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Abstract— Social media with online social networks has risen
to be a prevalent force in information diffusion and public
discourse. Despite its popularity and convenience, social media
has been criticized for contributing to societal and ideological
polarization as the result of trapping users in an echo chamber
and filter bubbles. An emerging line of research focuses on
ways to redesign content or link recommendation algorithms to
mitigate the polarization phenomenon. However, existing works
mainly concentrate on node-level balancing, while omitting the
balancing effect that can be incurred by edge interaction in
social networks. In this article, we take the first step to study
the problem (CoAM) that assuming two campaigns are present
in a network, how we should select seeds for each so as to
maximize the interaction/activity between the followers of two
campaigns (co-activity) after the diffusion process is finished.
We begin our analysis by showing the hardness of CoAM under
two diffusion models that are generalized from wildly used
diffusion models and its objective function is neither submodular
nor supermodular. This encourages us to design a submodular
function that acts as a lower bound to the objective, by exploiting
which we are able to devise a greedy algorithm with a prov-
able approximation guarantee. To overcome the #P-hardness of
diffusion calculation, we further extend the notion of random
reverse-reachable (RR) set to devise a scalable instantiation of
our approximation algorithm. We experimentally demonstrate
the quality of our approximation algorithm on datasets collected
from real-world social networks.

Index Terms— Approximation algorithm, echo chamber, filter
bubbles, martingale, social network.

I. INTRODUCTION

W ITH undoubtedly a large number of advantages, social

media and social network service have gone popular

enormously in the last decades, as shown in a recent survey

that 71% of U.S. adults get news on social media in 2020 [1].

Together with its big success, social media service is under

blame for its possible linkage to the increase of societal

and ideologically polarization [2], [3], [4]. The criticism here

mainly goes that the combination of the viral nature of

information propagation and personal-curated content recom-

mendation algorithms used by social media platforms will
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create and amplify the phenomenon of echo chamber [5], [6]

and filter bubble [7], [8] on a social network.

The echo chamber is a phenomenon where users’ infor-

mation exposures are dominated by like-minded individuals,

similar opinions or views are shared and can bounce off

each other which will eventually reinforce users’ own voices,

causing it more difficult for individuals to understand opposing

viewpoints. A filter bubble is a space where recommendation

algorithms used by social media platforms that are trained

based on users’ previous online behaviors, such as searching,

likes, shares, and interactions history, only present personal-

ized contents that agree with ones’ interests or viewpoints in

the feeds. Echo chambers and filter bubble are even more

harmful when considering the presence of misinformation [9],

[10], [11].

Considering that many controversial issues, for example,

the 2016 U.S. Presidential Election [12], the EU referendum in

the U.K. [13], and the COVID-19 Pandemic [14], have stirred

fierce debates in the online world, and those debates usually

accompanied with spreading of fake or extremely biased news,

many researchers have realized the importance of diversifying

users’ information exposure for fighting against polarization in

social network and conducted related studies [15], [16], [17],

[18], [19], [20].

The effect of an echo chamber can be weakened by adding

different voices to users’ chambers, i.e., diversifying users’

friend lists/clusters so that each person can enjoy a higher

probability of hearing belief-challenging opinions. Popular

studies [15], [16], [17] in this line consider using link recom-

mendation or link weight adjustment to bridge chambers to

reduce the overall degree of polarization in a social network.

Algorithmic curation and personalized recommendation are

designed to increase metrics like user engagement or ad

revenue, but at the same time, create an echo chamber and

trap the user into a filter bubble [8]. In order to break those

bubbles, we should change the design of recommendation

algorithms in a manner that makes them value variety more,

especially for controversial issues. Recent studies consider

using direct recommendation [15], [17] or information propa-

gation method [18], [19], [20] to increase users’ likelihood of

encountering ideologically cross-cutting news content.

Inspired by the ideas mentioned above, in this article,

we take a step in this direction and study the problem of

breaking filter bubbles in a social network by maximizing

the total strength of inter-group contact (co-activity) under

the stochastic information propagation model. Specifically,

we consider the condition where two opposing campaigns
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around one controversial issue are propagating on a social

network simultaneously, for example, the U.S. Presidential

Election, and the objective is to maximize the co-activity

between the followers of two opposing campaigns when

the diffusion process finished by allocating seeds to each

campaign in the beginning. Here, co-activity occurs when

two ends (users) of an edge (denotes friendship or follow-

ing relation) hold a pair of opposing opinions toward one

controversial issue. The inherent rationality of our idea is

based on the studies [21], [22], [23] showing contact between

opposing groups/individuals helps alleviate group polariza-

tion and increase the likelihood of deliberation and political

compromise.

Note that our work differs from previous works as follows.

First, while several previous works [18], [19], [20] consider

using stochastic information propagation model and seed allo-

cation for diversifying, their aim is diversifying the exposure of

nodes, our work considers diversifying the exposure of edges.

Second, while several previous works [16], [17] consider

the differences in edge weights and propose methods like

link suggestion and link weight adjustment to fight against

polarization, their approaches are essentially built on opinion

dynamics model.

Technically, we consider the following problem setting.

We assume two campaigns of a controversial issue are prop-

agating in the network according to a specific propagation

model independently. Each campaign is associated with a seed

budget, within which we can choose initial seed nodes for

campaign propagation. Each edge is associated with a weight

denoting activity strength through it. The objective is to recruit

initial seeds for the two competing campaigns within their

budgets, such that the total activity strength between followers

of the two campaigns when diffusion process is finished is

maximized.

Although derived from a large volume of work on infor-

mation propagation and breaking filter bubbles, by combining

the merits of using stochastic propagation and edge weight,

our paper shows the following significant differences and

novelties.

1) This is the first paper trying to diversify information

exposure in edge level by maximizing co-activity for

breaking filter bubbles using information propagation

method.

2) The problem of maximizing co-activity (CoAM) is for-

mally defined, after which its hardness and approxima-

bility, the properties of objective function are studied.

3) Due to the non-sub/super-modularity of the objective

function, its submodular lower bound is devised and

based on which an algorithm with approximation guar-

antee is provided.

4) The quality of the proposed approximation algorithm

is evaluated on dataset extracted from real-world social

network.

The remaining part of this article is organized as follows.

Section II briefly introduces related works concerning bal-

ancing information exposure and breaking filter bubbles on

social networks. Section III formulates the diffusion models

and formally defines the CoAM problem. Section IV shows

the hardness result, the approximability, and properties of the

objective function of CoAM problem, and then a lower bound

of the objective, with which we propose an approximation

algorithm of CoAM, is introduced and analyzed. Section V

gives an efficient implementation of the proposed approxima-

tion algorithm. Section VI is dedicated to show experiments

and Section VII concludes this article. Note that all proofs

and several tables are shown in Appendixes in supplementary

material available online.

II. RELATED WORKS

With the growing popularity of social media [1], online

polarization receives ascending attention from researchers in

many fields, as this polarization is observed to link to society

across many issues in politics [4], [12], [13], public pol-

icy [24], and healthcare [14], [25]. Our work belongs to an

emerging line of research on fighting against online polar-

ization by breaking filter bubbles. Specifically, we consider

maximizing the strength of contact between opposing groups

which is shown to be beneficial for reaching compromise [21],

[22], [23]. Many studies have been done on the effect of

echo chamber [5], [6] and filter bubble [7], [8] that may

contribute to polarization. It is shown that opinion-challenging

information spread less than others [6] and content filtering

by social media platform for higher user engagement can

increase polarization significantly [16], which impels social

media companies to highlight tradeoff between revenue and

polarization. Popular approaches consider using opposing con-

tent recommendation [17], [18], [19], [20], [26], [27], [28],

or bridging opposing views by link suggestion [15], [16], [17]

to diversify users’ exposure and reduce polarization.

Among the works mentioned, closest to ours lies in a line

of research using stochastic information propagation method

to balance or diversify node-level information exposure in

social network [18], [19], [20]. Garimella et al. [18] consider

balancing users’ information exposure by recruiting additional

seeds for two opposing campaigns so that the number of nodes

accepts either both or none of the campaigns when diffusion

finished is maximized. Within the algorithms they proposed,

only one provides an approximation guarantee for campaigns

with different propagation statistics, while others rely on

limited assumptions like forcing additional seeds selected

to be the same or campaigns sharing common propagation

statistics. Aslay et al. [20] consider the leanings of users and

news articles propagating through the network and formu-

late the problem of diversifying users’ information exposure

by recommending articles to selected users. Tu et al. [19]

consider maximizing the number of users that accept both

sides of two opposing campaigns. Technically, it is the closest

one to our work. However, as our work focuses on edge-

level balancing, the sampling design is totally different. The

other line of research close to ours is based on opinion

dynamics that model social learning process [16], [17]. For

example, Musco et al. [17] quantify both the disagreement

and polarization and try to optimize their sum by graph

topological optimization or content recommendation under

Friedkin–Johnsen model [29].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 31,2023 at 16:28:28 UTC from IEEE Xplore.  Restrictions apply. 



MAO et al.: CO-ACTIVITY MAXIMIZATION IN ONLINE SOCIAL NETWORKS 3

More broadly, our work relates to a series of research on

viral marketing for multiple items in online social networks

via information propagation lens [30], [31], [32], [33], [34],

[35], [36]. While in these works the adoption of items by users

is considered to contribute to the final revenue, the connection

strength through edges is also considered as an important

factor in several variant problems of influence maximiza-

tion (IM) and misinformation containment [37], [38], [39].

Technically, we borrow the concept of reverse influence sam-

pling (RIS) [40] for overcoming the #P-hardness of influence

calculation [41], [42] in the design of our sampling algorithm.

A series of more efficient and scalable randomized algorithms

for IM are proposed based on RIS, including TIM/TIM+ [43]

and IMM [44]. Specifically, we follow the martingale analysis

used in IMM in our algorithm design.

III. PROBLEM DEFINITION

In the following, we describe the information propagation

models (Section III-B) and formally define the CoAM problem

by using possible-world semantics (Section III-C). A table

listing the frequently used notations is shown in Appendix B.

A. Preliminaries

Inputs to our problem consist of the following.

1) A directed graph G = (V , E) with |V | = n nodes and

|E | = m edges, where a directed edge (u, v) means v

follows u so v can see posts of u.

2) Two opposing campaigns for a controversial issue,

e.g., two candidates for an election, referred as campaign

r (red) and campaign b (blue), with their seed set

budgets kr ∈ Z+ and kb ∈ Z+, respectively.

3) Each (u, v) ∈ E is associated with a activity strength,

denoted as a(u,v) ≥ 0.

4) Campaign-specific propagation model and parameters.

B. Propagation Models

First, assume the propagation of one campaign is indepen-

dent of the propagation of the other, then consider two specific

models.

1) Each campaign follows the independent cascade

model [45]. Specifically, for each i ∈ {r, b}, the propa-

gation probability of i through an edge (u, v) is pi
(u,v).

In each discrete time step t , a newly i -activated node u

has a single chance to propagate its influence to node v

that is not i -activated through (u, v) ∈ E with probabil-

ity pi
(u,v), if succeed, v will be i -active in time t + 1.

2) Each campaign follows the linear threshold (LT)

model [45]. Specifically, for each i ∈ {r, b}, each edge

(u, v) is associated with an influence weight bi
(u,v), each

node v ∈ V selects a threshold θ i
v in [0, 1] uniformly

random and
∑

u∈N−(v) bi
(u,v) ≤ 1, N−(v) = {u|(u, v) ∈

E} is the set of incoming neighbor of v in E . In each

discrete time step t , a i -inactive node v checks the sum

of influence weights from its i -active neighbors and

change its state to i -active in time t + 1 only if this

sum exceeds θ i
v .

As each campaign is associated with a different color (red or

blue), denote: 1) as multicolor independent cascade (MCIC)

model and 2) as multicolor LT (MCLT) model. MCIC is used

in related works [18], [19], [20].

C. Possible-World Semantics

Given two seed sets Sr and Sb for campaign r and b,

respectively, a single possible world w represents an outcome

of the stochastic propagation process starting from Sr and Sb

in network G. We follow previous works [19], [20] to use

an edge-colored multigraph representation for formulating the

probability of a possible world w. Accordingly, for MCIC

model, define a directed multigraph G̃ = (V , Ẽ , p̃) from

G = (V , E), specifically, for each (u, v) ∈ E , creating a

parallel edge (u, v)i with probability pi
(u,v) for each i ∈ {r, b},

then the probability of a possible world w by sampling (u, v)i

from G̃ can be represented as

Pr[w] =
∏

i∈{r,b}

∏

(u,v)i ∈w

pi
(u,v)

∏

(u,v)i ∈Ẽ\w

(

1 − pi
(u,v)

)

.

For MCLT model, we can also define a similar directed multi-

graph G̃ = (V , Ẽ , b̃) from G = (V , E) by creating parallel

edges with campaign-specific influence weights and assign

each node campaign-specific thresholds; similarly, by the

equivalent view (Claim 2.6) established in Kempe et al. [45],

we can view the process of generating a possible world w as

following: v chooses at most one of u ∈ N−(v) s.t. (u, v)i

appears in w with probability bi
(u,v) exclusively, and there is

no incoming edge of v in w for campaign i with probability

1 −
∑

u∈N−(v) bi
(u,v), denote V̄ i = {v : �(u, v)i ∈ w}, then

Pr[w] =
∏

i∈{r,b}

∏

(u,v)i ∈w

bi
(u,v)

∏

v∈V̄ i

⎛

⎝1 −
∑

u∈N−(v)

bi
(u,v)

⎞

⎠.

Note that w is a “hard-wired” graph, denote Iw(Sr )/Iw(Sb)

as the set of nodes reachable from seed set Sr/Sb in w, let

COw(Sr , Sb) = {(u, v)|(u, v) ∈ E ∧ (u ∈ Iw(Sr ) ∧ v ∈

Iw(Sb) ∨ u ∈ Iw(Sb) ∧ v ∈ Iw(Sr ))} denote set of edges

that can pass “co-activity” here “passing co-activity” means

an edge may contribute to balance/diversify the information

exposure and break the filter bubbles, thus even if both ends

are activated by both campaign, we still count it in COw),

then define Aw(Sr , Sb) =
∑

(u,v)∈COw(Sr ,Sb)
a(u,v) as the total

co-activity in w by seeding Sr and Sb, we have

E[A(Sr , Sb)] =
∑

w�G̃

Pr[w]Aw(Sr , Sb).

Note that we allow Sr ∩Sb 	= ∅. Then we are ready to formally

define CoAM.

Problem 1 [Co-Activity Maximization (CoAM)]: Given a

directed social graph G = (V , E), two opposing cam-

paigns r and b, a propagation model MCIC/MCLT with

campaign-specific propagation parameters, initial seed set bud-

gets kr ∈ Z+ and kb ∈ Z+, find seed sets Sr and Sb such

that |Sr | ≤ kr and |Sb| ≤ kb and the expected co-activity is

maximized when propagation process finished

max
Sr ⊆V,Sb⊆V

E[A(Sr , Sb)], s.t. |Sr | ≤ kr , |Sb| ≤ kb.
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IV. THEORETICAL ANALYSIS

In this section, we first analyze the complexity of CoAM

(Section IV-A), and then properties of its object function are

studied, with which a submodular lower bound of the objective

is devised for approximation algorithm design (Section IV-B).

We start by establishing hardness results.

A. Hardness

Theorem 1: CoAM problem is NP-hard under MCIC/MCLT

model.

Theorem 2: Under MCIC/MCLT model: 1) CoAM does

not admit a PTAS unless P = NP and 2) in terms of

parameterized complexity, CoAM is not FPT with respect to

kr even assuming kb = |V | or vice versa.

Theorems 1 and 2 show the difficulties of directly opti-

mizing and approximating the CoAM problem, respectively,

which encourages us to design approximation algorithm by

analyzing the properties of its objective E[A].

B. Approximation

First, notice that E[A(Sr , Sb)] is a biset function and IM

with a single seed set under IC/LT model is monotone non-

decreasing submodular [45]. If we can link E[A(Sr , Sb)]

with bisubmodularity [46], then we can use bisubmodular

maximization technique to deal with it. However, Lemma 1

negates this way.

Lemma 1: E[A(Sr , Sb)] : 2V × 2V → R≥0 is a monotone

non-decreasing biset function but not bisubmodular under

MCIC/MCLT model.

As optimizing E[A] in biset form seems groundless,

inspired by univariate transformation used in Tu et al. [19],

in the rest of this section, we continue our analysis by building

an equivalent univariate formulation of E[A].

Let (S∗
r , S∗

b ) denote the optimal seed sets that maximize

co-activity E[A], as E[A] is a monotone nondecreasing biset

function (Lemma 1), we can attain the maximal objective when

|S∗
r | = kr and |S∗

b | = kb. Without loss of generality, assume

kr ≤ kb in the following analysis. Let O1 = {(Sr , Sb)||Sr | =

kr , |Sb| = kb, Sr ⊆ V , Sb ⊆ V } denote the set of feasible seed

set pairs of maximal size, we have (S∗
r , S∗

b ) ∈ O1. For any

(Sr , Sb) ∈ O1, it follows that 1 ≤ |Sb|/|Sr | ≤ �kb/kr�. This

inspires us to construct a set of pairings between nodes in Sr

and Sb such that each node in Sr corresponding to at least

�kb/kr� and at most �kb/kr� nodes. Denote E = {V × V }

as the ground set of all ordered node pairs, where (u, v) ∈ E

represents the pairing of a node u, selected as a seed node

for campaign r , with a node v, selected as a seed node for

campaign b. We can define a set-of-pairs system on E , and

establish its relation to O1 (Lemma 2).

Definition 1 (Set-of-Pairs System): Let (E,I) be a set sys-

tem where E = {V × V } is the ground set and I is a collection

of subsets of E . For any Y ∈ I, let Yr =
⋃

{r |(r, b) ∈ Y } and

let Yb =
⋃

{b|(r, b) ∈ Y }. We say that (E,I) is a set-of-pairs

system iff for any set Y ∈ I, the following conditions hold.

1) |Yr | ≤ kr .

2) |Yb| = |Y | ≤ kb.

3) For each r0 ∈ Y, |
⋃

{b|(r0, b) ∈ Y }| ≤ �kb/kr�.

4) If �kb/kr� < �kb/kr�, then |{r |(r, b) ∈ Y ∧|
⋃

{b|(r, b) ∈

Y }| = �kb/kr�}| ≤ kb mod kr (pairing Yr and Yb as

evenly as possible for the case |Yr | = kr and |Yb| = kb).

Lemma 2: Let O2 = {(Yr , Yb)|Y ∈ I}, then O1 ⊆ O2.

Let f : 2E → R≥0 be a function defined as f (Y ) =
∑

(u,v)∈COCoAM(Y ) a(u,v) where COCoAM(Y ) = {(u, v)|(u, v) ∈

E ∧ (u ∈ I (Yr ) ∧ v ∈ I (Yb) ∨ u ∈ I (Yb) ∧ v ∈ I (Yr ))},

I (Yr ) and I (Yb) are random variables representing the set of

nodes infected by campaign r and b when propagation fin-

ishes, respectively. Note that I (·) is monotone nondecreasing

submodular under IC and LT model [45]. By Lemma 2, for

an optimal pair (S∗
r , S∗

b ) ∈ O1 that maximize E[A], we can

construct a corresponding Y ∗ ∈ I that maximize f , thus

CoAM problem can be reformulated as

max
Y∈I

E[ f (Y )]

converting a two variables (Sr , Sb) problem to a single

variable (Y ) problem. Next, we proceed by analyzing the

properties of f .

Lemma 3: f : 2E → R≥0 is a monotone nondecreasing set

function, which is neither submodular nor supermodular under

MCIC/MCLT model, besides, its submodularity ratio is 0.

Again, Lemma 3 shows that directly approximate f is hard

even under cardinality constraint, as existing approximation

techniques for submodular set function and non-submodular

set function with proper submodular ratio (>0) and curva-

ture [47] turn out to be not suitable here. In addition, it’s easy

to see that this problem does not follow cardinality constraint,

we should also analyze the properties of (E,I) to deal

with it.

Using submodular upper/lower bound for nonsubmodu-

lar function maximization is a widely used technique [19],

[37], [38], [39]. Specifically, the nonsubmodularity of f

comes from “combination effect” between activated nodes

by different seed pairs, which is given more discussion in

several works [37], [48]. Then, we can design a function

g : 2E → R≥0, with g(Y ) =
∑

(u,v)∈COlower(Y ) a(u,v), and

COlower(Y ) = {(u, v)|(u, v) ∈ E ∧ (r, b) ∈ Y ∧ (u ∈ I (r)∧v ∈

I (b) ∨ u ∈ I (b) ∧ v ∈ I (r))}, compared to COCoAM(Y ),

here in COlower(Y ), only edges that can be balanced by a

pair of seeds in Y are included, thus f (Y ) ≥ g(Y ) strictly.

It can be shown that g(Y ) is submodular (Lemma 4), and

differs from f (Y ) within a multipicative factor in any pos-

sible world w generated by stochastic propagation process

(Lemma 5).

Lemma 4: g : 2E → R≥0 is a monotone nondecreasing

submodular set function, maximizing g is NP-hard.

Lemma 5: Let Y 0 = arg maxY∈I E[g(Y )], Y ∗ =

arg maxY∈I E[ f (Y )], kr ≤ kb, then E[ f (Y ∗)] ≤ krE[g(Y 0)].

Lemma 5 suggests that any algorithm that provides an

approximation guarantee for maximizing E[g] over set system

(E,I), provides also a bounded approximation guarantee for

maximizing E[ f ]. Now it is the turn to analyze properties of

the set-of-pairs system (E,I). We first provide the preliminary

definitions (Definitions 2 and 3), which will help us establish

the properties (Lemmas 6 and 7).
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Definition 2 (Independence System): A set system (E,I) is

an independence system if I 	= ∅ and satisfies the downward-

closure property, i.e., if Y ∈ I and X ⊆ Y , then X ∈ I.

Definition 3 (p-System [49]): An independence system

(E,I) is a p-system, if

max
X⊆E

maxJ :J is a base of X |J |

minJ :J is a base of X |J |
≤ p

where any subset J of X is a base of X if J ∈ I and ∀e ∈

X\J , J ∪ e /∈ I.

Lemma 6: The set-of-pairs system (E,I) is an indepen-

dence system, but not a matroid.

Lemma 7: The set-of-pairs system (E,I) is a 4�(kb/kr )�-

system.

Thus far, we know (E,I) is a 4�(kb/kr )�-system and

E[g] is monotone non-decreasing submodular, then greedy

algorithm starting from ∅ will provides an (1/1+4�(kb/kr )�)-

approximation [49]. Denote Y G ⊆ E as the solution returned

by greedy algorithm, Y G
r =

⋃

{r |(r, b) ∈ Y G}, Y G
b =

⋃

{b|(r, b) ∈ Y G}. Then we have (Y G
r , Y G

b ) is a 1/((1 +

4�(kb/kr )�)kr )-approximation to optimal solution of CoAM

problem.

Theorem 3: Let Y G be the solution returned by a greedy

algorithm running for E[g] starting from ∅, then

E
[

f
(

Y G
)]

≥
1

(

1 + 4� kb

kr
�
)

kr

E
[

f
(

Y ∗
)]

.

Unfortunately, directly using greedy algorithm is unrealistic

since evaluating E[g(X)] for a X ⊆ E is #P-hard, as shown

in Lemma 8. This problem will be tackled by using RIS [40]

technique in Section V.

Lemma 8: Given a Y ⊆ E , computing E[g(Y )] is #P-hard

under MCIC/MCLT model.

V. ALGORITHMS

Efficient implementation of a greedy algorithm is chal-

lenging since calculating lower bound E[g(·)] is #P-hard as

shown in Lemma 8. Naïvely, using a large number of Monte

Carlo (MC) simulations is a choice here [45]. Consider using

r rounds MC simulations, the time complexity of the greedy

algorithm can be O(kbn2mr). Clearly, it is prohibitively expen-

sive, making it difficult to compromise between efficiency and

accuracy.

On the other hand, among the efforts devoted to scalable

IM, Borgs et al. [40] first proposed the concept of RIS and

designed a quasi-linear time randomized algorithm based on

reverse-reachable (RR) sets with approximation guarantee.

Using RIS technique, Tang et al. designed TIM/TIM+ Algo-

rithm [43] that achieve near-optimal time complexity and

subsequently proposed IMM Algorithm [44] which further

improved the performance using martingale based analysis.

Random RR sets are a vital tool for estimating expected

influence spread used in IM algorithms mentioned above,

and its variants are shown useful in many related tasks [19],

[20], [37], [38], [39]. Considering the inherent similarity

between computing influence spread and E[g(·)], in this

section, we first introduce a non-trivial generalization of RR

set, named as edge RR pairs (ER2P) set, based on which we

devise an unbiased estimator of E[g(·)] (Section V-A). Then

we focus on essentially how many ER2P sets are needed in

our approximation algorithm (Sections V-B and V-C).

A. Lower Bound Estimator

Definition 4 (Random edge RR pairs (ER2P) set): Let

w � G̃ be any possible world, B =
∑

(u,v)∈G a(u,v) denotes

the summed activity strength of edges in G, RT
w−r (v)/RT

w−b(v)

denotes the RR set [43] for a node v in G̃ that can propagate

campaign r /b to it in a possible world w. A ER2P set can be

generated by the following steps.

1) Generate a possible world w of G̃.

2) Select an edge (u, v) ∈ E with probability a(u,v)/B .

3) Collect RT
w−r (u), RT

w−b(v), RT
w−r (v), RT

w−b(u).

4) Calculate R1w,(u,v) = {(r, b): r ∈ RT
w−r (u) ∧ b ∈

RT
w−b(v)}, R2w,(u,v) = {(r, b): r ∈ RT

w−r (v) ∧ b ∈

RT
w−b(u)}.

5) Return Rw,(u,v) = R1w,(u,v) ∪ R2w,(u,v).

The efficiency of sampling an ER2P set can be improved

by using randomized breadth-first search (BFS) instead of

generating a whole possible world w. Let R denote a pool of

random ER2P-sets, let FR(Y ) = (1/|R|)
∑

R∈R �[R ∩Y 	= ∅]

denote the fraction of ER2P-sets that intersect with Y ⊆ E ,

�(·) is indicator function. Then we can show that E[g(Y )]

can be estimated using FR(Y ).

Lemma 9: For any Y ⊆ E , we have E[g(Y )] = BE[FR(Y )],

the expectation is taken over the randomness in w ∼ G̃ and

(u, v) ∼ E .

B. Two-Phase Approximation

Shown that BE[FR(Y )] is an unbiased estimator of

E[g(Y )], we can follow previous works [19], [20], [44]

to design our two-phase co-activity maximization (TCoAM)

algorithm (Algorithm 1) that provides an approximation-

guaranteed solution Ỹ G to the problem of maximizing E[g(Y )]

using a sample R of random ER2P sets. TCoAM operates in

two phases as follows.

1) Sampling phase, which determines the size of R needed

for accurately estimating E[g(Y )] and generates R.

2) Greedy pair selection phase, which selects a feasible

pair y maximizing marginal gain FR(Ỹ G ∪ y)− FR(Ỹ G)

and adds it to Ỹ G in each iteration.

Algorithm 1 TCoAM(G̃, (E,I), λ, λα, ε2, L B0)

1 R ← Sampling(G̃, (E,I), λ, λα, ε2, L B0);

2 Ỹ G ← ER2-Pairs-Greedy(R, (E,I));

3 return Ỹ G

For greedy pair selection phase (Algorithm 2), we show in

Theorem 4 that if we can obtain accurate-enough estimation

of E[FR(Y )] for all Y ∈ Ibase, Ibase ⊆ I is the maximum

independent sets in (E,I) and its size is given in Lemma 10,

with high probability given a sample R of random ER2P

sets, then we can approximate CoAM to a factor with high

probability. Let OPT = E[g(Y 0)].
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Algorithm 2 ER2-Pairs-Greedy(R, (E,I))

1 Ỹ G ← ∅;

2 while y ← arg maxy:Ỹ G∪{y}∈I FR(Ỹ G ∪ {y})− FR(Ỹ G) do

3 Ỹ G ← Ỹ G ∪ {y};

4 return Ỹ G

Theorem 4: Assume in greedy pair section phase TCoAM

receives as input a sample R of random ER2P-sets such that

|BFR(Y ) − E[(g(Y )] | <
ε

2
OPT (1)

holds for any Y ∈ Ibase with probability at least 1 −

B−�/|Ibase|, then TCoAM returns a ((1/(1 + 4�(kb/kr )�)kr )−

ε)-approximate solution to the CoAM problem with probabil-

ity at least 1 − B−� and runs in O(
∑

R∈R |R|).

Lemma 10: The size of Ibase satisfies |Ibase| =
(

n

kr

)(

n

kb

)

kb!.

Next, we are interested in finding a lower bound of |R| such

that Theorem 4 holds. Specifically, let

λ =
4B

ε2

(ε

3
+ 2

)

(ln 2 + � ln B + ln |Ibase|)

we have the following Lemma 11. The proof of Lemma 11

is based on martingale analysis which has been successfully

implemented in related works [19], [20], [44].

Lemma 11: If |R| ≥ λ/OPT, then (1) holds for all X ∈ Ibase

with probability at least 1 − B−�.

C. Sampling

However, it is not easy to get this lower bound as maximiz-

ing E[g(·)] is NP-hard (Lemma 4). Alternatively, following

existing approaches [19], [20], [44], we try to find a lower

bound of OPT and use it to get the required |R|. The key

part of our approach includes a statistical test T (z) such that

if OPT < z, then T (z) = False holds with high probability.

As OPT ∈ [1, B], this test is performed iterative on O(log2 B)

values of z = B/2, B/4, . . . , 1. Note that we restrict OPT ≥ 1,

which can be easily set up in preprocessing.

We now explain the workflow of TCoAM’s sampling phase

(Algorithm 3), which first identifies a lower bound LB of |R|

by implementing a T (·) adaptively, then it generates a sample

of ER2P sets R such that |R| ≥ λ/LB. The algorithm starts

by initializing R to ∅, LB to LB0, while LB0 can be naïvely

set to be max(u,v)∈E a(u,v), and an error parameter ε2. Then it

enters for a loop at most log2 B times. In the i th iteration, the

algorithm compute a z = B/2i and use z to derive a θi = λα/z,

where

λα =
B

ε2
2

(

2ε2

3
+ 2

)

(

ln log2 B + � ln B + ln |Ibase|
)

.

The algorithm keeps generating new random ER2P set and add

it to R until |R| ≥ θi , then it computes a greedy solution Ỹ G
i

on this new sample R. If the new R satisfies the condition

BFR

(

Ỹ G
i

)

≥ (1 + ε2)z

then set LB = (BFR(Ỹ G
i )/1 + ε2) and break the for loop,

otherwise continue with the (i + 1)th iteration. After the for

Algorithm 3 Sampling(G̃, (E,I), λ, λα, ε2, L B0)

1 R ← ∅;

2 L B ← L B0;

3 for i = 1, · · · , log2 B do

4 z ← B/2i ;

5 θi = λα/z;

6 while R ≤ θi do

7 R ← R∪ GenerateER2P-Set; // Follows

Definition 4

8 Ỹ G
i ← ER2-Pairs-Greedy;

9 if B FR(Ỹ G
i ) ≥ (1 + ε2)z then

10 L B ←
B FR(Ỹ G

i )

1+ε2
;

11 break;

12 R ← ∅;

13 θ ← λ/L B;

14 while |R| ≤ θ do

15 R ← R∪ GenerateER2P-Set;

16 return R

loop, we regenerate λ/LB random ER2P sets and return them

as R. The correctness of the sampling phase is shown by

Theorem 5.

Theorem 5: With probability at least 1− B−�, the sampling

phase of ToCAM returns a sample R such that |R| ≥ λ/OPT.

With all the above discussions, we have the following

Theorem 6.

Theorem 6: TCoAM returns a ((1/(1+4�(kb/kr )�)kr)−ε)-

approximate solution to the CoAM problem with probability

at least 1 − 2B−�.

VI. EXPERIMENTS

In this section, we evaluate the performance of our proposed

TCoAM algorithm on several real-world network datasets.

We first introduce datasets and experimental settings used in

our evaluation, and then experimental results are presented and

analyzed.

A. Settings

1) Datasets: The experiments are carried out on five net-

work datasets with varied statistics as shown in Table I. All

of five network datasets are publicly available [50], rt-copen

and rt-assad are selected from retweet networks category,

ca-netscience and ca-GrQc are within collaboration networks

category and soc-wiki-Vote is from social networks category.

Note that ca-netscience and ca-GrQc are undirected in nature,

so for each undirected edge we replace it with two directed

edges to make the datasets directed.

2) Propagation Models: We consider both MCIC and

MCLT model in the experiments. For each dataset, two meth-

ods are used to assign propagation-related parameters.

1) Weighted Cascade: For each (u, v) ∈ E , set pi
(u,v) =

1/N−(v) for MCIC model and bi
(u,v) = 1/N−(v) for

MCLT model where i ∈ {r, b}; in this case, two cam-

paigns share the same propagation-related parameters.
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TABLE I

STATISTICS OF THE DATASETS

2) Random: For each (u, v) ∈ E and i ∈ {r, b}, pi
(u,v) and

bi
(u,v) are firstly chosen from [0, 1] uniformly at random,

then we normalize the parameters of all incoming edges

of a node v if the sum exceeds 1.0 in order to fulfill the

requirements of MCLT model.

Similar methods have been used in related works [19], [37],

[38], [39], [41], [42]. For activity strength on each (u, v) ∈ E ,

we simply set it as a(u,v) = 1/N−(v). The resulting networks

are denoted by adding suffix “.wc” or “.rd” to dataset name,

e.g., soc-wiki-Vote.wc. Note that getting exact values of those

parameters is orthogonal to the interests of this article.

3) Baselines: Besides TCoAM, we implement four heuristic

algorithms as baselines for comparison.

a) Random: Randomly select kr seeds for campaign r and

kb seeds for campaign b.

b) MaxODeg: Sort the nodes by descending order of out-

degrees, choose the first kr nodes for seeds of cam-

paign r and the first kb nodes for seeds of campaign b.

c) MaxOAct: Sort the nodes by descending order of out-

activity strengths, choose the first kr nodes for seeds

of campaign r and the first kb nodes for seeds of

campaign b.

d) PageRank: Use PageRank Algorithm [51] to rank the

nodes in Gr and Gb and select the top nodes to seed

sets.

e) TCEM1: A node-level balancing Algorithm [19] tries

to find Sr and Sb that maximize the number of node

exposed to both campaign r and b when diffusion

finished.

4) Parameters: Unless otherwise stated, set � = 1, ε =

ε2 = 0.2, MC simulation round r = 200 is used to evaluate

the selected seeds. Heuristic is used when the memory limit

(8 GB) is met.

B. Main Results

Co-activity results under MCIC/MCLT propagation mod-

els with weighted cascade/random parameters and kr = 5,

kb ∈ [5, 10] are shown in Figs. 1 and 2. Note that Random

is omitted from the reports as its corresponding co-activity

results are at least two orders of magnitude worse than the

other competitors throughout all settings. It means that blindly

selecting seeds for competing campaigns is not a good idea for

contributing intergroup activities between opposing follower

groups. From these two figures, it is easy to observe that while

1Note that TCEM algorithm can be extended to MCLT model with seeds-
intersection allowed, as the hardness results of its corresponding CoEM
problem can be simply established by reduction from IM problem under LT
model, and the following analysis can be adapted from this article.

different settings and properties of the networks influence the

results, TCoAM algorithm demonstrates its comparably good

performance in all of the networks with different experimental

settings. Other baselines, e.g., TCEM, although demonstrate

good performance in some settings, their performance is

observed as not stable across different settings. For exam-

ple, TCEM shows comparable performance to TCoAM when

applied to rt-assad.wc, but its performance drops when applied

to rt-assad.rd.

One interesting finding is that when applied to larger dataset

ca-GrQc under MCLT model, MaxODeg slightly outperforms

TCoAM under seed budgets kr = 5, kb ∈ [5, 10]. The

reason may lie in that under the MCLT model, compared

to the MCIC case, the balancing ability of seeds seems

to be stronger (Figs. 1 vs. 2), directly choosing “popular”

seeds with maximum out-degrees tends to be a good choice

when seed budgets are limited, especially for larger network

ca-GrQc with more highly influential nodes. Based on the

above analysis, when more seeds are allowed, the advantages

of MaxODeg should be wiped off. We verify this thought by

enlarging seed budgets (kr = kb ∈ [10, 35]), as shown in

Fig. 3.

In addition, for each experimental setting and each algo-

rithm used, we recorded the average of the degrees of seeds

selected (SeedsAD) and the average of the activity strength

associated with the incident edges of seeds selected (Seed-

sAA), an example records table for dataset ca-netscience.wc

under MCIC model with kr = 5 and kb ∈ [5, 10] is shown in

Appendix B. Over the total 120 groups of comparisons, only

in 2 seeds selected by TCoAM showed a highest SeedsAD,

and in 1 seeds selected by TCoAM showed the highest

SeedsAA, with ties allowed. It shows the potential of TCoAM

to select seeds that may contribute more to co-activity,

not just consider the popularity of propagating or receiving

cascade.

C. Further Analysis

Based on the above analysis, natural thinking is that when

the viralities of campaigns decreased, the balancing results

induced by the baselines relying on selecting “popular” nodes

as seeds will also decrease as the propagation abilities of those

“popular g ” nodes are cut. This phenomenon is verified by

the following experiments. We select four denser networks

ca-netscience.wc, ca-netscience.rd, soc-wiki-Vote.wc and soc-

wiki-Vote.rd in which baselines demonstrate relatively better

performances than in sparser ones. Then all of the propagation

parameters in these networks are divided by a factor to pro-

duce new networks with more restricted propagation abilities.

Denote the original network with suffix “.ORI” and the corre-

sponding new one with suffix “.DIV5”/“.DIV10” (we choose

the factor = 5 or 10). We compared the performance gain in

terms of final co-activity by using TCoAM rather than the best

of baselines (BoB) in each experimental setting, Fig. 4 shows

examples of the performance gain comparison on dataset

ca-netscience under MCIC model. Clearly, it can be observed

that when the viralities of campaigns decreased, TCoAM

shows a trend of becoming more advantageous. Furthermore,
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Fig. 1. Under MCIC model, weight cascade/random parameters and r = 200, co-activity results on networks for kr = 5 and varying kb ∈ [5, 10].
(a) ca-netscience.wc. (b) rt-copen.wc. (c) soc-wiki-Vote.wc. (d) rt-assad.wc. (e) ca-GrQc.wc. (f) ca-netscience.rd. (g) rt-copen.rd. (h) soc-wiki-Vote.rd.
(i) rt-assad.rd. (j) ca-GrQc.rd.

Fig. 2. Under MCLT model, weight cascade/random parameters and r = 200, co-activity results on networks for kr = 5 and varying kb ∈ [5, 10].
(a) ca-netscience.wc. (b) rt-copen.wc. (c) soc-wiki-Vote.wc. (d) rt-assad.wc. (e) ca-GrQc.wc. (f) ca-netscience.rd. (g) rt-copen.rd. (h) soc-wiki-Vote.rd.
(i) rt-assad.rd. (j) ca-GrQc.rd.

for each comparing tuple of *.ORI, *.DIV5 and *.DIV10, the

balanced edges directly caused by seeds of campaign r and b

(i.e., COseeds = {(u, v)|(u, v) ∈ E ∧u ∈ Sr ∧v ∈ Sb ∨u ∈ Sb ∧

v ∈ Sr }) are extracted and the corresponding total co-activity

(i.e.,
∑

(u,v)∈COseeds
a(u,v)) of those edges are recorded. Table II

shows an example of comparison of total co-activity directly

caused by seeds Sr and Sb selected by TCoAM algo-

rithm run in ca-netscience.wc.ORI, ca-netscience.wc.DIV5,

and ca-netscience.wc.DIV10 under MCIC model with kr = 5

and kb ∈ [5, 10]. From Table II, we find that when the

propagation effect weakened, TCoAM tends to choose seeds

that can directly balance more edges without the help of

propagation, in fact, for ca-netscience.wc.DIV10, in the case of

kb = 5 and kb = 10, these directly balanced edges count about

94.3% in the final co-activity. Similar results are also observed

in the other comparisons. These results show that TCoAM

is more adaptable to various settings of CoAM, i.e., more

suitable for this task.

VII. CONCLUSION

In this article, a novel problem, called CoAM, which aims

at maximizing co-activity in social networks, is investigated.
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Fig. 3. Under MCLT model, weight cascade/random parameters and r = 200,
co-activity results comparisons by using TCoAM versus MaxODeg on dataset
ca-GrQc for kr = kb ∈ [10, 35]. (a) ca-GrQc.wc. (b) ca-GrQc.rd.

Fig. 4. Under MCIC model, weight cascade/random parameters and r = 200,
comparison of performance gain in terms of final co-activity by using
TCoAM rather than the BoB on dataset ca-netscience for kr = 5 and
kb ∈ [5, 10]. “ORI” denotes the original network and “DIV5”/“DIV10”
denotes the corresponding virality-reduced one. (a) ca-netscience.wc.
(b) ca-netscience.rd.

TABLE II

UNDER MCIC MODEL, COMPARISON OF TOTAL CO-ACTIVITY DIRECTLY

CAUSED BY SEEDS Sr AND Sb SELECTED BY TCoAM ALGORITHM RUN

IN CA-NETSCIENCE.WC.ORI, CA-NETSCIENCE.WC.DIV5 AND

CA-NETSCIENCE.WC.DIV10 WITH kr = 5 AND kb ∈ [5, 10]

We show the NP-hardness of CoAM and also its hardness of

approximation, furthermore, the objective function of CoAM

is neither submodular nor supermodular. In view of this,

we design a submodular lower bound of the objective function

and with which we devise an approximation algorithm with

a provable accuracy guarantee. By extending the idea of RIS

and IMM, we propose the TCoAM algorithm, which gives a

scalable instantiation of the devised approximation algorithm.

Despite the good quality of TCoAM demonstrated in the

experiments, several future directions are worth investigating.

First, it is eager to improve the current approximation guar-

antee as when the seeds size increase it drops quickly now.

Second, it would be interesting to consider other constraints

other than the cardinality one as in reality the cost of seeding

varies among nodes. Third, relaxing the mutual indepen-

dence assumption and introducimg competing to opposing

campaigns, or considering multiple campaigns with different

leanings and levels of competition, is also a meaningful

direction.
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