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Abstract

Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM)
images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast
method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images
affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm
for expanding images in the Fourier–Bessel basis (the harmonics on the disk), which provides a convenient way to
handle the effect of the contrast transfer functions. For N images of size L�L, our method has time complexity
O NL3þL4
� �

and space complexityO NL2þL3
� �

. In contrast to previous work, these complexities are independent of
the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and
experimental data and show acceleration by factors of up to two orders of magnitude.

Impact Statement
Singe particle reconstruction in cryo-electron microscopy (cryo-EM) is an increasingly popular technique for
near-atomic imaging of biological macromolecules. Both technological and computational advances have driven
the progress of the techniques, yet many computational obstacles still remain. We introduce a fast method to
estimate the covariance matrix of noisy cryo-EM images, which is a central component of many computational
cryo-EM techniques. As an application, we use the covariance matrix for image denoising and deconvolution of
the microscope’s contrast transfer function. Our method provides orders of magnitude speedup compared to
previous approaches, which opens the door to tackling more challenging datasets.

1. Introduction

We study the problem of computing a compressed representation of the covariance matrix of 2-D cryo-
electron microscopy (cryo-EM) images for the purpose of performing principal component analysis
(PCA). More precisely, we consider an image formation model where the measurement gi is defined by

gi ¼ hi ∗ f iþ εi for i¼ 1,…,N, (1)

where hi is a radial function, ∗ denotes convolution, f i is a ground-truth image, εi is the noise term, and
N the total number of images. We emphasize that we assume hi is radial, see Assumption A1.
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Wearemotivated by single particle cryo-EM imaging, which is an important technique for determining
the 3-D structure of macromolecules. In particular, the single particle reconstruction (SPR) problem asks
to recover the 3-D structure of a macromolecule from noisy 2-D images of its tomographic projections
along unknown viewing angles. In cryo-EM, the mathematical model is a special case of (1) and is of the
form

gi x
0ð Þ ¼ hi ∗

Z
ℝ
φi R

�1
i x

� �
dx3þ εi x

0ð Þ, i¼ 1,…,N, (2)

where x¼ x0,x3ð Þ∈ℝ2�ℝffiℝ3 are 3-D spatial coordinates with x3 representing the projection direction,
hi is the point spread function, φi :ℝ

3 !ℝ is the electrostatic potential of a molecule, Ri ∈ SO 3ð Þ is a 3-D
rotation, and εi the noise term. In computational microscopy, it is typical to work with the Fourier
transform of the point spread function, which is known as the contrast transfer function (CTF). In the
simplest case, each measurement could correspond to a single fixed molecule potential function φi ¼ φ;
however, in general, we may assume that each φi could be a random variable representing a mixture of
molecules, conformational heterogeneity, cases where the images are not perfectly centered, or other
measurement imperfections(1,2).

In general, each measurement gi can be associated with a different point spread function; however, in
practice, a group of measurements, called a defocus group, can share a common point spread function.We
assume that the measurements are grouped into M ≤N defocus groups. Given gi and hi for i¼ 1,…,N,
our goal is to estimate the 2-D covariance function c :ℝ2�ℝ2 !ℝ of the images

c x0,y0ð Þ≔E f x0ð Þ� f x0ð Þ� �
f y0ð Þ� f y0ð Þ� �� �

, (3)

where f is a random variable from the same distribution as the images f i, and f x0ð Þ ¼E f x0ð Þ½ �. We assume
that the distribution of the images is invariant to in-plane rotations (which is typically the case in cryo-
EM).

In cryo-EM, the random variable f is of the form f x0ð Þ ¼ RℝΦ R�1x
� �

dx3, where the random variable R
is an unknown viewing angle, and the random variable Φ is a molecule potential. There is generally no
physical reason for a molecule to prefer one in-plane rotation to another so distributions of random
variables of this form are generally invariant to in-plane rotations. In the field of cryo-EM processing, the
covariance function c is simply referred to as the 2-D covariance.

1.1. Motivation

The 2D-covariance is an essential component of a number of computational techniques in cryo-EM; we
survey a few of these below.

First, we are motivated by PCA, which is a ubiquitous technique in statistics, data science, and
computational mathematics and has applications to dimensionality reduction, denoising, visualization,
among others. The principal components (i.e., the top eigenvectors of the digitized covariance matrix)
have a number of uses in the computational cryo-EM pipeline. The subspace corresponding to the
top eigenvectors of the covariance matrix identifies salient features of the dataset which enables, for
instance, improved methods for image classification and visualization, such as Multivariate Statistical
Analysis(3–6). These techniques improve computational speed, since clustering becomes computationally
easier in a space of reduced dimension, as well as accuracy, since dimensionality reduction by PCA
amplifies the effective signal-to-noise ratio (SNR) because many coordinates for which noise dominates
the signal are eliminated(7).

Second, the covariance matrix has applications in the method of moments, a classical statistical
inference method, applied to cryo-EM(8). In this method, the 2-D covariance is used to compute the
similarly defined autocorrelation function of the underlying 3-D structure. Under further assumptions
such as sufficient nonuniformity of the distribution of the viewing angles(9) or sufficient sparsity of the
molecular structure(10), this autocorrelation function determines the 3-D density map either up to a finite
list of possible structures or uniquely, respectively. This has been further developed into principled
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methods for ab initio estimation of cryo-EM structures(9,10), with reduced risk of user-induced model bias
in the initial model. Alternatively, when additional information is available, for instance, one(11) or two(12)

noiseless projection images, or the 3-D structure of a related, homologous structure(13,14), the 3-D density
map is uniquely determined by the autocorrelation, without requiring any structural assumptions.

Third, the covariance matrix has applications in denoising and CTF-correcting projection images.
Covariance Wiener Filtering (CWF)(15) is an approach that uses the classic Wiener filtering framework
with the estimated covariance matrix to solve the image deconvolution and denoising problem. The
technique represents images in a lower dimensional subspace that is formed fromPCAusing the estimated
covariancematrix. Themethod then appliesWiener filtering to correct the CTFs and denoise the images in
this reduced subspace.

Compared to the standard PCA problem, the cryo-EM setting exhibits further computational chal-
lenges, since the estimation method also has to account for convolution with the point spread function,
which destroys information of the resulting convolved function; see Section Section 2.2 for amore precise
statement. On the other hand, the problem has additional symmetries making fast algorithms possible. In
this paper, we present a new fast algorithm for estimating the covariance matrix that improves upon past
approaches (especially when there are a large number of defocus groups) in terms of time and space
complexity.

1.2. Main contribution

The main contribution of this paper is a new computational method for estimating the covariance
Equation (3) from N measurements of the form Equation (1) encoded by L�L digitized images. The
presented fast method has time complexity O NL3þL4

� �
independent of the number M ≤N of defocus

groups. This is in contrast to past methods, where this complexity scales poorly with M and involves
O MTL4þNL3
� �

operations(15), where T is the number of iterations needed in a Conjugate Gradient step.
Many modern cryo-EM experimental datasets fall into the computationally challenging regime whereM
scales with N .

Our fast method hinges on a new fast and accurate method for expanding L�L images into the
Fourier–Bessel basis, which provides a convenient way to handle convolution of radial functions (such as
point spread functions) with images: namely, convolution with radial functions can be expanded as a
diagonal operator operating on the basis coefficients(16).

The Fourier–Bessel basis functions are harmonics on the disk: the standing waves associated with the
resonant frequencies of a disk-shaped drum with a fixed boundary. More precisely, the harmonics on the
disk are eigenfunctions of the Laplacian on the unit disk that satisfy Dirichlet boundary conditions. In
computational mathematics, this basis is referred to as the Fourier–Bessel basis, since the basis functions
can be expressed as a product of a Bessel function and a complex exponential; see Equation (6) for a
definition.

Because of this simple structure, the covariance matrix of clean images can be estimated by a simple
closed-form solution, without using the (computationally expensive) conjugate gradient method from
previous approaches. Simultaneously, the covariance matrix retains its block diagonal structure, meaning
that its diagonal blocks can be estimated separately and independently, which altogether makes PCA fast.

We present numerical results of covariance estimation on synthetic and experimental data. Addition-
ally, we show how the estimated covariance matrix can be used to denoise images using CWF, and
perform PCA to visualize eigenimages from experimental data. Code implementing the method is
publicly available online.1 Moreover, our approach has the potential to generalize to settings beyond
cryo-EM, where PCA is used for signals estimated under more general group actions(17).

The remainder of the article is organized as follows. In Section 2, we describe the computational
method. In Section 3, we present numerical results for synthetic data. In Section 4 we present numerical
results for experimental data. In Section 5, we discuss the results and possible extensions.

1 Code is available at https://github.com/yunpeng-shi/fast-cryoEM-PC.A.
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2. Methodology

2.1. Notation

For two M �N -matrices A and B , we denote their Hadamard (or entrywise) product by A⊙B, the
Hadamard division of A and B by A⊘B and the ℓth Hadamard power of A by A⊙ℓ. These operations are
defined elementwise by

A⊙Bð Þjk ¼AjkBjk , A⊘Bð Þjk ¼
Ajk

Bjk
, A⊙ℓ
� �

jk ¼Aℓ
jk , (4)

respectively. If w is an N -dimensional vector, then diag wð Þ denotes the N �N matrix with w along its
diagonal, that is, diag wð Þjj ¼wj , and zeros elsewhere. If f :ℝ2 !ℝ is a radial function, we write
f xð Þ¼ f jxjð Þ to mean that f can be expressed as a function only of the magnitude ∣x∣ of x.

For an integrable function f :ℝ2 !ℝ, we denote the Fourier transform of f by bf :ℝ2 !ℂ with the
convention that

bf ξð Þ¼ 1
2π

Z
ℝ2
f xð Þe�ix�ξdx: (5)

2.2. Technical details

We make the following assumptions

A1. We assume that the point spread functions hi in the model Equation (1) are radial functions; this
implies that their Fourier transform (the CTFs) are also radial. In systems where astigmatism is
present and the point spread function deviates slightly from a radial function, our approach can be
used as an initial approximation that could be refined using the Conjugate Gradient method.

A2. We assume that the underlying images f i in the model Equation (1) are i.i.d. random variables
whose distribution is invariant to in-plane rotations.

A3. We assume a technical condition on the Fourier transform of the point spread functions hi in the
model Equation (1). Namely, that the Fourier transforms bhi of the hi satisfy

inf
∣ξ∣, ∣η∣ ∈ λmin,λmax½ �

XN
i¼1

bhi ξð Þ
��� ���2 bhi ηð Þ

��� ���2 ≥ δ,

where δ> 0is fixed and λmin,λmax½ � is the interval of Fourier space used in the disk harmonic expansion,
see Ref. (16, Section 2.4).

Informally speaking, Assumption A3 can be interpreted as saying that for any pair of frequencies ξ and

η there is a point spread function hi such that neither bhi ξð Þ nor bhi ηð Þ are zero. Assumption A1 implies thatbhi ξð Þ¼bhi jξjð Þ is a radial function. Figure 1 shows the values of
PN

i¼1
bhi ξð Þ
��� ���2 bhi ηð Þ

��� ���2 for each pair of

radial frequency ξ,η in log scale, for 1081 distinct CTF images of size L¼ 360, whose defocus values
range from 0.81 to 3.87 m, for an experimental dataset; see Section 4 for more details.

This assumption is much weaker than assuming that for all i that ∣bhi∣ does not vanish at any frequency.
In the latter case, we could just use hi to invert each equation to get access to the underlying functions f i.
If we had direct access to the underlying functions f i, thenwe could approximate the covariance function c
by the sample covariance

cN x0,y0ð Þ≔ 1
N�1

XN
i¼1

f i x
0ð Þ�~f x0ð Þ� � � f i y

0ð Þ�~f y0ð Þ� �
,

where ~f x0ð Þ ¼PN
i¼1

1
N f i x

0ð Þ is the sample mean. Indeed, cN x0,y0ð Þ! c x0,y0ð Þ by the law of large numbers.
To clarify why it is useful forbhi not to vanish, note that in the Fourier domain our measurement model can
be expressed as

bgi ¼bhibf iþbεi,
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where bgi,bhi,bf i , and bεi denote the Fourier transforms of gi,hi, f i, and εi , respectively. Since taking the

Fourier transform changes convolution to point-wise multiplication, if each Fourier transform ∣bhi∣ ≥ δ for

some δ> 0, then we could estimate c by first estimating bf i from bgi for i¼ 1,…,N , and then using the

sample covariance matrix. However, in practice, the CTF bhi is approximately a radial function with many

zero-crossings, which means that multiplication by bhi destroys information in the corresponding
frequencies, making the restoration from a single image ill-posed.

2.3. Fourier–Bessel

The main ingredient in our fast covariance estimation is a fast transform into a convenient and
computationally advantageous basis, known as the Fourier–Bessel basis (which consists of the harmonics
on the disk: eigenfunctions of the Laplacian on the disk that obey Dirichlet boundary conditions). This
specific choice of basis has a number of beneficial properties:

(i) it is orthonormal,
(ii) it is ordered by frequency,
(iii) it is steerable, that is, images can be rotated by applying a diagonal transform to the basis

coefficients,
(iv) it is easy to convolve with radial functions, that is, images can be convolved with radial functions

by applying a diagonal transform to the basis coefficients.

These properties have made the Fourier–Bessel basis a natural choice in a number of imaging
applications(7,15,20–22) and will be central to the development of our fast covariance estimation method.
In polar coordinates r,θð Þin the unit disk r,θð Þ : r∈ 0,1½ Þ,θ∈ 0,2π½ Þf g, the Fourier–Bessel basis functions
are defined by

ψnk r,θð Þ¼ γnkJn λnkrð Þeinθ, (6)

Figure 1.We visualize log10

PN
i¼1
bhi jξjð Þ
��� ���2jbhiðjη Þj j2

� �
for each pair of radial frequencies ∣ξ∣, ∣η∣ for the

experimental dataset EMPIAR-10028(18) obtained from the Electron Microscopy Public Image
Archive(19). All values are greater than �1 in the log scale.
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where γnk is a normalization constant, Jn is the n-th order Bessel function of the first kind (see Ref. 23,
Section 10.2), and λnk is its kth smallest positive root; the indices n,kð Þ run over ℤ�ℤ>0.

Recent work(16) has devised a new fast algorithm to expand L�L-images into � L2 Fourier–Bessel
basis functions. Informally speaking, given �L2 basis coefficients, the algorithm can evaluate the
function on an L�L grid in O L2logL

� �
operations; the adjoint can be computed in the same number

of operations, which makes iterative methods fast. Compared to previous expansion methods(7,22), it
enjoys both theoretically guaranteed accuracy and lower time complexity.

2.4. Key property of Fourier–Bessel basis

A key property of the Fourier–Bessel basis is that convolution with radial functions is diagonal
transformations in any truncated basis expansion. More precisely, the following result holds (Ref. 16,
Lemma 2.3): suppose that f ¼P n,kð Þ∈ Iαnkψnk for some index set I , and h¼ h jxjð Þ is a radial function.
Then,

Pℐ f ∗ hð Þ¼
X
n,kð Þ∈ I

αnkbh λnkð Þψnk , (7)

where Pℐ denotes orthogonal projection onto the span of ψnkf g n,kð Þ∈ I,
bh is the Fourier transform of h, and

λnk is the kth positive root of Jn.
We emphasize that the weights of the diagonal transform in Equation (7) are not the coefficients of h in

the disk harmonic expansion. Indeed, since his radial, it follows fromEquation (6) that the coefficients βnk
of h in the basis ψnk satisfy βnk ¼ 0when n 6¼ 0. Computing the weights bh λnkð Þ from the coefficients βnk of
h in the basis, would involve computing weighted sums of the Fourier transforms of the basis functions:bh λnkð Þ¼Pl∈J β0lbψ0l λnkð Þ, for some index set J .

As an alternative to the disk harmonic basis expansion, one can consider simply taking the Fourier
transform of (1), which also leads to a diagonal representation of the convolution operator. However, the
discrete Fourier transform does not have the steerability property, which is essential for the covariance
estimation. Another attempt could be to use the polar Fourier transform. However, this representation is
not invariant to arbitrary in-plane rotations, but only to finitely many rotations as determined by the
discretization spacing of the grid. These expansions are therefore unsuitable for the goal of this article and
we instead use expansions into the Fourier–Bessel basis, although other steerable bases could be
considered(24,25). Table 1 summarizes the considerations that make the Fourier–Bessel basis a natural
choice of basis.

2.5. Block diagonal structure

The steerable property of the Fourier–Bessel basis implies that the 2D-covariance will be block diagonal
in this basis. A full representation of an L2�L2 matrix requires O L4

� �
elements, but this is reduced to

O L3
� �

nonzero entries by the block diagonal structure. This block diagonal structure follows from the

Table 1. Summary of desirable properties of a few different basis candidates.

Basis Orth. Cont. steerable Radial convolution diag. Fast expansiona

Real ✓ ✗ ✗ ✓

2-D discrete Fourier ✓ ✗ ✓ ✓

Polar Fourier ✗ ✗ (discrete) ✓ ✓

PSWF(24,25) ✓ ✓ ✗ ✗
Fourier–Bessel(16)b ✓ ✓ ✓ ✓

aThe basis expansion from Cartesian grid representation can be completed within O L2
� �

operations up to log factors.
bThe new expansion algorithm(16) improves the previous computational method(7) in terms of accuracy guarantees, computational complexity, and the
fact that it derives weights such that radial convolution is a diagonal operation.
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form of the basis functions and that the distribution of in-plane rotations is assumed to be uniform. Indeed,
suppose that f ¼P n,kð Þ∈ Iαnkψnk : For simplicity assume that f has mean zero; subtracting the mean will
only change the radial components, since the other components corresponding to nonvanishing angular
frequencies have zero mean by merely averaging over all possible in-plane rotations. By Assumption A2,
the covariance function in polar coordinates satisfies

c r,θð Þ, r0,θ0ð Þð Þ¼ c r,θþφð Þ, r0,θ0 þφð Þð Þ, (8)

for all φ in 0,2π½ �. The covariance function in Equation (3) can be expanded in a double Fourier–Bessel
basis expansion as

c r,θð Þ, r0ð ,θ0Þð Þ¼
X
n,kð Þ∈ I

X
n0,k0ð Þ∈ I

C nk,n0k0ð Þψnk r,θð Þψn0k0 r
0,θ0ð Þ, (9)

whereC nk,n0k0ð Þ is the covariance matrix in the Fourier–Bessel basis. Combining Equations (8) and (9) and
integrating φ over 0,2π½ � gives

c r,θð Þ, r0,θ0ð ÞÞ¼ 1
2π

Z 2π

0
c r,θþφð Þ, r0,θ0 þφð Þð Þdφ

¼
X
n,kð Þ∈ I

X
n0,k0ð Þ∈ I

C nk,n0k0ð Þ
1
2π

Z 2π

0
ψnk r,θþφð Þψn0k0 r

0,θ0 þφð Þdφ

¼
X
n,kð Þ∈ I

X
n0,k0ð Þ∈ I

C nk,n0k0ð Þψnk r,θð Þψn0k0 r
0,θ0ð Þ 1

2π

Z 2π

0
ei n�n0ð Þφdφ

¼
X
n,kð Þ∈ I

X
n0,k0ð Þ∈ I

δn¼n0C nk,n0k0ð Þψnk r,θð Þψn0k0 r
0,θ0ð Þ,

(10)

where δn¼n0 is a Dirac function that is equal to 1if n¼ n0 and zero otherwise, and we note that the second to
last equality uses the fact that ψnk r,θð Þ¼ γnkJ n λnkrð Þeinθ. Since the coefficients C nk,n0k 0ð Þ in the expansion
Equation (9) are unique, it follows from Equation (10) that C nk,n0k 0ð Þ ¼ 0 when n �6¼ n0 . Hence, the
covariance matrix C nk,n0k0ð Þ has a block diagonal structure whose blocks consist of the indices nk,nk0ð Þ
for a given value of n. In the following section, we show how these properties enable a fast method to
estimate the covariance matrix.

2.6. Covariance estimation

In the Fourier–Bessel basis, Equation (1) is written as

Gi ¼Hi ⊙FiþEi, (11)

whereGi, Fi, and Ei are coefficient vectors of gi, f i,εi in the Fourier–Bessel basis, respectively andHi is the
vector encoding the convolution operator of Section 2.4, that is, with components bhi λnkð Þ. The vectors are
b-dimensional column vectors, where b¼O L2

� �
is the number of basis coefficients. We use this simple

structure to obtain a closed-form expression for the sample covariance matrix of the Fi. We estimate this
matrix by minimizing the discrepancy between the sample covariance and the population covariance; more
precisely, the estimated covariance matrix ~C is computed by solving the least squares-problem

~C¼ argmin
C

XN
i¼1

Gi�Hi ⊙ ~μð Þ Gi�Hi ⊙ ~μð ÞT � C⊙ HiH
T
i

� �þσ2I
� �		 		2

F : (12)

where ~μ is defined by

~μ¼ argmin
μ

XN
i¼1

∥Gi�Hi ⊙ μ∥2, (13)

whose solution is

~μ¼
XN
i¼1

Hi ⊙Gi

 !
⊘

XN
i¼1

H ⊙ 2
i

 !
: (14)
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The least squares-solution of Equation (12) can be determined by the following system of linear
equations XN

i¼1

H ⊙ 2
i H ⊙ 2

i

� �T !
⊙ ~C¼

XN
i¼1

HiH
T
i

� �
⊙Bi�σ2

XN
i¼1

diag H ⊙ 2
i

� �
, (15)

where

Bi ¼ Gi�Hi ⊙ ~μð Þ Gi�Hi ⊙ ~μð ÞT : (16)

It follows that

~C¼
XN
i¼1

Bi ⊙ HiH
T
i

� ��σ2diag H ⊙ 2
i

� �� � !
⊘

XN
i¼1

H ⊙ 2
i H ⊙ 2

i

� �T !
: (17)

As discussed in Section 2.5, the covariance matrix is block diagonal in the Fourier–Bessel basis. More
precisely, the only nonzero elements ~C nk,n0k0ð Þ of the matrix ~C are those with n¼ n0 . Therefore, the
matrices in Equations (16) and (17) need only be calculated for this subset of indices. Since there is a total
ofO L3

� �
of these indices, this reduces the computational complexity compared to computing with the full

matrices.
Note that the covariance matrix estimated from (Equation 17) may not be positive semidefinite due to

subtraction of the term σ2diag H ⊙ 2
i

� �
. Therefore, when running the method in practice it is beneficial to

use an eigenvalue shrinkage method. The computational cost of eigenvalue shrinkage for a matrix with
our block structure is O L4

� �
(15,26). For completeness, we include this computational cost of eigenvalue

shrinkage in our overall computational complexity. Informally speaking, the idea of eigenvalue shrinkage
is to replace the term

PN
i¼1 Bi ⊙ HiHT

i

� ��σ2diag H ⊙ 2
i

� �� �
in Equation (17) by

PN
i¼1 Bi ⊙ HiHT

i

� �� �
, and

then shrink and truncate the eigenvalues in a systematic way before Hadamard division(26). The steps of
the algorithm are summarized in Algorithm 1.

Algorithm 1 Fast covariance estimation method.

Input: Observed images gi, radial functions hi, i¼ 1,…,N .
Output: Estimated covariance matrix ~C in the domain of the Fourier–Bessel basis
1. Expand observed images gi into the Fourier–Bessel basis, with resulting coefficient vector Gi

2. Compute the vectors Hi with components bhi λnkð Þ , representing the action of the CTFs in the
Fourier–Bessel basis

3. Compute sample mean ~μ from Equation (14)
4. Use Equation (16) to compute the elements Bi nk,nk

0ð Þ for all n,k,k0
5. Use Equation (17) to compute the elements of the sample covariancematrix ~C nk,nk0ð Þ for all n,k,k0,

refined using eigenvalue shrinkage

The complexity of step 1 of the algorithm is O NL2logL
� �

. The complexity of step 2 is O ML2logL
� �

.
The complexity of step 3 is O NL2

� �
, since the number of basis coefficients is O L2

� �
. The complexity of

step 4 is O NL3
� �

, since there are at most O L3
� �

nonzero elements with indices nk,nk0ð Þ. The complexity
of step 5 is O NL3þL4

� �
, where the additional termO L4

� �
comes from the computational complexity of

eigenvalue shrinkage. Thus, the total complexity of the algorithm is O NL3þL4
� �

.
We now show how this can be used in an application to image denoising. Given an estimate of the

covariance matrix ~C, the CWF approach estimates the Fi by a linear Wiener filter(15),

~Fi ¼ ~μþ ~Cdiag Hið Þ ~C⊙ HiH
T
i

� �þσ2I
� ��1

Gi�Hi ⊙ ~μð Þ, (18)

See Ref. 15 for more details.

e2-8 Nicholas F. Marshall et al.

https://doi.org/10.1017/S2633903X23000028 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000028


3. Synthetic Data Results

Wecompare the timings of our fast method to previous approaches(15), for synthetic images generated from
the 3-D volume of SARS-CoV-2 (Omicron) spike complexes(27) (EMD-32743), from the online EM data
bank(28). The original volume has size 512in each dimension, with pixel size 0.832Å.We downsample the
original volume to size L�L�L, with L¼ 32,128 and 512, respectively, and show the computational
times. To generate the synthetic noisy images, we first generate 10,000 clean projection images of the 3-D
volume from random and uniformly distributed viewing directions.We next divide the set of clean images
into a number of defocus groups,where the defocus values range from1μmto4μm.For allCTFs,we set the
voltage as 300 kVand the spherical aberration as 2 mm. After convolving the images with their CTFs, we
add colored noise with power spectral density 1= rL=20þ1ð Þ up to a constant scale, where r∈ 0,1½ � is the
radial frequency. For both the previous method and ours, the CTFs and the noisy images are whitened
before estimating the covariance. A few sample clean and noisy images are shown in Figure 5. All
experiments were carried out on a machine with 750 GB memory and 72 Intel Xeon E7–8880 v3 CPUs
running at 2.30GHz. We note that our implementation heavily relies on packages such as FINUFFT(29,30),
NumPy(31), and SciPy(32), which are not fully optimized for parallel computing. The implementation of our
fast method and the code of CWF(15) both effectively use only around 20 cores at runtime. Due to the
complexity of modern computational architectures, performing a fair comparison can be challenging, but
we have made every effort to do so. Both our code and the CWF code(15) take input images in a tensor
format, and used vectorized operations whenever possible to avoid for-loops. The primary factor deter-
mining performance is not the specific implementation of the code, but rather the underlying computational
complexities. Improving the parallelization is a technical direction for future work.

Figure 2 shows the time required to estimate the covariance matrices as a function of the number of
defocus groups. Note that the runtime for the previous approach for the largest image and defocus group
sizes is infeasibly large and that our fast method exhibits a speedup of up to three orders of magnitude.

Figure 3 shows the top six principal components estimated by ourmethod and by traditional PCAusing
104 raw images, where L¼ 128, SNR¼ 0:1 and M ¼ 100 defocus groups, compared to traditional PCA
on 106 images. We use the sample covariance matrix of phase-flipped images in real space for the
traditional PCA. For all methods, we use λ to denote 100 times the eigenvalues of the eigenimages. The
eigenimages from the traditional PCA look much noisier than ours, and contain artifacts that are due to
imperfect CTF correction (see, e.g., the circular artifacts in top three eigenimages in Figure 3). The
eigenimages from the traditional PCA also fail to preserve the symmetries (see, e.g., 6th eigenimage in
Figure 3) that are present in our eigenimages, since they do not utilize the steerable basis and rotation-
augmented images.

Figure 4 shows the quality of covariance estimation and image denoising when L¼ 128 and using
M ¼ 100defocus groups. The quality of the covariance estimation ismeasured by the relative error in each
angular frequency, which is defined as

errn ¼ ∥Cn� ~Cn∥F=∥Cn∥F , (19)

where Cn and ~Cn are respectively the nth diagonal blocks of the clean and estimated covariance matrix,
corresponding to all indices of the form nk,nk0ð Þ. The clean covariance matrix was approximated by the
sample covariance matrix of 106 clean projection images. The performance of image denoising is
measured by the Fourier ring correlation (FRC) between the clean and denoised images. Namely, for
the ith pair of clean and denoised images Ici and Idi , we first compute their Fourier coefficient vectors
f ci,r, f

d
i,r at radial frequency r by the nonuniform FFT(33–35), where 1≤ i≤N and 0≤ r≤ rmax. We then

compute their averaged correlation for each r:

FRC rð Þ¼ 1
N

XN
i¼1

〈f ci,r, f
d
i,r〉

∥f ci,r∥∥f
d
i,r∥

,

where 〈�, �〉denotes the inner product between two complex vectors. The FRC is a real-valued quantity due
to a symmetry property that arises since the images I ci , I

d
i are real-valued.
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In addition to the speedups of Figure 2, the left panel of Figure 4 demonstrates a slight increase in the
estimation quality of our proposed algorithm, compared to the previous approach. This is possibly caused
by improved accuracy in the Fourier–Bessel basis approximation as well as improved accuracy by using
the closed-form expression Equation (17) compared to the approximate conjugate gradient step of
previous approaches. Similarly, on the right panel, the Fourier ring correlation between the denoised
and clean images shows a slight performance increase. Figure 5 shows sample denoised images for
different values of the SNR where L¼ 128 and M ¼ 100. As a comparison, we show images denoised
using the approach of this paper and the CWF method(15).

4. Experimental Data Results

We conclude by using our method on two experimental datasets obtained from the Electron Microscopy
Public Image Archive(19), namely EMPIAR-10028(18) and EMPIAR-10081(36). EMPIAR-10028 is a

Figure 2. Timing comparison for covariance matrix estimation of 10,000 images of size L�L. The old
method(15) timing for L¼ 512and defocus count 104 is extrapolated due to time and memory constraints.

Figure 3. Top six eigenimages computed by traditional PCA on 106 clean images (top panel), our new
method on 104 raw images (middle panel), and traditional PCA on 104 phase-flipped images (bottom
panel). The signal-to-noise ratio for the images for the new method and traditional PCA was 0.1.
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Figure 4. Relative estimation error of the covariance matrix (left) and the Fourier ring correlation
between the denoised and clean images (right).

Figure 5. Clean, noisy and denoised images. The covariance estimation used N ¼ 10,000 images, and
parameters L¼ 128 and M ¼ 100.
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dataset of the Plasmodium falciparum 80S ribosome bound to the antiprotozoan drug emetine whose 3-D
reconstruction is available in the EM data bank as EMD-2660(18). The dataset contains 105247 motion
corrected and picked particle images, from 1081 defocus groups, of size 360�360with 1.34 Å pixel size.
EMPIAR-10081 is a dataset of the human HCN1 hyperpolarization-activated cyclic nucleotide-gated ion
channel, whose 3-D reconstruction can be found in the EM data bank as EMD-8511(36). The dataset
contains 55,870 motion corrected and picked particle images, from 53,384 defocus groups, of size
256�256 with 1.3 Å pixel size.

Computational times are shown in Table 2, showing a speedup of more than two orders of magnitude
for the datasets with the largest number of distinct CTFs. Note that regular CWF on EMPIAR-10081
encounters memory issues and cannot be run to completion, whereas our fast method runs seamlessly.
The old CWF has much higher space complexity O ML3

� �
for covariance estimation than that of our

method O L3
� �

. The reason is that the old CWF represents CTFs using block diagonal matrices (each
takes O L3

� �
memory). Moreover, the old CWF loads all these block diagonal CTFs at once in memory

so as to define the linear operator for the conjugate gradient method. Our method circumvents the need
to store all CTFs at once due to our closed-form solution, and therefore we can read CTFs in batches.
Moreover, each CTF has diagonal representation in our method, which means much lower space
complexity O L2

� �
. The O L3

� �
space complexity for our method is only for storing a single covariance

matrix.
For EMPIAR-10081, storing the CTFs for the old method takes approximately 50,000�

2563=6
� ��8=109 ≈ 1118 GB which is above the 750 GB memory limit of our machine. For the
new method, storing the covariance matrix takes 2563=6

� ��8=109 ≈ 0:02 GB and storing the CTFs
takes 1000�2562�8=109 ≈ 0:52 GB (with batch size 1000) that can be even handled by a common
laptop.

In order to obtain a comparison, we therefore additionally downsample these images to L¼ 128where
the original CWF can successfully run. On EMPIAR-10028, we used all images for covariance
estimation, and denoised the 2014 images from 0 th, 50 th, 100 th, …, 1000 th defocus groups. On
EMPIAR-10081, we used all images for covariance estimation, and denoised the 502 images from 0th,
100th, 200th, …, 50,000th defocus groups. For both old and new methods, the covariance matrices are
further refined to correct image contrast variations(21). Sample visualization results are shown in Figures 6
and 7. The old CWF method cannot handle the full resolution recovery for EMPIAR-10081 (with about

Table 2. Timing comparison in seconds for EMPIAR-10028 (top) and EMPIAR-10081 (bottom).

EMPIAR-10028

Methods T ffb T ctf T cov Tdenoise T total

Old CWF, L¼ 360 1415 598 27550 201 29764
Fast CWF, L¼ 360 768 5 2220 95 3088

EMPIAR-10081

Methods T ffb T ctf T cov Tdenoise T total

Old CWF, L¼ 128 47 3369 46318 45 49779
Fast CWF, L¼ 128 35 8 93 27 163
Old CWF, L¼ 256 363 NA NA NA NA
Fast CWF, L¼ 256 169 34 1007 163 1373

Note. For EMPIAR-10081, when L¼ 256, the old CWF method(15) encounters memory issues and cannot be run until completion. T ffb , the time
required to expand all images in the Fourier–Bessel basis (step 1 in Algorithm 1); T ctf , the time to compute a matrix representation of the application of
the point spread function (step 2 in Algorithm 1); T cov, the time to estimate the covariancematrix (steps 3–5 inAlgorithm 1); Tdenoise, the time to denoise
the number of images indicated in the main text (2014 images for EMPIAR-10028 and 502 images for EMPIAR-10081); T total, the total computational
time.

e2-12 Nicholas F. Marshall et al.

https://doi.org/10.1017/S2633903X23000028 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000028


Figure 6. Denoised images (EMPIAR-10028). The method used N ¼ 105,247 images, from M ¼ 1081
defocus groups, of size 360�360. The clean images are obtained by aligning 1000 clean projection

images (from uniformly distributed viewing directions) with phase-flipped raw images.

Figure 7. Denoised images (EMPIAR-10081). The method used N ¼ 55,870 images, from M ¼ 53,384
defocus groups, of size 256�256. The clean images are obtained by aligning 1000 clean projection

images (from uniformly distributed viewing directions) with phase-flipped raw images.
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50,000 distinct CTFs) due to its high space complexity. Moreover, the old CWF method does not return
satisfying restored images for downsampled low resolution images. The reason is that for EMPIAR-
10081, almost all images belong to different defocus groups, and the estimated noise power spectrum
from a single image is too noisy. Therefore, EMPIAR-10081 is a failure case for the old CWF method in
terms of both accuracy and computation time. In contrast, our method assumes radially symmetric noise
power spectrum and estimates it using NUFFT over concentric rings with different radii, and averages
over each ring. This averaging process largely reduces the noise in the estimated power spectrum.

5. Discussion

Covariance estimation and PCA of cryo-EM images are key ingredients in many classic cryo-EM
methods including multivariate statistical analysis(3–6) and Kam’s method for ab initio modeling(8). We
propose a fast method to estimate the covariance matrix of noisy cryo-EM images, and then illustrate its
application to simultaneously correct for the CTFs and denoise the images. The approach relies on recent
improvements to algorithms for expanding images in the Fourier–Bessel basis(16), and has time com-
plexity O NL3þL4

� �
which is independent of the number of defocus groups. Our new approach is both

significantly faster and more memory-efficient compared to the previous CWF method(15) and we apply
our method to large experimental datasets with many distinct CTFs with speedups by factors up to more
than two orders ofmagnitude. Our approach could potentially be extended to higher-dimensional data and
to the setting where images are distorted by CTFs which are not exactly radial, using either analytical
correction terms or iterative numerical steps.

Acknowledgments. We are grateful to Kenny Huang for running some numerical experiments in the initial stage of this project.

Competing Interests. The authors declare no competing interests exist.

Authorship Contributions. N.F.M., O.M., Y.S., and A.S. conceived the project. N.F.M., O.M., and Y.S. designed the algorithms.
Y.S. wrote the software and performed the experiments. All authors wrote the article and approved the final submission.

Funding Statement. N.F.M. was supported in part by NSF DMS-1903015 and was visiting the Institute for Pure and Applied
Mathematics (IPAM) when part of this research was performed, which was supported by NSF DMS-1925919. A.S. was supported
by grants from the AFOSR FA9550-20-1-0266; the Simons Foundation MathþX Investigator Award; NSF BIGDATA Award
IIS-1837992; NSF DMS-2009753; and NIH/NIGMS 1R01GM136780–01.

Data Availability Statement. Replication data and code can be found at https://github.com/yunpeng-shi/fast-cryoEM-PCA.

References
1. Liu W & Frank J (1995) Estimation of variance distribution in three-dimensional reconstruction. i. Theory. JOSA A 12(12),

2615–2627.
2. Penczek PA, Kimmel M & Spahn CM (2011) Identifying conformational states of macromolecules by eigen-analysis of

resampled cryo-em images. Structure 19(11), 1582–1590.
3. Van Heel M (1984) Multivariate statistical classification of noisy images (randomly oriented biological macromolecules).

Ultramicroscopy 13(1–2), 165–183.
4. Van Heel M & Frank J (1981) Use of multivariates statistics in analysing the images of biological macromolecules.

Ultramicroscopy 6(1), 187–194.
5. van HeelM, Portugal R and SchatzM (2009)Multivariate Statistical Analysis in Single Particle (Cryo) ElectronMicroscopy.

An Electronic Textbook: Electron Microscopy in Life Science. 3D-EM Network of Excellence. London.
6. van Heel M, Portugal RV, Schatz M, et al. (2016) Multivariate statistical analysis of large datasets: Single particle electron

microscopy. Open J Stat 6(04), 701.
7. Zhao Z&SingerA (2014) Rotationally invariant image representation for viewing direction classification in cryo-EM. J Struct

Biol 186(1), 153–166.
8. Kam Z (1980) The reconstruction of structure from electron micrographs of randomly oriented particles. J Theor Biol 82(1),

15–39.
9. Sharon N, Kileel J, Khoo Y, Landa B & Singer A (2020) Method of moments for 3D single particle ab initio modeling with

non-uniform distribution of viewing angles. Inverse Probl 36(4), 044003.

e2-14 Nicholas F. Marshall et al.

https://doi.org/10.1017/S2633903X23000028 Published online by Cambridge University Press

https://github.com/yunpeng-shi/fast-cryoEM-PCA
https://doi.org/10.1017/S2633903X23000028


10. Bendory T, Khoo Y, Kileel J, Mickelin O & Singer A (2022) Autocorrelation analysis for cryo-EM with sparsity constraints:
improved sample complexity and projection-based algorithms. Preprint, arXiv:2209.10531.

11. Huang S, Zehni M, Dokmanić I & Zhao Z (2022) Orthogonal matrix retrieval with spatial consensus for 3D unknown-view
tomography. Preprint, arXiv:2207.02985.

12. Levin E, Bendory T, Boumal N, Kileel J & Singer A (2018) 3D ab initio modeling in cryo-EM by autocorrelation analysis. In
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp. 1569–1573. IEEE.

13. Bhamre T, Zhang T & Singer A (2015) Orthogonal matrix retrieval in cryo-electron microscopy. In 2015 IEEE 12th
International Symposium on Biomedical Imaging (ISBI), pp. 1048–1052. IEEE.

14. Bhamre T, Zhang T&Singer A (2022)Anisotropic twicing for single particle reconstruction using autocorrelation analysis. U.
S. Patent No. 11,227,403. arXiv:1704.07969.

15. Bhamre T, Zhang T & Singer A (2016) Denoising and covariance estimation of single particle cryo-EM images. J Struct Biol
195(1), 72–81.

16. Marshall NF, Mickelin O & Singer A (2022) Fast expansion into harmonics on the disk: a steerable basis with fast radial
convolutions. Preprint, arXiv:2207.13674.

17. Bandeira AS, Blum-Smith B, Kileel J, Perry A, Weed J &Wein AS (2017) Estimation under group actions: recovering orbits
from invariants. Preprint, arXiv:1712.10163.

18. WongW, Bai X-c, Brown A, et al. (2014) Cryo-EM structure of the plasmodium falciparum 80S ribosome bound to the anti-
protozoan drug emetine. eLife 3, e03080.

19. Iudin A, Korir PK, Salavert-Torres J, Kleywegt GJ & Patwardhan A (2016) EMPIAR: a public archive for raw electron
microscopy image data. Nat Methods 13(5), 387–388.

20. Rangan A, Spivak M, Andén J & Barnett A (2020) Factorization of the translation kernel for fast rigid image alignment.
Inverse Probl 36(2), 024001.

21. Shi Y&Singer A (2022)Ab-initio contrast estimation and denoising of Cryo-EM images.ComputMethods Programs Biomed
224, 107018.

22. Zhao Z, Shkolnisky Y & Singer A (2016) Fast steerable principal component analysis. IEEE Trans Comput Imaging 2(1),
1–12.

23. Lozier D (2003) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.5 of 2022-03-15.
24. Landa B & Shkolnisky Y (2017) Approximation scheme for essentially bandlimited and space-concentrated functions on a

disk. Appl Comput Harmon Anal 43(3), 381–403.
25. LandaB&ShkolniskyY (2017) Steerable principal components for space-frequency localized images. SIAMJ Imaging Sci 10

(2), 508–534.
26. Donoho DL, GavishM& Johnstone IM (2018) Optimal shrinkage of eigenvalues in the spiked covariance model. Ann Stat 46

(4), 1742.
27. Guo H, Gao Y, Li T, et al. (2022) Structures of omicron spike complexes and implications for neutralizing antibody

development. Cell Reports 39(5), 110770.
28. Lawson CL, Patwardhan A, Baker ML, et al. (2016) EMDataBank unified data resource for 3DEM. Nuc Acids Res 44(D1),

D396–D403.
29. Barnett AH (2021) Aliasing error of the exp β

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� �
kernel in the nonuniform fast Fourier transform. Appl Comput

Harmon Anal 51, 1–16.
30. Barnett AH, Magland J & Klinteberg L (2019) A parallel nonuniform fast Fourier transform library based on an “exponential

of semicircle” kernel. SIAM J Sci Comput 41(5), C479–C504.
31. Harris CR, Millman KJ, van der Walt SJ, et al. (2020) Array programming with NumPy. Nature 585(7825), 357–362.
32. Virtanen P, Gommers R, Oliphant TE, et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in python.Nat

Methods 17, 261–272.
33. Dutt A & Rokhlin V (1993) Fast Fourier transforms for nonequispaced data. SIAM J Sci Comput 14(6), 1368–1393.
34. Greengard L & Lee J-Y (2004) Accelerating the nonuniform fast Fourier transform. SIAM Review 46(3), 443–454.
35. Lee J-Y & Greengard L (2005) The type 3 nonuniform FFT and its applications. J Comput Phys 206(1), 1–5.
36. Lee C-H & MacKinnon R (2017) Structures of the human HCN1 hyperpolarization-activated channel. Cell 168(1–2),

111–120.

Cite this article: Marshall N. F, Mickelin O, Shi Y and Singer A (2023). Fast principal component analysis for cryo-electron
microscopy images. Biological Imaging, 3: e2. doi:https://doi.org/10.1017/S2633903X23000028

Biological Imaging e2-15

https://doi.org/10.1017/S2633903X23000028 Published online by Cambridge University Press

https://arxiv.org/abs/2209.10531
https://arxiv.org/abs/2207.02985
https://arxiv.org/abs/1704.07969
https://arxiv.org/abs/2207.13674
https://arxiv.org/abs/1712.10163
http://dlmf.nist.gov/
https://doi.org/10.1017/S2633903X23000028
https://doi.org/10.1017/S2633903X23000028

	Fast principal component analysis for cryo-electron microscopy images
	Impact Statement
	Introduction
	Motivation
	Main contribution

	Methodology
	Notation
	Technical details
	Fourier-Bessel
	Key property of Fourier-Bessel basis
	Block diagonal structure
	Covariance estimation

	Synthetic Data Results
	Experimental Data Results
	Discussion
	Acknowledgments
	Competing Interests
	Authorship Contributions
	Funding Statement
	Data Availability Statement
	References


