This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

ToupleGDD: A Fine-Designed Solution of Influence
Maximization by Deep Reinforcement Learning

Tiantian Chen™, Siwen Yan", Jianxiong Guo*, Member, IEEE, and Weili Wu", Senior Member, IEEE

Abstract— Aiming at selecting a small subset of nodes with
maximum influence on networks, the influence maximization
(IM) problem has been extensively studied. Since it is #P-hard to
compute the influence spread given a seed set, the state-of-the-art
methods, including heuristic and approximation algorithms, are
faced with great difficulties such as theoretical guarantee, time
efficiency, generalization, and so on. This makes it unable to adapt
to large-scale networks and more complex applications. On the
other side, with the latest achievements of deep reinforcement
learning (DRL) in artificial intelligence and other fields, lots of
work have been focused on exploiting DRL to solve combinatorial
optimization (CO) problems. Inspired by this, we propose a novel
end-to-end DRL framework, ToupleGDD, to address the IM
problem in this article, which incorporates three coupled graph
neural networks (GNNs) for network embedding and double deep
O-networks (DQNs) for parameters learning. Previous efforts
to solve the IM problem with DRL trained their models on
subgraphs of the whole network and then tested them on the
whole graph, which makes the performance of their models
unstable among different networks. However, our model is
trained on several small randomly generated graphs with a small
budget and tested on completely different networks under various
large budgets, which can obtain results very close to IMM and
better results than OPIM-C on several datasets and shows strong
generalization ability. Finally, we conduct a large number of
experiments on synthetic and realistic datasets and experimental
results prove the effectiveness and superiority of our model.

Index Terms—Deep reinforcement learning (DRL), general-
ization, graph neural networks (GNNs), influence maximization
(IM), social network.

I. INTRODUCTION

NLINE social platforms, such as Twitter and LinkedlIn,
have shown to be one of the most effective ways for
people to communicate and share information with each other.
Many companies have turned to social networks as a primary
way of promoting products and use “word of mouth” effects to

Manuscript received 6 November 2022; revised 7 March 2023;
accepted 26 April 2023. This work was supported in part by the NSF under
Grant 1907472 and Grant 1822985 and in part by the National Natural
Science Foundation of China (NSFC) under Grant 62202055. (Tiantian Chen
and Siwen Yan contributed equally to this work.) (Corresponding author:
Jianxiong Guo.)

Tiantian Chen, Siwen Yan, and Weili Wu are with the Department
of Computer Science, The University of Texas at Dallas, Richardson,
TX 75080 USA (e-mail: tiantian.chen @utdallas.edu; siwen.yan @utdallas.edu;
weiliwu@utdallas.edu).

Jianxiong Guo is with the Advanced Institute of Natural Sciences,
Beijing Normal University, Zhuhai 519087, China, and also with the
Guangdong Key Laboratory of Al and Multi-Modal Data Processing,
BNU-HKBU United International College, Zhuhai 519087, China (e-mail:
jianxiongguo@bnu.edu.cn).

Digital Object Identifier 10.1109/TCSS.2023.3272331

maximize product influence. To maximize earned profits, com-
panies may apply a variety of methods, such as distributing
free samples or coupons. Many works have focused on the
diffusion phenomenon on social networks. Kempe et al. [1]
first formally defined the influence maximization (IM) prob-
lem as a combinatorial optimization (CO) problem and
presented the independent cascade (IC) model and linear
threshold (LT) model to depict the information diffusion
process.

It has been proved IM is NP-hard, and the objective (influ-
ence spread) is monotone and submodular under IC and LT
models [1]. Kempe et al. [1] used a Greedy algorithm to solve
IM, which selects the node with a maximum marginal gain of
influence spread and can achieve (1 — 1/e — €)-approximation
ratio. However, it is #P-hard to compute the influence spread
of a seed set under both IC [2] and LT model [3]. The hardness
of estimating the influence spread lies in the randomness of
the probabilistic diffusion models, that is, random choices
and diffusion paths. The key to approximating the influence
spread is to effectively and efficiently sample diffusion paths.
Kempe et al. [1] used the Monte Carlo method to simulate
diffusion paths, which can obtain good estimations when sim-
ulation times are large enough. But it is too time-consuming.
Borgs et al. [4] first proposed a novel reverse influence sam-
pling (RIS) technique to reduce the running time. However,
RIS still incurs significant computational overheads in practice
to obtain a good solution. Subsequently, a series of algo-
rithms based on RIS were proposed, such as TIM/TIM+ [5],
IMM [6], SSA/D-SSA [7], and OPIM-C [8], which can
achieve (1 —1/e — €)-approximation solution with high proba-
bility when the number of generated random reachable reverse
(RR) sets are large enough and were recognized as the state-
of-the-art methods to solve IM. However, these algorithms,
such as IMM, still have scalability issues in large insurance
networks.

On the other hand, the development of deep learning and
reinforcement learning (RL) has blossomed in the last few
years, resulting in an increasing number of works addressing
the CO problem by learning-based methods. A natural question
is: can we estimate the influence spread by learnable para-
metric function and avoid costly sampling random RR sets?
The answer is Yes. Khalil et al. [9] first designed an end-
to-end deep RL (DRL) framework, S2V-DQN, to solve the
common CO problem. Then, Manchanda et al. [10] proposed
a supervised deep-learning-based model for the CO problem,
called GCOMB, where IM was used as an example to test the

2329-924X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

performance. However, the exact value of influence spread is
not available, and therefore, no accurate target value can be
used for supervised learning. On the contrary, Li et al. [11]
presented an end-to-end DRL model, called PIANO, by revis-
ing S2V-DQN [9]. PIANO is trained on subgraphs of the
entire network and then tested on the entire network, which
makes it not able to generalize on nonhomogeneous networks
with different topological characteristics. To address the above
drawbacks, we integrate the latest strategies and design a new
solution framework for IM.

In this article, we model the IM problem as an RL prob-
lem, which aims to find the optimal policy of selecting b
seeds (b action sequences) to maximize the influence spread
(cumulative rewards) of these b seeds. However, the exact
Q value in this RL is not available, and therefore deep
Q-network [12] (DQN) is a natural solution to solve this
issue. Instead of using DQN, we use its improvement double
DQN (DDQN) [13], which can avoid the over-optimistic issue
of a simple DQN and achieve better performance. On the
other hand, except for the network topology structure, the
function approximator in DDQN also needs to well capture
the crucial influence cascading effects in IM, which makes
it more challenging. The cascading effect represents that the
activation of a node will trigger its neighbors in a successive
manner, forming a diffusion cascade on social networks.
This is consistent with the message-passing effect in graph
neural networks (GNNs) [14]. Therefore, based on these two
techniques, in this article, we propose a novel end-to-end
DRL framework, called ToupleGDD (Three Coupled Graph
Neural Networks with Double Deep Q-networks), to solve
the IM problem, which incorporates three coupled GNNs
for network embedding and DDQN technique for parame-
ter learning. The main contributions can be summarized as
follows.

1) To the best of our knowledge, we are the first to
present such an end-to-end framework, ToupleGDD,
which combines coupled GNNs and the DRL method
to effectively solve the IM problem.

2) We propose a personalized DeepWalk (PDW) method
to learn initial node embedding as input features for the
following customized GNN layer, which considers both
local and global influence contexts of nodes.

3) To capture the crucial cascading effects of information
diffusion and network topology, we design three coupled
GNNs to learn node embeddings.

4) Extensive experiments are conducted on synthetic graphs
and real-world datasets. Empirical results show that our
model can achieve performance very close to IMM and
even outperform OPIM-C on several datasets, which
demonstrates the superiority and effectiveness of our
proposed model.

Organization: Section II reviews the related works.
Section III presents some preliminaries and frameworks of
the ToupleGDD model. The two main parts of ToupleGDD:
network embedding and RL formulation, are introduced in
Section IV and V, respectively. Section VI is dedicated to
experiments and results. Section VII concludes the article.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

II. RELATED WORKS
A. Influence Maximization

Kempe et al. [1] first formulated IM as a CO problem and
presented a (1 — 1/e — €)-approximation algorithm, Greedy,
by applying Monte Carlo method to estimate the expected
spread of a seed set. But it is too time-consuming. Borgs
et al. [4] made a breakthrough for this issue with the RIS
technique, which guaranteed (1 — 1/e — ¢€)-approximation
solutions and significantly reduced the expected running time.
Subsequently, a series of more efficient randomized approx-
imation algorithms were proposed, such as TIM/TIM+ [5],
IMM [6], SSA/D-SSA [7], OPIM-C [8], and HIST [15]. They
not only can provide (1 — 1/e — €)-approximation solution
but also is efficient even on billion-size networks, which are
state-of-the-art approximation algorithms for IM. Later, these
algorithms are widely used to solve variations of IM, such
as [16], [17].

B. ML/RL for CO

Recent advancements in deep learning and RL has resulted
in an increasing number of works addressing IM by learning-
based methods. Since IM can be formulated as a CO problem,
many works aiming for CO problems have used IM as an
example to test the performance of their models. Khalil
et al. [9] first proposed a DRL model for CO problems,
called S2V-DQN, which utilized the graph embedding method,
structure2vec [18], to encode nodes states to formulate the
value approximator, and the fit Q-learning to select the node
to add to the current seed set. Li et al. [19] approximated the
solution quality by graph convolutional networks and applied
a learning framework based on guided tree search. Manchanda
et al. [10] proposed a supervised deep-learning-based model,
GCOMB, for CO problems over large graphs. By introducing
a supervised learning step into the Q-learning framework,
GCOMB can predict the quality of nodes and filter out “bad
nodes” at an early step. Instead of solving CO problems on
the entire graph, [20] and [21] are focused on how to prune
the graph and discover a subgraph that can act as a surrogate
to the entire graph. For readers interested in more works of
CO, refer to [22], [23] and [24] for detailed reviews.

C. ML/RL for IM

Fan et al. [25] proposed the DRL model for network
dismantling problem, FINDER, which aimed to find key
players in complex networks, and applied GraphSAGE as
the function approximator for DQN. Kamarthi et al. [20]
utilized deep Q-learning for discovering the subgraph and
solved the IM problem on the subgraph and utilized the
selected influential node set as the seeds on the complete
graph. There were some researches [26], [27], [28] focusing on
using DRL to solve the competitive IM problem, which aims
to find an optimal strategy against a competitor to maximize
the commutative reward under the competition against other
agents. Besides, [29], [30] considered the contingency-aware
IM problem, where there is a probability of a node willing
to be seeded when selected as a seed node. Tian et al. [31]

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: ToupleGDD: A FINE-DESIGNED SOLUTION OF IM BY DRL

proposed a DIEM model for the topic-aware IM problem,
which aims to maximize the activated number of nodes under
the specific query topics. DIEM modified the structure2vec
method [18] for network embeddings and utilized DDQN with
prioritized experience replay to learn parameters. The work
most related to ours is [11], which proposed a DRL model,
called PIANO, for the IM problem, and presented with small
modification from S2V-DQN [9].

D. Comparisons of Related Models to Our Model

FINDER model [25] was proposed for network dismantling
problem and cannot work on directed graphs and weighted
graphs. However, our model can work on undirected graphs
and different edge weight settings. The GCOMB frame-
work [10] was based on supervised learning which introduced
large extra computational overhead and efforts of hand-crafting
the learning pipeline, while our model can learn parameters
end-to-end. PIANO method [11] applied structure2vec to learn
node embeddings, while we designed three coupled GNNs to
learn the network representation. Additionally, both GCOMB
and PIANO are trained on subgraphs of the entire graph and
tested on the rest of the entire network, which makes them
graph-specific. However, our ToupleGDD model does not have
this limitation and performs well on different training and
testing datasets, which shows more generalization ability.

III. PRELIMINARIES AND FRAMEWORK
A. Background

The social network is usually represented by a directed
graph G = (V, E), where V denotes the node (user) set
and E is a set of relationships between nodes. For an edge
(u, v) € E, u is called the in-neighbor of v, and v is called the
out-neighbor of u. For a node v, denote by Nj,(v) and Nyy(v)
the in-neighbor set and out-neighbor set of v, respectively.
There are many diffusion models to describe the information
propagation process on the social network. Since the IC model
will be used in our experiments, we will introduce it here.

Definition 1 (IC Model): Given G = (V, E) with weight
function p : E — [0, 1], where p,, represents the propagation
probability when u tries to activate v by edge (u, v). The IC
model considers a timestamped propagation process: 1) each
node has two possible states: active and inactive; 2) initially,
all nodes in seed set S are activated and all other nodes are set
inactive; 3) if a node u is first activated at timestamp ¢, then
u will try to activate its inactive out-neighbor v at timestamp
t + 1 with successful probability p,,. After timestamp ¢ + 1,
u cannot activate any of its out-neighbors; and 4) once a node
is activated, it remains active in the following timestamps.

The diffusion process will continue until there is no more
node activated. Given a seed set S, denote by /(S) the number
of activated nodes when the diffusion process terminates. Let
o (S) be the expected number of nodes that can be activated
by S. That is, o (S) = E[/(S)] and o (S) is called the influence
spread of S.

Definition 2 (IM): Given a social network G = (V, E),
a positive integer b, and a diffusion model, IM aims to find

a small set S of nodes as seeds with |S| < b, which has the
maximum influence spread.

Denote by o (v; S) = o (S U {v}) — o (S) the marginal gain
obtained by adding v into a seed set S. Let S, be the currently
selected seed set. The greedy algorithm will select the node
which can achieve the maximum of o (v; S;) as the next seed.
However, computing the influence spread of a seed set is #P-
hard under the IC [2], resulting in the difficulty of calculating
the marginal gain. Instead of generating a large number of
RR sets such as in the state-of-art approximation algorithms,
in this article, we regard IM as an RL problem, which aims to
find an optimal policy to select k nodes or k action sequence
with the maximum influence spread. In this case, the marginal
gain can be considered as the value function in RL, whose
value is difficult to be obtained in our problem. To address
this issue, we approximate the value function (marginal gain)
by a parameterized function through the DRL method.

Definition 3 (Learning-Based IM Problem): It can be
divided into two phases.

1) Learning Phase: Given a set of training graphs G =
{G1, G, ..., G}, diffusion model i and influence
spread function o : § — R™, train a group of parameters
©® such that 6 (v, S; ®) could approximate o (v; S) as
accurately as possible.

2) Testing Phase: Given a target social network G, the
learned parameters ® and an integer b, solve the IM
problem with respect to budget » under some diffusion
model .

As a special type of RL, DRL applies deep neural networks
for state representation and function approximation for value
function, policy, transition model, or reward function. In this
article, we use GNNs to obtain node embeddings and formu-
late the parameterized function using node embeddings, where
all parameters are learned by DDQN.

B. General Framework of GNN

As an effective framework of node embedding learning,
GNNs usually follow a neighbor-aggregation strategy, where
the embedding of a node is updated by recursively aggregating
embedding from its neighborhood. Formally, u’s embedding at
the k + 1th layer F**1 is updated by the following equation:

m{,,, = AGGREGATE® (F® : v € N'(u))
F**1 = UPDATE(F® mf/)(u))

u

where AGGREGATE and UPDATE are neural networks and
N (u) is u’s neighborhood.

C. Framework of ToupleGDD

In this section, we present the proposed framework Tou-
pleGDD, which solves the IM problem by incorporating three
coupled GNNs and DDQNs. The framework of ToupleGDD
is illustrated in Fig. 1. Given a set of training graphs G =
{G1, G, ..., G.}, we first apply the PDW method to get the
initial node embedding, since it has been found that deep
walk embedding rather than randomly initialized embedding is
vital for stable training of Geometric-DQN, which also works

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

well in our model and will be shown in experiments. Then
GNN and attention mechanism are combined to learn node
embeddings. Specifically, three coupled GNNs (ToupleGNN)
are designed to capture the cascading effect of informa-
tion diffusion. After K iterations of ToupleGNN, we use
the obtained node embedding to construct the parameterized
function Q(v, S; ®) and use the RL technique to learn the
parameters. Instead of using DQN, we apply the DDQN to
learn the parameters ® for O(v, S; ®) to approximate the
marginal gain o (v; §) and adopt e-greedy policy to select
the next seed. The reason why we use DDQN will also be
explained through experiments.

IV. REPRESENTATION: NODE EMBEDDING

As a way of representing the node as a vector, node
embeddings can capture the network topology. For our IM
problem, more importantly, node embeddings need to capture
the influence cascading effects, which represent that the acti-
vation of a node will successively trigger its out-neighbors,
forming a diffusion cascade on networks. For a target node,
whether it will be activated is intrinsically governed by three
components: the states of in-neighbors, the influence capacity
of in-neighbors, and its tendency to be influenced by in-
neighbors. In this sense, the cascading effect is intrinsically
the iterative interplay between node states, nodes’ influence
capacity, and nodes’ tendency to be influenced by others.
Therefore, for each node u, we include three parts in u’s
embedding: X,, S,, and T,, where X, € R indicates the
activation state of node u, S, € R/ is the capacity of u to
influence other users, and 7, € R’ is the tendency of being
activated by other users.

A. Initial Embedding Learning

Instead of randomly generating initial embeddings, we pro-
posed the PDW method to learn embeddings as input features
for the following GNN layer. The main part of PDW is
to generate node contexts and then utilize the skip-gram
technique to predict contexts for a given node. Inspired by the
Inf2vec model [32], for node u € V, our method includes two
parts as u’s influence context C,: local and global influence
context, where local context is a sampled set of nodes that can
be activated by u and global contexts are sampled from the r-
hop out-neighbors of u. To limit the size of node contexts,
assume the length threshold of the node context is L and
o € [0,1]. For a node u, we use random walk with restart
(RWR) strategy (restart probability is set as 0.15 in this article)
to obtain the local influence context L, of node u, and the walk
will stop when threshold «- L is reached. After generating local
contexts, we randomly sample (1 —«)- L nodes from the r-hop
out-neighbor set N/, of u as global influence context G,.

Given a user u, the probability of user v being influenced
by user u is formulated as a softmax function by their node
embeddings: Pr(v|u) = eX«STHXv/7(y), where Z(u) =
> ey €S TutXo g the normalization term. Assume users
in C, are independent of each other, then the probability
of observing context C, conditioned on u’s embedding is
Pr(Cylu) = yec, Pr(viu).

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

We will sample a set of influence contexts, D =
{(u1,Cy)), ..., (ug, Cuq)} from social network G. We consider
all the observed influence contexts and attempt to maximize
the log probability of them

max Z ZlogPr(v|u). (D

(u,C,)eD veC,

However, it is time-consuming to compute Z(u) directly
since we need to enumerate each w € V. In this article,
we utilize the negative sampling technique, which is popularly
used to compute softmax functions. Instead of enumerating all
nodes, the negative sampling method only considers a small set
of sampled nodes. For each node u € V, we randomly generate
a small set of nodes N as negative instances to approximate
the softmax function

log Pr(v|u) ~ logo(z,) + Z log o (—zy) 2

weN

where z, = X, - Sy - Ty + Xy, 20y = Xy - Sy - Ty + Xy, and
o(x) =1/(1 + exp(—x)) is the sigmoid function.

The stochastic gradient descent (SGD) method is applied to
learn all the parameters. In each step, we update the parameters
@ by calculating the gradient

ad
D« b+ nﬁ(log Pr(viu)) 3)
where 7 is the learning rate and (9/0®) represents the gradient

of parameters ®. Based on (2), the gradient for corresponding
parameters can be computed as follows:

azu —(1—0(z) - Xu- Ty + % (—0(z) - Xu - T
;’Tv = (1 =0G@) Xy S 5= (06 XS,
8; = (1—0(z) - Su- Ty + % (—0(zw)) - Su - T
a;v =1-0(z), rr —0 (2). 4)

The proposed PDW method is summarized in Algorithm 1.
It contains two parts: influence context generation (lines 3—
8) and parameters learning (lines 9-14), which have been
illustrated above. In the influence context generation part,
for each node u, local influence context is sampled by the
RWR strategy, and we use breath first search method to
obtain u’s r-hop out-neighbor set N/, («) for generating global
influence context (upper bounder by |E|). Therefore, the
time complexity of the influence context generation part is
O(|V|(a-L+|E|)) = O(|V]||E]). For the parameters learning
part, for each tuple (u,C,) € W (where |W| = |V]|), L
iterations are performed for nodes in C,. At each iteration,
we first update node embeddings of u and v and then update
node embeddings for each node in the negative samples set N.
Therefore, the running time of the parameters learning part is
O(|V|-L-|N]) = O(V]). Here, we consider L and |N| are
fixed constants. Thus, the total time complexity of Algorithm 1
is O(IVI+IVIIED) = O(VIIE].

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: ToupleGDD: A FINE-DESIGNED SOLUTION OF IM BY DRL

Next iteration

PDW

Input graph

Fig. 1.

Graph embedding + Q-value calculation

Node selection

Framework of ToupleGDD: (a) apply PDW to obtain initial embedding; (b) utilize ToupleGNN to capture network topology structures and influence

cascading effects to get node embedding; (c) construct the parameterized function Q(v, S; ®) based on node embedding input from ToupleGNN; and (d) use

e-greedy to select the next seed and DDQN to learn the parameters.

Algorithm 1 PDW

1 Initialize X,,, S,, T, by Gaussian distribution
N(0,0.01);

2 Initialize W <« @;

3 foreach u € V do

4 L, < 0,G, < 0,C, <@

5 L, < Sample oL nodes by RWR starting from u;
6 G, < Uniformly sample (1 — o)L nodes from
Nowr ()

7 Cu <~ Lu V) Gu;

8 | Insert (u, C,) into W,
9 foreach (u,C,) € W do
10 foreach v € C,, do

11 Update X,,, Su, Xv, Ty;

12 Sample a set of negative samples N;
13 foreach w € N do

14 L Update X, S, Xu, To:

15 return X,, S,, T, for each node u;

B. ToupleGNN

Inspired by [33], we design three coupled GNNs (Tou-
pleGNN) to naturally capture the iterative interplay between
node states, nodes’ influence capacity, and nodes’ tendency
to be influenced by others. Taking initial node embeddings
as input, ToupleGNN includes three coupled GNNs: 1) state
GNN: model the activation states of nodes; 2) source GNN:
model the influence capacity of nodes; and 3) target GNN:
model the tendency of nodes to be influenced by others.
The framework of these three GNNs is illustrated in the
middle part of Fig. 2, and we will introduce detailed structures
in the following part. Given the currently selected seed set
S;, we need to update node representations accordingly by
ToupleGNN.

1) State GNN: The state GNN is used to model the activa-
tion state of each node during the cascading effect. For a target
user v, it will be activated by its active in-neighbors. Therefore,
its activation state X, is determined by the activation states
of its in-neighbors and the influence weight/probability of
these in-neighbors to it. Since the interaction strength between

users will change with nodes’ states, only using the given
static edge weight is not enough to capture the importance
and influence weight between users. Therefore, except for
the given edge weights, we also consider applying v’s in-
neighbors’ capacity embedding and v’s tendency embedding
by an influence attention mechanism to dynamically capture
the diffusion weight between them. Specifically, define e*) =
n®W®O SO WOT®] to measure the dynamic importance
of node u to v, where n® € R¥“" is a weight vector,
Wk g RECVxY g g weight matrix to transform the source
and target representation from dimension A®) to h**D, and
[+, -] denotes the concatenation of vectors. To make coefficients
comparable among nodes, a softmax function incorporated
with the LeakyReLU [34] is adopted to normalize the attention
coefficients

exp(LeakyReLU(e)))

uv

D e, o) €Xp (LeakyReLU (el))

InfluGate (Sl(lk), Tv(k)) =

(&)

where LeakyReLU has a negative slope of 0.2.
The expected influence that node v aggregates from its in-
neighbors is

= > (8" pu + 6 InfluGare (s, 7.9)) - X1
UENin (v)

(6)

Since we expect that the activation state should indicate the
possibility of a node being activated, the activation state of
node v is set to 1 when it is selected into the current seed set
S;. Otherwise, v’s activation state is updated by aggregating
influence from its in-neighbors. That is, node v’s activation
state at (k 4 1)th layer is updated by the following equation:

wrny _ | L if ves, -
’ o (S)((k ‘X ® 4 fa(k)af)k)), otherwise
where 5)((/0’ EW € R are weight parameters and o (-) is the

sigmoid function.

2) Source GNN: The source GNN is used to model the
capacity of nodes to influence others. Intuitively, the capacity
of a node v to activate others can be measured by both its
activation state and how much influence its out-neighbors can

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Concatenate

-___I___,

(1) Observation S,

) Action a;

@ Reward 1,

Fig. 2. Mechanism of DDQN incorporated ToupleGNN as a function approximator.

get when the information is spread from v to out-neighbors,
which can be modeled by v’s out-neighbors’ tendency to be
activated. Similar to the dynamic influence weight defined
in state GNN, for edge (v,w) € E, we also define the
dynamic attention weight £ = gO[W®S® Ww®T®] and
its corresponding normalization for the weighted aggregation

exp (LeakyReLU(f %))
2 weNon () €XP (LeakyReLU (o)

where g € R%*"” is a weight vector. Then the neighborhood
aggregation is defined as follows:

p® = Z (AP pow + AP a®) - SourceGate(TH) (9)

vw

(k) _

vw T

®)

WENout (V)

where SourceGate(x) is the source gating mechanism imple-
mented by a three-layer MLP in this article to reflect the
nonlinear effect of out-neighbors’ target tendency.

The source representation of node v at the (k4 1)th layer is
updated by incorporating its kth layer source representation,
neighborhood aggregation, and its activation state

SHD = O(,yék)sl()k) Alp® 4 7;;c)xz()k))

where 'ygk), ’y,ﬁk), 7§f) € R are weight parameters.

3) Target GNN: The target GNN is used to model the
nodes’ tendency to be influenced by others. Generally, the
tendency of a node to be activated is determined by its
current activation state and the influence diffusion from its
in-neighbors to it. Similarly, for edge (u,v) € E, define
d®) = OB O WO TO] and

exp (LeakyReLU (d))
> en,, (v €Xp (LeakyReLU (@)

where 7® € R2“"" is a weight vector. Then the neighborhood
aggregation is defined as follows:

W= S (o A0 - TageGate(s) (12
ueN;, (v)

(10)

(k) _

uv T

Y

where TargetGate(x) is the target gating mechanism imple-
mented by a three-layer MLP in this article to reflect the
nonlinear effect of in-neighbors’ source ability.

The target representation of node v at the (k + 1)th layer
is updated by incorporating its kth layer target representation,

neighborhood aggregation, and its activation state
k k
T = o (W' T + pfel + 1’ XP) (13)

where ,u(sk), n®, 1P € R are weight parameters.

C. Putting it Together

At each iteration of ToupleGNN, information diffusion and
network structure features can be passed across nodes. After K
iterations, node embedding can aggregate information from its
K -hop neighbors. For node u, denote by X&), S(K) 7K the
three components of u’s node embedding after K iterations.
Then u’s node embedding can be obtained by concatenating
these three parts: [X(X), SU) T &) For the kth layer of state
GNN, the time complexity is O(|V|+|E|), which is the same
for source GNN and target GNN. Therefore, the overall time
complexity of ToupleGNN is O(K(|V|+ |E])).

Based on the obtained node embeddings, the score function
to measure the marginal gain of a node u € S, = V \ S, with
respect to the current seed set S; is defined as Q(u, S ®) =

>

weV\(S;U{u})

6y ReLU | | 625%,6; >~ (0. 0,

veSs,;

7% (14)

where 6, € R¥ 6,,65,0, € R™* are model parameters.
Since the embeddings used to define Q(u, S;; ®) are computed
based on the parameters from ToupleGNN, Q(u, S;; ©) will
depend on {01-}?:] and all parameters in ToupleGNN. We will
train these parameters (denoted by ®) end-to-end by RL.

V. REINFORCEMENT LEARNING
A. RL Formulation

RL concerns about how intelligent agents can take actions
according to the current state when interacting with the envi-
ronment to maximize the total reward received. Why do we
use the RL model to learn the parameters in Q(u, S ©)?
Actually, the IM problem can be naturally formulated as an
RL problem:

1) Action: An action selects a node u € 5[as the next seed,

and we use ©’s node embedding to represent the action.

2) State: A state S; represents a sequence of actions of

selecting nodes in the current seed set S;. We use a
|V|-dimensional vector to represent state S;, where the
corresponding component of node u is 1 if u € S;, and
0 otherwise. For simplicity, we will use S; instead of S,
to represent the state when there is no ambiguity. The
terminal state S;, is the state after selecting » nodes.

3) Transition: Changing the activation state X, from 0 to

1 when u € S, is selected as the seed.

4) Reward: The reward r(S;, u) at state S; is defined as

the change of reward after selecting node u into the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: ToupleGDD: A FINE-DESIGNED SOLUTION OF IM BY DRL

current seed set S; and transition to a new state. That is,
r(S;, u) = o (S;U{u})—o(S;) and r(@) = 0. In this way,
the cumulative reward R of a terminal state S, coincides
exactly with the influence spread of seed set S, that is,
R=73r(Su) =0(Sp).

5) Policy: Policy maps a state to possibilities of selecting
each possible action. That is, a policy tells the agent
how to pick the next action.

If we denote by Q* the optimal Q-function for this RL prob-
lem, then our embedding parameterized function Q(u, S;; ®)
will be a function approximator for it, which will be learned
by DDQN.

B. Training via DDQON

We use DDQN [13] to perform end-to-end learn-
ing of parameters in Q(u,, S;; ®), which can avoid the
over-optimistic issue of a simple DQN by adopting two
networks: behavior network and target network, parameterized
with ® and @', respectively. The target network provides
Q-values estimation of future states during training of the
behavior network, and only updates parameters ®’ from the
behavior network ® every m episodes. The detailed training
process is illustrated in Algorithm 2. We use the term episode
to represent a complete sequence of node additions starting
from an empty set until termination, and a single action
(node addition) within an episode is referred to as a step.
To collect a more accurate estimate of future rewards, n-step
Q-learning [35] is utilized to update the parameters, which is
to wait for n steps before updating parameters. Additionally,
we apply the fit Q-iteration [36] with experience replay for
faster learning convergence. Formally, the update is performed
by minimizing the following square loss:

(v — Q. S1; ©))° (15)
where y = 30 47 (Spyis ttr4i)+y" max, Q(v, Sipa: ©'), and
v € [0, 1] is the discount rate, determining the importance of
future rewards.

Specifically, we first apply the PDW method (Algorithm 1)
to obtain initial embeddings. Then for each episode (lines
2-20), the seed set is initialized to an empty set. For each
step, e-greedy policy is utilized to select a node, which
selects a node randomly with probability ¢ and with (1 — €)
probability selects the node with the maximum Q value
(lines 5-14). If + > n, it will add the current sample
(St—n> Ui—ns 27:_01 YV r(Si—n+is Ur—n+i): S¢) to the replay buffer
M. Instead of performing a gradient step with respect to the
loss of the current example, the parameters are updated with
a batch of random samples from the buffer (lines 24-25).
For each episode, we will perform b steps. At each step,
node embeddings for each node will be updated for K times
by ToupleGNN. At each layer of ToupleGNN, each node
aggregates information from its in/out-neighborhood (overall
O(|E)|)). Therefore, the time complexity of each layer is
O(|V| + |E]). Putting it all together, the time complexity of
Algorithm 2 is O(|VI||E| 4+ DbK(|V| + |E])).

Algorithm 2 Training of ToupleGDD

1 Obtain initial embedding for each u € V by Alg. 1;
2 for episode e = 1 to D do

3 So = 0;
4 fort = 1tobdo
5 Uniformly sample a number ¢ from [0, 1);
6 if ¢ < ¢ then
7 | Randomly select a node u, € V \ S;;
8 else
9 fori =11t K do
10 for u € V do
1 Update X, S0, T by
ToupleGNN;
12 for u € V do .
13 | Calculate Q(u, S;;: ©) by (14);
14 B Select u, = arg max,cs, Q(u, S;; ©);
15 S =81 U{ul};
16 if t > n then
17 (Si—n» Us—n, 27;01 ’)’ir(St—nH‘v Ui—nyi), St) tO
replay buffer M;
18 Sample random batch B ~ M;
19 Update ® by Adam optimizer over (15) with B;
20 | Update ®' from © every m episodes;

21 return O;

VI. EXPERIMENTS

In this section, we conduct several experiments on different
datasets to validate the performance of our proposed Tou-
pledGDD model. All experiments are conducted on a machine
with an Intel Xeon CPU (2.40 GHz, 28 cores), 512 GB of
DDR4 RAM, Nvidia Tesla V100 with 16-GB HBM2 memory,
and running CentOS Linux 7. The source code is available at
https://github.com/Dtrycode/ToupleGDD.

A. Experimental Setup

1) Datasets: To thoroughly evaluate the performance of the
proposed model, both synthetic and real-world datasets are
used for evaluation. We generate 20 random Erd&s-Renyi (ER)
graphs with node sizes varying from 15 to 50 for training and
validation. Specifically, we first sample the number of nodes
uniformly at random from 15 to 50 and then generate an ER
graph with an edge probability of 0.15. Among those generated
synthetic graphs, 15 graphs are used for training, and the others
are used for validation with the soc-dolphins dataset [37].
The performance of the proposed model and baselines are
tested on seven real-world datasets, whose detailed statistics
are shown in Table I. For the undirected graph, we replace
each edge with two reversed directed edges. Among these
datasets, Twitter, Wiki-1, caGr, and Buzznet are from [37],
while Wiki-2, Epinions, and Youtube are available on [38].

2) Diffusion Models: Our model can be easily adapted to
distinct diffusion models by revising the definition of the
reward function. In this article, we report the results under

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE 1
DATASET CHARACTERISTICS
Dataset n m Type Average
degree
soc-dolphins 62 159 directed 5
Twitter 0.8k 1k directed 2
Wiki-1 0.9k 3k directed 6
caGr 42k | 13.4k undirected 5
Wiki-2 7.1k | 103.7k directed 29
Epinions 76k 509k directed 13
Buzznet 101k 3M directed 55
Youtube 1.13M| 3M undirected 5

the IC model here. Unless otherwise specified, the probability
on edge (u, v) is set to 1/Nj,(v) (in-degree setting), which is
widely used in previous works about IM [5], [6], [7]. To fairly
evaluate the performance of different methods, we first record
the seed set obtained by different methods independently and
then perform 10000 Monte Carlo simulations to estimate the
expected influence spread. All experiments are run ten times
and we report the average of the metric being measured.

3) Baselines: We compare the performance of ToupleGDD
with the state-of-the-art approximation algorithm for the IM
problem, IMM [6], and OPIM-C [8] and the DRL methods
S2V-DQN [9] and GCOMB [10] for the CO problem. Note
that S2V-DQN is originally designed for the CO problem, and
we revised their code for the maximum cut (MC) problem to
solve IM. Another baseline is PIANO [11], which is modified
from the S2V-DQN model for IM. For all other baselines,
we use the code shared by the authors. For IMM and OPIM-
C, we set € =0.1.

4) Training and Testing Details: For all training datasets,
edge weights are set as in-degree settings. Edge weights
on validation datasets and testing datasets have the same
setting (we will only specify the set of testing datasets in
the following) and may be set as one of the three settings:
1) in-degree setting; 2) set as 0.1 (0.1-setting); and 3) set as
0.5 (0.5-setting). We set the budget b as 5 for all training
datasets, while in validation setting 5 and 7 for ER graphs
and soc-dolphins dataset, respectively. For each testing dataset,
we vary budget b such that b € {10, 20, 30, 40, 50}. For S2V-
DQN and ToupleGDD, we use the RIS method to estimate the
influence spread for a given seed set in the training phase. For
GCOMB, since their code is not able to deal with multiple
training graphs, we follow the same instructions as in their
paper and use the training graph shared by them by revising
the edge weight to the in-degree setting.

B. Experimental Results

1) Ablation Study: In the early version (called DISCO [39])
of the PIANO model, they have shown that the order of
candidate nodes with respect to their Q values remains almost
unchanged whenever we select a seed and recompute the
network embeddings as well as the Q values. Therefore,
instead of iteratively selecting and recomputing node embed-
dings and Q values according to each seed insertion (iterative
operation), they simplified the process into only one iteration,
by embedding only once and selecting the top-b nodes with the
maximum Q (one-time operation). Inspired by this conclusion

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

and operation, we compare the expected influence spread of
seed sets obtained by our ToupleGDD model by these two
operations. On the other hand, we also test the impact of the
initial embedding on our model. Three groups of experiments
are conducted: 1) both train and test with initial embedding
(TIED); 2) train with initial embedding but test without initial
embedding (TIEN); 3) both train and test without initial
embedding (TNEN). For all of these three types, the validation
setting is the same as the testing, and all experiments of
this part use an in-degree probability setting. Besides, for (1)
and (2), they share the same training model, and validations
are conducted independently for them. For each of the three
groups, the iterative and one-time operations are performed in
the same experiment. That is, after computing the Q-values,
we first output the top-b nodes with the highest Q-values and
then perform the iterative operation according to the greedy
strategy. Therefore, both of these two operations share the
same initial embeddings if there are any.

The results are shown in Table II. Note that TI and EI
represent training and testing with initial embedding, respec-
tively. First, for the same dataset and seeds selection operation
(e.g., Twitter with iterative operation), comparing the results of
three groups, we see that the expected influence spread of the
seed set obtained by TIEI and TIEN are very close. However,
the results of TNEN have big differences from the other two
under the same budget and are not stable under different
datasets, which indicates the necessity and importance of
initial embedding in training. Second, the running time of
TIEN and TNEN is less than that of TIEI for the same
dataset and seeds selection operation, and this difference is
significantly big for large datasets, such as Epinions. This is
because there is no initial embedding generation in TIEN and
TNEN when testing, which can save much time, especially
for large datasets. Besides, the running time of iterative
operation increases with the increase of budget due to more
iterations and selections, and for one-time operations, there
is no significant difference between different budgets. Third,
for the same group of the experiment (e.g., Twitter under
TIEI), comparing the expected spread obtained by iterative
and one-time operations, we observe the difference between
them is very small, but they actually do not share the exact
same seed set in most cases. However, we cannot figure
out the reason causing this difference due to the machine
accuracy configuration for very close values. Besides, one-time
operation can output seed set faster than iterative selection,
due to its less iteration and computation. From these results,
it is convincing that we can use a one-time operation for seed
selection and TIEN setting to save time but without a large
decrease in influence spread. For those who want to apply this
algorithm to their problems, it is determined by the tradeoff
between accuracy and running time.

2) Influence Spread: We test the performance of Tou-
pleGDD and baselines on Wiki-1, Epinions, caGr, Buzznet,
and Youtube datasets with the in-degree probability setting.
Fig. 3 draws the expected influence spread and running time
produced by different models on these five datasets. Note that
the results obtained by our model are from the TIEN setting
and one-time operation, which could not only provide close

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: ToupleGDD: A FINE-DESIGNED SOLUTION OF IM BY DRL

TABLE II
PERFORMANCE OF TOUPLEGDD UNDER DIFFERENT SETTING
. budget: 10 budget: 20 budget: 30 budget: 40 budget: 50
Dataset ‘ Operation ‘ TI ‘ EI ‘ In.ﬂue.nce spread Iqﬂue.nce spread Ir}ﬂue.nce spread Ir}ﬂue.nce spread Iqﬂue.nce spread
(time:s) (time:s) (time:s) (time:s) (time:s)

\ erative | v | v | 14771 9.17) | 210.86 (16.41) | 252.11 (23.42) | 287.59 (29.84) | 315.88 (38.33)
Twitter | | v | | 146.93 (7.03) | 210.66 (13.06) | 252.12 (21.13) | 287.95 (29.82) | 315.99 (33.55)

\ \ \ | 139.36 (5.69) | 188.23 (13.80) | 234.41 (19.56) | 270.09 (27.22) | 301.59 (33.03)

\ onetime | v | v/ | 146.87 (3.01) | 210.86 (3.0) | 252.11 (3.08) | 288.08 (2.97) | 316.60 (3.13)

\ | v | | 147.26 (0.67) | 210.66 (0.58) | 251.53 (0.64) | 287.95 (0.62) | 317.28 (0.63)

\ \ \ | 139.36 (0.57) | 188.29 (0.66) | 232.85 (0.63) | 270.11 (0.72) | 300.34 (0.73)

\ erative | v | v | 213.13 (18.40) | 368.74 (25.48) | 489.15 (31.60) | 602.95 (38.16) | 696.95 (46.53)
caGr \ | v | | 214.18 (6.09) | 372.13 (12.24) | 488.60 (18.15) | 602.33 (27.53) | 697.99 (37.62)

\ \ \ | 210.56 (5.78) | 368.28 (12.89) | 489.33 (19.15) | 605.18 (27.80) | 699.82 (36.81)

\ onetime | v | v | 20829 (12.09) | 355.87 (11.99) | 487.99 (11.65) | 604.93 (11.77) | 695.95 (11.77)

\ | v | | 210.10 (0.62) | 372.79 (0.61) | 488.27 (0.57) | 608.25 (0.68) | 704.79 (0.65)

\ \ \ | 208.24 (0.57) | 367.52 (0.63) | 487.69 (0.63) | 608.23 (0.66) | 708.54 (0.67)

\ erative | v | v | 29048 (46.79) | 423.96 (54.68) | 521.79 (63.35) | 601.39 (71.72) | 669.43 (78.23)
Wiki-2 | | v | | 290.81 (7.39) | 424.77 (15.79) | 523.38 (22.82) | 600.29 (31.01) | 670.27 (40.04)

\ \ \ | 285.10 (7.24) | 422.81 (15.4) | 510.53 (19.99) | 585.87 (30.18) | 647.11 (36.36)

\ onetime | v | v | 28897 (39.94) | 421.39 (40.46) | 518.63 (39.05) | 599.93 (39.57) | 668.39 (39.16)

\ | v | | 290.22 (0.72) | 424.56 (0.70) | 516.09 (0.70) | 599.04 (0.70) | 666.61 (0.73)

\ \ \ | 282.42 (0.67) | 420.99 (0.68) | 504.32 (0.66) | 579.26 (0.72) | 642.27 (0.69)

| erative | v | v | 602285 (277x10%) | 8303.34 (2.75x10%) | 9693.69 (2.81x10%) | 10866.88 (2.79x10%) | 11781.69 (2.8x10?%)
Epinions | | v | | 6018.67 (13.4) | 8295.06 (29.9) | 9708.72 (44.96) | 10853.63 (58.2) | 1177137 (75.61)

\ \ \ | 6013.50 (13.51) | 8300.42 (29.11) | 9700.72 (42.07) | 10840.46 (57.35) | 11795.48 (70.3)

| onetime | v | v | 602285 (276x10%) | 8300.36 (2.72x10%) | 9694.49 (2.76x10%) | 10832.49 (2.73x10%) | 11736.67 (2.73x10%)

\ | v | | 6018.67 (1.36) | 8315.56 (1.46) | 9718.94 (1.42) | 10829.7 (1.4) | 11758.36 (1.46)

\ \ \ \ \ \ \ \

6013.5 (1.38) 8310.07 (1.42)

9729.69 (1.42) 10864.27 (1.43) 11800.19 (1.34)

influence spread with the corresponding iterative operation,
but also runs in less time. From the left column of Fig. 3,
the expected influence spread increases with the increase of
budget, which is consistent with the monotone increasing
characteristic of influence spread under the IC model. Besides,
the performance of ToupleGDD is very close to IMM and out-
performs OPIM-C on Wiki-2, Buzznet, and Youtube datasets,
which proves the effectiveness of our model. Comparing
the performance of all DRL-based models, ToupleGDD can
outperform all other DRL-based models on all tested datasets,
demonstrating the superiority of our model. And PIANO and
S2V-DQN do not perform stably across different datasets,
where S2V-DQN performs better than PIANO on undirected
graph caGr, but worse than PIANO on other datasets. This may
be because S2V-DQN is designed for undirected graphs, and
the original paper trained and tested the model on undirected
graphs. Even though PIANO is revised from S2V-DQN, its
performance is not close to S2V-DQN. This may be because
the code of PIANO is revised from the code for the minimum
vertex cover (MVC) problem in the shared S2V-DQN code,
while our revised code is from the MC problem. Thus, we use
different initial node features. The reason that we choose the
code of MC is that they have considered edge weight and
edge features in MC but not in MVC. Additionally, PIANO
and GCOMB have close performance on Epinions, caGr, and
Buzznet datasets.

3) Running Time: The right column of Fig. 3 draws the
corresponding running time of different models to obtain the
results in the left column. Note that we only record the time

that the model needs to output the seed set for a budget
not including the time to compute the influence spread of
the seed set. We observe that S2V-DQN needs more time to
output the seed set than ToupleGDD on all datasets except
Youtube. This may be because S2V-DQN uses an iterative
not one-time manner to select seeds, which needs to update
embedding and recompute Q-values for b times. Among all
the tested methods, OPIM-C needs the least time and the
ToupleGDD model runs a little slower. This may be because
our model has many parameters and need to compute the
dynamic influence importance between nodes which is time-
consuming. But our model’s running time is acceptable since it
is less than 3 s even for the million-size dataset Buzznet. Note
that this time difference also includes the effects of different
implementation languages, since ToupleGDD is implemented
by Python, while IMM, OPIM-C, and most parts of PIANO
are implemented by C++. We also observe that GCOMB runs
slower than ToupleGDD and PIANO on Wiki-2, Epinions, and
caGr datasets. This may be because GCOMB is proposed for
CO problems over very large networks and in their paper,
they claimed GCOMB is hundreds of times faster than IMM
on million-size datasets. However, from the results in Fig. 3,
for small graphs Wiki-2, caGr, and Epinions, the running time
of GCOMB is longer than ToupleGDD and PIANO due to its
extra computational overhead and efforts of hand-crafting the
learning pipeline in the supervised learning part.

4) Generalization: To further validate ToupleGDD’s gener-
alization ability, we test the performance of the model trained
under an in-degree setting and tested on Twitter and Wiki-1

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

w IS

Influence spread
Running time (s)
~

-

Budget

(b)

16 1o~ mm
opimc
14 | == ToupleGoD
¥~ s2v00N
-5 PANO
Geoms

2oe
s N

Running time (s)

°
B
4
5
H 8
g 6
2
£ 4
2
&
0
10 20 30 40 50
Budget
-©- MM 1.6 -~ MM
700 opimC opiMC
—= ToupleGDD 1.4 | = wulecon
=¥~ S2V-DQN ~¥- S2V-DQN
600 { = pano 18 v
B Geom o) Geoms
8
& 500 E 1.0
u
£ 400 gos
E €06
£ 300 H
0.4
200
0.2
100 0.0
10 20 30 40 50
Budget
- M
60000 30 opmC
=&~ ToupleGDD
¥~ s200N
50000 _ 257 & mano
° o Geoms
& 40000 220
& S
g 30000 215
g =
g €
£ 20000 210
10000 5
0 ol B % —3
10 20 30 40 50 10 20 30 40 50
Budget Budget
404
351 -&-mm
140000 opiM-c
G 307 == ToupleGDD
H @ ¥ s2v-00N
© 120000 g251 -8 Pmno
-] Goms
H @20
£ 100000 £
g €15
2 &
= 80000 10
s Py
60000 ol B z z —t

10 20 30 40 50 10 20 30 40 50
Budget Budget

® 0]
Fig. 3. Performance and running time comparisons among different methods.
(a) Wiki-2, performance. (b) Wiki-2, running time. (c) Epinions, performance.
(d) Epinions, running time. (e) caGr, performance. (f) caGr, running time.
(g) Buzznet, performance. (h) Buzznet, running time. (i) Youtube, perfor-
mance. (j) Youtube, running time.

datasets with both 0.1- and 0.5-setting. Figs. 4 and 5 draw
the results for 0.1- and 0.5-setting, respectively. From these
results, the performance of ToupleGDD is almost equal to
IMM and outperforms OPIM-C under 0.1-setting even though
it is trained under an in-degree setting. And ToupleGDD
outperforms all other DRL-based models for both of the two
edge probability settings on the two tested datasets. This
demonstrates the robustness and generalization ability of the
proposed ToupleGDD model. The performance of S2V-DQN,
PIANO, and GCOMB are not stable across different edge
weight settings. S2V-DQN outperforms PIANO and GCOMB
under 0.1-setting, while PIANO outperforms S2V-DQN and

3 8

=
® o
& 8

@
3

Influence spread
w s v oo
8 8

Influence spread

N
3

N
S

10 20 30 40 50 10 20 30 40 50
Budget Budget

(a) (b)
Fig. 4. Performance comparisons among different methods under 0.1-setting.
(a) Twitter. (b) Wiki-1.

Influence spread

Influence spread
w
g
8

10 20 30 40 50 10 20 30 40 50
Budget

(@ (®)
Fig. 5. Performance comparisons among different methods under 0.5-setting.
(a) Twitter. (b) Wiki-1.

GCOMB under 0.5-setting. Furthermore, our model can obtain
at least a 33% gain of the expected influence spread over S2V-
DQN under 0.1-setting, and at least 20% gain of the expected
influence spread over PIANO under 0.5-setting.

C. Intuition of Applying DDQN

Although DQN is an important milestone for deep learning,
several limitations of this algorithm are now known. The
improvement to DQN has blossomed in the last decades, such
as dueling DQN (DuelDQN), double DQN (DDQN), and duel
double DQN (DuelDDQN). How about the performance of
S2V-DQN by replacing DQN with these improvements on
IM? This is the main purpose of this group of experiments.
We incorporate the structure2vec method with these improved
models and compare their performance with S2V-DQN on IM.

We train the four models on the soc-dolphins dataset with
0.5-setting for edge weight and the budget is taken from
{5,7,9}. Here, we keep the budget the same for training
and testing to avoid the effect of changing the budget in
the performance. For each budget, we train each framework
1000 epochs with exploration ratio e starting from 1 and
multiplied by a factor per epoch to balance exploration and
exploitation. We run each framework five times to get the
average and standard deviation.

The learning curves of the four frameworks with budgets 5,
7, and 9 are shown in Fig. 6(a)—(c), respectively. We expect
S2V-DuelDQN to converge fast and S2V-DuelDDQN to
perform the best. However, from the results, we observe
that S2V-DuelDQN may not work and its advantage of fast
convergence is not perceivable. The S2V-DDQN does perform
well and DuelDDQN manages to make its influence score
increase more in fewer epochs. The learning curves fluctuate
more with the simple DQN- and DuelDQN-based models,
while the DDQN-based models maintain much more stable
learning curves across multiple runs.

We test the trained frameworks on a uniformly sampled
graph with the same number of nodes and edges as in the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: ToupleGDD: A FINE-DESIGNED SOLUTION OF IM BY DRL

35

N
5
o

NN
5 8 R
w5
Now
58

Running time (s)

Influence spread
g &
R

Influence spread

~
3

=

-0 -8~ sav-oon

¥~ S2V-DuelDDON ¥~ S2V-DuelDDON

200 400 600 800 1000 200 400 600 800 1000
Epochs Epochs

() ()

35 45

/**)—‘ w
30
e
20
= st
e, N

—& S2v-DDQN
—¥- S2V-DueiDDON

W w
g B

&

Influence spread
Influence spread

NN
3

= svaN
& S2V-DuelDQN
= svooon

& s2v-DueiDDON

200 400 600 800 1000 5 7 9
Epochs Budgets

(© (d
Fig. 6. Training and testing results for different models. (a)—(c) Learning
curve with budget 5, 7, and 9, respectively. The solid line is average, and the
shadow is one standard deviation. (d) Testing result: dot is average, and the
bar shows one standard deviation.

TABLE III

p-VALUE UNDER DIFFERENT BUDGETS (S2V IS SAVED IN METHODS
NAME FOR SPACE)

Model | Budget| DQN | DuelDQN | DDQN | DuelDDQN
5 | [03799 | 2.1029¢-14 | 2.3740c-14
DQN
|7 | 06611 | 5.7903e-12 | 5.3526e-12
| 9 | | 04489 | 1.1655¢-08 | 1.2368¢-08
| 5 | \ | 4.4682e-10 | 4.8612¢-10
DuelDQN - -
7] \ | 2.0871e-08 | 1.9727¢-08
| 9 | \ | 0001l | 00011
I \ \ | 0.0082
PDON 7) \ i | 0.0457
| 9 | \ \ | 04111

training dataset. For each model from training, we run five
times on the testing graph to get its average performance
and the seeds are selected with iterative operation. Fig. 6(d)
draws the expected spread of the seed set obtained by dif-
ferent models. We observe that the DDQN-based models still
perform better than the simple DQN and DuelDQN models
and are much more stable. Furthermore, we use p-value
to check the significance of testing performance differences
between frameworks as shown in Table III. Generally, when
the p-value is less than 0.05, the performance difference
between the two models is significant. The p-value results
agree with our previous observation that DDQN-based models
perform significantly better than DQN- and DuelDQN-based
models. Though the difference between S2V-DDQN and S2V-
DuelDDQN is subtle in Fig. 6(d), DuelDDQN does get sig-
nificantly better performance when the budget is small.

Fig. 7(a) and (b) draws the training and testing time
averaged from five runs for each framework. The time usage
is approximately proportional to the budget size. DDQN-
based models even maintain much lower time usage (both
training and testing) compared to DQN-based models, which
demonstrates the efficiency of DDQN-based models.

2500 & sovoon = svoan
& 5ov-Dueidon
= sovoan

= sav-Dueinnan

& s2v:DuelDnon

2000

1500

Running time (s)

o r N W B VO N ®

1000

5 7 9 5 7 9
Budgets Budgets

(@ (b)
Fig. 7. Running time: dot is average, and bar shows one standard deviation.
(a) Training time. (b) Testing time.

VII. CONCLUSION

In this article, we present a novel end-to-end framework,
ToupleGDD, to address the IM problem by leveraging the DRL
technique. Specifically, we incorporate GNNs for network
embedding and RL technique, double DQNs, for parame-
ter learning. Compared to the state-of-the-art sampling-based
approximation algorithms, ToupleGDD can avoid costly sam-
pling of the diffusion paths. Compared to previous works
using the DRL method for the IM problem, our model has
a stronger generalization ability and shows almost consistent
performance across different social networks. We conduct
extensive experiments to evaluate the performance of our
proposed model. The empirical results show that ToupleGDD
can achieve almost equal expected spread to that of IMM and
outperform OPIM-C on several datasets, which is much better
than other learning-based methods. This validates the effec-
tiveness and efficiency of the proposed ToupleGDD model.

REFERENCES

[1] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2003, pp. 137-146.

[2] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proc. 16th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2010,
pp. 1029-1038.

[3] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in

social networks under the linear threshold model,” in Proc. IEEE Int.

Conf. Data Mining, Dec. 2010, pp. 88-97.

C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social

influence in nearly optimal time,” in Proc. 25th Annu. ACM-SIAM Symp.

Discrete Algorithms, Jan. 2014, pp. 946-957.

[5] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal

time complexity meets practical efficiency,” in Proc. ACM SIGMOD

Int. Conf. Manage. Data, Jun. 2014, pp. 75-86.

Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear

time: A Martingale approach,” in Proc. ACM SIGMOD Int. Conf.

Manage. Data, May 2015, pp. 1539-1554.

[71 H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
Proc. Int. Conf. Manage. Data, Jun. 2016, pp. 695-710.

[4

finar

[6

=

[8] J. Tang, X. Tang, X. Xiao, and J. Yuan, “Online processing algo-
rithms for influence maximization,” in Proc. Int. Conf. Manage. Data,
May 2018, pp. 991-1005.

[9]1 E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 30, 2017, pp. 1-11.

[10] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and

A. K. Singh, “GCOMB: Learning budget-constrained combinatorial
algorithms over billion-sized graphs,” in Proc. Conf. Neural Inf. Process.
Syst. (NeurIPS), vol. 33, 2020, pp. 20000-20011.

H. Li, M. Xu, S. S. Bhowmick, J. S. Rayhan, C. Sun, and J. Cui,
“PIANO: Influence maximization meets deep reinforcement learning,”
IEEE Trans. Computat. Social Syst., early access, May 5, 2022, doi:
10.1109/TCSS.2022.3164667.

[11]

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529-533, 2015.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30, no. 1,
2016, pp. 2094-2100.

J. Zhou et al., “Graph neural networks: A review of methods and
applications,” Al Open, vol. 1, pp. 57-81, Jan. 2020.

Q. Guo, S. Wang, Z. Wei, and M. Chen, “Influence maximization
revisited: Efficient reverse reachable set generation with bound tight-
ened,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020,
pp- 2167-2181.

X. Yang, J. Shang, Q. Hu, and D. Liu, “ARIS: Efficient admitted
influence maximizing in large-scale networks based on valid path reverse
influence sampling,” IEEE Trans. Emerg. Topics Comput., early access,
Dec. 27, 2022, doi: 10.1109/TETC.2022.3230933.

Z. Jin et al., “IM2Vec: Representation learning-based preference max-
imization in geo-social networks,” Inf. Sci., vol. 604, pp. 170-196,
Aug. 2022.

H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2702-2711.

Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 31, 2018, pp. 537-546.

H. Kamarthi, P. Vijayan, B. Wilder, B. Ravindran, and M. Tambe,
“Influence maximization in unknown social networks: Learning policies
for effective graph sampling,” in Proc. 19th Int. Conf. Auto. Agents
MultiAgent Syst., 2020, pp. 575-583.

D. Ireland and G. Montana, “LeNSE: Learning to navigate subgraph
embeddings for large-scale combinatorial optimisation,” in Proc. Int.
Conf. Mach. Learn., 2022, pp. 9622-9638.

Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: A methodological tour d’horizon,” Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405-421, 2021.

N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Comput. Oper. Res.,
vol. 134, Oct. 2021, Art. no. 105400.

Y. Yang and A. Whinston, “A survey on reinforcement learning for
combinatorial optimization,” 2020, arXiv:2008.12248.

C. Fan, L. Zeng, Y. Sun, and Y.-Y. Liu, “Finding key players in complex
networks through deep reinforcement learning,” Nature Mach. Intell.,
vol. 2, no. 6, pp. 317-324, May 2020.

S.-C. Lin, S.-D. Lin, and M.-S. Chen, “A learning-based framework
to handle multi-round multi-party influence maximization on social
networks,” in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2015, pp. 695-704.

K. Ali, C.-Y. Wang, and Y.-S. Chen, “Boosting reinforcement learning
in competitive influence maximization with transfer learning,” in Proc.
IEEE/WIC/ACM Int. Conf. Web Intell. (WI), Dec. 2018, pp. 395-400.
K. Ali, C.-Y. Wang, M.-Y. Yeh, and Y.-S. Chen, “Addressing competitive
influence maximization on unknown social network with deep reinforce-
ment learning,” in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal.
Mining (ASONAM), Dec. 2020, pp. 196-203.

A. Yadav, R. Noothigattu, E. Rice, L. Onasch-Vera, L. S. Marcolino,
and M. Tambe, “Please be an influencer?: Contingency-aware influence
maximization,” in Proc. 17th Int. Conf. Auto. Agents MultiAgent Syst.,
2018, pp. 1423-1431.

H. Chen, W. Qiu, H.-C. Ou, B. An, and M. Tambe, “Contingency-
aware influence maximization: A reinforcement learning approach,”
in Proc. 37th Conf. Uncertainty Artif. Intell., vol. 161, in Pro-
ceedings of Machine Learning Research, C. de Campos and
M. H. Maathuis, Eds. PMLR, Jul. 2021, pp. 1535-1545. [Online].
Available: https://proceedings.mlr.press/v161/chen21b.html

S. Tian, P. Zhang, S. Mo, L. Wang, and Z. Peng, “A learning approach
for topic-aware influence maximization,” in Proc. Asia—Pacific Web
(APWeb) Web-Age Inf. Manage. (WAIM) Joint Int. Conf. Web Big Data.
Cham, Switzerland: Springer, 2019, pp. 125-140.

S. Feng, G. Cong, A. Khan, X. Li, Y. Liu, and Y. M. Chee, “inf2vec:
Latent representation model for social influence embedding,” in Proc.
IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 941-952.

Q. Cao, H. Shen, J. Gao, B. Wei, and X. Cheng, “Popularity prediction
on social platforms with coupled graph neural networks,” in Proc. 13th
Int. Conf. Web Search Data Mining, Jan. 2020, pp. 70-78.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

[34] A. L. Maas et al., “Rectifier nonlinearities improve neural network
acoustic models,” in Proc. ICML, vol. 30, no. 1. Princeton, NJ, USA:
Citeseer, 2013, p. 3.

[35] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[36] M. A. Riedmiller, “Neural fitted Q iteration—First experiences with a
data efficient neural reinforcement learning method,” in Proc. Eur. Conf.
Mach. Learn. Cham, Switzerland: Springer, 2005, pp. 317-328.

[37]1 R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Proc. AAAI Conf. Artif. Intell.,
vol. 29, no. 1, 2015, pp. 1-2.

[38] J. Leskovec and A. Krevl. (Jun. 2014). SNAP Datasets:
Stanford Large Network Dataset Collection. [Online]. Available:
http://snap.stanford.edu/data

[39] H. Li, M. Xu, S. S. Bhowmick, C. Sun, Z. Jiang, and J. Cui, “DISCO:
Influence maximization meets network embedding and deep learning,”
2019, arXiv:1906.07378.

Tiantian Chen received the B.S. degree in mathe-
matics and applied mathematics and the M.S. degree
in operational research and cybernetics from the
Ocean University of China, Qingdao, China, in
2016 and 2019, respectively. She is currently pursu-
ing the Ph.D. degree with the Department of Com-
puter Science, The University of Texas at Dallas,
Richardson, TX, USA.

Her research focuses on reinforcement learning,
deep learning, social networks, blockchain, and
design and analysis of approximation algorithms.

Siwen Yan received the B.E. degree in mea-
surement, control technique and instruments from
the Harbin Institute of Technology, Harbin, China,
in 2015, and the M.S. degree in electrical and
computer engineering from the University of Cal-
ifornia San Diego, La Jolla, CA, USA, in 2017.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science, The University of
Texas at Dallas, Richardson, TX, USA.

His current research interests include probabilis-
tic graphical models, statistical relational Al, graph
neural networks, Al applications in healthcare, and reinforcement learning.

Jianxiong Guo (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Texas at Dallas, Richardson, TX, USA, in 2021.

He is currently an Assistant Professor with the
Advanced Institute of Natural Sciences, Beijing Nor-
mal University, Zhuhai, China, and the Guangdong
Key Laboratory of AI and Multi-Modal Data Pro-
cessing, BNU-HKBU United International College,
Zhuhai. He has authored or coauthored more than
40 peer-reviewed papers and been the reviewer for
many famous international journals/conferences. His
current research interests include social networks, wireless sensor networks,
combinatorial optimization, and machine learning.

‘Weili Wu (Senior Member, IEEE) received the M.S.
and Ph.D. degrees from the Department of Computer
Science, University of Minnesota, Minneapolis, MN,
USA, in 1998 and 2002, respectively.

She is currently a Full Professor with the Depart-
ment of Computer Science, The University of Texas
at Dallas, Richardson, TX, USA. Her research
mainly deals in the general research area of data
communication and data management. Her research
focuses on the design and analysis of algorithms
for optimization problems that occur in wireless
networking environments and various database systems.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:32:12 UTC from IEEE Xplore. Restrictions apply.

