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Mitigating heating of degenerate fermions in a ring-dimple atomic trap
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We report on the impact of the extended geometry of a ring-dimple trap on particle-loss heating of a degenerate

Fermi gas. When the Fermi level is slightly greater than the depth of the dimple and a broad, low-density “halo”

is present, the overall heating rate is reduced relative to the case of a bare ring. We find that the experimentally

measured heating rates for the overfilled dimple are in good agreement with a model of the hole-induced heating

caused by background-gas collisions. This suppression of the heating rate can be helpful for experimental studies

of fermionic superfluids in the weak pairing limit, where achieving and maintaining low temperatures over long

timescales are essential.
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I. INTRODUCTION

Experimental studies of fermionic superfluids in the weak-

pairing limit require deep quantum degeneracy. However,

achieving and maintaining temperatures well below the

Fermi temperature in ultracold atomic systems is experimen-

tally challenging. Pauli blocking reduces the efficiency of

evaporative cooling in the quantum degenerate regime [1],

dramatically slowing down the cooling process (for reviews,

see [2,3]). Various protocols have been proposed for cir-

cumventing this limitation, relying especially on adiabatic

processes with deformations of the trapping potential [4–11].

On top of this fundamental limitation to cooling, deeply de-

generate Fermi gases are especially sensitive to losses caused

by collisions with background-gas molecules; when atoms

deep in the Fermi sea are expelled, the creation of holes

substantially raises the effective temperature of the system.

This “hole heating” effect was first predicted in Ref. [12]

and was previously modeled for uniform and harmonically

trapped Fermi gases and Fermi-Bose mixtures [13–15]. These

previous studies also investigated the possible use of a bosonic

reservoir with a large heat capacity to achieve and maintain

low temperatures.

In this paper, we show experimentally that for an

inhomogeneous fermionic system with a deeply degenerate

subsystem embedded in a large low-density reservoir, the

effects of hole heating are reduced compared to the case of

a similar system without the reservoir present. This result

is achieved by focusing on a ring-dimple trap, a geometry

advantageous for studying superfluid phenomena and persis-

tent currents, although we expect the outcome to hold for a

generic trapping geometry. More specifically, we investigate

the effects of fermion-hole heating for a spin-balanced pair

superfluid of 6Li atoms in the deep BCS limit of weak

attractive interactions. Minimizing heating rates is important

for some experiments with fermion pair superfluids since the
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natural timescale for investigating low-energy, long-

wavelength dynamics in a superfluid ring is set by the

period of the lowest quantized circulation state, typically

several seconds. It is even more critical for experiments in the

deep BCS limit because current methods for detecting

supercurrents by matter-wave interference require an

interaction ramp to the molecular Bose-Einstein-condensate

(BEC) regime before ballistic expansion [16,17]. Unless the

initial system temperature is very low, loss of contrast makes

coherent phase measurements difficult or impossible. Our

most important finding is that the heating rate for fermionic

atoms in a superfluid “circuit” can be substantially reduced

by embedding it in a large, dilute population of atoms that

acts as a heat sink and as a particle reservoir.

This paper is organized as follows: Sec. II gives a brief

overview of theory pertaining to noninteracting Fermi sys-

tems, along with an outline of the optical potentials employed

in the experiment. Section III discusses the in situ ther-

mometry technique we used to measure heating rates in the

limit of weak attractive interactions. Section IV gives an

outline of hole-heating theory and discusses the important

findings of our heating-rate measurements. Finally, we con-

clude in Sec. V by discussing the collisions that reestablish

equilibrium throughout the hole-heating process.

II. FERMIONIC ATOMS IN A RING-DIMPLE

OPTICAL TRAP

A wide range of magnetic and optical trapping techniques

has been used in experiments where BECs of ultracold atoms

have been confined to multiply connected trap potentials

[18–28]. Experiments with ultracold Fermi gases generally

make use of magnetic Feshbach resonances and all-optical

trapping techniques, and recent experiments with rings of ul-

tracold fermions have made use of both red- and blue-detuned

trap configurations [16,17]. While the conclusions of this pa-

per about heating rates are relevant to a wide range of possible

trap configurations, we will focus here on red-detuned ring

traps of the type used in our first experiments with rings
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FIG. 1. (a) Side-view cross section of a red-detuned optical trap

potential used in our experiments with rings of fermionic atoms. This

model includes the effects of the ring beam, the sheet beam, and

gravity. (b) Intensity profile of the vertically propagating red-detuned

ring-pattern beam modeled in (a).

of ultracold fermions, which have some potentially helpful

features.

Optical ring traps typically employ at least two indepen-

dent laser fields, one providing mainly vertical confinement

and another providing radial confinement. In our experiments

with 6Li the main vertical confinement is provided by a

red-detuned (1064 nm) horizontally propagating asymmetric

Gaussian beam. In most of our experiments, the radial con-

finement was provided by a red-detuned (780 nm) vertically

propagating laser shaped into a ring-pattern beam, as shown in

Fig. 1. This overall red-detuned beam configuration is similar

to those used in many previous experiments with ring-shaped

Bose-Einstein condensates [24]. If the chemical potential of

a quantum gas is sufficiently small compared to the depth

of the ring dimple, the atoms will be localized to the ring

potential minimum, and it is reasonable to treat the transverse

confinement as approximately harmonic about the minimum.

It is more straightforward to analytically calculate the chem-

ical potential and other important properties of the system

when this approximation is valid. For a gas of noninteracting

fermionic atoms in a ring with harmonic transverse confine-

ment, the Fermi energy can be expressed as a function of the

number of fermions N , the geometric mean of the vertical (z)

and radial (r) trapping frequencies ω̄ = √
ωzωr , and the char-

acteristic angular rotation frequency � ≡ h̄/(2mr2
0 ), where r0

is the ring radius:

EF

h̄�
=

(

15N

16

)2/5(
ω̄

�

)4/5

. (1)

We conducted our first experiments expecting to work within

this approximation but were surprised to see evidence that

heating rates were higher when we evaporated until the Fermi

level was smaller than the dimple depth. The atoms in the ring

remained in the superfluid phase much longer when the Fermi

level was higher, with many atoms spilling from the ring

dimple into the shallow extended potential created by the

sheet beam, as shown in Fig. 2. This dilute “halo” of atoms

typically contained more than two thirds of the total atom

population and played a crucial role in the thermodynamics of

the system in our experiments. The harmonic approximation

is clearly not valid for this situation, so we used a numerical

FIG. 2. Density distribution of 6Li atoms in our trap when the

Fermi level is around 0.1 µK larger than the depth of the dimple

created by the ring-pattern beam. The plot shows the average of 10

in situ absorption images taken at a magnetic field of 100 mT. Both

the ring-shaped region of increased density and the dilute halo are

clearly visible.

three-dimensional (3D) model of the potential to estimate the

relevant thermodynamic properties of our system.

To compute the Fermi energy for atoms in this extended

ring-dimple potential, we used a semiclassical model to obtain

the total (spin up and down) density of states g3D(E ) for a

fully 3D model of the trap V (r) that included the sheet beam,

the ring beam, and gravity:

g3D(E ) =
8πm

(2π h̄)3

∫

V (r)�E

d3r
√

2m[E − V (r)]. (2)

We then used the defining relation N =
∫ EF

0
g3D(E )dE to

numerically compute the Fermi energy EF (N ), setting E = 0

at the ring-potential minimum. We modeled the ring beam as

having an average radius of 12.5 µm and a transverse Gaussian

profile with a radial 1/e2 half-width of 2.2(1) µm in the plane

of the sheet beam. Vertical trapping forces from this tightly

focused ring were non-negligible, so we found the through-

focus intensity profile by numerically propagating the beam

using the angular spectrum method [29] to obtain its full 3D

profile. We modeled the sheet beam as having an asymmetric

Gaussian profile with a horizontal waist of 290 µm and a

vertical waist of 7 µm.

The effect of gravity turned out to be crucial in the nu-

merical calculation of the density of states. While gravity’s

effect on the exact value of the density of states at a given

energy is small, the gradient due to gravity weakens the

vertical confinement of atoms more substantially near the

ring-dimple region. This is conveniently visualized by plotting

vertical cuts of the potential energy at radii near the ring radius

r0 = 12.5 µm. These cuts each have a local maximum at some

z < 0 and linearly fall away to −∞ for z ≪ 0 due to gravity.

The smallest of these maxima lies on the cut along r = r0,

as shown in Fig. 3. Its potential energy sets the “evaporation

depth” Vevap of the trap. Atoms with energy greater than this
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FIG. 3. Potential-energy slices of our combined trap (gravity in-

cluded) for (a) 40-mW and (b) 30-mW sheet power. The left plots

show the radial trap profiles at z = 0, while the right plots show

the vertical profiles for two different radii: The blue dashed line

is the vertical cut along r = 0, and the red dotted line is along r = r0.

The shaded regions in the radial profiles indicate where the potential

energy is below the evaporation depth Vevap.

evaporation depth may overcome this “lip” and fall out the

bottom of the trap, and thus, states with E > Vevap should carry

zero weight insofar as equilibrium thermodynamic quantities

are concerned. We therefore multiply Eq. (2) with the step

function �(Vevap − E ), which in turn has the dramatic effect

of placing upper bounds on the allowed atom number and

internal energy.

As we will discuss below, there are additional subtleties

in addressing states with E > Vevap that may remain bound to

the trap via conservation laws that prevent escape through the

evaporation channels near the ring dimple. The equilibrium

configuration should not include these “quasibound” orbits,

but the relaxation dynamics may depend on them.

III. TEMPERATURE MEASUREMENT

We obtained estimates of the system temperature by fit-

ting an appropriate theoretical model to the column density

of the halo. In this region, we can approximate the poten-

tial V (r, z) ≈ V0,s + mω2
z z2/2 + Vsheet(r), where V0,s is the

potential-energy offset of the full trap at the origin and

Vsheet(r) is the cylindrically symmetric sheet potential, with

Vsheet(r = 0) ≡ 0. To allow for the possibility of mixed dimen-

sionality in our description of the density profile, we quantize

the vertical motion to harmonic-oscillator levels while treating

the radial motion semiclassically. This procedure is similar

in spirit to the theoretical treatment of a quantum well in

solid-state systems [30]. In this way, we may write a hybrid

description of the density of states:

g j (E ) =
s

(2π h̄)2

∫

d2rd2 p δ

(

E −
p2

2m
− h̄ωz j − Vr (r)

)

,

(3)

which represents the density of available states in the jth

axial harmonic-oscillator level ( j = 0, 1, . . . ) for a system

with s spin degrees of freedom. We have defined Vr (r) =
V0,s + Vsheet(r) + h̄ωz/2, accounting for the zero-point energy

of the axial motion. Again, we assume states with E > Vevap

do not contribute to the density of states. Integrating over

momenta and summing over j, we identify the local density

of states

g(r; E ) = s
m

2π h̄2

⌈

E − Vr (r)

h̄ωz

⌉

�[E − Vr (r)]�(Vevap − E ),

(4)

where ⌈x⌉ is the ceiling function. The column density n2(r)

is found by integrating the Fermi-Dirac-weighted local den-

sity of states over energy, with the substitution x = E/(kBT ),

giving

n2(r) =
s

λ2
T

∫ ηc− q−q(r)

γ

0

dx
⌈x/γ ⌉

ex−q(r) + 1

=
s

λ2
T

∞
∑

j=0

{

F0[q(r) − γ j]

− F0

[

q(r) − γ j +
q − q(r)

γ
− ηc

]}

. (5)

We have further defined λ2
T ≡ 2π h̄2/(mkBT ), γ ≡

h̄ωz/(kBT ), q(r) ≡ [μ − Vr (r)]/(kBT ), ηc = Vevap/(h̄ωz ), and

F0(x) = ln(1 + ex ) (∼ex for x → −∞). We note, however,

that, typically, ηc � 20, so the second term in the summation

form of (5) may be neglected, and we will assume this

approximation in the subsequent analysis. The integral form

of (5) looks remarkably similar to the order-1 Fermi-Dirac

integral used to describe the 3D (column) density, except for

the presence of the ceiling function in the integrand, which

accounts for the discrete axial energy levels. This discreteness

is blurred out if either γ or γ /q(r) is small compared to

unity, which corresponds to the 3D limit. In this case, we can

replace ⌈x/γ ⌉ with x/γ , and the resulting expression gives

the proper integrated 3D column density,

n2(r) ≈
s

γ λ2
T

F1(q(r)), γ ≪ 1 or γ /q(r) ≪ 1, (6)

where Fν (x) is the usual Fermi-Dirac integral of order ν.

Conversely, if γ ≫ 1 and γ /q(r) ≫ 1, we approach the two-

dimensional (2D) limit, and we may replace ⌈x/γ ⌉ with 1; the

resulting column density gives the proper 2D density,

n2(r) ≈
s

λ2
T

F0(q(r)), γ ≫ 1 and γ /q(r) ≫ 1. (7)

At this point, we have not assumed a particular form for the

radially symmetric sheet potential. If we do have knowledge

of the sheet trap parameters, however, we may use them to

eliminate a fit parameter from the fitting function. In our

case, the sheet potential may be described by Vsheet(r) =
V0[1 − exp(−2r2/w2

s )], where V0 = mω2
s w

2
s /4 and ωs and ws

are the sheet radial angular trapping frequency and 1/e2 ra-

dius, respectively. We may therefore introduce η ≡ V0/(kBT )

to write q(r) = q − η[1 − exp(−2r2/w2
s )] and eliminate γ =

h̄ωz/(kBT ) ≡ η/N as a free fit parameter, assuming N =
V0/(h̄ωz ) is a known, albeit potentially uncertain, input. We
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rewrite the column density (5) as

n2(r) = n∞ + n0

∑ jmax

j=0 F0

[

q − η
(

1 − e−2(
r−r0
ws

)2

+ j

N

)]

∑ jmax

j=0 F0

(

q − jη

N

)
, (8)

where we have introduced n0 as the column density at r = r0

and allowed for a nonzero density offset n∞ and center shift r0

in the density profile. jmax is the number of terms to include in

the sum and typically does not need to be very large. In total,

there are five free parameters (q, η, n0, n∞, r0) that can be ex-

tracted via a least-squares fitting routine. However, one should

ensure that n∞, n0, and r0 are as tightly bound and accurate

as possible. This is achieved via careful image processing

and prefitting analysis of the density profiles. Furthermore,

the guesses for the remaining q and η should be physically

reasonable. Namely, η � 0, and q = (kBT/μ)−1 must not be

too negative when dealing with a presumed nearly degenerate

ensemble.

It is also important to note that, for deeply degenerate

Fermi gases, absolute temperature enters into the fit of the data

only in the far dilute thermal wings of the density distribution.

The use of a hybrid fitting function (8) was motivated by

this fact, and we found that a simple 3D Fermi-Dirac func-

tion consistently overestimated the density at large radii. We

found empirically that the largest source of uncertainty in the

temperature estimate is from our measurement of the weak

radial trap frequency of the sheet beam fs. Measurement noise

introduces a much smaller uncertainty, and uncertainty in

the axial trap frequency introduces a similarly small amount.

Uncertainty in imaging beam parameters such as saturation

intensity and polarization impurity will introduce systematic

errors into the temperature estimate. For the dilute-halo atoms,

error due to saturation effects may be neglected, and polariza-

tion purity is almost unity, so uncertainty related to it may be

neglected. Finally, at large radii, the sheet becomes slightly

elliptical, and this in turn causes a small systematic shift in

measured temperatures to smaller values. This shift becomes

more apparent in thermal ensembles in which the extent of the

atomic distribution in these elliptical regions is larger.

IV. FERMI-HOLE HEATING

A. Theory

In the far BCS limit, the lifetime of atoms in the trap

is limited by the inelastic scattering rate with background

particles. In a single background scattering event, a particle in

the trap is ejected from the Fermi sea, leaving a hole behind.

Assuming the subsequent relaxation dynamics does not eject

any additional particles, the temperature increases slightly.

For uniform one-body loss with lifetime τL, the single-particle

populations in state |k〉 and eigenenergy ǫk evolve according

to ṅk = −nk/τL (k is a set of good single-particle quantum

numbers for the inhomogeneous trap). The total atom number

N =
∑

k nk and internal energy U =
∑

k nkǫk subsequently

evolve as Ṅ = −N/τL and U̇ = −U/τL, respectively, where

the single-particle loss equation was used. We note that the

populations nk need not be thermally distributed. There are

several equivalent methods of deriving the heating rate as-

sociated with this loss. Perhaps the most insightful method

relies on the observation that the internal energy per particle

u ≡ U/N is a conserved quantity. Interestingly, this is true

even during the elastic collisions that return the system from

a nonequilibrium state to equilibrium after a hole is created.

This fact implies that one can, at all times, meaningfully asso-

ciate an effective temperature to the ensemble as if it were in

equilibrium at the same energy and atom number. In our sys-

tem, the thermodynamic variables used to describe the internal

energy per particle u are atom number N , temperature T , and

a set of trap parameters which we call V . We note that the only

thermodynamic role that V plays is in setting the energy scales

for the single-particle energy spectrum, which is fixed for the

measurements performed in this paper as we are not varying

the trap. The reversible mechanical work associated with trap

deformations is therefore set to zero. We thus treat N , U , and

T as the only time-varying quantities under one-body loss,

with the evolution of u(t ) = u0 and N (t ) = N0e−t/τL known

and that of T (t ) unknown. We can study the evolution T (t ) in

a grand-canonical picture, where a time-dependent chemical

potential μ(t ) whose role is to fix N (t ) at each instant in time

is introduced. We thus solve two equations,

U (t )

N (t )
= u0 =

∫

dE g(E )E f [E ; μ(t ), T (t )]
∫

dE g(E ) f [E ; μ(t ), T (t )]
(9)

and

N (t ) = N0e−t/τL =
∫

dE g(E ) f [E ; μ(t ), T (t )], (10)

for the two unknowns T (t ) and μ(t ), where f (E ; μ, T ) =
{exp[(E − μ)/kBT ] + 1}−1 is the usual Fermi-Dirac distribu-

tion function and g(E ) is the density of states. By taking a time

derivative of (9) and utilizing (10), it is possible to show that

the evolution is equivalent to a differential equation governing

the temperature dynamics. This is easier to demonstrate, how-

ever, by simply differentiating the internal-energy function

U (N, T ) with respect to time:

U̇ = Ṅ (∂U/∂N )T + Ṫ (∂U/∂T )N . (11)

We then use the first law of thermodynamics dU = T dS +
μdN = T [dN (∂S/∂N )T + dT (∂S/∂T )N ] + μdN to compute

(∂U/∂N )T = μ + T (∂S/∂N )T . Next, the Maxwell relation

(∂S/∂N )T = −(∂μ/∂T )N is used to write (∂U/∂N )T = μ −
T (∂μ/∂T )N . Finally, identifying the heat capacity at constant

atom number CN = (∂U/∂T )N , we solve for the temperature

derivative in (11):

Ṫ = −
T 2

(

∂
∂T

μ

T

)

N
+ u0

τLcN

, (12)

where cN ≡ CN/N and the time-dependent forms for N (t )

and U (t ) were used. This expression is, in fact, an extension

of Eq. (5) in [12], which was derived using energy-balance

considerations, to arbitrary temperatures and inhomogeneous

traps.

To quantitatively describe the need, in certain experiments,

to maintain low temperatures for long times, we briefly

draw a connection to the potential experiments performed in

the BCS limit, which typically rely on maintaining a tem-

perature below the critical temperature for pairing. Pairing

can occur below Gor’kov’s critical temperature [31], kBTc ≈
0.277μ exp(−πλ/2), with λ = 1/kF |a| being the interaction
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parameter. Equating this expression to kBT gives the threshold

reduced temperature above which pairing cannot occur, i.e.,

(

kBT

μ

)

max

≡ 0.277 exp(−πλ/2). (13)

Even if, initially, T < Tc, hole heating will drive the sys-

tem temperature and the critical temperature towards each

other until, eventually, T = Tc. Using Gor’kov’s expression,

we write kBT (tc)/μ(tc) ≡ 0.277 exp[−πλ(tc)/2], defining the

time tc at which the BCS superfluid is completely destroyed

and the temperature begins to exceed the critical temperature.

We note that tc depends on the initial interaction parameter

λ(t = 0) ≡ λ0, and that the critical temperature also inherits

its time dependence from the one-body loss. Furthermore, we

must assume that the BCS pairing gap remains small relative

to the Fermi energy to justify the use of the noninteracting

model of the hole-heating rate, which will inevitably break

down when λ0 → 0.

We emphasize now the role the halo plays in maintaining

low temperatures for long periods of time. First, the large

density of states offered by the broad sheet helps fermions dis-

perse external energy imparted to the system into the closely

spaced energy levels. In other words, the low-density halo

has a larger specific heat than the deeply degenerate ring

and can serve as an efficient heat sink, lowering the overall

heating rate. Second, the halo acts as a particle reservoir for

the ring dimple since the global chemical potential is only

weakly dependent on the atom number when a substantial

halo is present. Intuitively, any atom ejected from the ring

dimple can be “replenished” by an atom in the halo. This,

in turn, maintains large densities in the ring-dimple region

for longer periods of time. Combined, these two effects help

maintain a deeply degenerate Fermi gas, especially in the

ring-dimple region, for times exceeding the trap lifetime. In

comparison, experiments performed in a “bare” ring, i.e.,

without a halo present, are likely to suffer from unaccept-

able heating rates. This may become particularly apparent

in experiments utilizing a blue-detuned, repulsive ring beam,

where the halo population would typically be absent or

separated from the superfluid population, unless the poten-

tial is carefully tailored to make this possible. Blue-detuned

traps have advantageous characteristics for some experiments,

but the limits imposed by hole heating will be a much

greater problem for experiments requiring many seconds to

perform.

The dependence of the heating rate on atom number is, in

fact, strongly dependent on the distribution of the fermions

in the trap. In particular, the heating rate becomes notice-

ably suppressed as fermions begin overfilling the ring. We

demonstrate this by numerically computing the initial heating

rate as a function of atom number using Eq. (12) and the 3D

model of the trap density of states. To this end, it is insightful

to introduce the “dimple capacity” ND ≡
∫ V0,r

0
g3D(E )dE , de-

fined as the number of ideal fermion states with energy below

the ring depth V0,r . In the bare-ring scenario, with N � ND,

the atoms are confined to the ring-shaped region of lowest

potential, while for N > ND, atoms spill over into the broad

harmonic sheet potential and populate a dilute halo. Figure 4

shows the results of our computations. Figure 4(a) shows

FIG. 4. (a) Predicted initial heating rate (see text) versus atom

number relative to the dimple capacity. We show the point where

the ring dimple is just filled (blue circle) and the conditions used in

the experiment (blue square). (b) Time taken to heat to the critical

temperature for different initial values of the interaction parameter

λ0, with τL = 25 s. In both plots, kBT

μ
|t=0 = 0.03.

the initial dimensionless heating rate Ŵ0 ≡ τL
d
dt

kBT
μ

|t=0, where
kBT
μ

|t=0 = 0.03, as a function of N/ND. We see a sharp falloff

in this rate as the dimple fills up and eventually becomes

overfilled, at which point the Fermi energy becomes only

weakly dependent on the atom number and the halo becomes

populated. For this sheet trap geometry the heating rate ap-

proaches a floor of around 0.1 when there are 10 times more

atoms in the halo than in the dimple, and there is negligible

benefit from increasing the halo population further.

The impact of the reduced heating rate is evident in in

Fig. 4(b), which shows the time tc that it takes for the sys-

tem to heat from kBT/μ = 0.03 to the (reduced) critical

temperature as a function of the same relative atom num-

ber N/ND and a 25-s vacuum lifetime. The various curves

represent different values of the interaction parameter λ0.

The plots for λ0 > 1 are not shown because they already

begin at T � Tc. Limits imposed by hole-heating rates clearly

become quite restrictive for weakly interacting systems but

can be mitigated substantially by allowing the ring to be

overfilled.
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FIG. 5. Reduced temperature versus time for an ideal Fermi gas

in our trap potential. Blue circles are experimental data for an over-

filled ring dimple with N = 3.5 × 104 atoms at T/TF = 0.03. The

lower blue filled curve is the temperature predicted by the model

described in the text, with τL = 25 s and fs = 60(4) Hz. The up-

per red filled curve is the model’s predicted temperature for N =
2.7 × 103 atoms in the same potential, which just barely fills the

ring. The black dotted lines show the threshold reduced temperatures

(kBT/μ)max required for pairing when λ0 = 1.0 (lower) and λ0 = 0.5

(upper) in the ring.

B. Experiment

Our experimental apparatus is designed to produce ultra-

cold gases of lithium atoms in highly configurable optical

dipole traps. Lithium is a natural choice for these experiments

because it has a fermionic isotope (6Li) with high natural

abundance, a broad Feshbach resonance, and an unusually

stable and long-lived molecular state. After initial cooling and

capture using a 2D magneto-optical trap (MOT), 3D MOT,

and crossed-beam optical dipole trap, we use a movable op-

tical trap to transport 106 atoms to the center of a glass cell

located between vertically oriented confocal objective lenses.

Magnet coils surrounding the cell can generate a nearly uni-

form magnetic field of up to 108 mT. We prepare the 6Li atoms

in an equal-spin mixture of the two lowest-energy spin states,

for which there is a broad Feshbach resonance at 83.2 mT.

For more detailed information see the Supplemental Material

of Ref. [16].

The typical vacuum-limited lifetime of atoms in our glass

cell experimental chamber is at least 1 min. To ensure we

could clearly distinguish the effects of hole heating from the

effects of slow technical drifts in controlling the experimental

conditions, we deliberately reduced the trap lifetime to 25 s

by shutting off the ion pumps attached to the 3D MOT vac-

uum chamber and allowing the pressure in the cell to reach

a new equilibrium, pumped only by nonevaporable getters.

Under these conditions we evaporatively cooled an initial

ensemble of ∼106 atoms near the 83.2-mT Feshbach reso-

nance to a final, spin-balanced population of N = 3.5 × 104

total atoms. For this number of atoms, the Fermi energy is

EF = kB × 1.1(1) µK, computed from the 3D density of states

of our numerically modeled trap. The ring and sheet powers

were Pr = 1.3 mW and Ps = 50 mW, respectively. The axial

and radial sheet trapping frequencies were measured using

a parametric heating technique, and cross-checked using our

sheet beam optical model, to be fz = 1.6(1) kHz and fs =
41(2) Hz, respectively. Furthermore, our trap model predicts

EF /Vevap = 0.95.

Next, to ensure atom loss was predominantly due to one-

body background collisions and was not due to rethermalizing

collisions (discussed later) or parametric heating via trap

vibrations, we recompressed the sheet immediately after evap-

oration to roughly 2.5 times the minimum sheet power. This,

in turn, approximately halved the ratio EF /Vevap and increased

the sheet trap frequencies by a factor of
√

2.5. We subse-

quently ramped the magnetic field adiabatically to 100 mT,

where the interaction parameter 1/kF |a| ≈ 1.0. At this stage,

T/TF ≈ 0.03. Here, we held the atoms in the trap for varying

amounts of time and took a set of absorption images to be

used for in situ analysis of the local equation of states in

the halo region. In particular, we extracted the global reduced

temperature kBT/μ using the hybrid fitting function (8). The

use of this hybrid fit function was justified a posteriori since

the ratio kBT/h̄ωz � 1 for all hold times used, and dimen-

sional crossover thus occurred in regions of the halo where

μ(r) ∼ h̄ωz.

Figure 5 shows the reduced temperatures measured in this

configuration for different holding times. For comparison, we

also plot the predicted temperature profile obtained by numer-

ical integration of the heating-rate equation (12) for the initial

conditions, estimated trap parameters, and vacuum lifetime

in the experiment. The theory and measurements agree to

within the error shown in Fig. 5, which was estimated from

temperature fits using the upper and lower bounds of the sheet

radial trap frequency, which is the dominant source of uncer-

tainty. The filled region in the theoretical curve is obtained

using the same radial sheet frequency uncertainty, which after

recompression is about 4 Hz. By comparison, this uncertainty

has a much smaller effect on the theoretical heating curve than

the experimental one. In Fig. 5 we also show the predicted

temperature increase for the bare ring with N = ND ≈ 2.7 ×
103 atoms in this potential. The effects of hole heating on the

system temperature are significantly greater for a bare ring

due to the reduced heat capacity per particle. In either case,

hole heating also sets a practical limit on the lowest achievable

T/TF due to both the finite state preparation time used in

the experiment and the balance between the thermalization

rate and hole-heating rate. This window of preparation time

is narrower in the bare-ring configuration, however, since the

heating rate is roughly twice that of the ring dimple for all

hold times shown in Fig. 5.

Additionally, we plot the time-dependent threshold-

reduced temperatures, given by the right-hand side of Eq. (13),

in Fig. 5 for λ0 = 1.0 and λ0 = 0.5. tc can be identified as the

time at which the threshold-reduced temperature intersects the

reduced-temperature curve. Clearly, a ring-dimple configura-

tion can offer a substantially larger (more than twice as large)

window of time to perform BCS-limit experiments compared

to a bare-ring configuration. This could be especially im-

portant in an experimental apparatus with limited vacuum

lifetime or for experiments attempting to probe increasing

1/kF |a| limits.
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Because our temperature measurement method involves a

fit to the halo atoms, whose broad extent into the harmonic

sheet potential makes in situ thermometry convenient, we did

not obtain measurements of the temperature of atoms in a

bare ring, as some other method of thermometry would be re-

quired to obtain data for the heating rate in that configuration.

One alternative we may eventually employ is to adiabatically

deform the trap into a harmonic potential, then relate temper-

ature measurements in that configuration to the temperature

of the bare ring by conservation of entropy (see, for example,

Refs. [32,33]). This technique is substantially more complex

and involves more potential sources of error than extracting

the temperature from a fit to the halo, however. The utility that

a halo offers for temperature measurements in these kinds of

fermionic systems should not be overlooked.

V. THERMALIZATION AND LOSS

In the idealized scenario described above, the equilibrium

state after the ejection of an atom by a background collision

is still a mostly filled Fermi sea, and subsequent elastic col-

lisions within the system will tend to repopulate the empty

state. In the simplest case, this occurs when two atoms at the

Fermi level scatter (Pauli blocking suppresses scattering in the

Fermi sea); one drops in energy to fill the empty state, and

the other is promoted to energy ǫ � EF in something like an

Auger process. If ǫ � Vevap, the excited atom can escape from

the trap, and the new equilibrium is a filled Fermi sea with

N − 2 atoms. This loss of an additional atom always occurs

(at T = 0) for Vevap = EF , and the probability decreases to

zero when Vevap = 2EF since the maximum scattering energy

is 2EF .

More generally, the additional loss above the background

rate will depend on other quantities that may include the ratio

EF /Vevap, elastic collision rate, temperature, and conserved

quantities pertaining to the trap potential. Experimentally, we

observed that the initial loss rate was 3 times the background

rate when we did not increase the sheet depth after evapo-

ration. This can occur if fermions scattered via the Auger

process (with energy up to 2EF ) scatter off another fermion

and in turn excite another fermion to an energy above the

Fermi level (up to 1.5EF ), which can also escape if its energy

is above Vevap. This process can repeat if one or both of these

atoms remain in the trap long enough. Thus, a single back-

ground collision in our ring-dimple trap may seed a cascade of

energy from a single highly excited “Auger” fermion to a state

of many weakly excited fermions above the Fermi level, some

of which may escape the trap. A nontrivial trap geometry

can make the reequilibration dynamics quite complicated, but

qualitatively, we would expect modifications to the loss and

heating rates, especially for EF ≈ Vevap. In this case the system

would typically experience increased initial loss, with high-

energy atoms being lost from the trap, keeping the temperature

low but causing the Fermi energy to drop rapidly. The loss

rate would also become time dependent and asymptotically

approach the vacuum-limited loss rate as the Fermi energy

drops well below the evaporation depth. These reequilibration

dynamics in ring-shaped systems are interesting in their own

right, and further experimental and theoretical investigation is

warranted.

VI. CONCLUSION

We have demonstrated that one-body loss in a ring-shaped

ensemble of ultracold fermions causes heating. We predicted

the rate of temperature rise using a model that accounted

for hole-induced heating and argued that this heating can

be reduced by a particular choice of trap configuration. In

particular, maintaining a large, dilute atomic background in

contact with the ring helps to dissipate energy imparted into

the ensemble via background collisions, which in turn keeps

the temperature low for longer periods of time. A high-quality

vacuum is still essential to ensure that timescales for heating

are long enough to permit low-energy, long-wavelength exper-

iments on superfluids with low critical temperatures, but there

are clear advantages to considering forgoing the simplicity of

a bare-ring configuration in favor of the more complex, but

useful, ring-dimple configuration.
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APPENDIX: LOCAL FERMI ENERGY

It is often insightful to study thermodynamic quantities

locally within a local-density-approximation framework. The

local Fermi energy, in particular, is a useful energy scale to

normalize, e.g., the chemical potential and thermal energy.

Again, we would like to account for the possibility of a dimen-

sional crossover in the halo and expect deviations of the true

local Fermi energy from its 3D equivalent at low densities.

We define the local Fermi energy EF (r) by integrating (4) as

follows:

n(r) ≡
∫ EF (r)+Vr (r)

Vr (r)

g(r; E )dE

=
1

2πa2
z

∫ x

0

dz⌈z⌉

=
1

2πa2
z

[1 + 2 + · · · + ( jc − 1) + jc{x}], (A1)

where n(r) is the column density, x ≡ EF (r)/h̄ωz, {x} de-

notes the fractional part of x, and a2
z ≡ h̄/(mωz ). jc ≡ ⌈x⌉

represents the number of populated axial levels. Note that

this definition of the local Fermi energy gives EF (r) = 0 for

n(r) = 0, which is conventional. The sum forms a triangle

number, and by defining ñ = 2πa2
z n, we may write (dropping

the position label for now)

ñ = jc( jc/2 + {x} − 1/2). (A2)

This equation may be analytically inverted to find the reduced

Fermi energy x as a function of the reduced density ñ as

follows. First, we rearrange (A2),

{x} − 1/2 =
ñ

jc
−

jc

2
. (A3)

Since the fractional part obeys 0 � {x} � 1, the left-hand side

is bound between −1/2 and 1/2. Therefore, we seek solutions
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jc that obey −1/2 �
ñ
jc

− jc
2
� 1/2. Solving for jc at the end

points gives rise to the constraint that

−1 +
√

1 + 8ñ

2
� jc �

1 +
√

1 + 8ñ

2
(A4)

for valid solutions to (A3). As jc is an integer and the region

in (A4) has a size of 1 for all ñ, there must be exactly one

jc in that region whose value is simply given by jc = ⌊ 1
2
(1 +√

1 + 8ñ)⌋. Plugging jc into (A3) and using x = ⌈x⌉ + {x} −
1 = jc + {x} − 1, the local Fermi energy in this hybrid picture

may be written in closed, universal form as

EF (r)

h̄ωz

=
ñ(r)

⌊

1
2
[1 +

√
1 + 8ñ(r)]

⌋ +
⌊

1
2
[−1 +

√
1 + 8ñ(r)]

⌋

2
.

(A5)

Figure 6 shows the exact Fermi energy as a function of the

2D density. The Fermi energy reduces to the known results

in the 2D (0 � ñ � 1) and axially integrated 3D (ñ ≫ 1)

limits and correctly accounts for the discrete nature of axial

harmonic-oscillator levels. It is important to remember that

FIG. 6. Reduced Fermi energy as a function of reduced column

density, with the 2D (EF /h̄ωz ∼ ñ) and 3D (EF /h̄ωz ∼
√

2ñ − 1/2)

limiting behaviors shown for comparison. The 2D prediction matches

the exact prediction for ñ � 1.

this description holds only locally in the halo and does not

represent the global Fermi energy of our ring-dimple trap.
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