and quickly with execution
time.

The comparison results are listed in Table 5. The
columns n, p, and MR characterize the data sets, and
MR represents the rate of the minority class. The best
accuracy (averaged over 20 runs) for each data set is
highlighted in boldface. There is not a clear winner (or
loser) in terms of prediction accuracy among the four

methods; overall, all methods seem comparably capa-
ble. However, the differences in training time are sig-
nificant. First, we can observe that OSDT and GOSDT
are less competitive in training time. Another factor
that discounts the OSDT algorithm’s actual perform-
ance is that the OSDT program internally uses scikit-
learn’s decision tree classifier (which implements the
CART algorithm) as its baseline predictor and returns
the CART model if the OSDT algorithm cannot do bet-
ter. In most cases, the OSDT program indeed returns
the CART model for prediction (the CART column in
Table 5 notes the proportion of runs in which the
CART model was returned by the OSDT method),
indicating that the OSDT algorithm did not outper-
form the CART baseline in these cases.

The bsnsing package also compares favorably to
DL8.5 in training speed, especially for large instan-
ces. Let us look at the letter data set, which consists
of 14,000 training samples for example: it took
bsnsing, on average, 39.5 seconds to train a model
that worked better than the DL8.5 model, which
took 304.4 seconds to train on average. It is shown in
prior work (i.e., Aglin et al. 2020), that DL8.5 runs
orders of magnitude faster than several other opti-
mal decision tree methods, including the original
DL8 algorithm (Nijssen and Fromont 2007), a con-
strained programming–based method (Verhaeghe
et al. 2020), and an MIP-based method BinOCT
(Verwer and Zhang 2019). Hence, we can infer that

Table 5. Computational Comparison of Four ODT Packages

n p MR

bsnsing DL8.5 OSDT GOSDT

Accu CPU Dp Accu CPU Accu CPU CART Accu CPU

anneal 812 93 0.230 0.844 2.6 7 0.847 1.1 0.839 305.0 0.8 0.846 304.4
audiology 216 148 0.264 0.925 0.4 3 0.925 0.2 0.938 297.9 0.3 0.934 306.0
australian-credit 653 125 0.453 0.823 2.3 6 0.853 4.6 0.858 304.1 0.7 0.857 311.4
breast-wisconsin 683 120 0.350 0.953 0.8 4 0.955 3.1 0.951 304.6 0.3 0.943 307.8
diabetes 768 112 0.349 0.717 3.8 7 0.737 5.4 0.750 305.7 0.8 0.749 314.5
german-credit 1,000 112 0.300 0.676 5.0 7 0.728 4.2 0.723 305.2 0.6 0.708 319.9
heart-cleveland 296 95 0.459 0.752 1.2 5 0.766 1.9 0.763 303.7 0.9 0.746 306.9
hepatitis 137 68 0.190 0.790 0.4 4 0.802 0.5 0.775 306.0 1.0 0.829 303.1
hypothyroid 3,247 88 0.085 0.975 2.3 6 0.979 2.2 0.979 304.7 0.4 0.979 307.0
ionosphere 351 445 0.359 0.881 4.2 4 0.869 235.0 0.888 302.8 0.7 0.912 519.6
kr-vs-kp 3,196 73 0.478 0.984 2.0 7 0.936 1.3 0.969 303.9 1.0 0.853 307.9
letter 20,000 224 0.041 0.990 39.5 8 0.981 304.4 0.959 3,033.1 1.0 0.959 631.6
lymph 148 68 0.453 0.810 0.3 4 0.801 0.2 0.798 305.2 0.9 0.761 303.3
mushroom 8,124 119 0.482 0.999 2.7 4 0.999 4.4 0.994 305.1 0.0 0.943 314.4
pendigits 7,494 216 0.104 0.994 10.9 5 0.991 94.4 0.989 303.4 0.0 0.970 381.2
primary-tumor 336 31 0.244 0.778 0.7 6 0.843 0.1 0.822 304.9 0.2 0.751 169.6
segment 2,310 235 0.143 0.996 1.6 3 0.996 12.8 0.995 4.6 0.9 0.996 311.0
soybean 630 50 0.146 0.935 0.7 6 0.941 0.2 0.938 306.2 0.3 0.862 304.6
splice-1 3,190 287 0.481 0.946 18.2 7 0.926 51.6 0.946 303.0 1.0 0.835 308.4
tic-tac-toe 958 27 0.347 0.875 1.0 7 0.733 0.1 0.901 304.1 1.0 0.757 305.3
vehicle 846 252 0.258 0.952 3.1 5 0.956 33.6 0.946 303.5 0.8 0.879 354.0
vote 435 48 0.386 0.940 0.3 4 0.943 0.2 0.956 304.2 0.1 0.950 304.7
yeast 1,484 89 0.312 0.698 7.1 8 0.692 3.1 0.701 305.8 0.3 0.701 308.9
zoo-1 101 36 0.406 0.995 0.0 1 0.995 0.0 1.000 0.2 1.0 0.995 0.0

Note. Boldface entries mark the best accuracy achieved on the data set.

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 13

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

bsnsing must also outrun those other methods by a
substantial margin. Overall, it is reasonable to claim
that bsnsing, bearing comparable prediction accu-
racy, stands out in training speed among decision
tree methods that involve solving mathematical
optimization problems in the training process.

In most decision tree induction methods, depth (i.e.,
level distance between the root node and the deepest
node in a tree) is a hyperparameter for adjusting the clas-
sifier’s complexity with regard to the bias–variance trade-
off. Heuristic methods, such as CART, typically realize
depth control via tree pruning, whereas most ODTmeth-
ods can explicitly constrain the maximum depth in the
optimization models. However, the bsnsing method
does not endogeneously handle a constraint on the maxi-
mum depth. The “Dp” column in Table 5 lists the mode
(most frequent value out of the 20 runs) of the depth of
the bsnsing trees. We can see that, compared with trees
built by DL8.5, which have a default “max_depth” of
three, the trees built by bsnsing generally reach deeper
though not all branches extend to the same depth.

Some users might take depth as a proxy for inter-
pretability of a decision tree; shallower trees or trees
with fewer leaves are deemed more interpretable than
deeper trees. To facilitate performance comparison
with depth-constrained ODT trees, we can naively
prune a bsnsing tree so as to keep the number of leaf
nodes below that of a binary tree of a given depth. For

instance, a tree of depth one, two, and three would
have at most two, four, and eight leaf nodes, respec-
tively. Using this method, we repeat the preceding
experiments (over the 24 binary classification data sets,
20 runs for each) under different maximum depth val-
ues. The average out-of-sample accuracies are reported
in Table 6 with the best value in each depth group high-
lighted in boldface. Two max.rules settings are tested
for bsnsing: the default setting with max.rules�2
reported in column bs(2) and the max.rules�1 set-
ting reported in column bs(1). Because the GOSDT
package does not have a parameter to limit the maxi-
mum depth or the number of leaves, it is not part of the
experimentation. Also, all the OSDT runs with depth �
2 and 3 have hit the five-minute time limit.4

We can see that the pruned bsnsing trees re-
main quite competitive, in many cases outperforming
the DL8.5 and OSDT trees of the same depth. The
multivariate splits (with max.rules�2) clearly give
bsnsing an advantage in these comparisons. Under
max.rules�1, the pruned bsnsing trees become
the least accurate in most cases. Though the max.

rules�1 setting, along with the naive pruning, is not
recommended for bsnsing’s practical use, comparing
bs(1) with DL8.5 and OSDT does highlight the benefits
of holistic optimization in tree induction as argued in
several ODT papers. Another interesting, yet expected,
observation is that the constraint on depth, no matter

Table 6. Performance Comparison Under Depth Constraints

Depth � 1 Depth � 2 Depth � 3

bs(2) bs(1) DL8.5 OSDT bs(2) bs(1) DL8.5 OSDT bs(2) bs(1) DL8.5 OSDT

anneal 0.778 0.778 0.818 0.818 0.786 0.778 0.826 0.824 0.806 0.777 0.847 0.836
audiology 0.929 0.856 0.856 0.856 0.925 0.924 0.934 0.934 0.925 0.923 0.925 0.934

australian-credit 0.854 0.866 0.866 0.866 0.854 0.866 0.851 0.862 0.849 0.852 0.853 0.849
breast-wisconsin 0.933 0.919 0.923 0.918 0.940 0.921 0.960 0.960 0.956 0.951 0.955 0.955
diabetes 0.716 0.725 0.751 0.751 0.754 0.734 0.754 0.762 0.747 0.760 0.737 0.755
german-credit 0.696 0.699 0.703 0.703 0.709 0.700 0.717 0.717 0.711 0.703 0.728 0.725
heart-cleveland 0.736 0.737 0.737 0.737 0.753 0.735 0.735 0.729 0.774 0.811 0.766 0.798
hepatitis 0.798 0.802 0.844 0.840 0.812 0.814 0.831 0.817 0.787 0.794 0.802 0.800
hypothyroid 0.963 0.963 0.963 0.963 0.973 0.963 0.979 0.979 0.977 0.969 0.979 0.979

ionosphere 0.912 0.758 0.820 0.820 0.894 0.837 0.901 0.904 0.875 0.851 0.869 0.891

kr-vs-kp 0.772 0.684 0.678 0.678 0.934 0.868 0.868 0.868 0.949 0.923 0.936 0.903
letter 0.959 0.959 0.959 0.959 0.959 0.959 0.969 0.968 0.982 0.958 0.981 0.959
lymph 0.743 0.772 0.752 0.772 0.780 0.777 0.770 0.766 0.811 0.803 0.801 0.784
mushroom 0.951 0.887 0.887 0.887 0.983 0.915 0.969 0.969 0.999 0.969 0.999 0.994
pendigits 0.967 0.895 0.931 0.931 0.988 0.978 0.978 0.978 0.991 0.987 0.991 0.987
primary-tumor 0.765 0.775 0.765 0.769 0.806 0.806 0.801 0.803 0.803 0.797 0.843 0.836
segment 0.991 0.926 0.981 0.981 0.996 0.995 0.995 0.990 0.996 0.995 0.996 0.995
soybean 0.862 0.862 0.862 0.862 0.854 0.862 0.906 0.913 0.913 0.890 0.941 0.920
splice-1 0.824 0.816 0.816 0.816 0.875 0.835 0.827 0.831 0.943 0.909 0.926 0.908
tic-tac-toe 0.665 0.669 0.703 0.703 0.693 0.683 0.673 0.678 0.744 0.745 0.733 0.735
vehicle 0.865 0.736 0.755 0.755 0.913 0.895 0.904 0.904 0.944 0.905 0.956 0.907
vote 0.948 0.957 0.957 0.957 0.948 0.957 0.950 0.956 0.944 0.944 0.943 0.948

yeast 0.687 0.687 0.702 0.702 0.705 0.687 0.690 0.696 0.694 0.694 0.692 0.702

zoo-1 0.995 0.995 0.995 1.000 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995

Average 0.846 0.822 0.834 0.835 0.868 0.854 0.866 0.867 0.880 0.871 0.883 0.879

Note. Boldface entries mark the best accuracy at the given tree depth.

Liu: bsnsing Decision Tree Induction

14 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

how it is realized in different packages, does not affect
the new-data prediction accuracy in any deterministic
direction (increase or decrease). An optimal (uncon-
strained or unpruned) tree may perform worse than
a depth-constrained (or naively pruned as in the
bsnsing case) tree in some cases. This observation
enhances the understanding that, in machine learning
algorithms, the notion of optimality only applies to the
training problem, not to the inference problem. In
other words, there is no single algorithm or parameter
setting that is best performing in all cases. Moreover,
comparing the average (across all data sets) accuracies
of the pruned bsnsing trees in column bs(2) and the
average accuracy (0.885) of the original bsnsing trees
in Table 5, we can see that the naive pruning strategy
generally hurts performance, upholding the effective-
ness of bsnsing’s algorithm design and the default
parameter setting.

4.3. Comparison with Other Decision Tree

Packages in R
In this section, we compare the out-of-the-box perform-
ance (i.e., using all default options and no hyperparameter

tuning) of the bsnsing package against several other
decision tree packages, namely, C50, party, tree,
and rpart, that are available on the Comprehensive R
Archive Network. Then, for those cases on which
bsnsing performs poorly, we demonstrate some sim-
ple methods to improve the performance.

Data used in the benchmarking experiments include
57 data sets for binary classification and 18 data sets
for multiclass classification. Among these 75 data sets,
one (iris) is from the datasets package, one (bank) is
from a FICO-sponsored explainable machine learning
challenge (FICO 2018), two (compas and heloc) are
from the ProPublica and Trusted-AI GitHub reposito-
ries, two (GlaucomaMVF and dystrophy) are from the
ipred package, six (BreastCancer, Glass, smiley, spirals,
xor, and Sonar) are from/generated by the mlbench
package, six (obli, grid, diam, circ, ring, and sha88) are
synthetic data sets for 2-D pattern recognition (see Fig-
ure 4), and the remaining 58 data sets are sourced from
the UCI Machine Learning Repository (Dua and Graff
2017). The names, number of observations (n), number
of independent variables (p), (for binary-class) rate of
the minority class (MR), and (for multiclass) number

Figure 4. (Color online) Synthetic Data Sets for Pattern Recognition

Notes. Input variables are the x and y coordinates. Some slanted and nonlinear class boundaries are unamenable to the rectilinear split bounda-
ries produced by treemodels.

Table 7. Binary Classification Data Sets

Name n p MR Name n p MR Name n p MR

acute1 120 6 0.492 haberman 306 3 0.265 pima 768 8 0.349
acute2 120 6 0.417 heart 303 13 0.459 Qsar 1,055 41 0.337
Adult 32,561 13 0.241 heloc 10,459 23 0.478 relax 182 12 0.286
auto 392 7 0.375 hepatitis 155 19 0.206 retention 10,000 8 0.338
bank 45,211 16 0.117 HTRU2 17,898 8 0.092 ring 600 2 0.500
banknote 1,372 4 0.445 ILPD 583 10 0.286 seismic 1,690 18 0.031
birthwt 189 9 0.312 Ionos 351 34 0.359 sh88 600 2 0.500
BreastCancer 699 9 0.345 magic04 19,020 10 0.352 Sonar 208 60 0.466
circ 600 2 0.500 mammo 830 5 0.486 spambase 4,601 57 0.394
climate 540 18 0.085 Monks1 556 6 0.500 SPECT 267 22 0.206
compas 7,214 52 0.451 Monks2 601 6 0.343 spirals 600 2 0.500
connect 208 60 0.466 Monks3 554 6 0.480 statlog.a 690 14 0.445
credit 690 15 0.445 Mushroom 8,124 21 0.482 thoraric 470 16 0.149
diam 600 2 0.500 norm3p10 600 10 0.500 tictactoe 958 9 0.347
dystrophy 209 9 0.359 norm3p5 600 5 0.500 titanic 2,201 3 0.323
Echocard 61 11 0.279 obli 600 2 0.500 trans 748 4 0.238
Fertility 100 9 0.120 ozone1 2,536 72 0.029 votes 435 16 0.386
GlaucomaMVF 170 66 0.500 ozone8 2,534 72 0.063 wdbc 569 30 0.373
grid 600 2 0.475 parkins 195 22 0.246 wpbc 198 33 0.237

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 15

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

of target classes (J) are listed in Tables 7 and 8 for
binary and multiclass classification data sets, respec-
tively. This collection covers most of the commonly
used data sets for methodology benchmarking in the
classification tree literature; hence, the data collection
itself can be useful for future research. These data sets
are accessible by name in the R environment once the
bsnsing library is loaded. The R scripts for conduct-
ing the subsequent experiments are not part of the
library, but will be published in a different repository.

4.3.1. Out-of-the-Box Performance Comparison. The
experiments are conducted as follows. For each data
set, we randomly split all observations into two parts,
70% for training and 30% for testing. The training set
is fed into different decision tree functions to build the
respective tree models, and then, the models are fed
into the predict functions of the respective packages
to make predictions on the test set. Accuracy and the
area under the receiver operating characteristic (ROC)
curve (AUC) values are calculated for each method
based on the prediction results. To calculate the accu-
racy, class label predictions are requested from the
predict functions, and to calculate the AUC, score (or
probability) predictions are requested from the pre-
dict functions. The whole process (i.e., random 70/30
split, training, and testing) is repeated 20 times with
documented RNG seeds for each data set, and the cor-
responding mean accuracy and mean AUC (for binary
classification) are reported in Tables 9 and 10. The
average computing time in seconds of the bsnsing
method is also reported under the CPU column in the
tables. The computing times of other methods are con-
sistently below one second for all test cases; thus, they
are omitted from the report.

There are a few points to note: (1) in each run, all
five methods were fed with the same training and test
sets, so the comparison was apple-to-apple; (2) all the
original p independent variables contained in each
data set were used—no prior variable selection was
done; and (3) the tree-building functions from all five
packages were called in the simplest form, that is,
only the “regression formula” and the training data
set were supplied as arguments in the function calls,

to produce results that represent the out-of-the-box
performance.

In Tables 9 and 10, the best accuracy andAUC values
in each data set are highlighted in italic font. In addi-
tion, the bsnsing results that are above average
among the five methods are printed in boldface. We
can see that, for binary classification tasks, the
bsnsing package is in the leading position under the
AUC category; it won 28 cases out of 57, whereas tree,
C50, ctree, and rpart won 14, 10, 8, and 3 cases, respec-
tively. The bsnsing package also scored above aver-
age in 48 data sets, that is, in 84% of all cases. Therefore,
as far as the AUC performance is concerned, bsnsing
should be the package of choice for binary classification
tasks. In terms of the accuracy metric, C50 is clearly the
leading one, winning 27 cases. For practitioners, we
comment that AUC represents a model’s ability to
correctly rank order new data points according to their
likelihood of belonging to the target class. The specific
score threshold for making classifications is usually
application-dependent, for example, depending on the
comparative costs of making an FP claim versus making
an FN claim about a given new case. In contrast, the clas-
sification accuracy measures the overall proportion of
false claims, that is, by treating FP and FN claims with
equal weight, at a chosen score threshold. Therefore, we
remark that AUC is a more well-rounded performance
metric than classification accuracy for binary classifiers.

Whereas the OPT-G model is only applicable for
binary classification, the bsnsing function can han-
dle multiclass classification tasks as well. When more
than two unique levels of the target variable are
present in the training data set, a binary classification
tree is built for each level (as the positive class) versus
all the other levels (as the negative class). In the pre-
diction stage, a score (i.e., probability prediction) is
produced from each tree, and the target level having
the greatest score is assigned as the class label for the
new case. From Table 10, we can see that bsnsing’s
multiclass performance is second only to C50. A cav-
eat is that the current way bsnsing handles multi-
class classification tasks is more ensemble learning
rather than decision tree learning, and the model’s
interpretability is not preserved.

Table 8. Multiclass Classification Data Sets

Name n p J Name n p J Name n p J

derm 366 34 6 imgsegm 210 19 7 thyroid 3,772 21 3
iris 150 4 3 Hayes 132 4 3 wine 178 13 3
smiley 500 2 4 contra 1,473 9 3 WineQuality 4,898 11 7
xor3 600 3 4 balance 625 4 3 nursery 12,960 8 5
Glass 214 9 6 soybean.l 266 35 15
optdigits 5,620 64 10 soybean.s 47 35 4
Seeds 210 7 3 tae 151 5 3

Liu: bsnsing Decision Tree Induction

16 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

Table 9. Comparison on Binary Classification Cases

Mean accuracy Mean AUC

CPUC5.0 ctree rpart tree bsnsing C5.0 ctree rpart tree bsnsing

acute1 1.000 0.903 0.912 0.994 0.896 1.000 0.957 0.932 0.996 0.970 0.1
acute2 1.000 0.954 0.958 1.000 1.000 1.000 0.989 0.965 1.000 1.000 0.0
Adult 0.864 0.847 0.832 0.832 0.825 0.887 0.894 0.818 0.852 0.870 82.0
auto 0.897 0.871 0.882 0.879 0.864 0.953 0.901 0.938 0.923 0.941 0.3
bank 0.902 0.904 0.901 0.890 0.901 0.880 0.915 0.761 0.881 0.900 71.0
banknote 0.981 0.967 0.966 0.978 0.963 0.985 0.977 0.976 0.984 0.985 0.5
birthwt 0.649 0.674 0.661 0.626 0.629 0.541 0.486 0.581 0.584 0.587 0.3
BreastCancer 0.942 0.946 0.940 0.950 0.945 0.968 0.974 0.950 0.969 0.978 0.3
circ 0.951 0.580 0.936 0.940 0.906 0.961 0.592 0.942 0.966 0.956 0.2
climate 0.922 0.920 0.929 0.921 0.925 0.810 0.809 0.809 0.757 0.813 0.6
compas 0.890 0.889 0.891 0.891 0.890 0.918 0.934 0.884 0.919 0.934 4.0
connect 0.702 0.694 0.727 0.719 0.721 0.755 0.749 0.778 0.770 0.788 2.0
credit 0.852 0.852 0.851 0.840 0.851 0.897 0.909 0.902 0.890 0.913 1.0
diam 0.923 0.477 0.890 0.906 0.906 0.947 0.503 0.919 0.944 0.953 0.3
dystrophy 0.841 0.821 0.822 0.837 0.813 0.846 0.853 0.823 0.857 0.838 0.2
Echocard 0.958 0.936 0.966 0.966 0.947 0.954 0.953 0.963 0.967 0.934 0.0
Fertility 0.882 0.893 0.865 0.850 0.860 0.545 0.535 0.578 0.635 0.664 0.1
GlaucomaMVF 0.890 0.836 0.895 0.879 0.900 0.933 0.894 0.946 0.948 0.948 1.0
grid 0.520 0.520 0.976 0.610 0.972 0.505 0.505 0.990 0.615 0.990 0.1
haberman 0.736 0.717 0.726 0.714 0.729 0.544 0.619 0.640 0.649 0.672 0.3
heart 0.777 0.752 0.792 0.766 0.768 0.811 0.805 0.822 0.808 0.822 0.4
heloc 0.706 0.696 0.700 0.697 0.698 0.749 0.757 0.706 0.736 0.758 37.0
hepatitis 0.795 0.791 0.789 0.808 0.798 0.716 0.706 0.677 0.716 0.764 0.2
HTRU2 0.979 0.979 0.978 0.977 0.977 0.948 0.974 0.909 0.969 0.966 23.0
ILPD 0.678 0.704 0.681 0.673 0.682 0.675 0.665 0.657 0.681 0.677 0.8
Ionos 0.892 0.905 0.870 0.874 0.859 0.920 0.901 0.901 0.901 0.894 1.0
magic04 0.850 0.844 0.819 0.814 0.840 0.885 0.892 0.811 0.842 0.893 106.0
mammo 0.828 0.807 0.830 0.823 0.824 0.869 0.855 0.868 0.878 0.888 0.7
Monks1 0.898 0.743 0.840 0.743 0.871 0.899 0.739 0.916 0.739 0.956 0.3
Monks2 0.925 0.650 0.750 0.656 0.607 0.973 0.492 0.800 0.540 0.598 0.7
Monks3 0.989 0.961 0.977 0.986 0.960 0.987 0.983 0.979 0.989 0.986 0.2
Mushroom 1.000 0.999 0.994 0.999 0.987 1.000 1.000 0.994 0.999 0.999 4.0
norm3p10 0.768 0.749 0.758 0.766 0.756 0.823 0.814 0.801 0.815 0.831 1.0
norm3p5 0.838 0.829 0.831 0.836 0.835 0.878 0.877 0.865 0.896 0.892 0.5
obli 0.945 0.922 0.914 0.935 0.902 0.962 0.955 0.942 0.957 0.961 0.2
ozone1 0.969 0.972 0.964 0.956 0.956 0.614 0.784 0.674 0.632 0.773 6.0
ozone8 0.930 0.932 0.930 0.923 0.922 0.777 0.805 0.750 0.712 0.795 17.0
parkins 0.854 0.847 0.861 0.868 0.858 0.837 0.819 0.854 0.868 0.842 0.4
pima 0.741 0.746 0.740 0.741 0.731 0.772 0.780 0.779 0.787 0.780 0.9
Qsar 0.839 0.807 0.822 0.818 0.819 0.862 0.850 0.841 0.860 0.872 5.0
relax 0.726 0.726 0.594 0.612 0.617 0.492 0.492 0.483 0.503 0.509 0.4
retention 0.994 0.971 0.941 0.929 0.935 0.999 0.989 0.950 0.966 0.984 6.0
ring 0.845 0.482 0.861 0.881 0.782 0.866 0.498 0.896 0.918 0.856 0.5
seismic 0.970 0.970 0.970 0.959 0.970 0.499 0.625 0.499 0.568 0.570 1.0
sh88 0.737 0.477 0.812 0.813 0.674 0.753 0.493 0.847 0.851 0.745 0.6
Sonar 0.702 0.694 0.727 0.719 0.721 0.755 0.749 0.778 0.770 0.788 2.0
spambase 0.924 0.906 0.896 0.902 0.911 0.957 0.949 0.899 0.948 0.960 27.0
SPECT 0.814 0.792 0.829 0.825 0.821 0.786 0.721 0.782 0.785 0.803 0.3
spirals 0.948 0.655 0.924 0.942 0.783 0.960 0.650 0.948 0.962 0.847 0.5
statlog.a 0.847 0.857 0.855 0.848 0.851 0.903 0.907 0.904 0.906 0.912 0.8
thoraric 0.842 0.850 0.831 0.791 0.817 0.505 0.517 0.524 0.560 0.539 0.7
tictactoe 0.923 0.825 0.901 0.880 0.803 0.974 0.915 0.961 0.953 0.869 1.0
titanic 0.777 0.787 0.781 0.782 0.782 0.705 0.748 0.710 0.710 0.725 0.2
trans 0.763 0.761 0.775 0.770 0.765 0.680 0.690 0.709 0.688 0.688 0.6
votes 0.960 0.957 0.949 0.954 0.943 0.986 0.978 0.962 0.984 0.980 0.2
wdbc 0.939 0.933 0.927 0.933 0.944 0.964 0.959 0.940 0.956 0.967 1.0
wpbc 0.722 0.726 0.692 0.692 0.730 0.562 0.592 0.586 0.586 0.625 0.9
Average 0.859 0.811 0.853 0.844 0.841 0.827 0.787 0.825 0.825 0.841 7.3

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 17

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

For bsnsing, the median time to train a binary
classification model is 0.6 seconds, tallied over the
1,140 training instances (i.e., 57 data sets, 20 instances
each), and the median time to train a multiclass classi-
fication model is 1.2 seconds, tallied over the 360 train-
ing instances. The computing time is much more
tolerable than most (if not all) MIP-based optimal clas-
sification tree methods.

4.4. Usage Notes of the bsnsing Package
Alluding to the no free lunch theorem (Wolpert and
Macready 1997), no single machine learning algorithm
is universally the best performing algorithm for all
problems. To be generally useful for classification
problems, most decision tree algorithms allow users
to control the behavior of the algorithm via choosing
values for a number of hyperparameters. Such flexibil-
ity can be a double-edged sword to the usability of an
algorithm. Seasoned users, most likely developers,
can have the convenience of experimenting with the
algorithm without changing the code, but ordinary
users unconcerned with the internal workings of the
underlying algorithm may find too many parameters
perplexing. The large, sometimes infinite, value space
of hyperparameters also presents practical challenges
to automated parameter-tuning processes. For exam-
ple, a clear-cut valley point of the generalization error
curve in the bias–variance trade-off analysis (see chap-
ter 2 of James et al. 2014) may be difficult to identify,
especially when the available training samples are rel-
atively few in a high-dimensional feature space.

To ease the usage, we provide some guidance for
parameter selection for the bsnsing algorithm from
an ordinary user’s perspective. The most important

parameters for bsnsing are max.rules and
node.size. For max.rules, we recommend using
the default value of two for a good balance between
training speed and model performance. A higher
value increases the solution time of OPT-G particu-
larly at the root node as is observed in Table 3. In the
meantime, a higher value does not necessarily translate
to a better classification performance because of the heu-
ristic nature of the recursive partitioning process. For
node.size, we recommend using the default value of
zero first, meaning to set the minimum node size
dynamically. A larger value of node.size leads to a
smaller (thus, more interpretable) tree but might under-
fit the data, whereas a smaller value leads to a bigger
tree and might leave some true patterns undistin-
guished. If it is known that strong, learnable patterns
exist in a data case, then manually setting node.size

to a small value, that is, some positive integer smaller
than

��
n

√
, is likely to improve the classification perform-

ance over the default setting. Finally, if interpretability is
unimportant, an ensemble of several bsnsing trees
each trained with different hyperparameter values can
effectively boost the performance.

Let us look at some concrete examples. We notice
from Table 9 that, on three data sets, namely, Monks2,
spirals, and tictactoe, bsnsing performed especially
poorly compared with the best performing method.
This suggests that discoverable patterns exist in these
data sets and bsnsing could be configured more flex-
ible at discovering them. Indeed, if we reduce the
node.size value, a significant improvement in the
out-of-sample performance can be realized for three
cases as shown under the “Improved” columns in
Table 11. A greater improvement is also achieved by

Table 10. Comparison on Multiclass Classification Cases

n p J

Mean accuracy

CPUC5.0 ctree rpart tree bsnsing

balance 625 4 3 0.782 0.776 0.771 0.769 0.816 1.4
contra 1,473 9 3 0.514 0.537 0.547 0.520 0.525 5.0
derm 366 34 6 0.949 0.934 0.928 0.923 0.915 1.6
Glass 214 9 6 0.664 0.606 0.661 0.649 0.649 1.2
Hayes 132 4 3 0.825 0.494 0.625 0.745 0.698 0.5
imgsegm 210 19 7 0.864 0.784 0.843 0.848 0.828 1.1
iris 150 4 3 0.934 0.941 0.930 0.936 0.945 0.2
nursery 12,960 8 5 0.992 0.974 0.874 0.858 0.903 21.7
optdigits 5,620 64 10 0.902 0.844 0.768 0.774 0.897 70.8
Seeds 210 7 3 0.912 0.879 0.900 0.922 0.922 0.3
smiley 500 2 4 0.990 0.986 0.992 0.992 0.985 0.2
soybean.l 266 35 15 0.886 0.699 0.655 0.779 0.631 2.3
soybean.s 47 35 4 0.975 0.482 0.579 0.950 0.986 0.2
tae 151 5 3 0.507 0.379 0.478 0.489 0.455 0.8
thyroid 3,772 21 3 0.997 0.993 0.996 0.997 0.962 1.6
wine 178 13 3 0.920 0.897 0.889 0.921 0.911 0.3
WineQuality 4,898 11 7 0.574 0.532 0.532 0.513 0.534 39.3
xor3 600 3 4 0.711 0.217 0.956 0.709 0.931 1.1
Average 0.828 0.720 0.773 0.794 0.810 8.3

Liu: bsnsing Decision Tree Induction

18 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

the ensemble approach in which we trained a total of
nine trees with parameter combinations of max.

rules ∈ [1, 2, 3] and node.size ∈ [0, 1, 10]. The class
membership prediction is the result of majority voting,
and the score prediction is the average of the scores
predicted by the nine trees in the ensemble. The total
time (in seconds) taken to train the nine trees remains
quite manageable as shown in the column CPU in
Table 11. More detailed usage examples with sample
code are provided in the online appendix.

5. Conclusion and Future Work
In this paper, we propose a new method for classifica-
tion tree induction that combines mathematical opti-
mization with the recursive partitioning framework.
The method optimally selects a boolean combination
of multiple variables to maximize the Gini reduction in
each node split. The split optimization model is the
first that is able to maximize the well-justified but non-
linear Gini reduction metric in a mixed-integer linear
program. We develop an efficient search algorithm
to solve realistically regulated instances faster than
commercial optimization solvers, making the overall
solution scheme as well as the R package bsnsing

more accessible to both practitioner and developer
communities. Evaluation results suggest that the
bsnsing package can generate the best AUC perform-
ance among other decision tree packages in R at the
cost of a median training time of a few seconds.

A central theme in the design of classification tree
algorithms is making trade-offs to strike a balance
among competing objectives, such as speed, accuracy,
and interpretability. We believe that optimization
modeling is no substitute for the recursive partition-
ing framework; however, it can alleviate some struc-
tural restrictions via answering key design questions
in a new light. One of the benefits of using mathemati-
cal optimization in decision tree induction is that it
makes the process more tractable and justifiable. As
observed in previous works and in this paper, prop-
erly regularized optimal trees do not lead to overfit-
ting. Therefore, decision tree optimization is worthy
of further development.

Several aspects of the present work can be extended.
First, the OPT-Gmodel exhibits a clear sparsity pattern
that may be exploited to expedite the solution. For

instance, it is possible to adapt the bounding technique
in the ENUM algorithm to the branch-and-bound
framework via adding user cuts and to develop multi-
ple branch-and-bound trees for parallel computing.
However, this requires the use of advanced callback
functions, which are not currently supported in R APIs
(for both Gurobi and CPLEX). Implementation in other
languages could exploit these possibilities. Second, the
feature binarization process is unoptimized, and the
actual utility of the candidate split rules are unquanti-
fied. It is possible that a good proportion of the candi-
date rules are dominated by others and, hence, need
not be generated in the first place. Future research
could explore the column-generation paradigm to gen-
erate high-value binary features on the fly during the
optimal selection process.

Acknowledgments
The author thanks the area editor Dr. Ram Ramesh, the
associate editor, and three anonymous reviewers for their
critical and constructive review comments that helped
improve the quality of this work.

Appendix. Usage Demonstration of the

bsnsing Package
To install the bsnsing package, an R user can run
this command: install.packages(“bsnsing”). The
following code snippet demonstrates a stylized use case of
building and evaluating a decision tree model.

1 library (bsnsing)
2 set.seed(2021) # Set seed for RNG in the sample()

function
3 n <- nrow(BreastCancer)
4 trainset <- sample(1:n, 0.7 * n) # randomly sample 70%
for training

5 testset <- setdiff(1:n, trainset) # the remaining is for
testing

6 # Build a tree to predict Class, using all default options
7 bs <- bsnsing(Class~., data � BreastCancer[trainset,])
8 summary(bs) # display the tree structure, see Figure A.2
9 pred <- predict(bs, BreastCancer[testset,], type�‘class’)
10 actual <- BreastCancer[testset, 'Class']
11 table(pred, actual) # display the confusionmatrix
12 # Plot the ROC curve and display the AUC
13 ROC_func(data.frame(predict(bs, BreastCancer[testset,]),
14 BreastCancer[testset,'Class']),
15 2, 1, pos.label � 'malignant', plot.ROC�T)
16 # Plot the tree to PDF file and generate the latex source

code

Table 11. Improve the bsnsing Performance via Changing node.size and Using Ensemble

Original Improved Ensemble

Accu AUC Accu AUC Parameter Accu AUC CPU

Monks2 0.607 0.598 0.895 0.898 node.size�1 0.736 0.921 8.8
spirals 0.783 0.847 0.927 0.943 node.size�3 0.911 0.974 5.0
tictactoe 0.803 0.869 0.911 0.934 node.size�3 0.920 0.982 12.0

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 19

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

17 plot(bs, file�‘./bsnsing_test/fig/BreastCancer.pdf’) #
see Figure A.3 left

The model summary (generated by line 8) prints out
the tree structure as well as node information in plain
text, shown in Figure A.1. We can read from the printout,
for example, that the root node (node 0) is classified as 0
(benign) with probability 0.6585 and 100% of all training
observations fall in this node of which 167 observations
are class 1 and 322 observations are class 0. The confusion
matrix on the training set is given at the end of the sum-
mary print. Detailed information of the bsnsing tree
object can be accessed by the R command str(bs).

The bsnsing package implements the S3 method plot

for plotting the bsnsing object (see line 17). If a file name is

provided (as shown in code), the function saves the latex
scripts (that utilize the tikz package) to a .tex file and
attempts to build the .ps and .pdf files by calling latex,

dvips, and ps2pdf commands if they are installed. The
plot is shown in Figure A.2 left. Each node is represented by
a circle with the node number printed inside the circle. The
color of a leaf node indicates its predicted class, green for
positive (class 1) and red for negative (class 0). The split rule
is shown on the left of each internal node in blue, and the
class 1 probability of the node is shown on the right of the
node. At the bottom of each leaf node, the predicted label (in
this case, malignant or benign), along with the number of
training observations that fall in the node, is printed. Of
course, these features can be easily customized and

Figure A.1. (Color online) Summary Display of the bsnsing Tree for the BreastCancer Data Set

Figure A.2. (Color online) Discriminability vs. Interpretability

Note. The left tree is built with the default options, and the right tree is built with option no.same.gender.children � true.

Liu: bsnsing Decision Tree Induction

20 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

extended by other developers. The right side of Figure A.2
plots a smaller tree generated on the same training set with
the option no.same.gender.children � true to sup-
press splits that generate child nodes having the same
majority class. Figure A.3 compares the ROC curves of these
two trees. In these particular cases, some substantial
improvement in interpretability is only accompanied by a
slight drop in AUC, so the smaller tree (in the author’s opin-
ion) is preferred. Try-and-compare is a common practice in
predictive analytics, and the bsnsing library is generally fast
enough and flexible enough to support such practice.

Endnotes
1 The phrase “search tree” is an analogy; in implementation, a

queue is used for storing yet-to-explore solutions.
2 Setting opt.solver � “enum_c” invokes the compiled code

(written in C) implementing the ENUM algorithm as opposed to

using the plain R implementation, which can be invoked by setting

opt.solver � “enum”.
3 The regularization parameter in GOSDT is the multiplier on the

number-of-leaves term in the two-term objective function to be

minimized, whereas the other term is the training accuracy (with

multiplier one).
4 Without the time limit, OSDT would, in many cases, exhaust the

computer memory before terminating.

References
Aghaei S, Gomez A, Vayanos P (2020) Learning optimal classifica-

tion trees: Strong max-flow formulations. Preprint, submitted

May 13, https://arxiv.org/abs/2002.09142.
Aglin G, Nijssen S, Schaus P (2020) Learning optimal decision trees

using caching branch-and-bound search. Proc. Conf. AAAI Arti-

ficial Intelligence, vol. 34, 3146–3153.

Agrawal R, Imielinski T, Swami A (1993) Mining association rules
between sets of items in large databases. Proc. 1993 ACM SIG-
MOD Internat. Conf. Management Data, 207–216.

Alaradi M, Hilal S (2020) Tree-based methods for loan approval.
2020 Internat. Conf. Data Analytics Bus. Indust. Way Toward Sus-
tainable Econom., 1–6.

Angelino E, Larus-Stone N, Alabi D, Seltzer M, Rudin C (2017)
Learning certifiably optimal rule lists. Proc. 23rd ACM SIGKDD
Internat. Conf. Knowledge Discovery Data Mining, (Association for
Computing Machinery, New York), 35–44.

Bertsimas D, Dunn J (2017) Optimal classification trees. Machine
Learn. 106(7):1039–1082.

Bertsimas D, Chang A, Rudin C (2012) An integer optimization
approach to associative classification. Proc. Neural Inform. Proc-
essing Systems, 269–277.

Bertsimas D, Dunn J, Pawlowski C, Zhuo YD (2019) Robust classifi-
cation. INFORMS J. Optim. 1(1):2–34.

Borgelt C (2012) Frequent item set mining. Wiley Interdisciplinary
Rev. Data Mining Knowledge Discovery 2(6):437–456.

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and
Regression Trees (Taylor & Francis).

Dua D, Graff C (2017) UCI machine learning repository. Accessed
December 15, 2021, http://archive.ics.uci.edu/ml.

FICO (2018) Explainable machine learning challenge. Accessed
December 15, 2021, https://comm unity.fico.com/s/explainable-
machine-learning-challenge.

Ghiasi MM, Zendehboudi S, Mohsenipour AA (2020) Decision tree-
based diagnosis of coronary artery disease: Cart model. Comput.
Methods Programs Biomedicine 192:105400.

Goh ST, Rudin C (2014) Box drawings for learning with imbalanced
data. Proc. 20th ACM SIGKDD Internat. Conf. Knowledge Discov-
ery Data Mining, (Association for Computing Machinery, New
York), 333–342.

Holte RC (1993) Very simple classification rules perform well on
most commonly used datasets. Machine Learn. 11(1):63–90.

Hu X, Rudin C, Seltzer MI (2019) Optimal sparse decision trees.
Preprint, submitted April 29, https://arxiv.org/abs/1904.
12847.

Hyafil L, Rivest RL (1976) Constructing optimal binary decision
trees is NP-complete. Inform. Processing Lett. 5(1):15–17.

James G, Witten D, Hastie T, Tibshirani R (2014) An Introduction to
Statistical Learning: With Applications in R (Springer Publishing
Company, Inc.).

Kass GV (1980) An exploratory technique for investigating large
quantities of categorical data. J. Roy. Statist. Soc. Ser. C Appl. Sta-
tist. 29(2):119–127.

Letham B, Rudin C, McCormick TH, Madigan D (2015) Interpret-
able classifiers using rules and Bayesian analysis: Building
a better stroke prediction model. Ann. Appl. Statist. 9(3):
1350–1371.

Lin J, Zhong C, Hu D, Rudin C, Seltzer M (2020) Generalized and
scalable optimal sparse decision trees. Internat. Conf. Machine
Learn., 6150–6160.

Liu B, Hsu W, Ma Y (1998) Integrating classification and association
rule mining. Proc. Fourth Internat. Conf. Knowledge Discovery
Data Mining, 80–86.

Loh WY (2009) Improving the precision of classification trees. Ann.
Appl. Statist. 3(4):1710–1737.

Malioutov D, Varshney K (2013) Exact rule learning via boolean
compressed sensing. Dasgupta S, McAllester D, eds. Proc.
30th Internat. Conf. Machine Learn., vol. 28 (PMLR, Atlanta),
765–773.

Mandala IGNN, Nawangpalupi CB, Praktikto FR (2012) Assessing
credit risk: An application of data mining in a rural bank. Proce-
dia Econom. Finance 4:406–412.

Nijssen S, Fromont E (2007) Mining optimal decision trees from item-
set lattices. Proc. 13th ACM SIGKDD Internat. Conf. Knowledge

Figure A.3. (Color online) ROC Curves Constructed on 210
Test Cases of the BreastCancer Data Set for Two bsnsing
Trees

Note. The large tree was built with the default options, and the small
tree with option no.same.gender.children � true.

Liu: bsnsing Decision Tree Induction

INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS 21

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

Discovery Data Mining (Association for Computing Machinery,
NewYork), 530–539.

Nijssen S, Fromont E (2010) Optimal constraint-based decision tree
induction from itemset lattices. Data Mining Knowledge Discovery
21(1):9–51.

Quinlan JR (1993) C4.5: Programs for Machine Learning (Morgan
Kaufmann Publishers Inc., San Francisco).

Quinlan JR, Cameron-Jones RM (1995) Oversearching and layered
search in empirical learning. Proc. 14th Internat. Joint Conf. Artifi-
cial Intelligence, vol, 2 (Morgan Kaufmann Publishers Inc., San
Francisco), 1019–1024.

Rijnbeek PR, Kors JA (2010) Finding a short and accurate decision
rule in disjunctive normal form by exhaustive search. Machine
Learn. 80(1):33–62.

Sorensen EH, Miller KL, Ooi CK (2000) The decision tree approach
to stock selection. J. Portfolio Management 27(1):42–52.

Street WN (2005) Oblique multicategory decision trees using nonlin-
ear programming. INFORMS J. Comput. 17(1):25–31.

Tan P-N, Steinbach M, Kumar V (2005) Introduction to Data Mining,
1st ed. (Pearson).

Tanner L, Schreiber M, Low JGH, Ong A, Tolfvenstam T, Lai YL,
Ng LC, et al. (2008) Decision tree algorithms predict the
diagnosis and outcome of dengue fever in the early phase of
illness. PLOS Neglected Tropical Diseases 2(3):1–9.

Verhaeghe H, Nijssen S, Pesant G, Quimper C-G, Schaus P (2020)
Learning optimal decision trees using constraint programming.
Constraints 25:1–25.

Verwer S, Zhang Y (2017) Learning decision trees with flexible con-
straints and objectives using integer optimization. Salvagnin D,
Lombardi M, eds. Integration of AI and OR Techniques in Con-
straint Programming (Springer International Publishing, Cham,
Switzerland), 94–103.

Verwer S, Zhang Y (2019) Learning optimal classification trees using
a binary linear program formulation. Proc. 33rd AAAI Conf.
Artificial Intelligence (AAAI Press), 1625–1632.

Wang T, Rudin C, Doshi-Velez F, Liu Y, Klampfl E, MacNeille P
(2017) A Bayesian framework for learning rule sets for inter-
pretable classification. J. Machine Learn. Res. 18(70):1–37.

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. IEEE Trans. Evolutionary Comput. 1(1):67–82.

Yang H, Rudin C, Seltzer M (2017) Scalable Bayesian rule lists. Pre-
cup D, the YW, eds. Proc. 34th Internat. Conf. Machine Learn.,
vol. 70 (PMLR), 3921–3930.

Zhu H, Murali P, Phan DT, Nguyen LM, Kalagnanam J (2020) A
scalable MIP-based method for learning optimal multivariate
decision trees. Larochelle H, Ranzato MA, Hadsell R, Balcan
MF, Lin HT, eds. Adv. Neural Inform. Processing Systems 33:
Annual Conf. Neural Inform. Processing Systems 2020.

Liu: bsnsing Decision Tree Induction

22 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
4
1
.2

1
7
.2

4
0
.1

7
7
]

o
n
 2

7
 J

u
ly

 2
0
2
2
,
at

 0
6
:5

9
 .
 F

o
r

p
er

so
n

al
 u

se
 o

n
ly

,
al

l
ri

g
h
ts

 r
es

er
v
ed

.
Published in INFORMS Journal on Computing on July 27, 2022 as DOI: 10.1287/ijoc.2022.1225.
This article has not been copyedited or formatted. The final version may differ from this version.

	s1
	s2
	TF1
	s3
	s3A
	s3B
	s3C
	s3D
	s3E
	s4
	s4A
	s4A1
	s4A2
	s4B
	TF185
	TF122
	s4C
	s4C3
	s4D
	s5

