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We perform perturbative computations in a lattice gauge theory with a conformal measure that is

quadratic in a noncompact Abelian gauge field and is nonlocal, as inspired by the induced gauge action in

massless QED3. In a previous work, we showed that coupling fermion sources to the gauge model led to

nontrivial conformal data in the correlation functions of fermion bilinears that are functions of charge q of

the fermion. In this paper, we compute such gauge invariant fermionic observables to order q2 in lattice

perturbation theory with the same conformal measure. We reproduce the expectations for scalar anomalous

dimension from previous estimates in dimensional regularization. We address the issue of the lattice

regulator dependence of the amplitudes of correlation functions.
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I. INTRODUCTION

Quantum electrodynamics (QED) in three dimensions

has been studied using various non-perturbative techniques

ranging from Schwinger-Dyson equations [1–5] to lattice

field theoretic computations [6–12]. More recently, this

theory has also been studied using numerical conformal

bootstrap [13,14]. The current status of lattice numerical

simulations is that parity invariant QED with massless

fermions and without monopoles is a scale-invariant theory

for all even number (2Nf) of two-component fermions. All

gauge invariant correlation functions should exhibit power

law behavior in the infrared and power law behavior of

two points functions of gauge invariant operators should

provide the anomalous dimensions of the corresponding

operators. Operators of particular relevance are local

fermion bilinears that are scalar or vector under the rotation

group. There correlation functions along with higher point

functions of these operators contain information about the

underlying conformal structure. In analogy with QCD, we

will refer to the local fermion bilinears made up of one

fermion and one antifermion as mesons. Scalar and vector

mesons will denote the transformation properties under the

rotation group.

Motivated by the recent numerical results in [10–12] and

pioneering studies in perturbative QED that shows the

presence of an infrared fixed point [2–5] in the large-Nf

limit, a lattice gauge model was studied in [15] which was

expected and numerically shown to be conformal at length

scales much larger in units of lattice spacing. The gauge

measure on an infinite lattice is given by

½dA�e−S; S ¼ 1

2

X

x

X

3

j;k¼1

FjkðxÞ
�

1
ffiffiffiffi

□
p Fjk

�

ðxÞ;

FjkðxÞ ¼ ð∂jAkÞðxÞ − ð∂kAjÞðxÞ; □ ¼ ∂
†

k∂k;

ð1Þ

where ∂k is the lattice forward derivative. The lattice action

is apparently nonlocal, but the rationale behind studying

such an action was the possibility to mimic the most

dominant piece of the gauge-action that is induced by the

massless fermion determinant in QED3. The noncompact

gauge field, AjðxÞ ∈ R, is on the link connecting x and

xþ ĵ. To make the theory to be a Uð1Þ gauge theory, only
observables constructed out of the Uð1Þ valued gauge links
given by

UjðxÞ ¼ eiqAjðxÞ; ð2Þ

were measured. In the above equation, q is an arbitrary real-

valued charge. At Oðq2Þ, the charge can be identified with

16=Nf in the large-Nf limit of QED3, [15,16] and such an
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identification breaks down at higher orders of q but the

lattice model is well-defined nevertheless. Using such

gauge links, one can define the so-called pure gauge

observables such as Wilson loops and their correlators.

For example, the expression for a planar rectangular Wilson

loop of size l × t; l; t ∈ I, is

q2Wðl; tÞ ¼ − ln

�
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�
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X
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The asymptotic conformal behavior (that only depends

linearly on the aspect ratio of the Wilson loop) after

eliminating a perimeter term is given by

Wðl; tÞ −W

�

lþ t

2
;
lþ t

2

�

∼ −0.0820

�

l

t
þ t

l

�

;

l

t
→ ∞ or

t

l
→ ∞; ð4Þ

and the constant obtained by numerically evaluating the

integral is universal.

In addition to the pure-gauge observables, the con-

formal behavior of fermionic observables was found to

have nontrivial dependencies on q. In order to define such
fermionic observables and n-point functions, the partition
function of the lattice gauge model coupled to massless

fermion sources ψ� in a parity-invariant manner was

given by,

Zðψ̄�;ψ�Þ ¼
Z

½dA�e−SðAÞþψ̄þGψþþψ̄−G†ψ−

; ð5Þ

where G is the lattice massless fermion propagator coupled

to charge-q gauge links. From this, the flavor triplet scalar

(Γ ¼ 1) and vector (Γ ¼ σk) operators can be defined as

differential operators acting on Z:

O�
Γ
ðxÞ≡ ∂

∂ψ̄�ðxÞΓ
∂

∂ψ∓ðxÞ ;

O0
Γ
ðxÞ≡ 1

ffiffiffi

2
p

�

∂

∂ψ̄þðxÞΓ
∂

∂ψþðxÞþ
∂

∂ψ̄−ðxÞΓ
∂

∂ψ−ðxÞ

�

: ð6Þ

Given a lattice Dirac operator, one can compute correla-

tions functions of scalar and vector operators,

Sðq; xÞ ¼ hOþ
1 ð0ÞO−

1 ðxÞi; Vijðq; xÞ ¼ hOþ
σi
ð0ÞO−

σj
ðxÞi
ð7Þ

respectively, as examples of gauge invariant correlators.

The separation x will be integer valued and for jxj ≫ 1 on

an infinite lattice, the correlators will be given by

Sðq;xÞ∼ CSðqÞ
jxj4−2γSðqÞ

; Vijðq;xÞ∼
CVðqÞðδij−2xixj

x2
Þ

jxj4 : ð8Þ

The vector correlators do not acquire an anomalous

scaling dimension since the operators are the conserved

currents corresponding to the flavor symmetry in the

theory. Numerical analysis of the lattice conformal model

[15] studied over a range of q resulted in fits of the form

γSðqÞ ¼ 0.076ð11Þq2 þ 0.0117ð15Þq4 þOðq6Þ;
CVðqÞ
CVð0Þ

¼ 1 − 0.0478ð7Þq2 þ 0.0011ð2Þq4 þOðq6Þ: ð9Þ

The coefficient of the leading term in γSðqÞ from the

lattice regularized method is consistent with 2

3π2
obtained

in [14] using continuum perturbation theory with a

dimensional regularization based ultraviolet cutoff. On

the other hand the coefficient of the leading correction to

CVðqÞ is not consistent with a computation in continuum

perturbation theory using dimensional regularization [16],

namely,
Cd
V
ðqÞ

Cd
V
ð0Þ ¼ 1þ ð 23

9π2
−

1
4
Þq2 þ � � �. In addition to cor-

relators, the L−1−γS type finite size scaling of the low-lying

eigenvalues Λi of the Hermitian operator, −iG, on large

enough L3 boxes also give information on the scalar

scaling dimension γS.

This paper is a follow-up to the numerical work in [15]

that we summarized above. The aim of this work is two-

fold. Namely, (a) the observation that the nonperturbative

lattice results for various quantities were empirically found

to be power expandable as a series in q that is rapidly

convergent motivated us to develop a perturbative frame-

work for the lattice regulated model to avoid Monte Carlo

methods. This work develops the perturbative setup at

Oðq2Þ. The method presented can be developed further

for higher-orders in q and thereby with a possibility of

performing interesting computations such as of the three-

point function conformal data in the model at larger lattice

sizes than practically possible in a Monte Carlo computa-

tion. (b) Unlike a typical lattice QFT with a well-defined

free-field-like UV continuum limit that removes any lattice

regulator dependencies (and with a possible conformality at

long distances), the behavior of the present lattice model is

different. As noted above, the conformality in the lattice

regulated model automatically emerges in the long-distance

limits of correlation functions and finite size scaling of

eigenvalues. However, due to the absence of a UV con-

tinuum limit, it is not immediately clear which of the

conformal data are universal with respect to the lattice

regulator (e.g., type and parameters of lattice Dirac
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operator). In this work, within the perturbative framework,

we address this question.

II. LATTICE PERTURBATION THEORY

The perturbation theory computation will be on a L3

lattice. The gauge field will obey periodic boundary

conditions and the gauge fixed action with a source term

for the gauge fields is

S ¼ 1

L3

X

0

p

X

jk

Ã�
jðpÞ

□
2ðpÞδjk þ ð1

ξ
− 1ÞhjðpÞh�kðpÞ

g2ð1−nÞ□nðpÞ
AkðpÞ

þ
X

x;k

JkðxÞAkðxÞ; ð10Þ

where the prime over the sum implies that p ¼ 0 is

excluded; the Fourier transforms are defined by

ÃjðpÞ ¼
X

x

AjðxÞei
2πx·p
L ; Ãjðpþ LÞ ¼ ÃjðpÞ;

Ãjð0Þ ¼ 0;A�
jðpÞ ¼ Ajð−pÞ; pk ∈ ½0; L − 1�;

k ¼ 1; 2; 3; ð11Þ

and

hkðpÞ ¼ e−i
2πpk
L − 1; □ðpÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k

sin2
πpk

L

s

: ð12Þ

The lattice model is conformal when n ¼ 1; the usual

Maxwell action when n ¼ 0 and a gauge action for a

Thirring model when n ¼ 2. The gauge fixing term main-

tains the conformal nature when n ¼ 1. The generating

functional for computing gauge field correlations is

ZðJÞ ¼ exp

�

1

2

X

x;y

X

jk

JjðxÞGjkðx − yÞJkðyÞ
�

;

GjkðxÞ ¼
1

L3

X

p

G̃jkðpÞe−i
2πx·p
L ;

G̃jkðpÞ ¼
□

2ðpÞδjk − ð1 − ξÞhjðpÞh�kðpÞ
2g2ðn−1Þ□4−nðpÞ

: ð13Þ

It is sufficient to perform the perturbation theory with

overlap fermion [11] to compare with Eq. (9). To this end,

we provide the pertinent details for the Wilson fermion

kernel followed by details for overlap fermion in the next

two subsections.

A. Wilson fermion kernel

Fermions will obey anti-periodic boundary conditions

and the Wilson fermion operator, D, is defined as

Dðx1; x2Þ ¼ 3δx2;x1 −
X

i

½piþe
iqAiðx1Þδx2;x1þî þ pi−e

−iqAiðx2Þδx2;x1−î�; pi� ¼ 1 ∓ σi

2
: ð14Þ

In order to perform perturbation theory, we write

Dðx1; x2Þ ¼ D0ðx1; x2Þ þDIðx1; x2Þ; ð15Þ

where

D0ðx1; x2Þ ¼ 3δx2;x1 −
X

i

½piþδx2;x1þî þ pi−δx2;x1−î�;

DIðx1; x2Þ ¼
X

i

½piþtiþðx1Þδx2;x1þî þ pi−ti−ðx2Þδx2;x1−î�; ti�ðxÞ ¼ ½1 − e�iqAiðxÞ�: ð16Þ

We will set up the perturbation theory computation in momentum space and use the unitary transformation

Uðx; pÞ ¼ 1

L
3
2

e−i½
2πx·p
L

þπx·a
L
�; a ¼ ð1; 1; 1Þ ð17Þ

to go between coordinate and momentum space. The free fermion operator is

D̃0ðp1; p2Þ ¼ D̃0ðp1Þδðp1 − p2Þ; D̃0ðpÞ ¼ 2
X

k

sin2
�

πpk

L
þ π

2L

�

− i
X

k

σk sin

�

2πpk

L
þ π

L

�

: ð18Þ
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We write the interaction term as

D̃Iðp1; p2Þ ¼ −qD̃1ðp1; p2Þ −
q2

2
D̃2ðp1; p2Þ; ð19Þ

where

D̃1ðp1; p2Þ ¼
i

L3

X

j

W1jðp1; p2ÞÃs
jðp1 − p2Þ;

W1jðp1; p2Þ ¼ pjþrjðp2Þ − pj−r
�
jðp1Þ;

D̃2ðp1; p2Þ ¼
1

L3

X

j

W2jðp1; p2ÞÃc
jðp1 − p2Þ;

W2jðp1; p2Þ ¼ pjþrjðp2Þ þ pj−r
�
jðp1Þ; ð20Þ

and

Ãs
jðpÞ ¼

1

q

X

x

sin½qAjðxÞ�ei
2πx·p
L ;

Ãc
jðpÞ ¼

2

q2

X

x

ðcos½qAjðxÞ� − 1Þei2πx·pL ;

rjðpÞ ¼ e−i½
2πpj
L

þπ
L
�: ð21Þ

B. Overlap fermion

Perturbation theory has been developed in the past for

overlap fermion [17,18]. Since it is not as well known as the

one for Wilson fermions, we provide some technical details

in this subsection. The massless overlap Dirac operator is

defined by [11]

Do ¼
1þ V

2
V ¼ X

1
ffiffiffiffiffiffiffiffiffi

X†X
p ; VV† ¼ 1;

X ¼ D −mw; mw ∈ ð0; 2Þ: ð22Þ

The propagator is given by

Go ¼
1 − V

1þ V
; G†

o ¼ −Go: ð23Þ

We start by writing

X ¼ X0 − qD1 −
q2

2
D2; X0 ¼ D0 −mw;

1
ffiffiffiffiffiffiffiffiffi

X†X
p ¼ Q0 þ qQ1 þ q2Q2 þ � � � ð24Þ

and obtain

Q0 ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

X†
0X0

q ;

Q1

1

Q0

þ 1

Q0

Q1 ¼ Q0ðX†

0D1 þD†

1X0ÞQ0;

Q2

1

Q0

þ 1

Q0

Q2 ¼ −
1

Q0

Q2
1

1

Q0

þ
�

Q1

1

Q0

þ 1

Q0

Q1

�

2

þ 1

2
Q0ðX†

0D2 þD†
2X0 − 2D†

1D1ÞQ0:

ð25Þ

If we write

V ¼ V0 − 2qV1 − 2q2V2 þ � � � ; ð26Þ

we can use Eq. (22) and obtain

V0 ¼ X0Q0; V1 ¼
D1Q0 − X0Q1

2
;

V2 ¼
D2Q0 þ 2D1Q1 − 2X0Q2

4
; � � � : ð27Þ

The resulting perturbative expansion for the overlap propa-

gator in Eq. (23) is

Go ¼ Ge þ qGiV1Gi þ q2GiV2Gi þ q2GiV1GiV1Gi þ � � � ;
ð28Þ

where

Ge ¼
1 − V0

1þ V0

; Gi ¼ 1þ Ge ¼
2

1þ V0

;

G†
i ¼ V0Gi ¼ GiV0: ð29Þ

Upon going to momentum space,

Ṽ0ðq1; q2Þ ¼ Ṽ0ðq1Þδðq1 − q2Þ; Ṽ0ðqÞ ¼
X̃0ðqÞ
SwðqÞ

;

X̃0ðqÞ ¼ βðqÞ − i
X

k

�

σk sin

�

2πqk
L

þ π

L

��

; ð30Þ

where

βðqÞ ¼ 2
X

k

sin2
�

πpk

L
þ π

2L

�

−mw;

S2wðqÞ ¼ β2ðqÞ þ
X

k

sin2
�

2πqk
L

þ π

L

�

: ð31Þ

The external and internal free propagators are
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G̃eðqÞ ¼
i
P

kðσk sin ½2πqkL
þ π

L
�Þ

SwðqÞ þ βðqÞ ;

G̃iðqÞ ¼
SwðqÞ þ βðqÞ þ i

P

kðσk sin ½2πqkL
þ π

L
�Þ

SwðqÞ þ βðqÞ ; ð32Þ

respectively. The expression for V1 in momentum space is

given by

Ṽ1ðq1; q2Þ ¼
i

2L3

X

j

V1jðq1; q2ÞÃs
jðq1 − q2Þ

V1jðq1; q2Þ ¼
W1jðq1; q2Þ þ Ṽ0ðq1ÞW†

1jðq2; q1ÞṼ0ðq2Þ
½Swðq1Þ þ Swðq2Þ�

:

ð33Þ

The expression for V2 in momentum space is given by

Ṽ2ðq1; q2Þ ¼
1

2L3

�

X

j

f−V2jðq1; q2ÞÃc
jðq1 − q2Þg þ

1

L3

X

q3;j;k

fV2jkðq1; q2; q3ÞÃs
jðq1 − q3ÞÃs

kðq3 − q2Þg
�

V2jðq1; q2Þ ¼
−W2jðq1; q2Þ þ Ṽ0ðq1ÞW†

2jðq2; q1ÞṼ0ðq2Þ
2½Swðq1Þ þ Swðq2Þ�

V2jkðq1; q2; q3Þ ¼
½X̃0ðq1ÞW†

1jðq3; q1Þ −W1jðq1; q3ÞX̃†
0ðq3Þ�X̃0ðq3Þ½X†

0ðq3ÞW1kðq3; q2Þ −W†

1kðq2; q3ÞX0ðq2Þ�
S2wðq3Þ½Swðq1Þ þ Swðq2Þ�½Swðq1Þ þ Swðq3Þ�½Swðq3Þ þ Swðq2Þ�

þ
Ṽ0ðq1ÞW†

1jðq3; q1ÞṼ0ðq3ÞW†

1kðq2; q3ÞṼ0ðq2Þ
Swðq3Þ½Swðq1Þ þ Swðq2Þ�

. ð34Þ

C. Gauge correlation functions

We will need to compute correlation functions that

involve Ãs
jðpÞ and Ãc

jðpÞ. Noting that Ãs
jðpÞ is odd in

the gauge field and Ãc
jðpÞ is even in the gauge field, even

powers of Ãs
jðpÞ with any power of Ãc

jðpÞ will result in

nonzero correlation functions. All of them will have a

power series in q2. For our purpose, we only need

hÃc
jðpÞi ¼ −L3Gcð0ÞδðpÞ; Gcð0Þ ¼ 2L3

q2
½1 − e−

q2

2
gð0Þ�;

gð0Þ ¼ 2þ ξ

3L3g2ðn−1Þ

X

0

p

1

□
2−nðpÞ ; ð35Þ

and

hÃs
j1
ðp1ÞÃs

j2
ðp2Þi ¼ L3G̃s

j1j2
ðp1Þδðp1 þ p2Þ;

G̃s
jkðpÞ ¼

1

q2
e−q

2gð0Þ
X

x

sinh½q2GjkðxÞ�ei
2πx·p
L :

ð36Þ

Note that

G̃s
jkð−pÞ ¼ G̃s

kjðpÞ ¼ ½Gs
jkðpÞ��: ð37Þ

The compactness of the gauge field coupled to fermions

have been maintained in obtaining the above correlation

functions. Since gauge invariance in perturbation theory is

only valid order by order in q2, the above correlation

functions have be expanded in q2 to extract gauge invariant
coefficients.

III. MESON CORRELATION FUNCTION

The fermion operator discussed in Sec. II B acts on two

component fermions. We will assume that we have two

copies of two component fermions, with the associated

operators, Do and D†
o. We will be interested in meson

correlation functions. With this mind let us associate two

component fermions, ψ ; ψ̄ ; with the operator Do and

another set of two component fermions, χ; χ̄; with the

operator D†
o. Let us denote the propagators by

hψðx1Þψ̄ðx2Þi ¼ Goðx1; x2Þ;
hχðx1Þχ̄ðx2Þi ¼ −Goðx2; x1Þ; ð38Þ

and we have used Eq. (23). Type of mesons wewill consider

are

OiðxÞ ¼ ψ̄ðxÞΓiχðxÞ; ŌiðxÞ ¼ χ̄ðxÞΓiψðxÞ; ð39Þ

where Γi ¼ 1; σi. To be clear, as the theory does not have

dynamical fermions per se, the above equation in terms of

fermion operators is actually made rigorous in terms of

fermion sources as discussed in Eq. (6). The correlation

functions are

PERTURBATIVE COMPUTATION IN A QED3-INSPIRED … PHYS. REV. D 106, 114514 (2022)

114514-5



Mijðx1; x2Þ ¼ hŌiðx1ÞOjðx2Þi
¼ hχ̄ðx1ÞΓiψðx1Þψ̄ðx2ÞΓjχðx2Þi
¼ tr½ΓiGoðx1; x2ÞΓjGoðx1; x2Þ�; ð40Þ

where the trace is only on the spin indices. A transformation

to momentum space yields

M̃ijðp1;p2Þ¼
1

L3

X

q1;q2

tr½ΓiG̃oðq1;q2ÞΓjG̃oðq1−p1;q2−p2Þ�:

ð41Þ

Integrating over the gauge fields results in

M̃ijðp1; p2Þ ¼ M̃ijðpÞδðp1; p2Þ; ð42Þ

where

M̃ijðpÞ ¼ M̃
ij
0 ðpÞ þ q2½M̃ij

1tðpÞ þ M̃
ij
1dðpÞ þ M̃

ij
1cðpÞ�

þOðq4Þ; ð43Þ

where M̃
ij
1tðpÞ is the tadpole term, M̃

ij
1dðpÞ is the discon-

nected term and M̃
ij
1cðpÞ is the connected term. The leading

term is

M̃
ij
0 ðpÞ ¼

1

L3

X

q

tr½ΓiG̃eðqÞΓjG̃eðq − pÞ�. ð44Þ

In order to compute the tadpole term we note that upon

gauge averaging

hV2ðq1; q2Þi ¼ O2ðq1Þδðq1 − q2Þ;

O2ðqÞ ¼
Gcð0Þ
2

X

j

V2jðq; qÞ

þ 1

2L3

X

r;j;k

ðV2jkðq; q; rÞG̃s
jkðq − rÞÞ; ð45Þ

and this leads to

M̃1tðpÞ ¼
1

L3

X

q

tr½G̃iðqÞO2ðqÞG̃iðqÞðΓjG̃eðq − pÞΓi þ ΓiG̃eðqþ pÞΓjÞ�: ð46Þ

In order to compute the disconnected term, we note that upon gauge averaging

X

q3

hṼ1ðq1; q3ÞG̃iðq3ÞṼ1ðq3; q2Þi ¼ −

�

1

4L3

X

q3;i1;i2

V1i1
ðq1; q3ÞG̃iðq3ÞV1i2

ðq3; q2ÞG̃s
i1;i2

ðq1 − q3Þ
�

δðq1 − q2Þ

≡ −f̃oðq1Þδðq1 − q2Þ; ð47Þ

and this leads to

M̃1dðpÞ ¼ −
1

L3

X

q

tr½G̃iðqÞf̃oðqÞG̃iðqÞðΓjG̃eðq − pÞΓi þ ΓiG̃eðqþ pÞΓjÞ�: ð48Þ

The connected term is

M̃1cðpÞ ¼ −
1

4L6

X

q1;q2;i1;i2

tr½ΓiG̃iðq1ÞV1i1
ðq1; q2ÞG̃iðq2ÞΓjG̃iðq2 −pÞV1i2

ðq2 −p;q1 −pÞG̃iðq1 −pÞ�Gs
i1;i2

ðq1 − q2Þ: ð49Þ

A. Scaling of the numerical sums

The dependence on q2 of the gauge propagators in

Sec. II C appear in the exponents. Gauge invariance

on the lattice is only assured order by order in q2 for

the meson propagators. In fact, we use this as a check

of our code—ξ is a free parameter in our code and we

ensure all our results are gauge invariant at the order

computed here. We expand Gcð0Þ and G̃s
j1j2

ðpÞ to the

leading order given by

Gcð0Þ ¼ L3gð0Þ þOðq2Þ; G̃s
jkðpÞ ¼ G̃jkðpÞ: ð50Þ

We store the fermion and gauge propagators in momen-

tum space for a fixed L and this computation scales like

L3. Both the computation of M̃
ij
0 ðpÞ for all p and its

Fourier transform toM
ij
0 ðxÞ for all x scale like L6. The full

computations of Õ2ðqÞ, f̃oðpÞ, M̃ij
1tðpÞ, M̃

ij
1dðpÞ, M̃

ij
1tðxÞ

and M̃
ij
1dðxÞ scale like L6.
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The computation of M̃
ij
1cðpÞ for all p scales like L9 and

this dominates the computational time. To reduce this

computational time, we consider two types of meson

propagators in coordinate space, namely,

M
ij
z ðxÞ ¼

1

L

X

p

M̃ijð0; 0; pÞe−i2πxpL and

M
ij
p ðxÞ ¼ Mijð0; 0; xÞ: ð51Þ

These two correlators will be sufficient to study the

asymptotic behavior of relevance. Since M̃
ij
1cð0; 0; pÞ will

scale like L7 our computation has been significantly

reduced. Focussing on the expression for M̃1cðpÞ in

Eq. (49), we note that

M1cðxÞ ¼ −
1

4L6

X

q1;q2;i1;i2

tr
h

ΓiG̃iðq1ÞV1i1
ðq1; q2ÞG̃iðq2Þ

× Γje
−i

2πx·q2
L hi2ðq1 − q2; xÞ

i

Gi1;i2
ðq1 − q2Þ; ð52Þ

where

hjðq; xÞ ¼
1

L3

X

r

ei
2πx·r
L G̃iðrÞV1jðr; qþ rÞG̃iðqþ rÞ: ð53Þ

With the separation in coordinate space restricted to

ð0; 0; xÞ, we note that both the computations of hi2ðq; xÞ
and M̃1cðxÞ scales like L7.

IV. RESULTS FROM LATTICE

PERTURBATION THEORY

Our aim is to extract the Oðq2Þ corrections to the

anomalous dimensions and the two point function ampli-

tudes, which are γ1S, C
1
S and C

1
V . To minimize computations,

we will consider two correlators. In the first case, we will

set the separation to an on-lattice-axis value x ¼ ðx1; 0; 0Þ,
which we denote using a subscript z as

Szðq; x1Þ ¼
CsðqÞ

jx1j4−2γSðqÞ
;

Vzðq; x1Þ ¼
X

3

i¼1

Viiðq; x1Þ ¼
CVðqÞ
jx1j4

: ð54Þ

Note that we have summed over all directions for the

vector correlator above. Assuming the scaling of correla-

tors to be valid for all x ¼ ðx1; x2; x3Þ, we will also

consider correlators at zero spatial momentum, denoted

by a subscript p as,

Spðq;x1Þ ¼
Z

∞

−∞

dx2dx3Szðq;xÞ ¼
πCSðqÞ

ð1− γSðqÞÞjx1j2−2γSðqÞ
;

Vpðq;x1Þ ¼
Z

∞

−∞

dx2dx3Vzðq;xÞ ¼
πCVðqÞ
jx1j2

: ð55Þ

Writing the anomalous dimension and the amplitudes

order by order,

γSðqÞ ¼ γ1Sq
2 þ � � � ; CSðqÞ ¼ C0

S þ C1
Sq

2;

CVðqÞ ¼ C0
V þ C1

Vq
2 þ � � � ; ð56Þ

we have for ratios of correlators at nonzero q with respect

to that in free field as

Szðq; x1Þ
Szð0; x1Þ

¼ 1þ
�

C1
S

C0
S

þ 2γ1S ln jx1j
�

q2 ≡ 1þ q2Rz
S;

Spðq; x1Þ
Spð0; x1Þ

¼ 1þ
�

C1
S

C0
S

þ γ1S þ 2γ1S ln jx1j
�

q2 ≡ 1þ q2R
p
S ;

Vzðq; x1Þ
Vzð0; x1Þ

¼ 1þ C1
V

C0
V

q2 ≡ 1þ q2Rz
V ;

Vpðq; x1Þ
Vpð0; x1Þ

¼ 1þ C1
V

C0
V

q2 ≡ 1þ q2R
p
V ; ð57Þ

with the equalities above valid only up to Oðq2Þ. On a

finite lattice of size L3, all the quantities above have an

implicit dependence on L and one needs to perform L →

∞ extrapolation at fixed jxj. We will perform the following

limits for the ratios above as

R
z;p
S ðx1Þ ¼ lim

L→∞

R
z;p
S ðx1;LÞ; R

z;p
V ðx1Þ ¼ lim

L→∞

R
z;p
V ðx1;LÞ:

ð58Þ

using expansions in x=L as

Rz;pðx; LÞ ¼ R
z;pN
S ðxÞ þ

X

N

n¼1

aNn ðxÞ
�

x

L

�

2n

: ð59Þ

Since the fit is at a fixed x, grouping in powers of x=L is

just for convenience and a fit in even powers of L is based

on empirical observation. We will use two consecutive

values of N to establish the stability of the leading term,

Rz;pNðxÞ and the choice of these two values of N will

depend on the quantity being studied and the stability of

the fits. We computed the momentum sums on even lattices

in the range L ∈ ½4; 50�. Keeping all L > 2jxj, we extracted
the ratios at L → ∞ for x1 ∈ ½1; 16�. For sake of brevity,

henceforth, we will denote the x-coordinate x1 simply as x,
and should not to be confused with the vector x ¼
ðx1; x2; x3Þ as in the discussion above.

All our fits of the data use GNUPLOT. Since the data has

no errors, the coefficients of the fits have no inherent errors
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and the estimates of the coefficients can only change if we

change N. Therefore, we do not quote any errors in our fits

except in the tables where we cover for the difference in the

estimates from choosing two consecutive values of N.

A. Scaling dimensions

The scaling dimensions of scalar and the vector within

the lattice perturbation theory at Oðq2Þ can be obtained

from RS and RV is the above equations. For the isotriplet

vector, one expects there to be no corrections from

interactions to its free field scaling dimension since the

operator corresponds to a conserved current in QED. The

combinations,

R
p
SðxÞ − Rz

SðxÞ ∼ γ1Sq
2; R

p
VðxÞ − Rz

VðxÞ ∼ 0; ð60Þ

for jxj ≫ 1, can be seen to be good observables to extract

the Oðq2Þ corrections to the scaling dimensions.

We study the above quantity for the scalar correlator

using overlap fermion with mw ¼ 1.0 in Fig. 1. From the

dimensional regularization computation, it is known that

γ1S ¼ 2

3π2
[14]. Therefore, we consider the combination

R
p
Sðx; LÞ − Rz

Sðx; LÞ − 2

3π2
. The left panel shows its behav-

ior as a function of ðx
L
Þ2 for a sample case of x ¼ 8. The

infinite volume limits at each fixed x were obtained using

the Ansatz of the type in Eq. (59). Such infinite volume

extrapolated values at each x with N ¼ 7; 8 are plotted in

the right panel as a function of x. It can be seen that the limit

x → ∞ is consistent with zero and a single exponential fit,

c1e
−c2x, matches the data reasonably well. Thus, we have

shown that the result of γ1S for the lattice model agrees with

the expectation from dimensional regularization in the

continuum at Oðq2Þ. In addition to such a universality

between continuum and lattice regulators, we also checked

that the results for γ1S from different mw in overlap

fermion agree.

For the vector operator, we expect its scaling dimension

to be uncorrected from the free field value to all orders in

q2. We demonstrate this using a similar strategy as for the

scalar as shown in Fig. 2. The left panel shows the behavior

of R
p
Vðx; LÞ − Rz

Vðx; LÞ as a function of ðxLÞ2 for x ¼ 8. The

infinite volume extrapolated values at each x with N ¼ 7; 8
are plotted in the right panel as a function of x. Again, we
find the limit x → ∞ is consistent with zero and a single

exponential fit matches the data reasonably well. The

estimated value at x ¼ 14 from N ¼ 7 and N ¼ 8 fall

on either side of zero. This implies that Eq. (60) for the

vector is reproduced without any regulator dependence.

B. Two point function amplitudes

1. Regulator dependence

We start our analysis by focusing on overlap fermion

with mw ¼ 0.5. The details are shown in Fig. 3. The left

panel shows the data for R
p
Sðx; LÞ for overlap fermion with

mw ¼ 0.5. The data is plotted as a function of ðx
L
Þ2 for a

sample case of x ¼ 6. The extrapolated values at L ¼ ∞

are R
p7
S ð6Þ ¼ −0.66913 and R

p8
S ð6Þ ¼ −0.66903 and there

is only a small systematic change in the fit values when one

goes from N ¼ 7 to N ¼ 8. Assuming that γ1S ¼ 2

3π2
, we

plot R
p
SðxÞ − 4

3π2
ln x in the right panel for N ¼ 7; 8 using

the infinite volume extrapolated values at different x. We

see that the limit as x → ∞ is finite and nonzero. A fit with

a constant and single exponential fits the data well and we

find that

C1
S

C0
S

	

	

	

	

mw¼0.5

¼ −0.9885ð6Þ; ð61Þ

FIG. 1. Analysis details to study scaling dimension of the scalar using the difference between the zero spatial momentum correlator

and the point-to-point correlator of the scalar meson using overlap fermion with mw ¼ 1.0. The left panel shows sample behavior of

R
p
Sðx; LÞ − Rz

Sðx; LÞ − 2

3π2
as a function of ðx

L
Þ2 and the associated two different fits. The value of R

p
SðxÞ − Rz

SðxÞ − 2

3π2
that is extracted

for all values of x ∈ ½6; 15� are shown along with the extrapolation errors in the right panel. The limit as x → ∞, using single exponential

fits of the type c1e
−c2x shown as curves in the right panel, is consistent with zero.

KARTHIK, KLEIN, and NARAYANAN PHYS. REV. D 106, 114514 (2022)

114514-8



by comparing with Eq. (57). The error in the numerical

value on the right-hand side of the above equation comes

from the difference in the N ¼ 7 and N ¼ 8 values.

Next, we investigate the regulator dependence of the

amplitude. To this end, we vary the Wilson mass parameter,

mw, within overlap fermion. If the result is independent of

the regulator, the difference in the results for two different

choices of mw should go to zero as x → ∞. Let,

ΔR
p
Sðx; LÞ ¼ R

p
Sðx; L;mwÞ − R

p
Sðx; L;mw ¼ 0.5Þ; ð62Þ

denote the difference between two different regulators.

Comparison of overlap fermion with mw ¼ 1.0 to overlap

fermion withmw ¼ 0.5 is analyzed in Fig. 4. The left panel

shows the data for ΔR
p
Sðx; LÞ where the difference is

obtained by subtracting the ratio for overlap fermion with

mw ¼ 0.5 from overlap fermion withmw ¼ 1.0. The data is

plotted as a function of ðx
L
Þ2 for x ¼ 5. A fit of the form in

Eq. (59) with N ¼ 4 and N ¼ 5 are also shown. The

extrapolated values at L ¼ ∞ are ΔR
p4
S ð5Þ ¼ 0.651420

and ΔR
p5
S ð5Þ ¼ 0.651440, thereby showing only a small

systematic dependence on the extrapolation ansatz. The

systematic change in the fit values between the two choices

of extrapolations is small. The extrapolated values,

ΔR
p4
S ðxÞ and ΔR

p5
S ðxÞ, are plotted as a function of x ∈

½2; 12� in the right panel. The x → ∞ limit is approached

exponentially and the data is fit using a constant and a

single exponential. The limits are nonzero and finite,

which clearly shows that the amplitude depends on the

regulator parameter. The dependence of the amplitude on

mw are shown in the second column of Table I. The errors

in the results cover the difference in the estimates from the

two different values of N.

FIG. 2. Analysis details to study the absence of perturbative corrections to the scaling dimension of the vector using the difference of

the zero spatial momentum correlator and the point-to-point correlator of the vector meson obtained using overlap fermion with

mw ¼ 1.0. The left panel shows a sample behavior of R
p
Vðx; LÞ − Rz

Vðx; LÞ as a function of ðxLÞ2 at x ¼ 8 and the associated fits with two

different orders N. The value of R
p
SðxÞ − Rz

SðxÞ so extracted for all values of x ∈ ½8; 14� are shown along with the extrapolation errors in
the right panel. The limit as x → ∞ using single exponential fit, as for the scalar case above, is consistent with zero.

FIG. 3. Analysis details to obtain the scalar two point function amplitude using overlap fermion with mw ¼ 0.5. The left panel shows

sample behavior of R
p
Sðx; LÞ as a function of ðxLÞ2 and the associated two different fits of the type in Eq. (59) withN ¼ 7 and 8. The value

of R
p
SðxÞ − 4

3π2
ln ðxÞ so extracted for all values of x ∈ ½4; 13� are shown along with the extrapolation errors in the right panel. The single

exponential fits to extract the amplitude in x → ∞ limit are also shown as the curves.
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Our analysis of vector mesons mirrors the one for scalar

mesons. We start our analysis by focusing on overlap

fermion withmw ¼ 0.5 to extract the amplitude. The details

are shown in Fig. 5. The left panel shows the data for

R
p
Vðx; LÞ for overlap fermion with mw ¼ 0.5. The data is

plotted as a function of ðx
L
Þ2 for x ¼ 6. We needed to use

N ¼ 7 and N ¼ 8 in Eq. (59) (the form of fit is same for

vector and scalar mesons) to best fit the data and these

are also shown. The extrapolated values at L ¼ ∞ are

R
p7
V ð6Þ ¼ −0.910487 and R

p8
V ð6Þ ¼ −0.910450. We plot

R
p
VðxÞ in the right panel for N ¼ 7, 8. We see that the limit

as x → ∞ is finite and nonzero. A fit with a constant and

single exponential fits the data well and we find that

C1
V

C0
V

	

	

	

	

mw¼0.5

¼ −0.92254ð13Þ: ð63Þ

Like in the case of scalar mesons, we investigate the

regulator dependence of the amplitude by varying the

Wilson mass parameter, mw, within overlap fermion.

Comparison of overlap fermion with mw ¼ 1.0 to overlap

fermion with mw ¼ 0.5 is analyzed in Fig. 6. The right

panel shows the data for ΔR
p
Vðx; LÞ where the difference is

obtained by subtracting the ratio for overlap fermion with

mw ¼ 0.5 from overlap fermion withmw ¼ 1.0. The data is

plotted as a function of ðx
L
Þ2 for x ¼ 5. A fit of the form in

Eq. (59) with N ¼ 4 and N ¼ 5 are also shown. The

extrapolated values at L ¼ ∞ areΔR
p4
V ð5Þ ¼ 0.608857 and

ΔR
p5
V ð5Þ ¼ 0.608873. We see only a small systematic

change in the fit values when one goes from N ¼ 4 to

N ¼ 5. The extrapolated values,ΔR
p4
V ðxÞ and ΔRp5

V ðxÞ, are
plotted as a function of x ∈ ½2; 13� in the right panel. The

x → ∞ limit is approached exponentially and the data is fit

using a constant and a single exponential. The limits are

nonzero and finite clearly showing that the amplitude of

vector two point function also depends on the regulator

parameter. The dependence of the amplitude on mw are

shown in the second column of Table II. The errors in the

results cover the difference in the estimates from the two

different values of N.

2. Partial restoration of universality

with tadpole improvement

The regulator dependence of the two point functions

seen in Tables I and II in the lattice model is a curious

aspect of this lattice gauge model, which approaches the

continuum behavior simply at distance scales much larger

than one lattice unit without any fine tuning. The regulator

dependence of amplitudes is to be understood by the fact

that the plaquette value in this model never approaches 1

due to the absence of the traditional continuum limit at a

field fixed point. Thus, we wanted to check whether by

“improving” the Dirac operator by using gauge links that

are closer to unity subdues the regulator dependence of the

amplitudes. A well-known method to achieve this is via

tadpole improvement [19] namely, the replacement of the

massless free Wilson-Dirac operator in Eq. (16) by

TABLE I. Table showing the dependence of the scalar meson

amplitude ratio on the regulator for overlap fermion. The second

column is using the unimproved gauge links, and the third

column is using tadpole improved gauge links (see text).

mw

C1
S

C0
S

	

	

	

mw

−
C1
S

C0
S

	

	

	

0.5 Tadpole corrected result

0.25 −1.3328ð37Þ −0.1390ð37Þ
0.75 0.44590(10) 0.04797(10)

1.0 0.66976(6) 0.07286(6)

1.25 0.80593(9) 0.08965(9)

1.5 0.89843(43) 0.10256(43)

1.75 0.9678(18) 0.1151(18)

FIG. 4. A comparison of the results for overlap fermion with mw ¼ 0.5 and mw ¼ 1.0. The left panel shows a sample behavior of

ΔR
p
Sðx; LÞ as a function of ðx

L
Þ2 and the associated two different fits. The value of ΔR

p
S ðxÞ so extracted for all values of x ∈ ½2; 12� are

shown along with the errors in the right panel. The limit as x → ∞ is not zero and finite showing that the amplitude of the two point

function depends on the regulator parameter.
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D0ðx1;x2Þ¼ 3δx2;x1 −uo
X

i

½piþδx2;x1þîþpi−δx2;x1−î�; ð64Þ

where u40 is the expectation value of the compact plaquette

with charge q. A simple computation yields,

u0 ¼ exp

�

−
q2

24L3

X

0

p

□ðpÞ
�

¼ e−αq
2

; α¼ 0.0994834:

ð65Þ

This amounts to a change in the Wilson mass parameter by

mw →

mw − 3ð1 − u0Þ
u0

: ð66Þ

Since the free massless overlap propagator behaves as

G̃eðqÞ ¼ 2mw

iσkpk

p2
; pk ¼

2πqk
L

→ 0 ð67Þ

the induced wavefunction normalization is 1
2mw

for each

fermion propagator. Since mw has a tadpole correction

given by Eq. (66), we conclude that all ratios defined in

Eq. (57) should be multiplied by

FIG. 6. A comparison of the results for overlap fermion with mw ¼ 0.5 and mw ¼ 1.0. The left panel shows a sample behavior of

ΔR
p
Vðx; LÞ as a function of ðx

L
Þ2 and the associated two different fits. The value of ΔR

p
VðxÞ so extracted for all values of x ∈ ½2; 12� are

shown along with the errors in the right panel. The limit as x → ∞ is not zero and finite showing that the amplitude of the two point

function depends on the regulator parameter.

FIG. 5. Analysis details for the zero spatial momentum projected vector correlator using overlap fermion with mw ¼ 0.5. The left

panel shows sample behavior of R
p
Vðx; LÞ as a function of ðx

L
Þ2 at a sample x ¼ 5, and the associated two different infinite volume

extrapolation fits. The value of R
p
VðxÞ so extracted for all values of x ∈ ½4; 13� are shown along with the errors in the right panel. The fits

to extract the leading correction to the amplitude are also shown.

TABLE II. Table showing the dependence of the vector meson

amplitude ratio on the regulator for overlap fermion. The second

column is using the unimproved gauge links, and the third

column is using tadpole improved gauge links (see text).

mw

C1
V

C0
V

	

	

	

mw

−
C1
V

C0
V

	

	

	

0.5 Tadpole corrected result

0.25 −1.3072ð44Þ −0.1134ð44Þ
0.75 0.42461(7) 0.02668(7)

1.0 0.630541(7) 0.033641(6)

1.25 0.75052(7) 0.03424(7)

1.5 0.8276(6) 0.0317(6)

1.75 0.8824(18) 0.0297(18)
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�

u0

1 −
3ð1−u0Þ

mw

�

2

¼
�

1þ 2ð3 −mwÞα
mw

q2 þ � � �
�

: ð68Þ

This amounts to

C1
S;V

C0
S;V

→

C1
S;V

C0
S;V

þ 2ð3 −mwÞα
mw

ð69Þ

resulting in

C1
S

C0
S

	

	

	

	

mw¼0.5

þ 10α ¼ 0.0063ð6Þ; ð70Þ

as the tadpole corrected amplitude ratio at mw ¼ 0.5 and

C1
S

C0
S

	

	

	

	

mw

−
C1
S

C0
S

	

	

	

	

mw¼0.5

þ 6ð1 − 2mwÞα
mw

; ð71Þ

as the tadpole corrected difference of the amplitude ratio.

These are shown in the third column of Table I. Since the

logic of the tadpole correction carries over to vector

mesons, we can use Eq. (71) to include a tadpole correction

resulting in

C1
V

C0
V

	

	

	

	

mw¼0.5

þ 10α ¼ 0.07229ð13Þ; ð72Þ

and the third column in Table II. In both the scalar and

vector cases, the regulator dependence in the tadpole

improved case is indeed weaker.

V. CONCLUSIONS

It is useful to compute corrections to conformal corre-

lation functions in a perturbation theory that maintains

conformal invariance [14,16], with the possibility of per-

forming N-point functions beyond N ¼ 2 on larger lattices

without a Monte Carlo effort. Naively, only the anomalous

scaling dimensions of operators and amplitudes of three

point functions and higher (with the amplitudes of 2-point

function set to unity as the normalization condition) are

physical. There are situations that involve conserved oper-

ators where the amplitude of two point functions become

physical. One such quantity is the vector current in

conformal three dimensional QED. A lattice model to

reproduce results in conformal three dimensional QED

was proposed in [15]. We studied this model using lattice

perturbation theory in this paper. We computed corrections

to the scalar and vector two point functions. We showed that

the scalar anomalous dimension is correctly reproduced and

is independent of the regulator, thereby validating further

future efforts within a lattice perturbation theory setup. On

the other hand, we showed that the corrections to the

amplitude of the scalar and vector two point function

depends on the lattice regulator. In particular, we found

that the amplitude of the vector correlator depends on the

lattice regulator. This observation demands one to numeri-

cally revisit the verification [15] of the conjectured self-

duality of three dimensional QED with four flavors of two

component fermions [20–22] within the framework of the

lattice conformal model via the degeneracy of flavor current

and topological current correlators; in the work [15], the

regulator dependence was not explored. Since such a

degeneracy between the correlators was also seen to arise

within statistical errors in a conventional simulation of three

dimensional QED [12] with a well-defined continuum limit,

we suspect that the value of q in the lattice model where the

flavor and vector currents coincide might turn out to be a

universal value independent of the regulator. For this, one

might need to use the induced Chern-Simons terms from

massive fermions to compute the topological current corre-

lator, wherein similar regulator dependence could be

induced in the correlators of the fermion-based definition

of the topological currents as well. Such a scenario con-

jectured by us needs to be studied further. In the future, it

would also be interesting to use the model to study scaling

dimensions of monopoles by coupling the lattice model to

the gauge field qAþAQ, with A being the dynamical gauge

field and AQ being the background gauge field for a flux Q

monopole-antimonopole pair as studied in [23,24], and ask

if they match the values found in different Nf flavor QED3.
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