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As experiments continue to increase in size and scope, a fundamental challenge of subsequent analyses
is to recast the wealth of information into an intuitive and readily interpretable form. Often, each
measurement conveys only the relationship between a pair of entries, and it is difficult to integrate these
local interactions across a dataset to form a cohesive global picture. The classic localization problem tackles
this question, transforming local measurements into a global map that reveals the underlying structure of a
system. Here, we examine the more challenging bipartite localization problem, where pairwise distances
are available only for bipartite data comprising two classes of entries (such as antibody-virus interactions,
drug-cell potency, or user-rating profiles). We modify previous algorithms to solve bipartite localization
and examine how each method behaves in the presence of noise, outliers, and partially observed data. As a
proof of concept, we apply these algorithms to antibody-virus neutralization measurements to create a basis
set of antibody behaviors, formalize how potently inhibiting some viruses necessitates weakly inhibiting
other viruses, and quantify how often combinations of antibodies exhibit degenerate behavior.
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I. INTRODUCTION

Given a country’s geographic map, it is straightforward
to determine the distance between any pair of cities. Yet,
posing this question in reverse (called classic localization or
the Euclidean distance geometry problem) is far more
challenging: given only the distances between some pairs of
cities, can we reconstruct the full geographic map [1]?

Across all scientific disciplines, the interactions between
vast numbers of entries are routinely measured, yet the
deeper relationships underlying these entries only become
apparent when recast into a global description of the
system [2]. For geographic maps, large tables of city-city
distances are less interpretable than a 2D map positioning
cities relative to one another.
To take another example from the field of human

perception, the similarity between pairs of colors reveals
that reds, greens, blues, and violets cluster together
[Fig. 1(a), left]. Yet by embedding these measurements
into 2D space (without any additional information about

the colors themselves), the colors naturally form into a
highly intuitive color wheel [Fig. 1(a), right]. This repre-
sentation greatly reduces the complexity of the system,
enabling us to hypothesize how new colors would be
perceived and predict trends in the data (e.g., that each color
has a maximally distant “complementary color” on the
opposite side of the wheel).
When systems have such a simple underlying structure,

we intuitively expect that a straightforward algorithm can
dissect the pairwise distances and recover the global
embedding. Indeed, for complete and noise-free data this
can be achieved in two steps: the first centering the
distances to reveal a matrix of inner products, and a second
step using the singular value decomposition (SVD) to
determine the coordinates (Appendix A 1) [4]. For noisy
or partially missing data, numeric minimization [5,6] and
semidefinite programming relaxations [7–10] have been
developed to drive nonlinear dimensionality reduction [9],
nuclear magnetic resonance spectroscopy [11,12], and
sensor network localization [6–8,10,13].
In this work, we consider a twist on this classical

problem that we call bipartite localization, where a
bipartite dataset consists of two classes of entries, and
interactions can only be measured between (and not within)
each class. Since previous methods are poorly suited to
handle bipartite data [14,15], we modify existing methods
and tailor them for bipartite localization. In particular, we
discuss two variants of the popular multidimensional
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scaling (MDS) algorithm—metric MDS and bipartite
MDS—as well as a semidefinite programming (SDP)
approach [8]. Each method has its own advantages: metric
MDS is the simplest and most flexible numerical frame-
work, bipartite MDS provides a nearly closed-form sol-
ution (up to an affine transform), and SDP uses a convex
relaxation that is harder to trap in local minima.
Bipartite datasets are ubiquitous in every scientific field,

making these embedding methods broadly applicable.
Examples include user-rating profiles such as the Netflix
challenge [16,17], graph clustering [18–20], the dimen-
sionality of facial expressions [21], the activity of protein
mutants [22], gene expression for different DNA promot-
ers [23], and the combinatorics of ligand signaling [24].
As a proof of principle, we apply these methods to the

pressing issue of antibody-virus interactions, where multi-
ple antibodies are assessed against panels of virus mutants
[Fig. 1(b)]. Unlike many previous efforts that either
exclusively visualized the viruses or the antibodies [25,26]
or required data to be normalized [27], we embed both
types of entries into a shared space that directly corre-
sponds to experimental measurements.
This article explores the underlying computational meth-

ods used to create low-dimensional bipartite embeddings,
focusing on the effects of noise, missing values, and large

outliers. A companion article [28] examines the biological
applications in the context of antibody-virus interactions,
quantifying the underlying trade-offs anddemonstrating how
an embedding provides a basis set of antibody behaviors that
can dissect the collective response from multiple antibodies.
By blending computer science and biophysics, these works
show how embeddings collapse the complexity of datasets
into a readily interpretable andquantitative frameworkwhere
key properties such as the potency, breadth, and degeneracy
of the antibody response can be rigorously explored.

A. Need for embedding algorithms

Before exploring the algorithms, we motivate the need
for such embeddings by describing several potential appli-
cations. To ground this discussion, we suppose the bipartite
classes represent antibodies and viruses (with distances
describing antibody-virus interactions), although these
applications generalize to any bipartite dataset.
First, an embedding combines datasets and predicts

unmeasured interactions. For example, we cannot directly
compare an antibody measured against viruses 1–6 with a
second antibody measured against viruses 7–12 [top two
rows in the Fig. 1(b) dataset]. Yet, by embedding both
antibodies, we predict their behavior against all viruses in
the dataset. Hence, embeddings not only represent a form
of matrix completion, but also quantify the similarity
between every mapped entity [29,30]. As a point of
reference, embedding algorithms assume a different under-
lying structure for a dataset than low-rank matrix com-
pletion, and the combination of the two may be more robust
than either algorithm alone (Appendix A 2).
Second, an embedding defines the intraclass distances

between any two viruses (or two antibodies), a quantity that
by definition cannot be directly measured through anti-
body-virus interactions. This intraclass distance describes
how differently any antibody can neutralize the two viruses
(i.e., essentially quantifying their cross-reactivity). In the
limit where two viruses lie on the same point, they are
neutralized identically by all antibodies; when the two
viruses lie far apart, their neutralization can greatly differ.
Third, the inferred virus-virus distances are crucial when

designing future experiments. Viruses that are close
together offer redundant information, whereas sampling
viruses that are spread out across the map can detect more
distinct antibody phenotypes.
Fourth, an embedding defines a basis set of behaviors,

which is essential for systems where no mechanistic models
exist. For example, there is a dearth of models that
enumerate the space of antibody behaviors [31–33], which
hinders theoretical exploration into features such as the
optimality or degeneracy of the antibody response (both of
which we address later in this work).
Finally, embeddings provide a fundamentally different

vantage to study a system, and this shift in perspective
could help uncover its underlying properties. For example,
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FIG. 1. Embedding monopartite or bipartite data in Euclidean
space. (a) The perceived similarity between colors recovers the
canonical color wheel. Data derived from Table 4.1 of Ref. [3],
with distance ¼ 1− (dissimilarities in table). (b) Embedding
antibody neutralization against strains of the influenza virus.
In this case, only antibody-virus distance can be measured
experimentally, and some distances are missing (tan). Viruses
are colored from lightest to darkest hues (oldest to more recent
strains; full data in Fig. 10 [Appendix A 8]).
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the complex sequence-to-function relationship of viral
proteins may be simpler to crack within a low-dimensional
embedding. Similarly, quantifying how the antibody
response changes with each viral exposure may be more
readily understood within the context of an embedding.

II. ALGORITHMS

We now develop the algorithms to transform pairwise
interactions into a global map of a system. In bipartite
embedding, we seek to recover the bipartite set of points
fx�i gmi¼1; fy�jgnj¼1 ⊂ Rd given the noisy distance matrix
D ∈ Rm×n of the form

Dij ¼ D�
ij þ ϵij; D�

ij ¼ kx�i − y�jk; ð1Þ

where distance is measured only between the fx�i g and
fy�jg. D�

ij represents the true distance that is perturbed with
independently and identically distributed random noise ϵij.
The goal is to use the noisy Dij with ði; jÞ ∈ E, where E
represents the subset of measured values, to find an
embedding fxigmi¼1; fyjgnj¼1 that approximates the true
embedding fx�i g; fy�jg. In the following sections, we
describe three algorithms to tackle this problem.

A. Metric multidimensional scaling

Metric MDS consists of the straightforward numerical
approach where we randomly initialize each xi and yj, and
then apply numerical methods (e.g., gradient descent or
differential evolution) to match their coordinates as closely
as possible to the distance matrix. Through a simple
rearrangement of the problem statement, we define the
least-squares loss function for metric MDS,

min
fxigmi¼1

;fyjgnj¼1

X
ði;jÞ∈E

ðDij − kxi − yjkÞ2; ð2Þ

although we note that other loss functions can strongly
affect the embedding (Fig. 11 in Appendix A 8).
We note that approximate solution methods are neces-

sary because the distance geometry problem is NP hard. To
see this, note that embedding a cycle graph in 1D is
equivalent to the subset-sum problem, making it NP
complete [34]. Bipartite embedding in 1D includes the
embedding of an even length cycle, making it NP hard
as well.

B. Bipartite multidimensional scaling

While metric MDS is highly flexible and simple to
implement, it does not harness the underlying structure of
the bipartite data. In stark contrast, bipartite MDS provides
a nearly closed-form solution (up to an affine transform) for
noise-free and complete data. Although variants of the
classical monopartite problem have been developed to deal
with large datasets and noisy measurements [35], to our
knowledge this technique has not been extended to com-
plete bipartite data.
The key insight underlying classic MDS is that the

doubly centered squared-distance matrix is intimately
related to the inner products (Gram matrix) of the
embedded points. More precisely, we define the centering
matrix that subtracts the mean from any vector,

Jk ¼ Ik −
1

k
1k1Tk ∈ Rk×k; ð3Þ

where Ik is the k × k identity matrix and 1k is the all-ones
vector of size k (with Jk1k ¼ 0). Consider the complete
noise-free bipartite graph,

ðD� ∘ D�Þij ¼ D�
ij
2 ¼ kx�i k2 þ ky�jk2 − 2ðx�i ÞTy�j ; ð4Þ

where ∘ denotes entrywise multiplication. Double
centering reveals the inner products of the embedding
X� ¼ ½x�1;…; x�m�T ∈ Rm×d and Y� ¼ ½y�1;…; y�n�T ∈ Rn×d

(Appendix A 5),

−
1

2
JmðD� ∘ D�ÞJn ¼ JmX�ðY�ÞTJn ¼ X�ðY�ÞTJn; ð5Þ

where in the second equality we assume without loss of
generality that the points in X� are centered at the origin
(JmX� ¼ X�).
The rank-d singular value decomposition of the

double-centered squared-distance matrix, UΣVT ¼
− 1

2
JmðD� ∘ D�ÞJn, determines the embedding of X� and

Y� up to linear transforms,

X� ¼ UΣAU; ð6Þ

Y� ¼ VAV þ 1ðtVÞT; ð7Þ

Algorithm 1. Classical multidimensional scaling (bipartite
MDS).

Input
i Distance matrix D ∈ Rm×n

ii Dimension d of the embedding
Steps

1. Define a complete distance matrix D̃ equal toD at measured
values, with missing values filled in using the mean of all
observed entries in the same row and column

2. Compute the double-centered matrix,Q ¼ − 1
2
JmðD̃ ∘ D̃ÞJn

3. Compute the top d SVD, Q ¼ UΣVT

4. Set fxigmi¼1 ¼ UΣAU and fyjgnj¼1 ¼ VAV þ 1ðtVÞT for linear
transforms AU; AV ∈ Rd×d and translation vector tV ∈ Rd×1

(where AUAT
V ¼ I). DetermineAU, AV , and tV by minimizing

the difference between Dij and kxi − yjk using nonconvex
numerical minimization or SDP (see Appendix A 5)
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for some matrices AU; AV ∈ Rd×d (satisfying AUAT
V ¼ Id)

and a translation tV ∈ Rd between the centers of X� and Y�.
Lastly, AV and tV [together with AU ¼ ðAT

VÞ−1] are deter-
mined by utilizing the distance information kx�i − y�jk ¼
D�

ij and minimizing Eq. (2) using semidefinite program-
ming or numeric minimization (Appendix A 5).
In summary, this algorithm reduces the embedding

problem with ðmþ nÞd unknown variables into the simpler
problem of determining the d2 þ d unknown variables in
AV and tV , regardless of the size of D. This same approach
can be used for a noisy distance matrix D (Algorithm 1).
A caveat of this method is that missing values must be
initialized to compute the SVD, effectively adding noise to
the distance matrix. Yet the resulting solution may never-
theless approximate the true underlying structure of the
system. In the numerical experiments below, we show that
although bipartite MDS may yield a poor embedding when
a substantial fraction of values are missing, the embedding
becomes far more robust when the resulting coordinates are
subsequently used to initialize metric MDS (Fig. 12 in
Appendix A 8).

C. Semidefinite programming

Lastly, we investigate an intermediate algorithm that
harnesses the bipartite nature of the data to perform a more
robust numerical search. More precisely, by forming a
positive-semidefinite matrix, we can adapt the sensor
network localization SDP algorithm [8] and utilize efficient
conic solvers for bipartite embedding [36,37]. We define

the combined coordinates Z ¼ ðXYÞ ∈ RðmþnÞ×d, where X, Y
store fxigmi¼1; fyjgnj¼1. We further define the inner product

matrix G ∈ RðmþnÞ×ðmþnÞ as

ZZT ¼
�
XXT XYT

YXT YYT

�
≡

�
G11 G12

GT
12 G22

�
≡ G; ð8Þ

so that the squared distance between xi and yj can be
entirely written in terms of the entries of G, namely,

kxi − yjk22 ¼ ðG11Þii − 2ðG12Þij þ ðG22Þjj: ð9Þ

Note that we can exactly recast the optimization over X and
Y in terms of an optimization over a positive-semidefinite
matrix G of rank d. The goal is then to minimizeP

ði;jÞ∈E jðG11Þii − 2ðG12Þij þ ðG22Þjj −D2
ijj in terms of G.

To this end, we introduce an extra error matrix
E ∈ Rm×n and minimize over the sum of errors:

minimize
G;E

X
ði;jÞ∈E

Eij

subject to E ≥ 0; G ≽ 0;

− Eij ≤ ðG11Þii − 2ðG12Þij þ ðG22Þjj −D2
ij ≤ Eij; ði; jÞ ∈ E;

Xn
j¼1

Gij ¼ 0; ∀ 1 ≤ j ≤ m: ð10Þ

The final constraint ensures that the X coordinates are
centered at the origin, removing their translational degree
of freedom. Note that to achieve this convex conic program,
we remove the nonconvex rankðGÞ ¼ d constraint, which
must now be added back. Thus, we apply a SVD to G of
rank d, G ¼ UΣVT . The resulting mþ n coordinates are
given by ðXYÞ ¼ U

ffiffiffi
Σ

p
(Algorithm 2).

As with metric MDS, missing values are seamlessly
handled in SDP since the objective in Eq. (10) is restricted
to the measured distances. As shown in the following
sections, SDP often recovers a better embedding thanmetric
or bipartite MDS, especially when there are many missing
values. Note that we specifically choose a different loss
function for metric MDS [Eq. (2), optimized for systematic

noise] and SDP (
P

ði;jÞ∈E jkxi − yjk2 −D2
ijj, optimized to

handle outliers) in order to explore the diversity of embed-
ding behaviors. When analyzing datasets, it is worth trying
multiple loss functions to determine which one best char-
acterizes the system [Fig. 11(c) in Appendix A 8]. For
completeness, we note that bipartiteMDS is a nearly closed-
form method that does not explicitly use any loss function.

III. NUMERICAL EXPERIMENTS

We first assess the three embedding algorithms—metric
MDS, bipartite MDS, and SDP—using simulated data
with m ¼ 20 entries xi and n ¼ 20 entries yj (each
chosen uniformly on ½−1; 1� × ½−1; 1�). These points

Algorithm 2. Semidefinite programming.

Input
i Distance matrix D ∈ Rm×n

ii Dimension d of the embedding
Steps

1. Solve G ∈ RðmþnÞ×ðmþnÞ from Eq. (10)
2. Compute the top d SVD, G ¼ UΣUT . The embedded

coordinates fxig are given by the first m rows of UΣ1=2

while fyjg are given by the final n rows
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generate the true distance matrix, which we then perturb
and use as the input matrix D. The accuracy of the
resulting embedding is calculated using the root-
mean-square error (RMSE) of Euclidean distances,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPm

i¼1 kxi − x�i k2 þ
P

n
j¼1 kyj − y�jk2Þ=ðmþ nÞ

q
, between

the estimated and true coordinates (once aligned via a rigid
transform).

A. Systematic noise and missing values

To generate the input matrix D, we perturb each entry of
the true distance matrix by adding a random value uniformly
chosen from ½−σ; σ� (x axis) andwithhold a fractionfmissing of
randomly selected entries (y axis) (see Fig. 2). Of the three
algorithms, SDP exhibits the most robust behavior in the
presence of missing values, and in the noise-free case along
the y axis it undergoes a phase transition from near-perfect
recovery when fmissing ≤ 0.6 to noisy recovery [Fig. 13(a) in
Appendix A 8]. In contrast, the error of bipartite MDS
increases nearly proportionally to fmissing, since eachmissing
value must be initialized as the row or column mean which
effectively perturbs the distance matrix. Metric MDS also
finds poorer embeddings with larger fmissing, as it occasion-
ally gets trapped in localminima (even in the low-noise limit).
When D is fully observed along the x axis, the error

increases approximately linearly with noise for all three
algorithms [RMSE ≈ σ=2, Fig. 13(b) in Appendix A 8],
althoughmetricMDS displays somewhat erratic behavior as
it may get stuck in local minima. The bottom panels in Fig. 2
show example embeddings in the intermediate regimes
when σ ¼ 0.1 and fmissing ¼ 0.6 (purple) or when σ ¼
0.6 and fmissing ¼ 0.1 (brown), with gray lines connecting
the true coordinates to their numerical approximations.

In terms of overall performance, the region of near-
perfect recovery is largest for SDP followed by bipartite
MDS and metric MDS (Fig. 2). One way to improve these
algorithms is to combine them, for example, by using SDP
or bipartite MDS to initialize the coordinates in metric
MDS. These combined algorithms substantially improve
embedding accuracy, allowing bipartite MDS to handle
missing values and extending the capability of SDP to
embed noisy measurements (Fig. 12 in Appendix A 8).
Finally, we note that even completely bipartite graphs are

not necessarily rigid, and hence multiple incongruent
embeddings may describe a dataset equally well.
Theoretically, it was shown that when there is no quadric
surface separating the two sets of points, then a bipartite
graph is universally rigid [14]; in other words, rigidity not
only depends on a graph’s connectivity, but also on the
resulting positions of the points. As a proxy for rigidity, we
can use the rank of the positive-semidefinite matrix G from
SDP (Fig. 9 in Appendix A 8).

B. Handling large outliers
and bounded measurements

In addition to noisy measurements, datasets may contain
outliers that distort an embedding. Bipartite MDS is highly
susceptible to large outliers, which can corrupt the largest
singular vectors of the squared-distancematrix [Fig. 3(a)]. In
contrast, SDP minimizes the sum of absolute (unsquared)
deviation [38], and such loss is far more robust against gross
corruptions. Metric MDS exhibits intermediate behavior,
although we note that the choice of loss function heavily
influences this behavior (Fig. 11 in Appendix A 8).
Lastly, we explore each algorithm’s tolerance to distances

given as upper or lower bounds, which can arise when an
experiment measures a value outside of its dynamic range.
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FIG. 2. Performance on a simulated dataset. Top: phase diagram of embedding error as a function of the elementwise noise σ of the
distance matrix and the fraction fmissing of missing entries for metric multidimensional scaling (metric MDS), bipartite multidimensional
scaling, and semidefinite programming (SDP). Error is computed as the average Euclidean distance between the numerical and true
coordinates (aligned using a rigid transform). Diagrams show the average of 10 runs, and the metric MDS results were smoothed
because its embedding accuracy was erratic. Bottom: examples of the embedding when σ ¼ 0.1 and fmissing ¼ 0.6 (purple box) as well
as σ ¼ 0.6 and fmissing ¼ 0.1 (brown box) for each method. Edges connect the numerical coordinates to the true embedding.
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Figure 3(b) shows the embedding from the same distance
matrix, now modified to represent 30% of measurements as
upper or lower bounds. In this complete and noise-free case,
both metric MDS and SDP can directly utilize these bounds
to generate near-perfect reconstructions. In contrast, bipar-
tite MDS cannot directly incorporate bounded data, and
hence we replace each bounded measurement by the bound
itself, which leads to worse reconstruction.

IV. ANALYSIS OF ANTIBODY-VIRUS
MEASUREMENTS

We next applied these embedding algorithms to an
influenza dataset where the neutralization from 27 stem
antibodies was measured against 49 viruses that circulated

between 1933 and 2019 (Fig. 10 in Appendix A 8) [28].
The following section describes how to transform these
experimental measurements into map distances and embed
these antibody-virus interactions. Subsequent sections
utilize this embedding to predict unmeasured interaction
and quantify the degeneracy of the antibody response. We
note that quantifying degeneracy would require thousands
of experiments, yet such tasks become computationally
tractable through these embeddings.

A. Transforming antibody-virus measurements
into distances

For each antibody-virus pair, the inhibitory concentra-
tion required to neutralize 50% of virus particles (IC50 in
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molar units) is measured, with lower values signifying a
more potent antibody [39]. IC50s ranges from 8.6 ×
10−11M (very strong neutralization) to >1.6 × 10−7M
(weak neutralization outside the range of the assay).
To briefly describe the biological context for this dataset,

each of the 27 antibodies targets the stem region of
hemagglutinin, one of the key surface proteins on the
influenza virus. This stem domain is highly conserved, and
antibodies targeting it can neutralize very diverse viruses;
for example, some antibodies measurably neutralize both
the H1N1 and H3N2 influenza subtypes, which is rarely
seen in antibodies targeting the head domain of this same
viral protein [40].
Yet, even these broadly neutralizing antibodies have

limits. Antibodies that potently neutralize H1N1 viruses
tend to weakly neutralize H3N2 strains (and vice versa),
while antibodies that neutralize all viruses tend to have
intermediate effectiveness. These trends hint that there is an
underlying trade-off between antibody potency (how much
a virus is neutralized) and breadth (how many diverse
viruses can be neutralized). Such patterns are difficult to

directly discern from a table of pairwise interactions, yet
they naturally emerge through an embedding.
Building off previous efforts [27,41], we first convert

these antibody-virus neutralization measurements into dis-
tances. Previously, ordinal MDS demonstrated that anti-
body-virus interactions should be log transformed to obtain
distances [42]. Antibodies typically have IC50s > 10−10M
(since selection does not act below this point [43,44]), and
hence we define antibody-virus distance as Dij ¼
log10ðIC50=10−10MÞ [Fig. 4(a)]. As described previously,
a necessary condition for a Euclidean embedding is for the
antibody-virus interactions to satisfy a modified triangle
inequality (see Fig. S6 of Ref. [28]); indeed, we perform
400 000 tests of the triangle inequality on this dataset and
find that it is satisfied in 99.7% of cases given the twofold
error of the neutralization assay (with the remaining cases
likely caused by rarer-but-larger experimental errors).
We then apply all three embedding algorithms to create a

global map of the system. Since both the dimensionality
and the ground truth coordinates are not known, we assess
each algorithm through cross-validation by withholding
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FIG. 4. Mapping influenza antibody-virus interactions. (a) Experimentally measured distance matrix between 27 antibodies and 49
influenza viruses [39]. (b) The metric MDS embedding in 2D. (c) Tenfold cross-validation RMSE (calculated using the distance matrix).
(d) Example of 2D cross-validation for each method, demonstrating that metric MDS performs the best.
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10% of the antibody-virus measurements, creating an
embedding that predicts these withheld values, and then
computing the RMSE of the difference between the
predictions and measurements (repeating the process 10
times to minimize bias in the choice of withheld values).
Five antibodies and five viruses whose positions could not
be precisely fixed are removed from the dataset to ensure a
rigid solution (Appendix A 6).

None of the methods perform well in d ¼ 1 dimensions,
while metric MDS slightly outperforms SDP in all
higher dimensions. Both curves exhibit an “elbow” at
d ¼ 2, suggesting that a 2D landscape captures the under-
lying structure of the system [Fig. 4(c)], as has been
observed in other influenza datasets [27,41]. We note that
the 2D cross-validation RMSE is ≈0.5 [Fig. 4(d)], so that
withheld neutralization measurements are predicted within
100.5 ≈ threefold, comparable to the noise of the neutrali-
zation assay.

B. Designing optimal antibody cocktails

The resulting map provides a powerful way to computa-
tionally explore the efficacy of antibody combinations
[Fig. 4(b)]. For example, the H1N1 viruses (green) and
H3N2 viruses (blue) cluster together, as expected based on
their genetic similarity. Interestingly, the centers of these
clusters are ≈2.5 map units apart, demonstrating that while
antibodies can be highly potent against H1N1 or H3N2
viruses, no antibody in the panel could strongly neutralize
both subtypes.
Similar to the color wheel example in Fig. 1(a), the

antibody-virus embedding not only represents the entities
in this specific dataset, but also describes other potential
antibodies and viruses (presuming they conform to the
underlying structure of the embedding). For such entities,
the embedding serves as a discovery space to quantify and
constrain their behavior.
For example, within this framework we can design a

mixture of n antibodies that optimally neutralizes the 5
viruses at the top of the H1N1 cluster as well as the 5
viruses at the top of the H3N2 cluster as potently as
possible (Fig. 14 in Appendix A 8). This question lies at the
heart of ongoing efforts to find new broadly neutralizing
antibodies, yet few methods exist to predict or even
constrain antibody behavior. To that end, we use each
point on the map to describe a potential antibody whose
neutralization against each mapped virus is determined by
its map distance. This reduces the complex biological
problem of enumerating antibody behavior to a straightfor-
ward geometry problem.
The theoretical best n ¼ 1 antibody mixture against these

10 viruses is represented by the center of the smallest circle
that covers every virus [Fig. 14 in Appendix A 8, distance ≤
1.4 (IC50 ≤ 10−8.6M) for each virus]. For a mixture with
n ¼ 2 antibodies, the potency can dramatically improve by
using one H1N1-specific antibody and one H3N2-specific

antibody [distance ≤ 0.3 (IC50 ≤ 10−9.7M) for each virus].
This problem can be readily extended to mixtures with an
arbitrary n antibodies covering any set of mapped viruses.
Given the growing number of efforts to find broadly
neutralizing antibodies [45–48], it is essential to have some
framework to estimate the limits of antibody behavior. Such
estimations inform when the antibodies already discovered
are near the theoretical best behavior (and, hence, further
searching is less likely to lead to significant improvement) or
when there are alleged antibodies that could perform orders
of magnitude better than what we have currently seen [28].

C. Degeneracy of the antibody response

Another key unexplored feature of the antibody response
is its degeneracy: can the neutralization from a mixture of n
antibodies behave like a mixture with fewer antibodies?
For example, many vaccination regiments aim to elicit a
broadly neutralizing antibody that will be potent against
diverse viral strains. Yet, even if a postvaccination antibody
response is measured against a large array of viruses, it may
be impossible to determine whether its breadth is conferred
by a single antibody or is due to the collective action of
multiple antibodies. These questions hint at an underlying
gap in our knowledge, namely, quantifying when antibody
mixtures “unlock” fundamentally new behaviors that can-
not be achieved by any individual antibody. Moreover,
these topics are difficult to tackle experimentally, since the
low-throughput neutralization assay is time and resource
intensive.
Nevertheless, quantifying the degree of antibody degen-

eracy becomes tractable through an embedding. Such
analyses necessarily make the strong assumption that every
point on the map represents a viable antibody. Moreover,
there may be other antibody phenotypes (e.g., from highly
specific hemagglutinin head-targeting antibodies) that are
not represented by any point on the map; in essence, the
embedding serves to locally extrapolate antibody behavior
based on the specific interactions provided as input
[Fig. 4(a)]. Yet, with these caveats, we can explore how
often a mixture made within this space of antibodies can be
mimicked by a single antibody.
We describe an antibody mixture by n points in

Fig. 4(b), with the ith antibody neutralizing the jth virus
with an ICij

50 ¼ 10−10þDij dictated by the map distance Dij

between the antibody and virus. Since all antibodies in our
panel bind to the same region of the hemagglutinin
stem [49–51], we treat their binding as competitive, so
only one antibody can bind to each hemagglutinin
monomer at a time. Thus, a mixture’s neutralization
against virus j is given by

ICmixture
50 ¼

�X
i

fi
ICij

50

�
−1
; ð11Þ
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where fi represents the fraction of antibody i in the
mixture (with

P
i fi ¼ 1). A diluted antibody with small

fi will effectively have a weaker (larger) IC50, which in
the embedding translates to an extra “distance handicap”
of log10 fi added to its distance from any virus. We note
that this binding model has been verified on antibody
mixtures from this specific panel [28] and on other
datasets [52,53]. For simplicity, we restrict ourselves to
equimolar n-antibody mixtures (fi ¼ 1=n).

Given a specific mixture (n random points on the map,
sampled near the H1N1 andH3N2 clusters), we quantify the
closest approximating single antibody (another point on the
map) by scanning through every possible location and
minimizing the average fold difference between the mix-
ture’s and antibody’s neutralization profiles across all
viruses. Figure 5(a) shows a mixture of two antibodies
(gray), one of which is potent against the blue H3N2 viruses
on the left of the map and the other potent against the green

H1N1 viruses, that behave nearly identically to a single
antibody (red) in the middle of the map.While a few viruses
are neutralized differently by the mixture and antibody
[vertical black lines, right-hand panel of Fig. 5(a)], on
average the antibody’s IC50s are within 1.6-fold of the
mixture’s values against these 50 diverse viruses. This
discrepancy is comparable to the ≈twofold error of the
assay, and, hence, given either neutralization profile, we
cannot determine whether it arises from an individual
antibody or a mixture.
Higher-order mixtures unlock more unique behaviors

that cannot be replicated by an individual antibody. For
example, not only does the four-antibody mixture in
Fig. 5(b) show a 3.6-fold difference from the nearest
approximating antibody, but the mixture’s measurements
are systematically lower across nearly all viruses. Thus,
neutralization profiles exhibiting such strong breath are
indicative of multiple antibodies.
To systematically explore degeneracy, we sample 100

antibody mixtures for each n (with 2 ≤ n ≤ 10) and find
the closest approximating single antibody. The resulting
distributions of the mean fold difference are shown in
Fig. 5(c). While two-antibody mixtures tend to resemble
individual antibodies, higher-order mixtures often exhibit
distinctive profiles with a hfold differencei > 2 to the
closest approximating antibody. By the time n ≥ 5 anti-
bodies are combined, the likelihood that they match any
single antibody becomes exceedingly rare.

V. DISCUSSION

Embedding algorithms fill a “hole” in our understanding
by transforming local pairwise interactions into a global
map. Such algorithms have been used to identify when a
new viral variant arises, quantify drug-protein interactions,
and distinguish between cell types [27,54,55]. Yet we
propose that such algorithms also provide the groundwork
for new theoretical studies such as quantifying antibody
degeneracy that only become possible when we reveal the
underlying structure of a system.
In the context of antibody-virus interactions, an embed-

ding provides a rigorous approach to extrapolate available
measurements. Each point describes a potential antibody,
and the entire map defines a basis set of antibody behaviors.
By coupling these data-driven results with a biophysical
model of how antibodies collectively act, we can model
higher-order mixtures and pave the way to study the
complex array of antibodies within each person. For
example, our degeneracy analysis compares a four-
antibody cocktail [one of ð27

4
Þ ≈ 18 000 possible mixtures

given our antibody panel] against all predicted single-
antibody behaviors. In doing so, we leverage the combina-
torics of antibody combinations to explore the vast space of
antibody mixtures.
Such analysis implicitly assumes that a dataset can be

rescalable into a lower dimension. This claim can be
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verified through cross-validation, by using multiple com-
plementary approaches (e.g., embeddings, low-rank matrix
completion) to detect a simple underlying structure, or by
computing the rank of a matrix-complete dataset (for this
antibody dataset the top 3 singular values account for 90%
of the variance). We further note that multiple datasets
measuring the serum response (i.e., the array of antibodies
within an individual’s blood) found low-dimensional
signatures [27,41,56,57], and hence we expect the
response of individual antibodies should be similarly low
dimensional.
While metric MDS has been used to embed the inter-

actions between influenza viruses and serum [27,41], the
dataset we analyze in this paper contains individual
antibodies that all target the same site on the virus, namely,
the hemagglutinin stem. This distinction is important, since
embedding antibodies targeting multiple sites leads to
poorer cross-validation RMSE (Fig. 15), suggesting that
the structure of the neutralization landscape can differ for
each viral epitope, potentially necessitating a different
embedding for each site.
Although embedding via numerical minimization

(metric MDS) is flexible and straightforward to implement,
alternate methods that leverage the desired structure of the
data (bipartite MDS and SDP) may perform better in
certain regimes. Moreover, such techniques may scale
better for larger datasets, and hence can be used instead
of (or in combination with) metric MDS to yield fast, robust
embeddings. For any dataset, these methods can be
compared head to head through cross-validation on a
subset of data.
More work is needed to understand the limits of

these embeddings and quantify their predictive power.
A key aspect of such embeddings is their rigidity,
which determines whether entries can be precisely fixed
by the available data (Fig. 8) [14]. We hypothesize that
other universal rigidity criteria may exist for certain
bipartite graphs depending on their connectivity, where
low-rank matrix completion techniques can be lever-
aged to provide guarantees for exact recovery in SDP
approaches.
We are just beginning to scratch the surface on aspects of

the antibody response that can be probed with these
embeddings, from designing antibody cocktails to deter-
mining how the antibody response evolves on the map with
each viral exposure. As datasets continue to grow in size
and complexity, it becomes increasingly important to
quantitatively visualize interactions between entities.
Future datasets may require multilocalization, where
higher-order interactions (e.g., between a ligand and multi-
meric receptor [24]; antibodies, antigens, and cell recep-
tors [58]; or single-cell multiomics datasets [59]) are
embedded in a low-dimensional space.

For reproducibility, example codes for each algorithm
and the complete Mathematica code are available [60].
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APPENDIX:

In this appendix, we compare embedding and matrix
completion methods as well as describe the implementa-
tions of metric MDS, bipartite MDS, and SDP algorithms.

1. Solving the classical localization problem
for complete, noise-free data

Here, we present the well-known solution to the (monop-
artite) classical localization problem, where the noise-free
distances D ∈ Rn×n is provided between every pair of n
points in d dimensions. Our goal is to determine the
coordinates fxigni¼1 ⊂ Rd such that Dij ¼ kxi − xjk.
Since an embedding always has a translational degree of

freedom, we assume without loss of generality that the
coordinates are centered around the origin,

P
n
i¼1 xi ¼ 0.

We define the combined coordinate matrix X ¼
½x1;…; xn�T ∈ Rn×d. Note that the entrywise squared-
distance matrix can be written as

D ∘ D ¼ diagðXXTÞ1Tn þ 1ndiagðXXTÞT − 2XXT; ðA1Þ

where the first two terms on the right-hand side are outer
products.
The algorithm proceeds in two steps. First, we apply the

centering matrix Jn [Eq. (3)] from the left and right to row
center and column center the squared distances,

−
1

2
JnðD ∘ DÞJn ¼ XXT; ðA2Þ

where we use the fact that Jn1n ¼ 0 and 1TnJn ¼ 0. This
transforms the distance matrix into a matrix of inner
products for the coordinates XXT .
The second step is to compute the SVD of the left-hand

side, UΣUT ¼ XXT , which will only have d nonzero
singular values. From this form, we can immediately read
out the solution X ¼ UΣ1=2.

2. Comparing embedding algorithms
with matrix completion

In this section, we compare the embedding algorithms
used in this work with low-rank matrix completion algo-
rithms. One key difference between these approaches is that
an embedding projects entries into d dimensions where
map distance is related to each experimental measurement,
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whereas matrix completion searches for the smallest basis
set of behaviors whose linear combinations describe the
data. As a result, embedding techniques impose a limit on
how good an antibody can be against multiple viruses,
whereas matrix completion approaches always allow an
antibody to be maximally potent against all viruses
[Fig. 6(a)].
In addition, when embedding into d ¼ 2 dimensional

space, our SDP algorithm utilizes a rank-d Gram matrix G,
whereas matrix completion on antibody-virus data (analo-
gous to a distance matrix) would be at best rank dþ 2 with
perfect, noise-free data (see Table S1 of Ref. [61], ranks
ranged from 6 to 23). Thus, embeddings utilize a simpler
structure that requires fewer parameters. Moreover, the
computationally cheaper bipartite MDS (a spectral method
based on SVD) is in line with the latest trends in nonconvex
matrix completion [62] which are at best rank d.
However, it is hard to know a prioriwhich method will be

superior for a given dataset, yet it is easy to assess allmethods
through cross-validation. In cases where matrix completion

performs better than direct embedding, a dataset can first be
matrix completed and then embedded. Indeed, we found that
inferring the missing antibody-virus interactions using
matrix completion (cross-validation RMSE ¼ 0.34) outper-
forms any of the embedding techniques in 2D, yield
comparable results to 4D metric MDS [cross-validation
RMSE ¼ 0.37, Fig. 4(c)]. This suggests that matrix com-
pletion should first precomplete this dataset before an
embedding.
Hence, these algorithms should not just be explored

individually, but in combination. Initialization with matrix
completion offsets a key shortcoming of bipartite MDS,
namely, its inability to handle missing values. Figure 6(b)
demonstrates the resulting matrix completion followed by
metric MDS for the antibody-virus dataset we analyze in
this work, using a low-rank matrix completion algorithm
from Ref. [61]. For simplicity, we handle bounded values
by first replacing them by their bounded measurement,
matrix completing, transforming into map distance
(10þ log½IC50=1M�), and finally replacing all values
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FIG. 6. Differences between Euclidean embedding algorithms and low-rank matrix completion. (a) Embedding and matrix completion
algorithms assume different underlying structures, with the former constraining points to lie in Euclidean space where antibody-virus
distance (D) dictates each interaction, whereas the latter searches for the smallest basis set of behaviors whose linear combinations
describe all antibodies and viruses. With an embedding, a new entry is described by a point on the map; other entries may change
positions, although there is minimal rearrangement once there are many mapped entries. In contrast, matrix completion attempts to
characterize new antibodies as linear combinations of existing antibodies, but when this is not possible the basis set is expanded. As a
result, an embedding imposes strong limits on new antibody behavior (e.g., for the configuration shown, an antibody with the shortest
possible distance to all three viruses lies at the center of the hexagon, withD ¼ 1 to all three viruses), whereas matrix completion allows
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QUANTITATIVELY VISUALIZING BIPARTITE DATASETS PHYS. REV. X 13, 021002 (2023)

021002-11



greater than 3.2 into bounded measurements. More sophis-
ticated algorithms can directly incorporate this bounded
information into the matrix completion step [63].

3. Handling missing values in the distance matrix

In metric MDS and SDP, missing values are automati-
cally ignored, since the sums in (2) and (10) are over the
measured distances ði; jÞ ∈ E. In other words, each mea-
sured edge constrains the embedding while unmeasured
edges are ignored. Bipartite MDS requires a complete
matrix to compute the SVD, and hence each missing entry
is first filled in using the mean of all nonmissing mea-
surements in its row and column.

4. Handling upper or lower bounds
in the distance matrix

Sometimes measurements are given as upper or lower
bounds on kxi − yjk (signifying weak or strong interactions
outside the dynamic range of the experiment).
For an upper bound kxi − yjk < bup in metric MDS, we

modify the relevant summand in the loss function to
ð1=1þ ecðbhigh−kxi−yjkÞÞðbhigh − kxi − yjkÞ2, where c > 0

is a positive constant (in this work, we choose c ¼ 10
based on the scale of the distance measurements).
The prefactor in the summand penalizes violations
of the bound while minimally increasing the loss
when the bound is satisfied. For a lower bound,
kxi − yjk > blow, we similarly modify the summand to
ð1=1þ e−cðblow−kxi−yjkÞÞðblow − kxi − yjkÞ2. Note that the
resulting cost function is nonconvex, which can prevent
numerical algorithms from finding a good minimizer.
When computing RMSE in the cross-validation analysis
[Figs. 4(c) and 4(d)], we add these same prefactors when
the measured distance is an upper or lower bound.
Bipartite MDS requires exact distance measurements to

compute a SVD, and hence we replace each bounded
measurement by the bound itself, which leads to poorer
embeddings.
In SDP, bounded values are handled by modifying the

second constraint in Eq. (10). For example, an upper bound
kxi − yjk < bup is enforced by the one-sided constraint
ðG11Þii − 2ðG12Þij þ ðG22Þjj − b2up < Eij. A lower bound
kxi − yjk > blow is enforced by the one-sided constraint
−Eij < ðG11Þii − 2ðG12Þij þ ðG22Þjj − b2low. The objective
remains the same, namely, to minimize the sum of
(positive) errors Eij between the embedding and distance
measurements.

5. Determining the affine transformation
in bipartite MDS

In this section, we provide some intuition for bipartite
MDS and describe in detail the final SDP step that
determines the affine transform between X and Y.

We begin by rewriting Eq. (4) as

D� ∘ D� ¼ diagðX�X�TÞ1Tn þ 1mdiagðY�Y�TÞT − 2X�TY�:

ðA3Þ

Because 1m; 1n lie in the null space of Jm, Jn, double
centering isolates the inner product term as in Eq. (5).
Using the rank-d SVD UΣVT ¼ − 1

2
JmðD� ∘ D�ÞJn, we

can rewrite Eq. (5) as

X�¼UΣ(VTðY�TJnÞ†); JnY�¼V(ΣUTðX�TÞ†): ðA4Þ

where “†” denotes the pseudo-inverse. This reveals that the
embedding X�; Y� can be determined up to linear trans-
forms as in Eqs. (6) and (7).
As we describe in the main text, the final step of bipartite

MDS is to determine the affine transforms AU, AV

(satisfying AUAT
V ¼ Id) and the translation tV , so that the

embeddings X�; Y� in Eqs. (6) and (7) match the distance
matrix. This can be done numerically either by minimizing
the loss function in Eq. (2) that optimally handles system-
atic noise or by minimizing the loss function of squared
distances,

min
fxigmi¼1

;fyjgnj¼1

X
ði;jÞ∈E

jD2
ij − kxi − yjk2j; ðA5Þ

that better handles outliers (Fig. 11).
Instead of numeric minimization, we can use semi-

definite programming to solve Eq. (A5) and prevent the
minimization from getting stuck at local minimum. To that
end, we construct the ð2dþ 1Þ × ð2dþ 1Þ Gram matrix,

G̃ ¼

0
B@

− AU −
− AV −
− tTV −

1
CA
0
B@

j j j
AT
U AT

V tV
j j j

1
CA; ðA6Þ

with which we can express kxi − yjk2. Using Eqs. (6) and
(7), we can write

kxi − yjk2 ¼ UiΣAUAT
UΣUT

i þ VjAVAT
VV

T
j þ tTVtV

− 2VjΣUi − 2UiΣAUtV þ 2VjAVtV ðA7Þ

in terms of the entries of G̃.
Define the minimization matrix γ ∈ Rm×n with

γij ¼ D2
ij − kxi − yjk2. To minimize the absolute value

of the γij, we use Schur’s complement condition, defining
the auxiliary matrix γ̃ ∈ Rm×n and using semidefinite
programming to solve
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minimize
G̃;γ̃

X
ði;jÞ∈E

γ̃ij

subject to G̃ ≽ 0;�
γ̃ij γij

γij 1

�
≽ 0; ∀ 1 ≤ i ≤ m; 1 ≤ j ≤ n;

G̃dþ1∶2d;1∶d ¼ Id: ðA8Þ

We then use Cholesky decomposition to extract AU from
G̃1∶d;1∶d and determine AV ¼ G̃dþ1∶2d;dþ1∶2dAU as well as
tV ¼ G̃2dþ1;dþ1∶2dAU. The resulting embedding is given by
Eqs. (6) and (7).
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Kong/4801/2014, A/Singapore/INFIMH-160019/2016) with the largest scatter are highlighted, with the average position of all
remaining entries shown with small opacity. (b) Cross-validation [as shown in Fig. 4(d)] using 2D embeddings on the full dataset.
(c) Cross-validation using 2D embeddings on the partial dataset with the 10 entries from (a) removed.
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Because of the rank relaxation in this SDP approach, we
note that the optimal affine transformations AU and AV are
determined in a higher-dimensional space. While the global
numeric minimizer of Eq. (A5) is in the SDP search space,
the global SDP minimizer may be different. In practice, we
find little difference between the two approaches (Fig. 7).

6. Assessing the rigidity of an embedding

To determine whether the antibody-virus embedding is
rigid (i.e., if the embedding is unique or if multiple incon-
gruent embeddings can describe this dataset), we remake the
embedding 76 times (once with each of the 27 antibodies or
49 viruses removed) using 2D metric MDS. These embed-
dings are aligned through rigid transforms, and the position
of each entry is compared across all embeddings.
While most entries are tightly constrained on the map

[with an average standard deviation of 0.14 map units in
either the x or y directions, comparable to experimental
error of log10ð2Þ ≈ 0.3], we find 5 viruses and 5 antibodies
whose position jumps by > 1 map unit in some embed-
dings [Fig. 8(a); removed entries named in caption], and
these entries are removed before carrying out the embed-
dings in Fig. 4.

We note that when using the full dataset, metric MDS
outperforms the bipartite MDS as well as SDP algorithms
[Fig. 8(b)], whereas removing these uncertain entries leads
to more rigid embeddings where metric MDS and SDP
have comparable cross-validation [with both outperforming
bipartite MDS, Fig. 8(c)]. This is consistent with the
tendency of SDP approaches to fail when there are multiple
possible solutions, suggesting that such rigidity analysis is
paramount for these structured approaches. We hypothesize
that the uniformly poor performance of bipartite MDS
arises from the many missing and bounded values in the
antibody-virus dataset, and hence that approach should be
reserved for nearly complete datasets with little to no
bounded measurements.

7. Numeric minimization in metric
multidimensional scaling

Multiple methods exist to solve the distance geometry
problem. One of the earliest methods uses stress majoriza-
tion which is based on gradient descent [64]. Homotopy
methods have also been proposed to tame the inherent
nonconvexity [65]. We also note that the distance geometry
problem arises in protein structural determination, where
simulated annealing approaches such as XPLOR-NIH are
commonly used [66].
For large graphs, local to global build-up approaches

have been developed [67–69] along with convex relaxation

approaches [70–72]. These methods often come with
theoretical guarantees that assume a statistical model for
the distance measurements. More recently, branch-and-
bound-type algorithms have also been applied to special-
ized instances of the distance geometry algorithm [73].
In our recent work, we observed that when some distance

measurements are grossly corrupted, global optimization
techniques such as simulated annealing or basin hopping
failed with multistart, although a more sophisticated convex
relaxation approach succeeded in almost all situations [74].
This robust behavior encourages us to examine the use of
convex optimization methods more broadly.

8. Notes on embedding antibody-virus data

Figure 10 shows the full antibody-virus data. Through
embedding, we predict the optimal neutralization profile of
a single antibody [Fig. 14(a)] or a two antibody mixture
[Fig. 14(b)], where smaller covering circles represent
exponentially stronger neutralization against the encom-
passed variants.
As noted in the main text, the choice of loss function can

affect the resulting embedding (Fig. 11). While SDP
exhibits the most robust behavior in the presence of noise
and missing values (Fig. 13), postprocessing with metric
MDS can yield better performance (Fig. 12). Note that with
SDP, we can approximate the rigidity of the system through
the rank of the positive-semidefinite matrix G (Fig. 9).
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FIG. 9. Creating a rigid embedding by removing unconstrained
entries. (a) We make 76 embeddings (withholding each possible
antibody or virus) and analyze how tightly clustered each entry is
across all embeddings. The five antibodies and five viruses with the
largest scatter are highlighted, with the average position of all
remaining entries shownwith small opacity. (b)Cross-validation [as
shown in Fig. 4(d)] using 2D embeddings on the full dataset.
(c) Cross-validation using 2D embeddings on the partial dataset
with the 10 entries from (a) removed.
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Antibody-virus
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�
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FIG. 10. Annotated influenza antibody-virus data from Creanga et al. [39]. (a) Neutralization measurements of 49 influenza viruses
against 27 antibodies targeting the hemagglutinin stem (gray) and 6 antibodies targeting hemagglutinin head (brown). The inhibitory
concentration of antibody needed to neutralize 50% of viruses (IC50, gray scale). Some antibody-virus interactions are not measured
(tan), and some antibodies exhibit weak neutralization (IC50 > 1.6 × 10−7M, light blue) outside the dynamic range of the assay. (b) The
same 2D metric MDS embedding [as in Fig. 4(b)] with the antibodies and viruses labeled.
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absolute error handles the distance matrix with large outliers far better [see Fig. 3(a)]. (b) Large systematic noise is handled better by
mean squared error, since this represents the maximum likelihood estimator for approximately Gaussian error (see σ ¼ 1; fmissing ¼ 0
from Fig. 2). (c) Cross-validation for the influenza data in Fig. 4 is slightly lower for metric MDS with mean squared error for
embeddings with dimension ≥ 2.
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FIG. 12. Postprocessing an embedding with metric MDS. As in Fig. 2, data are simulated with elementwise noise σ and a fraction
fmissing of missing entries. The results of each embedding are used to initialize one additional metric MDS, which greatly improves its
accuracy. Error is computed as the average Euclidean distance between the numerical and actual coordinates (aligned using a rigid
transform). Example plots at the bottom show an embedding when σ ¼ 0.1 and fmissing ¼ 0.6 (purple box) as well as σ ¼ 0.6 and
fmissing ¼ 0.1 (brown box) for each method.
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In both panels,m ¼ n ¼ 20 and the error represents the RMSE of Euclidean distances between the estimated and true coordinates (once
aligned via a rigid transform).
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FIG. 14. Predicting optimal neutralization for any mapped viruses. Suppose we want to neutralize the five viruses at the tops of the
H1N1 and H3N2 clusters in Fig. 4(b) (H1N1 A/New York/638/1995, A/Beijing/262/1995, H1N1 A/New Caledonia/20/1999,
A/Canterbury/76/2000, A/New York/146/2000 and H3N2 A/Fujian/411/2002, A/California/07/2004, A/Indiana/10/2011, A/Texas/50/
2012, A/Perth/1008/2019). Using the points on the map to represent potential antibody neutralization profiles, we determine (a) the best
single antibody or (b) the best two-antibody mixture that would neutralize these viruses the most potently (with the smallest possible
distance between any virus and the nearest antibody). The solution is given by the nminimum covering circles for these viruses, with the
antibodies positioned at the centers of each circle. Figure is adapted from Ref. [28].
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FIG. 15. Embedding antibodies targeting one versus multiple viral epitopes. (a) Embedding the 27 antibodies [gray, shown in
Figs. 4(a) and 4(b)] targeting a single site on the influenza virus, namely, the hemagglutinin stem. (b) In addition to these stem
antibodies, we embed 6 additional antibodies (brown) targeting different sites on the hemagglutinin head. The cross-validation RMSE
(shown in the bottom right) is larger when including these head antibodies. Neutralization data for all antibodies are given in Fig. 10(a).
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