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ABSTRACT

In this work we implement an interactive system for filling in missing measures in a 

monophonic music piece. This system takes a user’s hand-drawn curves as input and 

generates a melody whose rhythm and pitch contour match with the curves. Contrary 

to previous interactive music inpainting work, users of the proposed system do not 

need to understand the music notation; they just need a rough idea of the shape of 

the melody and draw it out. This system is implemented under the variational auto-

encoder framework and is enabled by a proposed melody disentanglement scheme to 

disentangle relative pitch, relative rhythm and musical context. We also create a web-

based graphical user interface to facilitate the user interaction. We evaluate the system 

on a commonly used Irish folk song dataset. Objective and subjective evaluations 

show that this novel interaction is intuitive and effective for melody inpainting, and 

the proposed neural approach outperforms two baselines we developed based on 

previous work, in terms of musicality and fidelity to the user’s input.
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1. INTRODUCTION

In the area of automatic music generation, one of the 

research goals is to design interactive systems that 

engage users in the creative process. The level of user 

engagement varies. Some systems allow users to provide 

a seed input (Mao et al., 2018; Hadjeres and Nielsen, 

2020; Huang et al., 2019) or simple controls (Wuerkaixi 

et al., 2021) to guide the music generation process. Other 

systems require a constant input stream from the users 

for real-time accompaniment generation (Dannenberg 

and Raphael, 2006) or collaborative music improvisation 

(Lewis, 2000; Benetatos et al., 2020). Another dimension 

of user engagement is the level of music knowledge that 

the user is assumed to have. Some systems only assume 

users to understand high-level semantic meanings such 

as genre or mood (Mao et al., 2018), while others require 

users to know basic music theory (Chen et al., 2020) or 

even keyboard and improvisation skills (Benetatos et al., 

2020).

In this work, we focus on the task of music inpainting, 

namely the task of filling in missing measures given a 

known musical context. Music inpainting can find many 

applications in computer assisted music composition 

and human-computer interaction systems for creative 

use cases. Previous work on music inpainting either 

does not support user interaction (Pati et al., 2019), 

or assumes users to know some music theory in order 

to achieve musically meaningful results (Chen et al., 

2020). Our goal is to design a system that engages users 

into the music inpainting process without assuming a 

musical background. Specifically, our system1 allows 

users to draw curves, and the system will turn them into 

musically meaningful content matching with the given 

musical context (see Figure 1).

We achieve this by factorizing a to-be-generated 

melody into three basic aspects: a) the relative pitch, b) the 

relative rhythm, and c) music-theory-related information 

(e.g., key, pitch distribution). Here a) and b) are provided 

by users by drawing a pitch curve and additional note 

density curves, while c) is inferred by the system from 

surrounding measures to complement the intuitive inputs 

from the user. Previous research has shown that ordinary 

users, even without any musical background, understand 

the concepts of high and low of pitch and dense and sparse 

of note events (Dowling et al., 1999). In addition, most 

people are able to “hum” the (exact or approximate) pitch 

and rhythm of a melody they have in mind, even without 

any musical training. Therefore, drawing a relative pitch 

curve with additional curves to indicate the relative note 

density, in our view, is a feasible task for a wide range of 

users. Our proposed system can thus help ordinary users 

to engage in music inpainting and other collaborative 

music composition practices.

The contributions of this paper are threefold. First, 

we propose a novel and intuitive way for users without 

musical training to control important musical elements 

(pitch and rhythm) in an interactive melody inpainting 

process. Second, we design a neural approach that 

disentangles relative pitch, relative rhythm, and other 

music-theory-related information (e.g., key, note and 

onset distributions) for this interaction. Third, objective 

and subjective evaluations show that the proposed 

neural approach achieves significantly better results than 

a rule-based and a genetic algorithm baseline, in terms 

of musicality and fidelity to the user’s input.

2. RELATED WORK
2.1 CONTOUR BASED MUSIC GENERATION

The idea of designing music interaction systems based on 

human ability of understanding and processing melodic 

contours has been investigated for decades. The “UPIC” 

(Xenakis, 1977) is a pioneering work by Iannis Xenakis, 

which enables users to directly control the characteristics 

of a waveform, including pitch and dynamics, using 

freehand drawings on a board. Users can draw many 

lines which are mapped to oscillators with predefined 

timbre characteristics. The highs and lows of the drawn 

lines control the highs and lows of each oscillator’s 

pitch using a straightforward mapping. This work has 

been the inspiration for the development of other works 

that convert a graphical score to a synthesized audio 

waveform (or events sent to an external synthesizer), such 

as “IanniX” (Coduys and Ferry, 2004), “Metasynthesis” 

(U&I-Software, 1997), and “Music Sketcher” (Thiebaut et 

al., 2008).

A similar idea was exploited by Berg et al. (2012), 

where the body movements of a user are used to 

generate music by mapping the 3D coordinates of all 

body joints to the parameters of a frequency modulation 

synthesizer. Even though no drawing is involved here, the 

movement trajectory of the body parts can be seen as 

melodic contour drawing.

Additionally, there are systems that focus on symbolic 

music generation. A famous system is “Hyperscore” 

(Farbood et al., 2004), which aims to provide opportunities 

to novices, especially children, to compose music 

using drawings and other graphical tools. “Hyperscore” 

provides a melody-pattern-based composition. First, 

users create their own melodic patterns (each with 

a different color), and then they compose a piece by 

drawing curves of different colors on a canvas. The color 

of a curve indicates the melodic pattern to be played, 

while its shape indicates transformations on the original 

melodic pattern.

In Piano Genie (Donahue et al., 2019), users can play 

melodies on a full 88-key piano by just controlling a small 

8-key keyboard, where the 8 keys are lined up from low 

to high in pitch. The direction of pitch movement of the 

generated melody follows that on the small keyboard, 

and the note onsets match the key strokes.
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Another more relevant system to ours is included in 

the notation software named “Pizzicato” (Arpege-Music, 

2013), where users can fill in a measure by drawing a 

pitch curve. However, this is a rule-based system, and 

it requires users to provide the exact rhythm as well as 

chord labels for every beat. Furthermore, the final notes 

are generated by selecting the note contained in the 

chord that is closest to the pitch curve at each onset 

position, instead of being dependent on the surrounding 

measures. As a consequence, to generate music that fits 

the context, a user needs to understand music notation, 

rhythm and even chords. Therefore, it is not suitable for 

ordinary users without a music background.

Finally, “JamSketch” (Kitahara et al., 2018) is a system 

that generates melodies based on pitch curves drawn 

by the user, in a real-time improvisation task. A genetic 

algorithm is designed to determine the notes of the 

melody, however, the chord progression is given and 

the rhythmic pattern is selected from a predefined set 

of rhythms. While this rhythm limitation is addressed in 

follow-up work (Yasuhara et al., 2019), where another 

genetic algorithm is used to generate an appropriate 

rhythmic pattern based on the user’s input, this system 

cannot be used in tasks where a chord progression is not 

available.

2.2 MUSIC INPAINTING

Music inpainting has been applied to both the audio and 

symbolic domains. In the audio domain, the inpainting 

methods try to recover missing data in the waveform, 

which can occur due to various reasons such as distortions 

and transmission errors (Adler et al., 2012; Marafioti et 

al., 2020). The same term has also been used to describe 

the bandwidth extension problem, where the missing 

high frequency content has to be estimated (inpainted) 

from the low frequencies (Greshler et al., 2021).

Different from the audio domain, applications for 

symbolic music inpainting are not motivated by data 

recovery problems but by the need for creating new 

interactive tools for music creation. We will describe 

two recent neural network based works. In “InpaintNet” 

(Pati et al., 2019), given the past and future content 

of a missing part of music, it predicts a latent vector 

representation of the missing part which is later decoded 

to the symbolic score format using the decoder of a 

Variational Autoencoder (VAE). In “InpaintNet”, a user 

cannot guide the generated result. “Music SketchNet” 

(Chen et al., 2020) builds on “InpaintNet” and tries 

to solve this interactivity problem by allowing users 

to specify some music ideas to guide the final result. 

A user can specify a sequence of note names, or the 

rhythmic pattern of a to-be-generated measure. Even 

though this interactivity is very useful, the user has 

to make decisions based on music theory to achieve 

harmonically coherent results, which can be difficult for 

non-musician users.

3. PROPOSED METHOD
3.1 KEY IDEA

The key idea behind our proposed system is the following 

natural way of modeling a melody. We can think of 

any melody as an integration of pitch p, rhythm r, and 

other music-theory-related information. Pitch can be 

decomposed into the relative pitch rp and the pitch offset 

(or average pitch level) po. Similarly, rhythm r can be seen 

as the sum of relative rhythm rr and the rhythm offset 

(or maximum note duration) ro. Music-theory-related 

information can be inferred from surrounding measures, 

or the musical context. For example, a melody A 

consisting of a quarter note followed by two eighth notes 

and a melody B consisting of an eighth note followed 

by two sixteenth notes, have the same rr, but different 

ro (quarter for A, eighth for B). Finally, the musical 

context, or c, describes shared patterns with surrounding 

measures. Using non-rigorous math language, a melody 

can be represented as:

 

=

Å

Å

Å
Å .

Melody relative pitch

pitch offset

relative rhythm

rhythmoffset

context

 (1)

We make use of the circled addition symbol to note that 

this equation is conceptual and does not represent the 

actual addition of vectors.

When the first four factors of Equation (1) are “precise”, 

the context factor c is not needed to infer the melody. In 

case that the information stored in the first 4 factors is 

vague, the missing information can be complemented by 

the context c. For example, if the relative pitch factor rp 

only stores the pitch trend but not the exact intervals, the 

missing pitch information can be approximately inferred 

from the context c (e.g., the key and pitch distribution).

Another extreme case is when the first 4 factors are 

completely missing. In this case, all the information 

about the melody has to be inferred from the context c. 

A fully automatic inpainting system such as InpaintNet 

(Pati et al., 2019) is such an example, where the missing 

measure is completely estimated from the surrounding 

measures.

3.2 TASK DESIGN

As shown in Figure 1, the proposed interactive music 

inpainting task is to fill the missing middle measure of 

a three-measure excerpt of a monophonic melody by 

drawing curves.

The user uses the rectangular shaped canvas (Figure 1 

middle) to draw a pitch curve (green) and optional note 

density curves (blue) to guide the melody’s relative pitch 

and relative rhythm. The horizontal axis of the canvas is 

time covering one bar, while the vertical axis is the pitch 

axis. The user can also use the two sliders to control the 

pitch offset and rhythm offset of the generated melody. 
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From these user inputs, the system generates music for 

the middle measure and displays it in the score (Figure 1 

bottom).

The reason that we allow users to draw optional 

note density curves is to give them better control of 

the rhythm of the generated melody. A pitch curve 

itself may or may not contain important rhythm 

information. For example, a pitch curve with many 

prominent peaks and valleys, such as that in Figure 4, 

should correspond to a melody that has at least as 

many notes as the peaks and valleys, with onsets 

around them. On the other hand, a monotonically 

increasing pitch curve, such as the second curve in 

Figure 3, does not provide enough information to 

decide on the number and the location of notes. The 

optional note density curves (i.e., blue lines in Figure 1) 

are stacked above or below the pitch curve. The more 

note density curves are stacked in an area, the higher 

note density the area has, following a similar concept 

of beams in music notation.

These four types of user input have a direct 

correspondence to the first four factors of Equation (1). 

The fifth factor, context, is estimated by the system from 

the surrounding measures. As explained in Section 3.1, 

when the first four factors provide less complete (or more 

vague) information, the generation of the missing melody 

is more dependent on the context c, i.e., the surrounding 

measures. One way to control the “vagueness” of the first 

four factors is to apply different levels of quantization to 

pitch and rhythm representations computed from the 

drawn curves.

3.3 MODEL ARCHITECTURE

The model we propose is a variational auto-encoder 

(VAE) (Kingma and Welling, 2014; Higgins et al., 2016) 

based architecture. As shown on the left side of Figure 2, 

we have two encoders, Q
curve

 and Q
context

, to process the 

user’s input and the context measures, respectively. The 

encoders’ output forms the VAE’s latent vector Z = [Z
c
; 

Z
rp

; Z
rr
], i.e., a concatenation of three vectors, where Z

c
 

stores the context information, Z
rp

 stores the relative 

pitch information, and Z
rr
 stores information about the 

relative rhythm. On the right side, we use three decoders, 

P
rp

, P
r
, and P

midi
, with different intermediate losses to 

achieve the desired disentanglement of the three latent 

variables.

Figure 1: Top: A triplet of music measures. The first and 

third are the context measures, and the middle one is to be 

“inpainted”. Middle: The user input area consisting of a canvas 

for drawing the curves and the sliders to control the pitch 

offset and note density for the whole measure. Bottom: The 

generated result.

Figure 2: Overall structure of the proposed VAE-based model. Multiple encoders are used to encode user’s input and context 

measures, and multiple decoders are used to achieve the desired disentanglement of latent variables and to generate the missing 

measure.
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3.3.1 Encoders

The VAE encoder Q consists of a CNN encoder Q
curve

 for 

the user drawn curves, and a GRU encoder Q
context

 for 

the surrounding context measures. The conditional 

probability for the overall encoder is factorized as:

 

=
´

( | , , , )

( , | , )

( | , ),

rp rr prev next

curve rp rr rp rr

context c prev next

Q Z F F M M

Q Z Z F F

Q Z M M
 (2)

where F
rp

 and F
rr
 denote the relative pitch and relative 

rhythm functions, respectively, which are derived from 

the users’ input curves (see Section 3.4.1). Note that Q
curve

 

only encodes user drawn curves but not the slider inputs. 

Instead, slider inputs go to the decoders directly. This 

pushes the latent vectors Z
rp

 and Z
rr
 to learn relative pitch 

and rhythm representations.

The pitch and rhythm functions are each a 512-D 

vector and are stacked together into a 2×512 matrix. 

The curve encoder Q
curve

 consists of 7 layers of residual 

blocks with kernel size 3, batch normalization, no pooling 

operations, and leaky ReLU as an activation function. The 

output of Q
curve

 is the concatenation of latent vectors Z
rp

 

and Z
rr
, each with dimension of 85. Q

context
 consists of two 

GRU encoders, one for the previous measure and one for 

the next measure. We use an embedding layer of size 

128 to encode the input of each GRU encoder, and each 

of them has 2 bidirectional layers with 2048 units. Their 

outputs are concatenated and then put through a dense 

layer to get the latent vector Z
c
, with a dimension of 85.

3.3.2 Decoders

We design three VAE decoders based on Yang et al. 

(2019). Two of them are intermediate decoders, where P
rp

 

generates the relative pitch output T
rp

, and P
r
 generates 

the rhythm output T
r
. The third decoder, P

midi
, takes the 

previous intermediate outputs as input and generates 

the MIDI output (i.e., final output of the model) for the 

middle measure M
cur

 (see Section 3.4). The conditional 

probability is factorized as:

 

= ´
´

( | , , ) ( | , , , )

( | )

( | , , ),

cur p r cur c rp r pmidi

rp rp rcp

r r c rr r

P M Z S S P M Z T T S

P T Z

P T Z Z S
 (3)

where S
p
 and S

r
 denote the pitch and rhythm slider 

values, respectively.

We can see that Z
c
 is an input not only to the final 

decoder P
midi

, but also to the rhythm encoder P
r
. The 

reason is that we expect Z
c
 to contain some rhythmic 

information about the context measures, which may 

be useful for generating the rhythm T
r
 of the missing 

measure. This is further explained with an example in 

Section 3.5.2. The three VAE decoders each consist of 2 

layers of unidirectional GRUs with 2048 units, and we use 

cross-entropy losses to train them.

Finally, we add an additional MLP decoder, 

P
chroma

(V
chroma

|Z
c
), to generate the chroma vector V

chroma
 

which is the 12-bin binary chroma vector of measure 

M
cur

, with active pitch classes taking the value of 1. We 

use binary cross-entropy to train this branch. This multi-

task scheme helps to reduce out-of-key notes in the 

generated melody.

3.4 DATA REPRESENTATION

In this section, we describe the system input and output 

representations during inference.

3.4.1 User Drawings

As mentioned in Section 3.2, the user draws a pitch 

curve C
p
 and one or more optional note density curves 

C
nd

 (Figure 1) on a canvas. The user’s 2D input is first split 

into connected components using the depth-first search 

(DFS) algorithm. The longest component is considered 

the pitch curve C
p
, and is converted to a 512-point 1D 

signal recording the Y coordinates of the curve. It is 

then filtered with a Butterworth low-pass filter with a 

normalized cutoff frequency Ω
3dB

 = 1/50, to give us the 

relative pitch function F
rp

. The rest of the components 

of the drawing, if any, are treated as the note density 

curves, from which the relative rhythm function F
rr
 is 

calculated. Each note density curve is projected to the 

X axis to obtain a binary 512-point 1D signal, whose 

value is 1 within the horizontal range of the curve and 

Figure 3: An example of 4 different input curves using the 

same context measures. The rhythm slider was set to 2 (‘high’) 

for the first, and 1 (‘medium’) for the last three. Note how the 

pitch contour and rhythm of the generated melodies follow 

the hand-drawn pitch curves (green) and note density curves 

(blue).

Figure 4: An example of one hand-drawn pitch curve working 

with three different context measures to generate different 

but context matching melodies. The rhythm slider was set to 0 

(‘low’) for the first, and 2 (‘high’) for the last two.
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0 outside the range. All of the 1D signals of all projected 

note density curves are summed together to create the 

relative rhythm function F
rr
, which describes note density 

over time. Note that since the system requires 0 ≤ F
rr
 ≤ 2, 

values of F
rr
 exceeding 2 will be clipped.

3.4.2 Pitch and Rhythm Slider Inputs

During inference, we simply use 3-value sliders, which 

directly map to 0, 1 and 2 from low to high.

3.4.3 MIDI Output

Like Yang et al. (2019), for the MIDI output vector T
midi

, we 

use MIDI numbers from 0 to 127 for note onsets, 128 for 

the holding state and 129 for rests. Instead of a regular 

16th note quantization grid, we use the method from Pati 

et al. (2019), an uneven grid that is able to encode both 

8th-note triplets and 16th notes using 24 grid positions 

per measure.

3.4.4 Rhythm and Relative Pitch Outputs

We need to define the two intermediate output vectors for 

rhythm T
r
 and relative pitch T

rp
, to train the intermediate 

decoders P
r
 and P

rp
 respectively. Both relative pitch and 

rhythm output vectors have the same length as the final 

MIDI output vector, which is 24. For T
r
, we follow Yang et 

al. (2019), and use three tokens: 0 for onsets, 1 for the 

holding state and 2 for rests.

The process for obtaining the T
rp

 is the following. For 

every pair of consecutive onsets in positions i and j = i + 

n where n > 0, we calculate the MIDI interval Δ = T
midi

[j]-

T
midi

[i] and then perform a linear interpolation between 

i + 1 and j,

 
D

= - Î +[ ] ( ) , [ 1, ].rpT k k i k i j
n

 (4)

In other words, T
rp

[k] describes the hypothetical pitch 

interval between the current position k (not necessarily 

an onset) and the previous note onset, as if the note 

changed its pitch linearly. The reason for this treatment 

is to simulate hand-drawn pitch contours, which typically 

show a continuous transition instead of a step from one 

note to another.

As explained in Section 3.2, the more precise the T
rp

 

values (pitch intervals) are, the less information is needed 

from the musical context c in the melody generation, 

and the more closely the generated melody follows 

the input pitch curve. However, our goal is to view the 

input curve as providing a prime cue for generating the 

melody instead of creating a precise 1–1 mapping like 

what “Pizzicato” (Arpege-Music, 2013) does. Therefore, 

we quantize the T
rp

 values to the closest quantization 

levels to make their representations more vague in the 

latent vector Z
rp

. By controlling the level of quantization, 

we can control the relative influences of the input curves 

and the musical context to the final generation. After 

some experiments, we empirically choose to use 7 levels 

with central bins at {–9, –5, –1, 0, 1, 5, 9} in semitone 

units.

3.5 TRAINING

The proposed system takes user drawings and slider 

values as the input and generates MIDI notes as the 

output. To train the system, one way is to collect 

such input-output pairs from experienced users. This, 

however, is very time consuming and requires music 

expertise of the users. In this paper, we propose to use 

MIDI melodies and simulate user drawings and slider 

values. Specifically, we derive a relative pitch function, 

a relative rhythm function (Section 3.5.2) and pitch and 

rhythm slider values (Section 3.5.3), from the middle 

measure of each three-measure music excerpt. In this 

way, we are able to create many input-output pairs to 

train our system.

3.5.1 Datasets

We use the Irish Folk Music dataset (Sturm et al., 2016) 

to train our system. We only keep the MIDI files in 4/4 

time signature that have more than 3 measures, totaling 

24,065 songs and we randomly split them into 8:1:1 for 

training, validation, and test sets. After that, we extract 

all possible combinations of three consecutive measures 

to create the final training dataset, totalling 710,002 

three-bar excerpts.

The excerpt melodies extracted from the Irish Folk 

Music dataset, though diverse, have a limited note 

range, rarely exceeding an octave. This could be a 

problem for the Q
curve

 encoder when users draw curves 

with significant fluctuations. To fix that, we also create 

a dataset of randomly generated three-bar melodies, 

within a maximum range of 2 octaves. This dataset 

contains much more diverse pitch fluctuations and helps 

Q
curve

 to be prepared for a wide range of drawn curves 

from users.

3.5.2 Deriving Relative Pitch and Rhythm Functions

As mentioned in the beginning of Section 3.5, we need to 

derive the relative pitch and relative rhythm functions for 

the middle bar of each training excerpt to simulate the 

user input. In order to extract these functions from the 

MIDI melodies, we use a regular time quantization grid of 

48 positions per measure to represent the melodies. Note 

that this melody representation is different from the one 

we used in Section 3.4.3. For the relative pitch function 

F
rp

, we first obtain a piece-wise linear curve by connecting 

note onsets. The Y-axis is measured in MIDI number. We 

then evenly sample this curve into a 512-point sequence, 

and low-pass filter it using a Butterworth low-pass filter 

with a normalized cutoff frequency Ω
3dB

 = 1/50. Finally, 

since we find that a melody rarely (for this dataset) 

exceeds the range of 2 octaves within a measure, we 

normalize it by subtracting the middle value of its range 

and divide it by 12. In the rare cases (0.015% of all 
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measures) that the value range exceeds 2 octaves, we 

divide it by the half of the range instead to ensure the 

normalized values are in [–1,1].

To derive the relative rhythm (i.e., relative note density) 

function F
rr
, it is necessary to derive two intermediate 

quantities. First, we define a vector rc of length 48 

to represent the note density computed from note 

durations. At each note onset position i, it takes the value 

rc
i
 = log

2
 (1/dur

i
), where dur

i
 is the duration of the current 

note divided by the total duration of the measure.

In our data, the smallest note duration is a 16th note, 

so 0 = log
2
 (1/1)≤ rc

i
 ≤ log

2
 (1/(1/16)) = 4. For positions that 

are not onsets, the value of the previous onset position is 

used. After that, we also evenly sample this vector into a 

512-point sequence, to match the length of the relative 

pitch function F
rp

. Second, we define a vector qrc which is 

the result of a 3-level quantization of rc:

 

ì < £ïïïï= < £íïïï >ïî

0 0 1.25

1 1.25 3.29.

2 3.29

i

i i

i

rc

qrc rc

rc

 (5)

Finally, we set F
rr
 = qrc – min(qrc). Subtracting the 

minimum value of qrc makes F
rr
 only contain information 

about the relative rhythm.

The quantization step is to make the rhythm 

representation more vague, as explained in Section 3.1. 

The discarded rhythmic information due to quantization 

is expected to be retrieved from the context measures 

through Z
c
. An example of rhythmic information that Z

c
 

can encode is whether the context measures have many 

triplet notes, or 16th notes. A relative rhythm function 

F
rr
 may indicate high or low note density, but the actual 

note durations that will be used depend on the musical 

context. In fact, this is exactly what we see happening 

in some of our model outputs in Figure 4, where for the 

same note density controls, a pitch curve produces 8th-

note triplets (line 2) and 16th patterns (line 3), depending 

on the surrounding measures.

3.5.3 Deriving Slider Values

For the pitch slider S
p
, we calculate the average pitch 

value of the melody, and we apply a 3-level quantization, 

with central bins at {65, 71, 77}, in the unit of MIDI 

numbers. These quantization values correspond to the 

low, middle and high areas of a treble stave. As for the 

rhythm slider S
r
, we set it to S

r
 = min(qrc), where qrc is 

defined in Section 3.5.2.

3.5.4 Training Configuration

A β value of 0.1 was used to weight the KL loss, as proposed 

in β-VAE (Higgins et al., 2016). For the stochastic gradient 

descent, the Adam algorithm was used (Kingma and Ba, 

2015), with a linear learning rate schedule from 0.0003 

to 0.00001. We trained for 200 epochs with batch size 

128, and used teacher forcing to train the RNN decoders 

P
midi

, P
rp

 and P
r
, with probability 1.0, which was gradually 

reduced until 0.5.

As for training using the dataset of randomly 

generated melodies, since the notes are random, there 

is neither correlation among the three bars nor useful 

musical information within each measure. Therefore, for 

such training data, we only use the intermediate relative 

pitch cross-entropy loss but not the other musically 

meaningful losses.

During training, we sample these randomly generated 

excerpts with probability 0.1 and the Irish excerpts 

with probability 0.9. We also apply a random shift with 

probability 0.1 to each note in the melodies along both 

time and pitch. This is to compensate for the variability 

of hand drawn curves of the users during inference. 

The shifts along the time axis were no more than an 

eighth note, and along the note axis were no more than 

2 semitones. We should mention that we apply this 

random shift only when deriving the relative pitch and 

relative rhythm functions, without applying any shifting 

on the training targets.

4. EXPERIMENTS
4.1 BASELINES

In this section, we conduct objective and subjective 

evaluations to assess the feasibility and usability of the 

proposed system for drawing-based melody inpainting. 

We compare it with two closely related methods as 

baselines under the same user interface. The comparisons 

focus on algorithm design instead of the interface design, 

as the former is the main contribution of this work.

4.1.1 Rule-Based Baseline (RB)

We develop a rule-based system as a baseline, following 

the gist of “Pizzicato” (Arpege-Music, 2013). Many 

necessary modifications have to be introduced, since 

in the task described in “Pizzicato” (see Section 2), the 

generation of the music measure does not depend 

on the surrounding measures, and the user is required 

to provide the exact rhythm and chord labels for every 

position.

The RB baseline generates the rhythm of the melody 

in the following way. Note onsets are placed at local 

peaks and valleys of the relative pitch function F
rp

. If the 

function does not have any peaks and valleys, then we 

fill the measure with notes whose duration depends on 

the value of the rhythm slider S
r
 (quarter notes for S

r
 = 

0, eighth notes for S
r
 = 1 and sixteenth notes for S

r
 = 2). 

If the user draws extra note density curves C
nd

, we add 

extra onsets in the area under the curves fitting in the 

16th note grid. Given the variability and the inaccuracy 

of a user’s input, we quantize the position of the note 

density curves and the indices of the peaks of the pitch 

curve to the nearest sixteenth note.
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To decide the pitch at each onset position, we first find 

the note n that corresponds to the value of the pitch curve 

in the onset position. Then, we replace n with the closest 

note (in terms of MIDI numbers) from an appropriate set 

of notes.

This set consists of all the notes that belong to the key 

implied by the two surrounding measures. We estimate 

the key using the Krumhansl key detection algorithm 

(Krumhansl and Kessler, 1982) implemented in the 

music21 python library (Cuthbert and Ariza, 2010). We 

consider this a strong baseline, because the generated 

melody always matches the input curves, and notes 

always belong to the estimated key.

4.1.2 Genetic Algorithm Baseline (GA)

We also develop a baseline based on the work of the 

“JamSketch” system (Kitahara et al., 2018; Yasuhara et 

al., 2019). Again, we introduce necessary modifications 

to make it comparable with our system. The original 

“JamSketch” does not support 16th notes, and the note 

selection does not depend on the previous measures but 

on the predetermined chord progression for this measure. 

Finally, the inputs of our system include additional 

note density curves and extra pitch and rhythm sliders, 

which do not exist in “JamSketch”. We implement these 

modifications by adding new terms in their genetic 

algorithms’ fitness functions.

Following their work, we first use a genetic algorithm 

to generate the rhythm in a form of a binary vector (1 for 

onsets and 0 for holds), and then use another genetic 

algorithm to generate the pitches for the onset positions 

indicated by the rhythm vector.

For the following analysis, we will use the letters 

u,c,s as superscripts to indicate vectors related to the 

user input, a chromosome and the solution of a genetic 

algorithm.

Rhythm Generation

As mentioned earlier, the rhythm chromosomes rc are 

binary vectors of size L = 24, where L is the number of 

grid positions in a bar as described in Section 3.4.3. We 

define u

rr
F  as the relative rhythm function extracted from 

the user’s input and c

rr
F  as the one extracted from a 

chromosome. Additionally, we define nc = sum(rc) as the 

number of notes/onsets in a chromosome and dc as a 

vector of size nc containing the duration of each note of 

the rhythm chromosome.

For generating rhythm, we use a combination of global 

and local features to design the fitness function
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1
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3
 = 2 are weights for the 

four terms, and their values are empirically chosen with 

dozens of trials to optimize the performance:

•	 sim(R) : The similarity of a chromosome’s rhythm 

with the desired rhythm of the user
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•	 lik(R) : The likelihood of a chromosome, which is the 

same as that of Yasuhara et al. (2019).
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 where P(r
i
c|i) is the probability of having an onset at 

position i, and it is calculated from the dataset.

•	 seq1(R) : The duration bi-grams. This term is not 

present in Yasuhara et al. (2019) and it significantly 

improves the generated rhythm.
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 where -1( | )c c

i i
P d d  is the conditional probability of a 

note with duration -1
c

i
d  being followed by one with c

i
d , 

and it is calculated from the dataset.

•	 slid(R) : The global note density. This terms takes into 

account the rhythm slider input.
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 where denc measures the note density of the current 

chromosome
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 and S
r
 is the slider input taking three values 0,1,2.

After this genetic algorithm runs, we pick the rhythm 

solution rs that has the largest fitness score as the 

chromosome rc in the final generation.

Pitch Generation

Given the rhythm solution rs from the previous rhythm 

generation step, we use another genetic algorithm to 

generate the pitch solution vector ps, which has size ns. 

The pitch chromosome pc consists of pitch genes that can 

take MIDI values from 48 to 84. From pc we can derive the 

chromatic pitch class vector of the chromosome using 

cpcc = pc mod 12. We also define u
rpF  as the relative pitch 

function extracted from the user’s input and c
rpF  as the 

one extracted from a pitch chromosome. Finally, we 

define ts as a vector of size ns containing the position of 

each note of the rhythm solution.

The fitness function for pitch generation is
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where the weights w
0
 = 3 and w

1
 = w

2
 = w

3
 = w

4
 = 1 were 

manually set for the five terms:

•	 sim(P) : The similarity of the current chromosome’s 

pitch curve with the desired pitch curve of the user
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•	 seq1(P) : The chromatic pitch class bi-grams
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 where -1( | )c c
i iP cpc cpc  is the conditional probability of 

a note with chromatic pitch class cpc
i-1

 being followed 

by one with cpc
i
.

•	 seq2(P) : The chromatic pitch class delta bi-grams
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•	 harm(P) : The fitness of the chromosome’s notes with 

the given context
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 where K is the set of the chromatic pitch classes that 

belong to the key implied by the surrounding measures, 

and N is the multiset that contains the chromatic pitch 

classes of the current chromosome, and
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•	 slid(P) : The global pitch offset

 =- -( ) | |,c
pslid P po S  (18)

 where pos measures the pitch offset of the current 

solution
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 and S
p
 is the pitch slider input taking three possible 

values 0,1,2.

In the original “JamSketch” implementation, they 

added an additional pitch entropy factor to discourage 

the generation of melodies with many repetitive notes. 

Another trick is that they created a prefix tree from the 

dataset melodies, and they used it to randomly generate 

the initial pitch chromosomes for the genetic algorithm. 

We omit both of those tricks since they did not seem to 

affect the result.

4.2 OBJECTIVE EVALUATION ON SIMULATED 

INPUTS

We attempt an objective evaluation of the model’s 

performance using simulated data. That is, we simulate 

users’ inputs to the inpainting task using relative pitch 

and rhythm functions extracted from a randomly 

selected measure from the test dataset. Specifically, 

the simulation process goes as this: first, a random 

3-measure excerpt [M
prev

, M
cur

, M
next

] is selected from the 

Irish test dataset. The first and third measures serve 

as the context for the inpainting task while the middle 

measure is discarded.

Next, we randomly choose another measure ¢
cur

M , and 

extract the relative pitch and rhythm functions ¢
rpF , ¢

rr
F  and 

slider values ¢
pS  and ¢

r
S  as described in Section 3.5, as if 

they were derived from a user’s input. Feeding ¢
rpF , ¢

rr
F , ¢

pS , 
¢
r
S  and the context measures to each inpainting model, 

we generate a new measure ''

cur
M , from which we 

calculate the functions ''

rpF  and ''

rr
F  and slider values ''

pS  

and ''

r
S .

Ideally, the generated measure should fit to the 

context, and its extracted curves and slider values 

should be similar to those of the simulated input. We 

therefore design three tasks to measure the pitch 

contour similarity, rhythm similarity and context 

fitness, respectively. For each task we run the above 

simulation process 1000 times. The results are 

summarized in Table 1. Descriptions of these three 

tasks follow.

METRIC PROPOSED RULE-BASED GA M
CUR

(“MISSING”

MEASURE)

M
CUR

’ (FROM WHICH 

USER INPUT IS 

DERIVED)

Pitch curve DTW cost 6.1 ± 5.2 3.6 ± 2.4 13.3 ± 10.6 54.6 ± 38.3 –

Pitch slider match rate 98% 100% 93% – –

Rhythm curve DTW cost 8.4 ± 13.1 23.1 ± 41.1 41.0 ± 52.5 53.8 ± 61.3 –

Rhythm slider match rate 97% 92% 90% – –

Context match 86% 100% 80% 87% 45%

Table 1: Objective evaluation of measures generated by the three comparison methods (proposed, rule-based, and GA) taking a 

simulated user input that is derived from a random measure. As controls, evaluation of the original “missing” measure M
cur

 and the 

measure from which the user input is derived ¢
cur

M  is also provided. Please refer to the main text for explanations of the metrics.
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4.2.1 Pitch Contour Match

For this task, we make the observation that the rhythm 

of the generated melody actually affects the melody 

pitch contour. Taking the example of the GA method, if 

the genetic algorithm responsible for rhythm generation 

fails to generate enough note onsets, then the melody 

pitch contour will not match the user’s input pitch curve. 

To isolate the rhythm effects, we manually interrupt 

the normal flow of generation to enforce the ground-

truth rhythm. We use a dense vector that consists of 16 

sixteenth note positions to represent the ground-truth 

rhythm.

A dense rhythm vector, compared to a sparse vector 

that contains fewer note positions, allows the final note 

generation stage to realize the pitch curve as faithfully as 

possible. It is noted that some of the 16 note positions 

will be onsets while the others will be holds, depending 

on the ground-truth rhythm. Enforcing a specific rhythm 

is easy since for all three methods the generation process 

is sequential; first the rhythm and then the pitch. For 

the baseline methods RB and GA, we omit the rhythm 

generation part and replace the binary rhythm vector 

with the desired one, while for our proposed model, we 

replace the output logits of the rhythm decoder P
r
 with 

those that correspond to our desired rhythm.

We then use dynamic time warping (DTW) to globally 

align the relative pitch function extracted from the 

generated measure ''

rpF  and the one extracted from the 

randomly chosen measure ¢
rpF , and use the alignment 

cost to evaluate the match between the simulated input’s 

and the generated melody’s relative pitch function for 

each method. The mean and standard deviation of the 

alignment cost over the 1000 runs is 6.1±5.2 for the 

proposed model, 3.6±2.4 for RB, and 13.3±10.6 for GA. 

For reference, we also extract the ground-truth relative 

pitch function F
rp 

from the discarded middle measure 

of the 3-measure excerpt where the context measures 

come from, and calculate the average alignment cost 

between F
rp

 and ''

rpF . This reference can be viewed as 

the average alignment cost between two random 

pitch curves in the dataset. As they are unrelated, the 

alignment cost is as high as 54.6±38.3. Furthermore we 

measure the percentage of having ¢
pS  = ''

r
S  (i.e., matching 

pitch offsets between the randomly chosen and the 

generated measure), which is 98% for the proposed 

model, 100% for RB and 93% for GA. As expected, the 

RB method achieves the best results, as it is designed 

to directly maximize the relative pitch contour match. 

Additionally, both our method and the GA baseline 

significantly improve the relative pitch contour matching 

compared to the reference.

4.2.2 Rhythm Match

For this task, we let the systems generate the rhythm 

uninterrupted, and the same as before, we use DTW 

to globally align the relative rhythm function extracted 

from the generated measure ''

rr
F  and the one extracted 

from the randomly chosen measure ¢
rr
F , and use the 

alignment cost to evaluate the rhythm match. The mean 

and standard deviation of the alignment cost over the 

1000 runs is 8.4±13.1 for the proposed model, 23.1±41.1 

for RB, and 41.0±52.5 for GA. Again for reference, we 

extract the ground-truth relative rhythm function F
rr 

from the discarded middle measure of the 3-measure 

excerpt where the context measures come from, and we 

calculate the average alignment cost between ''

rr
F  and F

rr
, 

and the value is 53.8±61.3. Furthermore, we measure 

the percentage of having ¢
r
S  = ''

r
S  (i.e., matching rhythm 

offsets between the randomly chosen and the generated 

measure), which is 97% for the proposed model, 92% for 

RB and 90% for GA.

4.2.3 Context Match

In an attempt to evaluate the match of the generated 

melody with its surrounding measures, we calculate 

the percentage of notes (chromatic pitch classes) in 

the generated measure ''

cur
M  that also belong to the 

key (using the Krumhansl algorithm) of the original 

measures M
prev

, M
cur

, M
next

. The average percentage was 

86% for the proposed model, 80% for the GA baseline, 

and 100%, which is by design, for the RB baseline. It is 

noted that this metric is not an accurate descriptor of 

the musicality of the result but just a rough indicator, as 

1) the key can be ambiguous when only looking at the 

three measures, and 2) even if the key is clear, passing 

notes not belonging to the key can still produce musically 

pleasant results. Nevertheless, we still think that this 

metric provides a basic safeguard of ensuring the basic 

musicality. For reference, the value of this metric for the 

3-measure excerpts in the dataset is 87%, while if we 

replace the middle measure with a random one from 

the dataset, it goes to 45%. These results suggest that, 

even though our proposed method achieves the closest 

score to the one calculated from the original excerpts, for 

all methods, the generated melody fits well to the the 

musical context, at least in terms of pitch selection.

4.3 USER STUDIES

We perform subjective evaluation of the proposed 

system and the baseline systems, to answer two research 

questions: 1) Is drawing curves and setting sliders an 

intuitive way to generate melodies for users with diverse 

musical backgrounds? 2) How is the quality of the music 

inpainting results of the proposed system compared 

to that of the baselines? This study is approved by the 

University of Rochester’s Institutional Review Board.

4.3.1 User Recruitment

We recruited 23 participants (11 female, 12 male) 

with various musical backgrounds. Their participation 

was voluntary (with oral consent) and without money 

incentives. We asked them to self-assess their musical 
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background with a 4-way choice question. Specifically, 

4 were professional musicians; 4 had been playing 

an instrument for more than two years, but not 

professionally; 6 were not familiar with Western music 

notation, but had some general understanding of music 

fundamentals, and the last 9 did not belong to any of 

the above categories. We regard the latter two groups 

as not having received formal musical training, or more 

generally, not having a musical background.

Although our system was primarily designed for 

non-musicians, we included amateur and professional 

musicians as we believe their opinions are important for 

assessing the musicality of the results.

4.3.2 User Interface and System Configuration

For this experiment, we developed a simple web-based 

interface, shown in Figure 5, according to the task described 

in Section 3.2. It consists of a canvas area for users to 

draw the curves with their mouse, and three identical 

display areas for showing the context measures and the 

generated results for each method. The assignment of 

methods to the display areas is randomized for every 

trial to reduce biases toward a specific method. There 

are buttons that affect all three methods: the “Get new 

context” button randomly chooses context measures 

from the test dataset and displays them in all display 

areas. The “Clear Curve” button clears the canvas area. 

Additionally, each display area has its own pitch and 

rhythm sliders to adjust the relative levels, a “Generate” 

button to generate the melody, and a “Play” button to 

play the result. The right side of each display area is the 

evaluation sub-area, where users are asked to rate the 

pitch contour match, note density match and the overall 

musicality of the result. At the bottom of the page is the 

“Submit” button, which submits all the input, output, and 

evaluation data after each trial for later analysis. Finally, 

instructions of this task are shown at the bottom left 

area of the interface throughout the experiment.

One problem that occurred in the design of this study 

was the uneven execution time of these methods. For RB 

it was about 2 seconds and for the proposed method it 

was about 2.5 seconds, both measured on an Intel i7 CPU. 

For GA, the nature of this method allows us to determine 

the number of generations and limit the execution time 

to our will. We set the execution time limit to 3 seconds, 

which seemed sufficient for GA to reach a reasonable 

performance without incurring too much time cost on 

users. Even though we did not conduct any rigorous 

evaluation, letting the GA method run for more than 3 

seconds did not seem to improve the results. We then 

added a 1 second delay and a 0.5 second delay to RB and 

the proposed methods respectively to prevent users from 

identifying these methods by their execution time.

4.3.3 Task

To start a user’s task, we dedicated 10-15 minutes to 

explain what they had to do, answer their questions, and 

run one or two training trials. We found this step necessary 

especially for participants with no musical background. 

After that, each user had to use the interface for at least 3 

trials. Each trial starts by fetching new context measures 

from the test dataset, drawing the curves, adjusting the 

Figure 5: The web application developed for user studies. Detailed instructions are shown on the bottom left of the page throughout 

the duration of the experiment. On the top left is the canvas where users draw the curves. On the right side, three identical rows of 

context measures, generated results and control units are displayed corresponding to the three comparison methods (with a random 

order for each trial).
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sliders and generating a new melody for each method. 

After listening to each result, they had to rate the pitch 

contour match, the note density match and the overall 

musicality of the inpainting result for each method using 

the three evaluation sliders mentioned above. Each slider 

uses a five-point scale from 1 to 5, with 5 indicating the 

“best”. We refer to these questions with labels Q1-Q3. 

The participants were also encouraged to think-aloud 

while performing the task, in order to help us get some 

more insights.

In addition to the three evaluation questions for each 

method in each trial, after finishing all trials, they were 

asked three questions to rate their overall user experience 

throughout all trials and all three methods using a scale 

from 1 to 5, with 5 being “Very Agree”. We refer to these 

questions with labels Q4-Q6.

Q1 Rate the similarity between the hand-drawn 

pitch curve and the generated pitch contour.

Q2 Rate the effect of the note density inputs 

(rhythm slider and note density curves) to the 

melody’s rhythm.

Q3 Rate the overall musicality of the final result.

Q4 Do you think this system provided an intuitive 

way to generate a melody ?

Q5 Do you think drawing a pitch curve is an intuitive 

way to control a melody’s contour?

Q6 Do you think drawing additional note density 

curves is an intuitive way to control a melody’s 

rhythm?

4.3.4 Results

Figure 6 shows the evaluation results for the six questions. 

For Q1-Q3, there are 112 data points each, as each user 

completed 4.8 trials on average. For questions Q4-Q6, 

23 data points are available, as there was one response 

from each user.

For each of the questions Q1-Q3, we run the Kruskal-

Wallis H-test (a non-parametric version of ANOVA), to 

determine whether there is any statistical difference in 

the performance of the methods. The p-values obtained 

for all three questions are less than 10–5, suggesting the 

existence of statistical differences. We then run pairwise 

Mann Whitney U tests for each question.

The results of Q1 (pitch contour match) support the 

objective evaluation findings in Section 4.2.1, that is, 

the melodic contour of the generated melody is closely 

related to the input pitch curve for all the methods, 

with median values above or equal to 3. In addition, our 

proposed method achieves significantly better ratings 

compared to the baselines (p < 10–19 vs RB and p = 10–21 

vs GA). One difference from the objective evaluation in 

Section 4.2.1 is that the RB baseline achieves a lower 

score than our proposed method. This happens because 

in the objective evaluation we used the predefined 

“dense” rhythm vectors (see Section 4.2.1), while on this 

experiment the rhythm vector is generated according 

to the user’s input. A “sparse” rhythm vector does not 

contain enough notes to realize the user’s pitch curve. 

The RB outperforms the GA in terms of pitch contour 

matching (p < 0.005).

For Q2 (note density match), the proposed method 

also receives significantly better (p < 10–5 vs RB and p 

< 10–19 vs GA) ratings, showing its superior ability of 

following the note density input controls (note density 

curves and rhythm slider). Comparing the two baselines, 

RB achieves better results (p < 10–5). These results are in 

agreement with the ones obtained from our objective 

evaluation (third and fourth line of Table 1).

For Q3, we can see that the proposed method 

generates melodies that are significantly more musical 

(p = 10–14 vs both). Additionally, the users thought that 

GA results were similar in musicality to those of RB (p 

> 0.4). One reason for the significantly lower musicality 

score of the baselines, we believe, is due to the fact 

that the baselines are prone to generating uncommon 

rhythmic patterns (both of them) and out of context 

pitches (GA), as also shown in Section 4.2. For RB, some 

of the note positions are determined by the peak and 

valley positions of the pitch curve; this sometimes results 

in off-beat notes. In contrast, for the proposed method, 

the shift invariance of its CNN encoder Q
curve

 and the data 

augmentation tricks introduced in Section 3.5.1 make 

it invariant to this type of misalignment. As for the GA, 

this method cannot sufficiently explore its large search 

spaces given the time constraints (i.e., 3 seconds in our 

experiments); compared to the task of Yasuhara et al. 

(2019), our search space is much larger.

In Figure 7 we provide two representative examples 

obtained during the user studies. On the left example, 

the user gave a much higher musicality rating to the VAE-

generated example compared with the baseline ones, 

even though the output of all 3 methods received high 

Figure 6: Boxplots of the answers (ratings on a 1–5 scale) 

to the six subjective evaluation questions from all of the 

23 participants (the higher the better). Each box for Q1–Q3 

contains 112 points, while for Q4–Q6 contains 23 points. The 

notch in each plot represents the 95% confidence interval 

around the median. Outliers are shown as circles.
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pitch and rhythm match scores. The VAE output used 

more common rhythmic patterns than the baselines and 

generated a chromatic passing note that leads to a more 

surprising and musical melody.

The results for Q4–Q6 clearly show that this “Draw 

and Listen” interaction was very intuitive for most of 

the users. We also present some insights we gathered 

due to the think-aloud policy, and some discussions we 

had with the users. Out of the three users who rated 

questions Q4–Q6 less than 3, all of them were musicians 

(one professional and two amateurs). The professional 

and one of the amateurs expressed their preferences 

for the traditional way of melody composition, but they 

also believed that this new type of interaction can be 

useful for non-musicians. Additionally, some of the not-

so-advanced users who had some basic experience 

with music production tools, had many ideas on how 

to incorporate a system like this in their preferred digital 

audio workstations (DAWs) to edit and generate MIDI 

music.

5. LIMITATIONS

While the proposed model outperforms the two 

baselines on all the questions, there is also much room 

for improvement. For example, there may be a tradeoff 

between faithfully following the user’s input and 

musicality; it would be useful to have users control this 

tradeoff through a parameter.

Another limitation is that the model only supports 

inpainting of a single measure given its immediate 

neighbors. Supporting a variable number of context 

measures is not the main focus of this work, but it can 

be realized by extending our current architecture or 

combining it with models that already support this 

feature (e.g., Chen et al., 2020).

Furthermore, in areas of high note density (indicated 

by the user using note density curves or the slider), the 

proposed model tends to generate mostly 8th-triplet 

notes instead of 16th notes (first line in Figure 3 or 

second line in Figure 4). It also never generates rests. 

These limitations are due to the data bias in the Irish 

dataset used for training, which contains 3 times more 

8th-note triplets than 16th notes and less than 0.1% of 

the tokens are rests.

Finally, regarding the user interface, one feature that 

most of the users asked, is the ability to click and drag 

parts of the curve to make minor adjustments. Some 

users also expressed the desire to be able to explicitly 

indicate areas for the model to generate rests.

6. APPLICATIONS

As a music inpainting tool, the proposed system could be 

used as a composition plugin for music notation editors 

where users could use the “pencil” tool to generate 

melodies on the spot, conditioned on surrounding 

measures. Additionally, since our system uses MIDI 

to represent notes, it can work in applications that are 

not based on Western music notation to lower the user 

barrier. For example, it can be implemented as a plugin 

for digital audio workstations (DAWs), which typically use 

MIDI instead of music notation to represent the music 

content. Additionally, the melody factorization we just 

described can be used to support a number of diverse 

applications. We can replace the hand-drawn curves with 

anything that resembles a curve, such as a stock price 

curve or a human body movement curve, to support 

creative use cases.

In addition, we can use it to measure melodic similarity 

and query a melody database by converting melodies 

in the latent space and calculating their latent vector 

distances based on any of the disentangled factors 

(relative pitch and rhythm).

7. CONCLUSIONS

In this work we proposed a new melody disentanglement 

scheme that decomposes a melody to three basic 

aspects: a) the relative pitch, b) the relative rhythm, 

and c) music theory-related information (e.g., key, pitch 

distribution). Based on this factorization, we developed 

a VAE-based system for interactive musical inpainting. 

This system allows users to draw pitch and optional note 

density curves to guide the pitch contour and rhythm of 

Figure 7: Two examples obtained during the user studies. The first line is the output of the proposed VAE model and the next two 

contain the baselines’ ouputs.
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the generated melodies. We ran objective experiments 

on simulated data and designed a web application to 

conduct subjective experiments with 23 participants. 

Results showed that this novel interaction is intuitive and 

effective, and that our model outperforms two baselines 

based on previous work. In the future we plan to address 

some of the limitations of the current system and also 

explore more possible applications of the proposed 

melody disentanglement in symbolic music generation 

and analysis.

NOTE
1 https://github.com/xribene/DrawAndListen.
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