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Co-Activity Maximization in Online
Social Networks

Dongyu Mao

Abstract— Social media with online social networks has risen
to be a prevalent force in information diffusion and public
discourse. Despite its popularity and convenience, social media
has been criticized for contributing to societal and ideological
polarization as the result of trapping users in an echo chamber
and filter bubbles. An emerging line of research focuses on
ways to redesign content or link recommendation algorithms to
mitigate the polarization phenomenon. However, existing works
mainly concentrate on node-level balancing, while omitting the
balancing effect that can be incurred by edge interaction in
social networks. In this article, we take the first step to study
the problem (CoAM) that assuming two campaigns are present
in a network, how we should select seeds for each so as to
maximize the interaction/activity between the followers of two
campaigns (co-activity) after the diffusion process is finished.
We begin our analysis by showing the hardness of CoAM under
two diffusion models that are generalized from wildly used
diffusion models and its objective function is neither submodular
nor supermodular. This encourages us to design a submodular
function that acts as a lower bound to the objective, by exploiting
which we are able to devise a greedy algorithm with a prov-
able approximation guarantee. To overcome the #P-hardness of
diffusion calculation, we further extend the notion of random
reverse-reachable (RR) set to devise a scalable instantiation of
our approximation algorithm. We experimentally demonstrate
the quality of our approximation algorithm on datasets collected
from real-world social networks.

Index Terms— Approximation algorithm, echo chamber, filter
bubbles, martingale, social network.

I. INTRODUCTION

ITH undoubtedly a large number of advantages, social

media and social network service have gone popular
enormously in the last decades, as shown in a recent survey
that 71% of U.S. adults get news on social media in 2020 [1].
Together with its big success, social media service is under
blame for its possible linkage to the increase of societal
and ideologically polarization [2], [3], [4]. The criticism here
mainly goes that the combination of the viral nature of
information propagation and personal-curated content recom-
mendation algorithms used by social media platforms will
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create and amplify the phenomenon of echo chamber [5], [6]
and filter bubble [7], [8] on a social network.

The echo chamber is a phenomenon where users’ infor-
mation exposures are dominated by like-minded individuals,
similar opinions or views are shared and can bounce off
each other which will eventually reinforce users’ own voices,
causing it more difficult for individuals to understand opposing
viewpoints. A filter bubble is a space where recommendation
algorithms used by social media platforms that are trained
based on users’ previous online behaviors, such as searching,
likes, shares, and interactions history, only present personal-
ized contents that agree with ones’ interests or viewpoints in
the feeds. Echo chambers and filter bubble are even more
harmful when considering the presence of misinformation [9],
[10], [11].

Considering that many controversial issues, for example,
the 2016 U.S. Presidential Election [12], the EU referendum in
the U.K. [13], and the COVID-19 Pandemic [14], have stirred
fierce debates in the online world, and those debates usually
accompanied with spreading of fake or extremely biased news,
many researchers have realized the importance of diversifying
users’ information exposure for fighting against polarization in
social network and conducted related studies [15], [16], [17],
[18], [19], [20].

The effect of an echo chamber can be weakened by adding
different voices to users’ chambers, i.e., diversifying users’
friend lists/clusters so that each person can enjoy a higher
probability of hearing belief-challenging opinions. Popular
studies [15], [16], [17] in this line consider using link recom-
mendation or link weight adjustment to bridge chambers to
reduce the overall degree of polarization in a social network.
Algorithmic curation and personalized recommendation are
designed to increase metrics like user engagement or ad
revenue, but at the same time, create an echo chamber and
trap the user into a filter bubble [8]. In order to break those
bubbles, we should change the design of recommendation
algorithms in a manner that makes them value variety more,
especially for controversial issues. Recent studies consider
using direct recommendation [15], [17] or information propa-
gation method [18], [19], [20] to increase users’ likelihood of
encountering ideologically cross-cutting news content.

Inspired by the ideas mentioned above, in this article,
we take a step in this direction and study the problem of
breaking filter bubbles in a social network by maximizing
the total strength of inter-group contact (co-activity) under
the stochastic information propagation model. Specifically,
we consider the condition where two opposing campaigns
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around one controversial issue are propagating on a social
network simultaneously, for example, the U.S. Presidential
Election, and the objective is to maximize the co-activity
between the followers of two opposing campaigns when
the diffusion process finished by allocating seeds to each
campaign in the beginning. Here, co-activity occurs when
two ends (users) of an edge (denotes friendship or follow-
ing relation) hold a pair of opposing opinions toward one
controversial issue. The inherent rationality of our idea is
based on the studies [21], [22], [23] showing contact between
opposing groups/individuals helps alleviate group polariza-
tion and increase the likelihood of deliberation and political
compromise.

Note that our work differs from previous works as follows.
First, while several previous works [18], [19], [20] consider
using stochastic information propagation model and seed allo-
cation for diversifying, their aim is diversifying the exposure of
nodes, our work considers diversifying the exposure of edges.
Second, while several previous works [16], [17] consider
the differences in edge weights and propose methods like
link suggestion and link weight adjustment to fight against
polarization, their approaches are essentially built on opinion
dynamics model.

Technically, we consider the following problem setting.
We assume two campaigns of a controversial issue are prop-
agating in the network according to a specific propagation
model independently. Each campaign is associated with a seed
budget, within which we can choose initial seed nodes for
campaign propagation. Each edge is associated with a weight
denoting activity strength through it. The objective is to recruit
initial seeds for the two competing campaigns within their
budgets, such that the total activity strength between followers
of the two campaigns when diffusion process is finished is
maximized.

Although derived from a large volume of work on infor-
mation propagation and breaking filter bubbles, by combining
the merits of using stochastic propagation and edge weight,
our paper shows the following significant differences and
novelties.

1) This is the first paper trying to diversify information
exposure in edge level by maximizing co-activity for
breaking filter bubbles using information propagation
method.

2) The problem of maximizing co-activity (CoAM) is for-
mally defined, after which its hardness and approxima-
bility, the properties of objective function are studied.

3) Due to the non-sub/super-modularity of the objective
function, its submodular lower bound is devised and
based on which an algorithm with approximation guar-
antee is provided.

4) The quality of the proposed approximation algorithm
is evaluated on dataset extracted from real-world social
network.

The remaining part of this article is organized as follows.
Section II briefly introduces related works concerning bal-
ancing information exposure and breaking filter bubbles on
social networks. Section III formulates the diffusion models
and formally defines the CoAM problem. Section IV shows
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the hardness result, the approximability, and properties of the
objective function of CoAM problem, and then a lower bound
of the objective, with which we propose an approximation
algorithm of CoAM, is introduced and analyzed. Section V
gives an efficient implementation of the proposed approxima-
tion algorithm. Section VI is dedicated to show experiments
and Section VII concludes this article. Note that all proofs
and several tables are shown in Appendixes in supplementary
material available online.

II. RELATED WORKS

With the growing popularity of social media [1], online
polarization receives ascending attention from researchers in
many fields, as this polarization is observed to link to society
across many issues in politics [4], [12], [13], public pol-
icy [24], and healthcare [14], [25]. Our work belongs to an
emerging line of research on fighting against online polar-
ization by breaking filter bubbles. Specifically, we consider
maximizing the strength of contact between opposing groups
which is shown to be beneficial for reaching compromise [21],
[22], [23]. Many studies have been done on the effect of
echo chamber [5], [6] and filter bubble [7], [8] that may
contribute to polarization. It is shown that opinion-challenging
information spread less than others [6] and content filtering
by social media platform for higher user engagement can
increase polarization significantly [16], which impels social
media companies to highlight tradeoff between revenue and
polarization. Popular approaches consider using opposing con-
tent recommendation [17], [18], [19], [20], [26], [27], [28],
or bridging opposing views by link suggestion [15], [16], [17]
to diversify users’ exposure and reduce polarization.

Among the works mentioned, closest to ours lies in a line
of research using stochastic information propagation method
to balance or diversify node-level information exposure in
social network [18], [19], [20]. Garimella et al. [18] consider
balancing users’ information exposure by recruiting additional
seeds for two opposing campaigns so that the number of nodes
accepts either both or none of the campaigns when diffusion
finished is maximized. Within the algorithms they proposed,
only one provides an approximation guarantee for campaigns
with different propagation statistics, while others rely on
limited assumptions like forcing additional seeds selected
to be the same or campaigns sharing common propagation
statistics. Aslay et al. [20] consider the leanings of users and
news articles propagating through the network and formu-
late the problem of diversifying users’ information exposure
by recommending articles to selected users. Tu et al. [19]
consider maximizing the number of users that accept both
sides of two opposing campaigns. Technically, it is the closest
one to our work. However, as our work focuses on edge-
level balancing, the sampling design is totally different. The
other line of research close to ours is based on opinion
dynamics that model social learning process [16], [17]. For
example, Musco et al. [17] quantify both the disagreement
and polarization and try to optimize their sum by graph
topological optimization or content recommendation under
Friedkin—Johnsen model [29].
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More broadly, our work relates to a series of research on
viral marketing for multiple items in online social networks
via information propagation lens [30], [31], [32], [33], [34],
[35], [36]. While in these works the adoption of items by users
is considered to contribute to the final revenue, the connection
strength through edges is also considered as an important
factor in several variant problems of influence maximiza-
tion (IM) and misinformation containment [37], [38], [39].
Technically, we borrow the concept of reverse influence sam-
pling (RIS) [40] for overcoming the #P-hardness of influence
calculation [41], [42] in the design of our sampling algorithm.
A series of more efficient and scalable randomized algorithms
for IM are proposed based on RIS, including TIM/TIM+ [43]
and IMM [44]. Specifically, we follow the martingale analysis
used in IMM in our algorithm design.

III. PROBLEM DEFINITION

In the following, we describe the information propagation
models (Section III-B) and formally define the CoAM problem
by using possible-world semantics (Section III-C). A table
listing the frequently used notations is shown in Appendix B.

A. Preliminaries

Inputs to our problem consist of the following.

1) A directed graph G = (V, E) with |V| = n nodes and
|E| = m edges, where a directed edge (u,v) means v
follows u so v can see posts of u.

2) Two opposing campaigns for a controversial issue,
e.g., two candidates for an election, referred as campaign
r (red) and campaign b (blue), with their seed set
budgets k. € Zy and k;, € Z., respectively.

3) Each (u,v) € E is associated with a activity strength,
denoted as a,,,) > 0.

4) Campaign-specific propagation model and parameters.

B. Propagation Models

First, assume the propagation of one campaign is indepen-
dent of the propagation of the other, then consider two specific
models.

1) Each campaign follows the independent cascade
model [45]. Specifically, for each i € {r, b}, the propa-
gation probability of i through an edge (u,v) is péu,v).
In each discrete time step ¢, a newly i-activated node u
has a single chance to propagate its influence to node v
that is not i-activated through (u, v) € E with probabil-
ity péu,v), if succeed, v will be i-active in time 7 + 1.

2) Each campaign follows the linear threshold (LT)
model [45]. Specifically, for each i € {r, b}, each edge
(u, v) is associated with an influence weight béu,v), each
node v € V selects a threshold 6, in [0, 1] uniformly
random and zue,\,_(v) béu,v) <1, N (v) = {ul(u,0) €
E} is the set of incoming neighbor of » in E. In each
discrete time step ¢, a i-inactive node v checks the sum
of influence weights from its i-active neighbors and
change its state to i-active in time ¢t + 1 only if this
sum exceeds 6!.

As each campaign is associated with a different color (red or
blue), denote: 1) as multicolor independent cascade (MCIC)
model and 2) as multicolor LT (MCLT) model. MCIC is used
in related works [18], [19], [20].

C. Possible-World Semantics

Given two seed sets S, and S, for campaign r and b,
respectively, a single possible world w represents an outcome
of the stochastic propagation process starting from S, and S,
in network G. We follow previous works [19], [20] to use
an edge-colored multigraph representation for formulating the
probability of a possible world w. Accordingly, for MCIC
model, define a directed multigraph G = (V, E, jp) from
G = (V, E), specifically, for each (u,v) € E, creating a
parallel edge (u, v)" with probability péu,v) for each i € {r, b},
then the probability of a possible world w by sampling (u, v)’
from G can be represented as

H (1 - pl(u,u))'

Priwl = [T [1 Pl
(u,0)' € E\w

ie{rb} (u,v) ew

For MCLT model, we can also define a similar directed multi-
graph G = (V, E, b) from G = (V, E) by creating parallel
edges with campaign-specific influence weights and assign
each node campaign-specific thresholds; similarly, by the
equivalent view (Claim 2.6) established in Kempe et al. [45],
we can view the process of generating a possible world w as
following: v chooses at most one of u € N~ (v) s.t. (u,v)’
appears in w with probability béu,v) exclusively, and there is
no incoming edge of » in w for campaign i with probability
1= 3 en-) Pluys denote Vi = (o B(u, v)" € w), then

Priwl = [T TT oln [T{1= 2 blun

ie{r,b} (u.v) ew veVi ueN-(v)

Note that w is a “hard-wired” graph, denote I,,(S;)/1,(Sp)
as the set of nodes reachable from seed set S,/S, in w, let
CO, (S, Sp) = {(u,v)|(u,v) € EA@ € I,(5)Av €
I,(Sp) Vu € I,(S) Av € [,(S,))} denote set of edges
that can pass “co-activity” here “passing co-activity” means
an edge may contribute to balance/diversify the information
exposure and break the filter bubbles, thus even if both ends
are activated by both campaign, we still count it in CO,,),
then define A, (S;, Sp) = 2, ,)eco,(s,.5,) duv) as the total
co-activity in w by seeding S, and S, we have

E[A(Sy, Sp)] = Z Pr[w]A ., (Sy, Sp).
wCG
Note that we allow S, NS, # ¥. Then we are ready to formally
define CoAM.

Problem 1 [Co-Activity Maximization (CoAM)]: Given a
directed social graph G = (V,E), two opposing cam-
paigns r and b, a propagation model MCIC/MCLT with
campaign-specific propagation parameters, initial seed set bud-
gets k, € Z4 and k, € Z,, find seed sets S, and S, such
that |S,| < k, and |S,| < k, and the expected co-activity is
maximized when propagation process finished

max E[A(Sra Sb)], S't' |Sr| E kr’ |Sh| E kb-
S, SV, 5V
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IV. THEORETICAL ANALYSIS

In this section, we first analyze the complexity of CoAM
(Section IV-A), and then properties of its object function are
studied, with which a submodular lower bound of the objective
is devised for approximation algorithm design (Section IV-B).
We start by establishing hardness results.

A. Hardness

Theorem 1: CoAM problem is NP-hard under MCIC/MCLT
model.

Theorem 2: Under MCIC/MCLT model: 1) CoAM does
not admit a PTAS unless P = NP and 2) in terms of
parameterized complexity, CoAM is not FPT with respect to
k, even assuming k, = |V| or vice versa.

Theorems 1 and 2 show the difficulties of directly opti-
mizing and approximating the CoAM problem, respectively,
which encourages us to design approximation algorithm by
analyzing the properties of its objective E[A].

B. Approximation

First, notice that E[A(S,, S;)] is a biset function and IM
with a single seed set under IC/LT model is monotone non-
decreasing submodular [45]. If we can link E[A(S,, Sp)]
with bisubmodularity [46], then we can use bisubmodular
maximization technique to deal with it. However, Lemma 1
negates this way.

Lemma 1: E[A(S,, Sp)]:2V x 2V — R-( is a monotone
non-decreasing biset function but not bisubmodular under
MCIC/MCLT model.

As optimizing E[A] in biset form seems groundless,
inspired by univariate transformation used in Tu et al. [19],
in the rest of this section, we continue our analysis by building
an equivalent univariate formulation of E[A].

Let (SF, S;) denote the optimal seed sets that maximize
co-activity [E[A], as [E[A] is a monotone nondecreasing biset
function (Lemma 1), we can attain the maximal objective when
[S}| = k, and |S;| = k. Without loss of generality, assume
k. < kp in the following analysis. Let O; = {(S,, Sp)||S,| =
kr,|Sp| = kp, S, €V, S, C V} denote the set of feasible seed
set pairs of maximal size, we have (S, S;) € O;. For any
(Sr, Sp) € Oy, it follows that 1 < [S|/|S;| < [ky/k,]. This
inspires us to construct a set of pairings between nodes in S,
and S, such that each node in S, corresponding to at least
lky/k,] and at most [k,/k,] nodes. Denote £ = {V x V}
as the ground set of all ordered node pairs, where (u,v) € £
represents the pairing of a node u, selected as a seed node
for campaign r, with a node v, selected as a seed node for
campaign b. We can define a ser-of-pairs system on &, and
establish its relation to O; (Lemma 2).

Definition 1 (Set-of-Pairs System): Let (£,7) be a set sys-
tem where £ = {V x V} is the ground set and 7 is a collection
of subsets of £. For any Y € Z, let Y, = |J{r|(r, b) € Y} and
let Y, = J{b|(r, b) € Y}. We say that (£,7) is a set-of-pairs
system iff for any set Y € Z, the following conditions hold.

D Y| < k.

2) Ypl =1Y] < k.
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3) Foreach ro € Y, | J{b|(ro, b) € Y}| < [kp/k;].

4) If Lkp/kr ] < Tkp/k:7, then |{r|(r, b) € YAIU{bI(r, b) €
Y} = Tky/k 1} < kp mod k, (pairing Y, and Y, as
evenly as possible for the case |Y,| = k, and |Y}| = k).

Lemma 2: Let O, = {(Yr, Yh)|Y € 7}, then O C O,.

Let f : 26 — R, be a function defined as f(¥) =
Z(u,v)eCOC(,AM(y) ag,) where COcoam(Y) = {(u,0)|(u,v) €
EAnuell¥)rnov e I(Y)) Vu € I(Yy) Ao € 1(Y,))},
I1(Y,) and I(Y,) are random variables representing the set of
nodes infected by campaign r and b when propagation fin-
ishes, respectively. Note that 7(-) is monotone nondecreasing
submodular under IC and LT model [45]. By Lemma 2, for
an optimal pair (S}, S;) € O; that maximize E[A], we can
construct a corresponding Y* € 7 that maximize f, thus
CoAM problem can be reformulated as

max B[ f(Y)]

converting a two variables (S,,Sp,) problem to a single
variable (Y) problem. Next, we proceed by analyzing the
properties of f.

Lemma 3: f :2% — R, is a monotone nondecreasing set
function, which is neither submodular nor supermodular under
MCIC/MCLT model, besides, its submodularity ratio is O.

Again, Lemma 3 shows that directly approximate f is hard
even under cardinality constraint, as existing approximation
techniques for submodular set function and non-submodular
set function with proper submodular ratio (>0) and curva-
ture [47] turn out to be not suitable here. In addition, it’s easy
to see that this problem does not follow cardinality constraint,
we should also analyze the properties of (£,7) to deal
with it.

Using submodular upper/lower bound for nonsubmodu-
lar function maximization is a widely used technique [19],
[371, [38], [39]. Specifically, the nonsubmodularity of f
comes from “combination effect” between activated nodes
by different seed pairs, which is given more discussion in
several works [37], [48]. Then, we can design a function
g 28 — Ry, with g(¥) = D (40)eCOe (¥) Fup)> and
COppwer(Y) = {(u, 0)|(u,v) € EA(r,b) e YA(u € I(r)Av €
I(b)yvVu € I(b)y Av € I(r))}, compared to COcoam(Y),
here in COjoyer(Y), only edges that can be balanced by a
pair of seeds in Y are included, thus f(Y) > g(Y) strictly.
It can be shown that g(Y) is submodular (Lemma 4), and
differs from f(Y) within a multipicative factor in any pos-
sible world w generated by stochastic propagation process
(Lemma 5).

Lemma 4: g : 2° — R is a monotone nondecreasing
submodular set function, maximizing g is NP-hard.

Lemma 5: Let Y° = argmaxycrE[g(Y)], Y* =
argmaxyer E[ f(Y)], k. < kp, then E[ £(Y*)] < k. E[g(Y)].

Lemma 5 suggests that any algorithm that provides an
approximation guarantee for maximizing E[g] over set system
(€,7), provides also a bounded approximation guarantee for
maximizing E[ f]. Now it is the turn to analyze properties of
the set-of-pairs system (&, 7). We first provide the preliminary
definitions (Definitions 2 and 3), which will help us establish
the properties (Lemmas 6 and 7).
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Definition 2 (Independence System): A set system (€, 7) is
an independence system if 7 # () and satisfies the downward-
closure property, i.e., if Y € Z and X C Y, then X € 7.

Definition 3 (p-System [49]): An independence system
(£,7) is a p-system, if

max,.; is a base of X ||
max - =
XSE miny.; is a base of x |/]

where any subset J of X is a base of X if J € 7 and Ve €
X\J,JUe¢T.

Lemma 6: The set-of-pairs system (£,7) is an indepen-
dence system, but not a matroid.

Lemma 7: The set-of-pairs system (€,7) is a 4[(ky/k,)]-
system.

Thus far, we know (£,7) is a 4[(ky/k,)]-system and
E[g] is monotone non-decreasing submodular, then greedy
algorithm starting from ¢ will provides an (1/1+4[(kp/k.)])-
approximation [49]. Denote Y¢ C & as the solution returned
by greedy algorithm, YrG = Ulrler,b) € Y9}, YbG =
U{bI(r,b) € Y©}. Then we have (YC,YC) is a 1/((1 +
47 (kp/k,)1)k,)-approximation to optimal solution of CoAM
problem.

Theorem 3: Let Y9 be the solution returned by a greedy
algorithm running for E[g] starting from ¢, then

B[/ (r9)] = ————E[/(r")].
(1+4r81)k,

Unfortunately, directly using greedy algorithm is unrealistic
since evaluating E[g(X)] for a X € & is #P-hard, as shown
in Lemma 8. This problem will be tackled by using RIS [40]
technique in Section V.

Lemma 8: Given a Y C &, computing E[g(Y)] is #P-hard
under MCIC/MCLT model.

V. ALGORITHMS

Efficient implementation of a greedy algorithm is chal-
lenging since calculating lower bound E[g(-)] is #P-hard as
shown in Lemma 8. Naively, using a large number of Monte
Carlo (MC) simulations is a choice here [45]. Consider using
r rounds MC simulations, the time complexity of the greedy
algorithm can be O (kyn>mr). Clearly, it is prohibitively expen-
sive, making it difficult to compromise between efficiency and
accuracy.

On the other hand, among the efforts devoted to scalable
IM, Borgs et al. [40] first proposed the concept of RIS and
designed a quasi-linear time randomized algorithm based on
reverse-reachable (RR) sets with approximation guarantee.
Using RIS technique, Tang et al. designed TIM/TIM+ Algo-
rithm [43] that achieve near-optimal time complexity and
subsequently proposed IMM Algorithm [44] which further
improved the performance using martingale based analysis.

Random RR sets are a vital tool for estimating expected
influence spread used in IM algorithms mentioned above,
and its variants are shown useful in many related tasks [19],
[20], [37], [38], [39]. Considering the inherent similarity
between computing influence spread and E[g(-)], in this
section, we first introduce a non-trivial generalization of RR

set, named as edge RR pairs (ER’P) set, based on which we
devise an unbiased estimator of E[g(-)] (Section V-A). Then
we focus on essentially how many ER’P sets are needed in
our approximation algorithm (Sections V-B and V-C).

A. Lower Bound Estimator

Definition 4 (Random edge RR pairs (ER’P) set): Let
w T G be any possible world, B = 2 (uw)eG Aaup) denotes
the summed activity strength of edges in G, R _ (v)/R! _, (v)
denotes the RR set [43] for a node v in G that can propagate
campaign r/b to it in a possible world w. A ER?P set can be
generated by the following steps.

1) Generate a possible world w of G.

2) Select an edge (4, v) € E with probability a,,)/B.

3) Collect RT _ (u), RT ,(v), RT_ (v), RT _, (u).

4) Calculate Rl, o,y = {(r,b): r € RL_(w) Ab €
RT ()}, R2yupw = {(rnb):r € RI_(0) Ab €
RHT,_},(“)}-

5) Return Ry, 0y = Rl (u,0) Y R24 (u,0)-

The efficiency of sampling an ER?P set can be improved
by using randomized breadth-first search (BFS) instead of
generating a whole possible world w. Let R denote a pool of
random ER?P-sets, let Fr(Y) = (1/|R|) X ger LIRNY # ]
denote the fraction of ER?>P-sets that intersect with ¥ C &,
1(-) is indicator function. Then we can show that E[g(Y)]
can be estimated using Fr (Y).

Lemma 9: Forany Y C &, we have E[g(Y)] = BE[Fr(Y)],
the expectation is taken over the randomness in w ~ G and
(u,v) ~ E.

B. Two-Phase Approximation

Shown that BE[Fr(Y)] is an unbiased estimator of
E[g(Y)], we can follow previous works [19], [20], [44]
to design our two-phase co-activity maximization (TCoAM)
algorithm (Algorithm 1) that provides an approximation-
guaranteed solution Y ¢ to the problem of maximizing E[g(Y)]
using a sample R of random ER?P sets. TCoAM operates in
two phases as follows.
1) Sampling phase, which determines the size of R needed
for accurately estimating E[g(Y)] and generates R.

2) Greedy pair selection phase, which selects a feasible
pair y maximizing marginal gain Fr(Y®Uy)— Fr(Y%)
and adds it to Y9 in each iteration.

Algorithm 1 TCoAM(G, (€, T), 2, A*, €2, LBy)
1 7~2 <« Sampling(G, (£,7), 4, A%, €2, LBy);

2 Y9 < ER?-Pairs-Greedy(R, (£, 1));

3 return Y¢

For greedy pair selection phase (Algorithm 2), we show in
Theorem 4 that if we can obtain accurate-enough estimation
of E[Fr(Y)] for all Y € Zpase, Zpase S Z is the maximum
independent sets in (£,Z) and its size is given in Lemma 10,
with high probability given a sample R of random ER?P
sets, then we can approximate CoAM to a factor with high
probability. Let OPT = E[g(Y?)].
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Algorithm 2 ER?-Pairs-Greedy(R, (€, T))

Algorithm 3 Sampling(G, (£,7), A, 2%, €2, LBy)

179 <0
2 while y < argmax,.yoyyer Fr(YCU{y})) — FR(Y%) do
3 L)?G <~ YUy

4 return Y°

Theorem 4: Assume in greedy pair section phase TCoAM
receives as input a sample R of random ER?P-sets such that

IBER (Y) — E[(g(Y)]] < EOPT 1)

holds for any Y € Iy, with probability at least 1 —
B~ /|Tpasel, then TCoAM returns a ((1/(1 4+ 4[(kp/k)Dk,) —
€)-approximate solution to the CoAM problem with probabil-
ity at least 1 — B~" and runs in O3> x.% |R]).

Lemma 10: The size of Ty satisfies |Zpase| = (;) (,:)kb!.

Next, we are interested in finding a lower bound of |R| such
that Theorem 4 holds. Specifically, let

1= i—f(g +2) (02 + €10 B +In [ Tysel)

we have the following Lemma 11. The proof of Lemma 11
is based on martingale analysis which has been successfully
implemented in related works [19], [20], [44].

Lemma 11: If |R| > 1/OPT, then (1) holds for all X € Zyase
with probability at least 1 — B,

C. Sampling

However, it is not easy to get this lower bound as maximiz-
ing E[g(-)] is NP-hard (Lemma 4). Alternatively, following
existing approaches [19], [20], [44], we try to find a lower
bound of OPT and use it to get the required |R|. The key
part of our approach includes a statistical test 7 (z) such that
if OPT < z, then 7 (z) = False holds with high probability.
As OPT € [1, B], this test is performed iterative on O(log, B)
values of z = B/2, B/4, ..., 1. Note that we restrict OPT > 1,
which can be easily set up in preprocessing.

We now explain the workflow of TCoAM’s sampling phase
(Algorithm 3), which first identifies a lower bound LB of |R|
by implementing a 7 (-) adaptively, then it generates a sample
of ER?P sets R such that [R| > A/LB. The algorithm starts
by initializing R to ¥, LB to LBy, while LBy can be naively
set to be Max,v)ek A0y, and an error parameter €. Then it
enters for a loop at most log, B times. In the ith iteration, the
algorithm compute a z = B/2' and use 7 to derive a §; = 1*/z,
where

B (2
2% = 7(% + 2) (Inlog, B + €1n B + In | Zpueel).
€

The algorithm keeps generating new random ER?P set and add

it to R until |R| > 6;, then it computes a greedy solution YiG

on this new sample R. If the new R satisfies the condition
BFR(YI»G) > (1+ €)z

then set LB = (BFR(YiG)/l + ¢€;) and break the for loop,
otherwise continue with the (i + 1)th iteration. After the for

1R <@

2 LB < LBy;

sfori=1,---,log, B do

4 | z < B2,

5 0, = 21%/z;

¢ | while R <0; do

7 R <« RU GenerateER?P-Set; // Follows
L Definition 4

8 | Y¢ < ER?-Pairs-Greedy;

l

9 | if BFr(YY) > (1 + &)z then

BFR(YP) .
10 LB <« T
11 break;
12 R < @
1360 < /LB,

14 while |R| < 6 do
15 L R <« RU GenerateER?P-Set;

16 return R

loop, we regenerate A/LB random ER?P sets and return them
as R. The correctness of the sampling phase is shown by
Theorem 5.

Theorem 5: With probability at least 1 — B~¢, the sampling
phase of TOCAM returns a sample R such that |[R| > 1/OPT.

With all the above discussions, we have the following
Theorem 6.

Theorem 6: TCoAM returns a ((1/(14+4[(ky/k)1)k,) —€)-
approximate solution to the CoAM problem with probability
at least 1 — 2B,

VI. EXPERIMENTS

In this section, we evaluate the performance of our proposed
TCoAM algorithm on several real-world network datasets.
We first introduce datasets and experimental settings used in
our evaluation, and then experimental results are presented and
analyzed.

A. Settings

1) Datasets: The experiments are carried out on five net-
work datasets with varied statistics as shown in Table 1. All
of five network datasets are publicly available [50], rt-copen
and rr-assad are selected from retweet networks category,
ca-netscience and ca-GrQc are within collaboration networks
category and soc-wiki-Vote is from social networks category.
Note that ca-netscience and ca-GrQc are undirected in nature,
so for each undirected edge we replace it with two directed
edges to make the datasets directed.

2) Propagation Models: We consider both MCIC and
MCLT model in the experiments. For each dataset, two meth-
ods are used to assign propagation-related parameters.

1) Weighted Cascade: For each (u,q) € E, set péll,u) =
1/N~(v) for MCIC model and b, , = 1/N~(v) for
MCLT model where i € {r, b}; in this case, two cam-
paigns share the same propagation-related parameters.
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TABLE I
STATISTICS OF THE DATASETS

Dataset n m  Avg. degree
ca-netscience 379 1828 9.65
rt-copen 761 1029 2.70
soc-wiki-Vote 889 2914 6.56
rt-assad 2139 2803 2.62
ca-GrQc 4152 26844 6.47

2) Random: For each (u,v) € E and i € {r, b}, p‘éujv) and
b’(u’u) are firstly chosen from [0, 1] uniformly at random,
then we normalize the parameters of all incoming edges
of a node v if the sum exceeds 1.0 in order to fulfill the
requirements of MCLT model.

Similar methods have been used in related works [19], [37],
[38], [39], [41], [42]. For activity strength on each (u,v) € E,
we simply set it as a(,,,) = 1/N~(v). The resulting networks
are denoted by adding suffix “.wc” or “.rd” to dataset name,
e.g., soc-wiki-Vote.wc. Note that getting exact values of those
parameters is orthogonal to the interests of this article.

3) Baselines: Besides TCoAM, we implement four heuristic
algorithms as baselines for comparison.

a) Random: Randomly select k, seeds for campaign r and

kp seeds for campaign b.

b) MaxODeg: Sort the nodes by descending order of out-
degrees, choose the first k, nodes for seeds of cam-
paign r and the first k; nodes for seeds of campaign b.

¢) MaxOAct: Sort the nodes by descending order of out-
activity strengths, choose the first k, nodes for seeds
of campaign r and the first k;, nodes for seeds of
campaign b.

d) PageRank: Use PageRank Algorithm [51] to rank the
nodes in G, and G, and select the top nodes to seed
sets.

e) TCEM': A node-level balancing Algorithm [19] tries
to find S, and S, that maximize the number of node
exposed to both campaign r and b when diffusion
finished.

4) Parameters: Unless otherwise stated, set £ = 1, € =
€6 = 0.2, MC simulation round r = 200 is used to evaluate
the selected seeds. Heuristic is used when the memory limit
(8 GB) is met.

B. Main Results

Co-activity results under MCIC/MCLT propagation mod-
els with weighted cascade/random parameters and k, = 5,
ky € [5,10] are shown in Figs. 1 and 2. Note that Random
is omitted from the reports as its corresponding co-activity
results are at least two orders of magnitude worse than the
other competitors throughout all settings. It means that blindly
selecting seeds for competing campaigns is not a good idea for
contributing intergroup activities between opposing follower
groups. From these two figures, it is easy to observe that while

'Note that TCEM algorithm can be extended to MCLT model with seeds-
intersection allowed, as the hardness results of its corresponding CoEM
problem can be simply established by reduction from IM problem under LT
model, and the following analysis can be adapted from this article.

different settings and properties of the networks influence the
results, TCoAM algorithm demonstrates its comparably good
performance in all of the networks with different experimental
settings. Other baselines, e.g., TCEM, although demonstrate
good performance in some settings, their performance is
observed as not stable across different settings. For exam-
ple, TCEM shows comparable performance to TCoAM when
applied to rt-assad.wc, but its performance drops when applied
to rt-assad.rd.

One interesting finding is that when applied to larger dataset
ca-GrQc under MCLT model, MaxODeg slightly outperforms
TCoAM under seed budgets k, = 5, k, € [5,10]. The
reason may lie in that under the MCLT model, compared
to the MCIC case, the balancing ability of seeds seems
to be stronger (Figs. 1 vs. 2), directly choosing “popular”
seeds with maximum out-degrees tends to be a good choice
when seed budgets are limited, especially for larger network
ca-GrQc with more highly influential nodes. Based on the
above analysis, when more seeds are allowed, the advantages
of MaxODeg should be wiped off. We verify this thought by
enlarging seed budgets (k, = k, € [10,35]), as shown in
Fig. 3.

In addition, for each experimental setting and each algo-
rithm used, we recorded the average of the degrees of seeds
selected (SeedsAD) and the average of the activity strength
associated with the incident edges of seeds selected (Seed-
SAA), an example records table for dataset ca-netscience.wc
under MCIC model with k, = 5 and k;, € [5, 10] is shown in
Appendix B. Over the total 120 groups of comparisons, only
in 2 seeds selected by TCoAM showed a highest SeedsAD,
and in 1 seeds selected by TCoAM showed the highest
SeedsAA, with ties allowed. It shows the potential of TCoAM
to select seeds that may contribute more to co-activity,
not just consider the popularity of propagating or receiving
cascade.

C. Further Analysis

Based on the above analysis, natural thinking is that when
the viralities of campaigns decreased, the balancing results
induced by the baselines relying on selecting “popular” nodes
as seeds will also decrease as the propagation abilities of those
“popular g ” nodes are cut. This phenomenon is verified by
the following experiments. We select four denser networks
ca-netscience.wc, ca-netscience.rd, soc-wiki-Vote.wc and soc-
wiki-Vote.rd in which baselines demonstrate relatively better
performances than in sparser ones. Then all of the propagation
parameters in these networks are divided by a factor to pro-
duce new networks with more restricted propagation abilities.
Denote the original network with suffix “.ORI” and the corre-
sponding new one with suffix “.DIV5”/“.DIV10” (we choose
the factor = 5 or 10). We compared the performance gain in
terms of final co-activity by using TCoAM rather than the best
of baselines (BoB) in each experimental setting, Fig. 4 shows
examples of the performance gain comparison on dataset
ca-netscience under MCIC model. Clearly, it can be observed
that when the viralities of campaigns decreased, TCoAM
shows a trend of becoming more advantageous. Furthermore,
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(i) rt-assad.rd. (j) ca-GrQc.rd.

for each comparing tuple of *.ORI, *.DIV5 and *.DIV10, the
balanced edges directly caused by seeds of campaign r and b
(i.e., COgeeqs = {(u, v)|(u,v) € EAu € S, Av € S,Vu € S A
v € S,}) are extracted and the corresponding total co-activity
(-6, 22 (40)eCOLy daun)) Of those edges are recorded. Table II
shows an example of comparison of total co-activity directly
caused by seeds S, and S, selected by TCoAM algo-
rithm run in ca-netscience.wc.ORI, ca-netscience.wc.DIVS,
and ca-netscience.wc.DIVI0 under MCIC model with &k, = 5
and k, € [5,10]. From Table II, we find that when the
propagation effect weakened, TCoAM tends to choose seeds

Under MCLT model, weight cascade/random parameters and r =
(a) ca-netscience.wc. (b) rt-copen.wc. (c) soc-wiki-Vote.wc. (d) rt-assad.wc.

5 6 7 8 9 10

200, co-activity results on networks for k, = 5 and varying k;, € [5, 10].

(e) ca-GrQc.wc. (f) ca-netscience.rd. (g) rt-copen.rd. (h) soc-wiki-Vote.rd.

that can directly balance more edges without the help of
propagation, in fact, for ca-netscience.wc.DIV10, in the case of
ky = 5 and k; = 10, these directly balanced edges count about
94.3% in the final co-activity. Similar results are also observed
in the other comparisons. These results show that TCoAM
is more adaptable to various settings of CoAM, i.e., more
suitable for this task.

VII. CONCLUSION

In this article, a novel problem, called CoAM, which aims
at maximizing co-activity in social networks, is investigated.
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Fig. 4. Under MCIC model, weight cascade/random parameters and r = 200,
comparison of performance gain in terms of final co-activity by using
TCoAM rather than the BoB on dataset ca-netscience for k, = 5 and
kp € [5,10]. “ORI” denotes the original network and “DIV5”/“DIV10”
denotes the corresponding virality-reduced one. (a) ca-netscience.wc.
(b) ca-netscience.rd.

TABLE I

UNDER MCIC MODEL, COMPARISON OF TOTAL CO-ACTIVITY DIRECTLY
CAUSED BY SEEDS S, AND S SELECTED BY TCOAM ALGORITHM RUN
IN CA-NETSCIENCE.WC.ORI, CA-NETSCIENCE.WC.DIV5 AND
CA-NETSCIENCE.WC.DIVI0O WITHk, = 5 AND kp, € [5, 10]

kp
Network 5 6 7 8 9 10
* ORI 0.10 0.16 032 053 063 0.79
* DIV5 126 243 3,63 336 559 672
* DIV10 4.61 6.16  6.51 7.10 724 8.50

We show the NP-hardness of CoAM and also its hardness of
approximation, furthermore, the objective function of CoAM
is neither submodular nor supermodular. In view of this,
we design a submodular lower bound of the objective function
and with which we devise an approximation algorithm with
a provable accuracy guarantee. By extending the idea of RIS
and IMM, we propose the TCoAM algorithm, which gives a
scalable instantiation of the devised approximation algorithm.
Despite the good quality of TCoAM demonstrated in the
experiments, several future directions are worth investigating.
First, it is eager to improve the current approximation guar-
antee as when the seeds size increase it drops quickly now.
Second, it would be interesting to consider other constraints
other than the cardinality one as in reality the cost of seeding
varies among nodes. Third, relaxing the mutual indepen-

dence assumption and introducimg competing to opposing
campaigns, or considering multiple campaigns with different
leanings and levels of competition, is also a meaningful
direction.
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