
RESEARCH

Draw and Listen! A Sketch-
Based System for Music
Inpainting

CHRISTODOULOS BENETATOS

ZHIYAO DUAN

ABSTRACT

In this work we implement an interactive system for filling in missing measures in a

monophonic music piece. This system takes a user’s hand-drawn curves as input and

generates a melody whose rhythm and pitch contour match with the curves. Contrary

to previous interactive music inpainting work, users of the proposed system do not

need to understand the music notation; they just need a rough idea of the shape of

the melody and draw it out. This system is implemented under the variational auto-

encoder framework and is enabled by a proposed melody disentanglement scheme to

disentangle relative pitch, relative rhythm and musical context. We also create a web-

based graphical user interface to facilitate the user interaction. We evaluate the system

on a commonly used Irish folk song dataset. Objective and subjective evaluations

show that this novel interaction is intuitive and effective for melody inpainting, and

the proposed neural approach outperforms two baselines we developed based on

previous work, in terms of musicality and fidelity to the user’s input.

CORRESPONDING AUTHOR:

Christodoulos Benetatos

Department of Electrical

and Computer Engineering,

University of Rochester, NY, US

c.benetatos@rochester.edu

KEYWORDS:

music inpainting; human

computer interaction;

automatic music generation;

variational autoencoder

TO CITE THIS ARTICLE:

Benetatos, C., and Duan, Z.

(2022). Draw and Listen! A

Sketch-Based System for Music

Inpainting. Transactions of

the International Society for

Music Information Retrieval,

5(1), 141–155. DOI: https://doi.

org/10.5334/tismir.128

*Author affiliations can be found in the back matter of this article

142Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

1. INTRODUCTION

In the area of automatic music generation, one of the

research goals is to design interactive systems that

engage users in the creative process. The level of user

engagement varies. Some systems allow users to provide

a seed input (Mao et al., 2018; Hadjeres and Nielsen,

2020; Huang et al., 2019) or simple controls (Wuerkaixi

et al., 2021) to guide the music generation process. Other

systems require a constant input stream from the users

for real-time accompaniment generation (Dannenberg

and Raphael, 2006) or collaborative music improvisation

(Lewis, 2000; Benetatos et al., 2020). Another dimension

of user engagement is the level of music knowledge that

the user is assumed to have. Some systems only assume

users to understand high-level semantic meanings such

as genre or mood (Mao et al., 2018), while others require

users to know basic music theory (Chen et al., 2020) or

even keyboard and improvisation skills (Benetatos et al.,

2020).

In this work, we focus on the task of music inpainting,

namely the task of filling in missing measures given a

known musical context. Music inpainting can find many

applications in computer assisted music composition

and human-computer interaction systems for creative

use cases. Previous work on music inpainting either

does not support user interaction (Pati et al., 2019),

or assumes users to know some music theory in order

to achieve musically meaningful results (Chen et al.,

2020). Our goal is to design a system that engages users

into the music inpainting process without assuming a

musical background. Specifically, our system1 allows

users to draw curves, and the system will turn them into

musically meaningful content matching with the given

musical context (see Figure 1).

We achieve this by factorizing a to-be-generated

melody into three basic aspects: a) the relative pitch, b) the

relative rhythm, and c) music-theory-related information

(e.g., key, pitch distribution). Here a) and b) are provided

by users by drawing a pitch curve and additional note

density curves, while c) is inferred by the system from

surrounding measures to complement the intuitive inputs

from the user. Previous research has shown that ordinary

users, even without any musical background, understand

the concepts of high and low of pitch and dense and sparse

of note events (Dowling et al., 1999). In addition, most

people are able to “hum” the (exact or approximate) pitch

and rhythm of a melody they have in mind, even without

any musical training. Therefore, drawing a relative pitch

curve with additional curves to indicate the relative note

density, in our view, is a feasible task for a wide range of

users. Our proposed system can thus help ordinary users

to engage in music inpainting and other collaborative

music composition practices.

The contributions of this paper are threefold. First,

we propose a novel and intuitive way for users without

musical training to control important musical elements

(pitch and rhythm) in an interactive melody inpainting

process. Second, we design a neural approach that

disentangles relative pitch, relative rhythm, and other

music-theory-related information (e.g., key, note and

onset distributions) for this interaction. Third, objective

and subjective evaluations show that the proposed

neural approach achieves significantly better results than

a rule-based and a genetic algorithm baseline, in terms

of musicality and fidelity to the user’s input.

2. RELATED WORK
2.1 CONTOUR BASED MUSIC GENERATION

The idea of designing music interaction systems based on

human ability of understanding and processing melodic

contours has been investigated for decades. The “UPIC”

(Xenakis, 1977) is a pioneering work by Iannis Xenakis,

which enables users to directly control the characteristics

of a waveform, including pitch and dynamics, using

freehand drawings on a board. Users can draw many

lines which are mapped to oscillators with predefined

timbre characteristics. The highs and lows of the drawn

lines control the highs and lows of each oscillator’s

pitch using a straightforward mapping. This work has

been the inspiration for the development of other works

that convert a graphical score to a synthesized audio

waveform (or events sent to an external synthesizer), such

as “IanniX” (Coduys and Ferry, 2004), “Metasynthesis”

(U&I-Software, 1997), and “Music Sketcher” (Thiebaut et

al., 2008).

A similar idea was exploited by Berg et al. (2012),

where the body movements of a user are used to

generate music by mapping the 3D coordinates of all

body joints to the parameters of a frequency modulation

synthesizer. Even though no drawing is involved here, the

movement trajectory of the body parts can be seen as

melodic contour drawing.

Additionally, there are systems that focus on symbolic

music generation. A famous system is “Hyperscore”

(Farbood et al., 2004), which aims to provide opportunities

to novices, especially children, to compose music

using drawings and other graphical tools. “Hyperscore”

provides a melody-pattern-based composition. First,

users create their own melodic patterns (each with

a different color), and then they compose a piece by

drawing curves of different colors on a canvas. The color

of a curve indicates the melodic pattern to be played,

while its shape indicates transformations on the original

melodic pattern.

In Piano Genie (Donahue et al., 2019), users can play

melodies on a full 88-key piano by just controlling a small

8-key keyboard, where the 8 keys are lined up from low

to high in pitch. The direction of pitch movement of the

generated melody follows that on the small keyboard,

and the note onsets match the key strokes.

143Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

Another more relevant system to ours is included in

the notation software named “Pizzicato” (Arpege-Music,

2013), where users can fill in a measure by drawing a

pitch curve. However, this is a rule-based system, and

it requires users to provide the exact rhythm as well as

chord labels for every beat. Furthermore, the final notes

are generated by selecting the note contained in the

chord that is closest to the pitch curve at each onset

position, instead of being dependent on the surrounding

measures. As a consequence, to generate music that fits

the context, a user needs to understand music notation,

rhythm and even chords. Therefore, it is not suitable for

ordinary users without a music background.

Finally, “JamSketch” (Kitahara et al., 2018) is a system

that generates melodies based on pitch curves drawn

by the user, in a real-time improvisation task. A genetic

algorithm is designed to determine the notes of the

melody, however, the chord progression is given and

the rhythmic pattern is selected from a predefined set

of rhythms. While this rhythm limitation is addressed in

follow-up work (Yasuhara et al., 2019), where another

genetic algorithm is used to generate an appropriate

rhythmic pattern based on the user’s input, this system

cannot be used in tasks where a chord progression is not

available.

2.2 MUSIC INPAINTING

Music inpainting has been applied to both the audio and

symbolic domains. In the audio domain, the inpainting

methods try to recover missing data in the waveform,

which can occur due to various reasons such as distortions

and transmission errors (Adler et al., 2012; Marafioti et

al., 2020). The same term has also been used to describe

the bandwidth extension problem, where the missing

high frequency content has to be estimated (inpainted)

from the low frequencies (Greshler et al., 2021).

Different from the audio domain, applications for

symbolic music inpainting are not motivated by data

recovery problems but by the need for creating new

interactive tools for music creation. We will describe

two recent neural network based works. In “InpaintNet”

(Pati et al., 2019), given the past and future content

of a missing part of music, it predicts a latent vector

representation of the missing part which is later decoded

to the symbolic score format using the decoder of a

Variational Autoencoder (VAE). In “InpaintNet”, a user

cannot guide the generated result. “Music SketchNet”

(Chen et al., 2020) builds on “InpaintNet” and tries

to solve this interactivity problem by allowing users

to specify some music ideas to guide the final result.

A user can specify a sequence of note names, or the

rhythmic pattern of a to-be-generated measure. Even

though this interactivity is very useful, the user has

to make decisions based on music theory to achieve

harmonically coherent results, which can be difficult for

non-musician users.

3. PROPOSED METHOD
3.1 KEY IDEA

The key idea behind our proposed system is the following

natural way of modeling a melody. We can think of

any melody as an integration of pitch p, rhythm r, and

other music-theory-related information. Pitch can be

decomposed into the relative pitch rp and the pitch offset

(or average pitch level) po. Similarly, rhythm r can be seen

as the sum of relative rhythm rr and the rhythm offset

(or maximum note duration) ro. Music-theory-related

information can be inferred from surrounding measures,

or the musical context. For example, a melody A

consisting of a quarter note followed by two eighth notes

and a melody B consisting of an eighth note followed

by two sixteenth notes, have the same rr, but different

ro (quarter for A, eighth for B). Finally, the musical

context, or c, describes shared patterns with surrounding

measures. Using non-rigorous math language, a melody

can be represented as:

=

Å

Å

Å
Å .

Melody relative pitch

pitch offset

relative rhythm

rhythmoffset

context

 (1)

We make use of the circled addition symbol to note that

this equation is conceptual and does not represent the

actual addition of vectors.

When the first four factors of Equation (1) are “precise”,

the context factor c is not needed to infer the melody. In

case that the information stored in the first 4 factors is

vague, the missing information can be complemented by

the context c. For example, if the relative pitch factor rp

only stores the pitch trend but not the exact intervals, the

missing pitch information can be approximately inferred

from the context c (e.g., the key and pitch distribution).

Another extreme case is when the first 4 factors are

completely missing. In this case, all the information

about the melody has to be inferred from the context c.

A fully automatic inpainting system such as InpaintNet

(Pati et al., 2019) is such an example, where the missing

measure is completely estimated from the surrounding

measures.

3.2 TASK DESIGN

As shown in Figure 1, the proposed interactive music

inpainting task is to fill the missing middle measure of

a three-measure excerpt of a monophonic melody by

drawing curves.

The user uses the rectangular shaped canvas (Figure 1

middle) to draw a pitch curve (green) and optional note

density curves (blue) to guide the melody’s relative pitch

and relative rhythm. The horizontal axis of the canvas is

time covering one bar, while the vertical axis is the pitch

axis. The user can also use the two sliders to control the

pitch offset and rhythm offset of the generated melody.

144Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

From these user inputs, the system generates music for

the middle measure and displays it in the score (Figure 1

bottom).

The reason that we allow users to draw optional

note density curves is to give them better control of

the rhythm of the generated melody. A pitch curve

itself may or may not contain important rhythm

information. For example, a pitch curve with many

prominent peaks and valleys, such as that in Figure 4,

should correspond to a melody that has at least as

many notes as the peaks and valleys, with onsets

around them. On the other hand, a monotonically

increasing pitch curve, such as the second curve in

Figure 3, does not provide enough information to

decide on the number and the location of notes. The

optional note density curves (i.e., blue lines in Figure 1)

are stacked above or below the pitch curve. The more

note density curves are stacked in an area, the higher

note density the area has, following a similar concept

of beams in music notation.

These four types of user input have a direct

correspondence to the first four factors of Equation (1).

The fifth factor, context, is estimated by the system from

the surrounding measures. As explained in Section 3.1,

when the first four factors provide less complete (or more

vague) information, the generation of the missing melody

is more dependent on the context c, i.e., the surrounding

measures. One way to control the “vagueness” of the first

four factors is to apply different levels of quantization to

pitch and rhythm representations computed from the

drawn curves.

3.3 MODEL ARCHITECTURE

The model we propose is a variational auto-encoder

(VAE) (Kingma and Welling, 2014; Higgins et al., 2016)

based architecture. As shown on the left side of Figure 2,

we have two encoders, Q
curve

 and Q
context

, to process the

user’s input and the context measures, respectively. The

encoders’ output forms the VAE’s latent vector Z = [Z
c
;

Z
rp

; Z
rr
], i.e., a concatenation of three vectors, where Z

c

stores the context information, Z
rp

 stores the relative

pitch information, and Z
rr
 stores information about the

relative rhythm. On the right side, we use three decoders,

P
rp

, P
r
, and P

midi
, with different intermediate losses to

achieve the desired disentanglement of the three latent

variables.

Figure 1: Top: A triplet of music measures. The first and

third are the context measures, and the middle one is to be

“inpainted”. Middle: The user input area consisting of a canvas

for drawing the curves and the sliders to control the pitch

offset and note density for the whole measure. Bottom: The

generated result.

Figure 2: Overall structure of the proposed VAE-based model. Multiple encoders are used to encode user’s input and context

measures, and multiple decoders are used to achieve the desired disentanglement of latent variables and to generate the missing

measure.

145Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

3.3.1 Encoders

The VAE encoder Q consists of a CNN encoder Q
curve

 for

the user drawn curves, and a GRU encoder Q
context

 for

the surrounding context measures. The conditional

probability for the overall encoder is factorized as:

=
´

(| , , ,)

(, | ,)

(| ,),

rp rr prev next

curve rp rr rp rr

context c prev next

Q Z F F M M

Q Z Z F F

Q Z M M
 (2)

where F
rp

 and F
rr
 denote the relative pitch and relative

rhythm functions, respectively, which are derived from

the users’ input curves (see Section 3.4.1). Note that Q
curve

only encodes user drawn curves but not the slider inputs.

Instead, slider inputs go to the decoders directly. This

pushes the latent vectors Z
rp

 and Z
rr
 to learn relative pitch

and rhythm representations.

The pitch and rhythm functions are each a 512-D

vector and are stacked together into a 2×512 matrix.

The curve encoder Q
curve

 consists of 7 layers of residual

blocks with kernel size 3, batch normalization, no pooling

operations, and leaky ReLU as an activation function. The

output of Q
curve

 is the concatenation of latent vectors Z
rp

and Z
rr
, each with dimension of 85. Q

context
 consists of two

GRU encoders, one for the previous measure and one for

the next measure. We use an embedding layer of size

128 to encode the input of each GRU encoder, and each

of them has 2 bidirectional layers with 2048 units. Their

outputs are concatenated and then put through a dense

layer to get the latent vector Z
c
, with a dimension of 85.

3.3.2 Decoders

We design three VAE decoders based on Yang et al.

(2019). Two of them are intermediate decoders, where P
rp

generates the relative pitch output T
rp

, and P
r
 generates

the rhythm output T
r
. The third decoder, P

midi
, takes the

previous intermediate outputs as input and generates

the MIDI output (i.e., final output of the model) for the

middle measure M
cur

 (see Section 3.4). The conditional

probability is factorized as:

= ´
´

(| , ,) (| , , ,)

(|)

(| , ,),

cur p r cur c rp r pmidi

rp rp rcp

r r c rr r

P M Z S S P M Z T T S

P T Z

P T Z Z S
 (3)

where S
p
 and S

r
 denote the pitch and rhythm slider

values, respectively.

We can see that Z
c
 is an input not only to the final

decoder P
midi

, but also to the rhythm encoder P
r
. The

reason is that we expect Z
c
 to contain some rhythmic

information about the context measures, which may

be useful for generating the rhythm T
r
 of the missing

measure. This is further explained with an example in

Section 3.5.2. The three VAE decoders each consist of 2

layers of unidirectional GRUs with 2048 units, and we use

cross-entropy losses to train them.

Finally, we add an additional MLP decoder,

P
chroma

(V
chroma

|Z
c
), to generate the chroma vector V

chroma

which is the 12-bin binary chroma vector of measure

M
cur

, with active pitch classes taking the value of 1. We

use binary cross-entropy to train this branch. This multi-

task scheme helps to reduce out-of-key notes in the

generated melody.

3.4 DATA REPRESENTATION

In this section, we describe the system input and output

representations during inference.

3.4.1 User Drawings

As mentioned in Section 3.2, the user draws a pitch

curve C
p
 and one or more optional note density curves

C
nd

 (Figure 1) on a canvas. The user’s 2D input is first split

into connected components using the depth-first search

(DFS) algorithm. The longest component is considered

the pitch curve C
p
, and is converted to a 512-point 1D

signal recording the Y coordinates of the curve. It is

then filtered with a Butterworth low-pass filter with a

normalized cutoff frequency Ω
3dB

 = 1/50, to give us the

relative pitch function F
rp

. The rest of the components

of the drawing, if any, are treated as the note density

curves, from which the relative rhythm function F
rr
 is

calculated. Each note density curve is projected to the

X axis to obtain a binary 512-point 1D signal, whose

value is 1 within the horizontal range of the curve and

Figure 3: An example of 4 different input curves using the

same context measures. The rhythm slider was set to 2 (‘high’)

for the first, and 1 (‘medium’) for the last three. Note how the

pitch contour and rhythm of the generated melodies follow

the hand-drawn pitch curves (green) and note density curves

(blue).

Figure 4: An example of one hand-drawn pitch curve working

with three different context measures to generate different

but context matching melodies. The rhythm slider was set to 0

(‘low’) for the first, and 2 (‘high’) for the last two.

146Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

0 outside the range. All of the 1D signals of all projected

note density curves are summed together to create the

relative rhythm function F
rr
, which describes note density

over time. Note that since the system requires 0 ≤ F
rr
 ≤ 2,

values of F
rr
 exceeding 2 will be clipped.

3.4.2 Pitch and Rhythm Slider Inputs

During inference, we simply use 3-value sliders, which

directly map to 0, 1 and 2 from low to high.

3.4.3 MIDI Output

Like Yang et al. (2019), for the MIDI output vector T
midi

, we

use MIDI numbers from 0 to 127 for note onsets, 128 for

the holding state and 129 for rests. Instead of a regular

16th note quantization grid, we use the method from Pati

et al. (2019), an uneven grid that is able to encode both

8th-note triplets and 16th notes using 24 grid positions

per measure.

3.4.4 Rhythm and Relative Pitch Outputs

We need to define the two intermediate output vectors for

rhythm T
r
 and relative pitch T

rp
, to train the intermediate

decoders P
r
 and P

rp
 respectively. Both relative pitch and

rhythm output vectors have the same length as the final

MIDI output vector, which is 24. For T
r
, we follow Yang et

al. (2019), and use three tokens: 0 for onsets, 1 for the

holding state and 2 for rests.

The process for obtaining the T
rp

 is the following. For

every pair of consecutive onsets in positions i and j = i +

n where n > 0, we calculate the MIDI interval Δ = T
midi

[j]-

T
midi

[i] and then perform a linear interpolation between

i + 1 and j,

D

= - Î +[] () , [1,].rpT k k i k i j
n

 (4)

In other words, T
rp

[k] describes the hypothetical pitch

interval between the current position k (not necessarily

an onset) and the previous note onset, as if the note

changed its pitch linearly. The reason for this treatment

is to simulate hand-drawn pitch contours, which typically

show a continuous transition instead of a step from one

note to another.

As explained in Section 3.2, the more precise the T
rp

values (pitch intervals) are, the less information is needed

from the musical context c in the melody generation,

and the more closely the generated melody follows

the input pitch curve. However, our goal is to view the

input curve as providing a prime cue for generating the

melody instead of creating a precise 1–1 mapping like

what “Pizzicato” (Arpege-Music, 2013) does. Therefore,

we quantize the T
rp

 values to the closest quantization

levels to make their representations more vague in the

latent vector Z
rp

. By controlling the level of quantization,

we can control the relative influences of the input curves

and the musical context to the final generation. After

some experiments, we empirically choose to use 7 levels

with central bins at {–9, –5, –1, 0, 1, 5, 9} in semitone

units.

3.5 TRAINING

The proposed system takes user drawings and slider

values as the input and generates MIDI notes as the

output. To train the system, one way is to collect

such input-output pairs from experienced users. This,

however, is very time consuming and requires music

expertise of the users. In this paper, we propose to use

MIDI melodies and simulate user drawings and slider

values. Specifically, we derive a relative pitch function,

a relative rhythm function (Section 3.5.2) and pitch and

rhythm slider values (Section 3.5.3), from the middle

measure of each three-measure music excerpt. In this

way, we are able to create many input-output pairs to

train our system.

3.5.1 Datasets

We use the Irish Folk Music dataset (Sturm et al., 2016)

to train our system. We only keep the MIDI files in 4/4

time signature that have more than 3 measures, totaling

24,065 songs and we randomly split them into 8:1:1 for

training, validation, and test sets. After that, we extract

all possible combinations of three consecutive measures

to create the final training dataset, totalling 710,002

three-bar excerpts.

The excerpt melodies extracted from the Irish Folk

Music dataset, though diverse, have a limited note

range, rarely exceeding an octave. This could be a

problem for the Q
curve

 encoder when users draw curves

with significant fluctuations. To fix that, we also create

a dataset of randomly generated three-bar melodies,

within a maximum range of 2 octaves. This dataset

contains much more diverse pitch fluctuations and helps

Q
curve

 to be prepared for a wide range of drawn curves

from users.

3.5.2 Deriving Relative Pitch and Rhythm Functions

As mentioned in the beginning of Section 3.5, we need to

derive the relative pitch and relative rhythm functions for

the middle bar of each training excerpt to simulate the

user input. In order to extract these functions from the

MIDI melodies, we use a regular time quantization grid of

48 positions per measure to represent the melodies. Note

that this melody representation is different from the one

we used in Section 3.4.3. For the relative pitch function

F
rp

, we first obtain a piece-wise linear curve by connecting

note onsets. The Y-axis is measured in MIDI number. We

then evenly sample this curve into a 512-point sequence,

and low-pass filter it using a Butterworth low-pass filter

with a normalized cutoff frequency Ω
3dB

 = 1/50. Finally,

since we find that a melody rarely (for this dataset)

exceeds the range of 2 octaves within a measure, we

normalize it by subtracting the middle value of its range

and divide it by 12. In the rare cases (0.015% of all

147Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

measures) that the value range exceeds 2 octaves, we

divide it by the half of the range instead to ensure the

normalized values are in [–1,1].

To derive the relative rhythm (i.e., relative note density)

function F
rr
, it is necessary to derive two intermediate

quantities. First, we define a vector rc of length 48

to represent the note density computed from note

durations. At each note onset position i, it takes the value

rc
i
 = log

2
 (1/dur

i
), where dur

i
 is the duration of the current

note divided by the total duration of the measure.

In our data, the smallest note duration is a 16th note,

so 0 = log
2
 (1/1)≤ rc

i
 ≤ log

2
 (1/(1/16)) = 4. For positions that

are not onsets, the value of the previous onset position is

used. After that, we also evenly sample this vector into a

512-point sequence, to match the length of the relative

pitch function F
rp

. Second, we define a vector qrc which is

the result of a 3-level quantization of rc:

ì < £ïïïï= < £íïïï >ïî

0 0 1.25

1 1.25 3.29.

2 3.29

i

i i

i

rc

qrc rc

rc

 (5)

Finally, we set F
rr
 = qrc – min(qrc). Subtracting the

minimum value of qrc makes F
rr
 only contain information

about the relative rhythm.

The quantization step is to make the rhythm

representation more vague, as explained in Section 3.1.

The discarded rhythmic information due to quantization

is expected to be retrieved from the context measures

through Z
c
. An example of rhythmic information that Z

c

can encode is whether the context measures have many

triplet notes, or 16th notes. A relative rhythm function

F
rr
 may indicate high or low note density, but the actual

note durations that will be used depend on the musical

context. In fact, this is exactly what we see happening

in some of our model outputs in Figure 4, where for the

same note density controls, a pitch curve produces 8th-

note triplets (line 2) and 16th patterns (line 3), depending

on the surrounding measures.

3.5.3 Deriving Slider Values

For the pitch slider S
p
, we calculate the average pitch

value of the melody, and we apply a 3-level quantization,

with central bins at {65, 71, 77}, in the unit of MIDI

numbers. These quantization values correspond to the

low, middle and high areas of a treble stave. As for the

rhythm slider S
r
, we set it to S

r
 = min(qrc), where qrc is

defined in Section 3.5.2.

3.5.4 Training Configuration

A β value of 0.1 was used to weight the KL loss, as proposed

in β-VAE (Higgins et al., 2016). For the stochastic gradient

descent, the Adam algorithm was used (Kingma and Ba,

2015), with a linear learning rate schedule from 0.0003

to 0.00001. We trained for 200 epochs with batch size

128, and used teacher forcing to train the RNN decoders

P
midi

, P
rp

 and P
r
, with probability 1.0, which was gradually

reduced until 0.5.

As for training using the dataset of randomly

generated melodies, since the notes are random, there

is neither correlation among the three bars nor useful

musical information within each measure. Therefore, for

such training data, we only use the intermediate relative

pitch cross-entropy loss but not the other musically

meaningful losses.

During training, we sample these randomly generated

excerpts with probability 0.1 and the Irish excerpts

with probability 0.9. We also apply a random shift with

probability 0.1 to each note in the melodies along both

time and pitch. This is to compensate for the variability

of hand drawn curves of the users during inference.

The shifts along the time axis were no more than an

eighth note, and along the note axis were no more than

2 semitones. We should mention that we apply this

random shift only when deriving the relative pitch and

relative rhythm functions, without applying any shifting

on the training targets.

4. EXPERIMENTS
4.1 BASELINES

In this section, we conduct objective and subjective

evaluations to assess the feasibility and usability of the

proposed system for drawing-based melody inpainting.

We compare it with two closely related methods as

baselines under the same user interface. The comparisons

focus on algorithm design instead of the interface design,

as the former is the main contribution of this work.

4.1.1 Rule-Based Baseline (RB)

We develop a rule-based system as a baseline, following

the gist of “Pizzicato” (Arpege-Music, 2013). Many

necessary modifications have to be introduced, since

in the task described in “Pizzicato” (see Section 2), the

generation of the music measure does not depend

on the surrounding measures, and the user is required

to provide the exact rhythm and chord labels for every

position.

The RB baseline generates the rhythm of the melody

in the following way. Note onsets are placed at local

peaks and valleys of the relative pitch function F
rp

. If the

function does not have any peaks and valleys, then we

fill the measure with notes whose duration depends on

the value of the rhythm slider S
r
 (quarter notes for S

r
 =

0, eighth notes for S
r
 = 1 and sixteenth notes for S

r
 = 2).

If the user draws extra note density curves C
nd

, we add

extra onsets in the area under the curves fitting in the

16th note grid. Given the variability and the inaccuracy

of a user’s input, we quantize the position of the note

density curves and the indices of the peaks of the pitch

curve to the nearest sixteenth note.

148Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

To decide the pitch at each onset position, we first find

the note n that corresponds to the value of the pitch curve

in the onset position. Then, we replace n with the closest

note (in terms of MIDI numbers) from an appropriate set

of notes.

This set consists of all the notes that belong to the key

implied by the two surrounding measures. We estimate

the key using the Krumhansl key detection algorithm

(Krumhansl and Kessler, 1982) implemented in the

music21 python library (Cuthbert and Ariza, 2010). We

consider this a strong baseline, because the generated

melody always matches the input curves, and notes

always belong to the estimated key.

4.1.2 Genetic Algorithm Baseline (GA)

We also develop a baseline based on the work of the

“JamSketch” system (Kitahara et al., 2018; Yasuhara et

al., 2019). Again, we introduce necessary modifications

to make it comparable with our system. The original

“JamSketch” does not support 16th notes, and the note

selection does not depend on the previous measures but

on the predetermined chord progression for this measure.

Finally, the inputs of our system include additional

note density curves and extra pitch and rhythm sliders,

which do not exist in “JamSketch”. We implement these

modifications by adding new terms in their genetic

algorithms’ fitness functions.

Following their work, we first use a genetic algorithm

to generate the rhythm in a form of a binary vector (1 for

onsets and 0 for holds), and then use another genetic

algorithm to generate the pitches for the onset positions

indicated by the rhythm vector.

For the following analysis, we will use the letters

u,c,s as superscripts to indicate vectors related to the

user input, a chromosome and the solution of a genetic

algorithm.

Rhythm Generation

As mentioned earlier, the rhythm chromosomes rc are

binary vectors of size L = 24, where L is the number of

grid positions in a bar as described in Section 3.4.3. We

define u

rr
F as the relative rhythm function extracted from

the user’s input and c

rr
F as the one extracted from a

chromosome. Additionally, we define nc = sum(rc) as the

number of notes/onsets in a chromosome and dc as a

vector of size nc containing the duration of each note of

the rhythm chromosome.

For generating rhythm, we use a combination of global

and local features to design the fitness function

= ´ + ´

+ ´ + ´
0 1

2 3

() () ()

1() ()

f R w sim R w lik R

w seq R w slid R (6)

where w
0
 = 6, w

1
 = 1, w

2
 = 1 and w

3
 = 2 are weights for the

four terms, and their values are empirically chosen with

dozens of trials to optimize the performance:

•	 sim(R) : The similarity of a chromosome’s rhythm

with the desired rhythm of the user

-

=

=- -å
1

2

0

() ([] []) .

L

u c

rr rr

i

sim R F i F i (7)

•	 lik(R) : The likelihood of a chromosome, which is the

same as that of Yasuhara et al. (2019).

-

=

=-å
1

0

() (|),
L

c

i

i

lik R P r i (8)

 where P(r
i
c|i) is the probability of having an onset at

position i, and it is calculated from the dataset.

•	 seq1(R) : The duration bi-grams. This term is not

present in Yasuhara et al. (2019) and it significantly

improves the generated rhythm.

-

-

=

=-å
1

1

1

1() (|),

cn

c c
i i

i

seq R P d d (9)

 where -1(|)c c

i i
P d d is the conditional probability of a

note with duration -1
c

i
d being followed by one with c

i
d ,

and it is calculated from the dataset.

•	 slid(R) : The global note density. This terms takes into

account the rhythm slider input.

 =- -() | |,c

rslid R den S (10)

 where denc measures the note density of the current

chromosome

ìï < <ïïïï= £ <íïïï ³ïïî

0, for 0 6

1, for 6 12,

2, for 12

c

c c

c

n

den n

n

 (11)

 and S
r
 is the slider input taking three values 0,1,2.

After this genetic algorithm runs, we pick the rhythm

solution rs that has the largest fitness score as the

chromosome rc in the final generation.

Pitch Generation

Given the rhythm solution rs from the previous rhythm

generation step, we use another genetic algorithm to

generate the pitch solution vector ps, which has size ns.

The pitch chromosome pc consists of pitch genes that can

take MIDI values from 48 to 84. From pc we can derive the

chromatic pitch class vector of the chromosome using

cpcc = pc mod 12. We also define u
rpF as the relative pitch

function extracted from the user’s input and c
rpF as the

one extracted from a pitch chromosome. Finally, we

define ts as a vector of size ns containing the position of

each note of the rhythm solution.

The fitness function for pitch generation is

= ´ + ´

´ + ´

´

0 1

2 3

4

() () 1()

2() ()

(),

f P w sim P w seq P

w seq P w harm P

w slid P
 (12)

149Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

where the weights w
0
 = 3 and w

1
 = w

2
 = w

3
 = w

4
 = 1 were

manually set for the five terms:

•	 sim(P) : The similarity of the current chromosome’s

pitch curve with the desired pitch curve of the user

-

=

=- -å
1

2

0

() ([] []) .

sn

u s c s
rp rpi i

i

sim P F t F t (13)

•	 seq1(P) : The chromatic pitch class bi-grams

-

-

=

=-å
1

1

1

1() (|),

sn

c c
i i

i

seq P P cpc cpc (14)

 where -1(|)c c
i iP cpc cpc is the conditional probability of

a note with chromatic pitch class cpc
i-1

 being followed

by one with cpc
i
.

•	 seq2(P) : The chromatic pitch class delta bi-grams

-

- - -

=

=- - -å
1

1 1 2

1

2() (|).

sn

c c c c
i i i i

i

seq P P cpc cpc cpc cpc (15)

•	 harm(P) : The fitness of the chromosome’s notes with

the given context

Î=- -
å ()

() (1),
| |

K
x N

x

harm P
N

1
 (16)

 where K is the set of the chromatic pitch classes that

belong to the key implied by the surrounding measures,

and N is the multiset that contains the chromatic pitch

classes of the current chromosome, and

ì Îïï=íï Ïïî

1 if ,
() : .

0 if .
K

x K
x

x K
1 (17)

•	 slid(P) : The global pitch offset

 =- -() | |,c
pslid P po S (18)

 where pos measures the pitch offset of the current

solution

ìï <ïïïï= £ <íïïï ³ïïî

0, for 65

1, for 65 71,

2, for 71

s

c s

s

n

po n

n

 (19)

 and S
p
 is the pitch slider input taking three possible

values 0,1,2.

In the original “JamSketch” implementation, they

added an additional pitch entropy factor to discourage

the generation of melodies with many repetitive notes.

Another trick is that they created a prefix tree from the

dataset melodies, and they used it to randomly generate

the initial pitch chromosomes for the genetic algorithm.

We omit both of those tricks since they did not seem to

affect the result.

4.2 OBJECTIVE EVALUATION ON SIMULATED

INPUTS

We attempt an objective evaluation of the model’s

performance using simulated data. That is, we simulate

users’ inputs to the inpainting task using relative pitch

and rhythm functions extracted from a randomly

selected measure from the test dataset. Specifically,

the simulation process goes as this: first, a random

3-measure excerpt [M
prev

, M
cur

, M
next

] is selected from the

Irish test dataset. The first and third measures serve

as the context for the inpainting task while the middle

measure is discarded.

Next, we randomly choose another measure ¢
cur

M , and

extract the relative pitch and rhythm functions ¢
rpF , ¢

rr
F and

slider values ¢
pS and ¢

r
S as described in Section 3.5, as if

they were derived from a user’s input. Feeding ¢
rpF , ¢

rr
F , ¢

pS ,
¢
r
S and the context measures to each inpainting model,

we generate a new measure ''

cur
M , from which we

calculate the functions ''

rpF and ''

rr
F and slider values ''

pS

and ''

r
S .

Ideally, the generated measure should fit to the

context, and its extracted curves and slider values

should be similar to those of the simulated input. We

therefore design three tasks to measure the pitch

contour similarity, rhythm similarity and context

fitness, respectively. For each task we run the above

simulation process 1000 times. The results are

summarized in Table 1. Descriptions of these three

tasks follow.

METRIC PROPOSED RULE-BASED GA M
CUR

(“MISSING”

MEASURE)

M
CUR

’ (FROM WHICH

USER INPUT IS

DERIVED)

Pitch curve DTW cost 6.1 ± 5.2 3.6 ± 2.4 13.3 ± 10.6 54.6 ± 38.3 –

Pitch slider match rate 98% 100% 93% – –

Rhythm curve DTW cost 8.4 ± 13.1 23.1 ± 41.1 41.0 ± 52.5 53.8 ± 61.3 –

Rhythm slider match rate 97% 92% 90% – –

Context match 86% 100% 80% 87% 45%

Table 1: Objective evaluation of measures generated by the three comparison methods (proposed, rule-based, and GA) taking a

simulated user input that is derived from a random measure. As controls, evaluation of the original “missing” measure M
cur

 and the

measure from which the user input is derived ¢
cur

M is also provided. Please refer to the main text for explanations of the metrics.

150Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

4.2.1 Pitch Contour Match

For this task, we make the observation that the rhythm

of the generated melody actually affects the melody

pitch contour. Taking the example of the GA method, if

the genetic algorithm responsible for rhythm generation

fails to generate enough note onsets, then the melody

pitch contour will not match the user’s input pitch curve.

To isolate the rhythm effects, we manually interrupt

the normal flow of generation to enforce the ground-

truth rhythm. We use a dense vector that consists of 16

sixteenth note positions to represent the ground-truth

rhythm.

A dense rhythm vector, compared to a sparse vector

that contains fewer note positions, allows the final note

generation stage to realize the pitch curve as faithfully as

possible. It is noted that some of the 16 note positions

will be onsets while the others will be holds, depending

on the ground-truth rhythm. Enforcing a specific rhythm

is easy since for all three methods the generation process

is sequential; first the rhythm and then the pitch. For

the baseline methods RB and GA, we omit the rhythm

generation part and replace the binary rhythm vector

with the desired one, while for our proposed model, we

replace the output logits of the rhythm decoder P
r
 with

those that correspond to our desired rhythm.

We then use dynamic time warping (DTW) to globally

align the relative pitch function extracted from the

generated measure ''

rpF and the one extracted from the

randomly chosen measure ¢
rpF , and use the alignment

cost to evaluate the match between the simulated input’s

and the generated melody’s relative pitch function for

each method. The mean and standard deviation of the

alignment cost over the 1000 runs is 6.1±5.2 for the

proposed model, 3.6±2.4 for RB, and 13.3±10.6 for GA.

For reference, we also extract the ground-truth relative

pitch function F
rp

from the discarded middle measure

of the 3-measure excerpt where the context measures

come from, and calculate the average alignment cost

between F
rp

 and ''

rpF . This reference can be viewed as

the average alignment cost between two random

pitch curves in the dataset. As they are unrelated, the

alignment cost is as high as 54.6±38.3. Furthermore we

measure the percentage of having ¢
pS = ''

r
S (i.e., matching

pitch offsets between the randomly chosen and the

generated measure), which is 98% for the proposed

model, 100% for RB and 93% for GA. As expected, the

RB method achieves the best results, as it is designed

to directly maximize the relative pitch contour match.

Additionally, both our method and the GA baseline

significantly improve the relative pitch contour matching

compared to the reference.

4.2.2 Rhythm Match

For this task, we let the systems generate the rhythm

uninterrupted, and the same as before, we use DTW

to globally align the relative rhythm function extracted

from the generated measure ''

rr
F and the one extracted

from the randomly chosen measure ¢
rr
F , and use the

alignment cost to evaluate the rhythm match. The mean

and standard deviation of the alignment cost over the

1000 runs is 8.4±13.1 for the proposed model, 23.1±41.1

for RB, and 41.0±52.5 for GA. Again for reference, we

extract the ground-truth relative rhythm function F
rr

from the discarded middle measure of the 3-measure

excerpt where the context measures come from, and we

calculate the average alignment cost between ''

rr
F and F

rr
,

and the value is 53.8±61.3. Furthermore, we measure

the percentage of having ¢
r
S = ''

r
S (i.e., matching rhythm

offsets between the randomly chosen and the generated

measure), which is 97% for the proposed model, 92% for

RB and 90% for GA.

4.2.3 Context Match

In an attempt to evaluate the match of the generated

melody with its surrounding measures, we calculate

the percentage of notes (chromatic pitch classes) in

the generated measure ''

cur
M that also belong to the

key (using the Krumhansl algorithm) of the original

measures M
prev

, M
cur

, M
next

. The average percentage was

86% for the proposed model, 80% for the GA baseline,

and 100%, which is by design, for the RB baseline. It is

noted that this metric is not an accurate descriptor of

the musicality of the result but just a rough indicator, as

1) the key can be ambiguous when only looking at the

three measures, and 2) even if the key is clear, passing

notes not belonging to the key can still produce musically

pleasant results. Nevertheless, we still think that this

metric provides a basic safeguard of ensuring the basic

musicality. For reference, the value of this metric for the

3-measure excerpts in the dataset is 87%, while if we

replace the middle measure with a random one from

the dataset, it goes to 45%. These results suggest that,

even though our proposed method achieves the closest

score to the one calculated from the original excerpts, for

all methods, the generated melody fits well to the the

musical context, at least in terms of pitch selection.

4.3 USER STUDIES

We perform subjective evaluation of the proposed

system and the baseline systems, to answer two research

questions: 1) Is drawing curves and setting sliders an

intuitive way to generate melodies for users with diverse

musical backgrounds? 2) How is the quality of the music

inpainting results of the proposed system compared

to that of the baselines? This study is approved by the

University of Rochester’s Institutional Review Board.

4.3.1 User Recruitment

We recruited 23 participants (11 female, 12 male)

with various musical backgrounds. Their participation

was voluntary (with oral consent) and without money

incentives. We asked them to self-assess their musical

151Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

background with a 4-way choice question. Specifically,

4 were professional musicians; 4 had been playing

an instrument for more than two years, but not

professionally; 6 were not familiar with Western music

notation, but had some general understanding of music

fundamentals, and the last 9 did not belong to any of

the above categories. We regard the latter two groups

as not having received formal musical training, or more

generally, not having a musical background.

Although our system was primarily designed for

non-musicians, we included amateur and professional

musicians as we believe their opinions are important for

assessing the musicality of the results.

4.3.2 User Interface and System Configuration

For this experiment, we developed a simple web-based

interface, shown in Figure 5, according to the task described

in Section 3.2. It consists of a canvas area for users to

draw the curves with their mouse, and three identical

display areas for showing the context measures and the

generated results for each method. The assignment of

methods to the display areas is randomized for every

trial to reduce biases toward a specific method. There

are buttons that affect all three methods: the “Get new

context” button randomly chooses context measures

from the test dataset and displays them in all display

areas. The “Clear Curve” button clears the canvas area.

Additionally, each display area has its own pitch and

rhythm sliders to adjust the relative levels, a “Generate”

button to generate the melody, and a “Play” button to

play the result. The right side of each display area is the

evaluation sub-area, where users are asked to rate the

pitch contour match, note density match and the overall

musicality of the result. At the bottom of the page is the

“Submit” button, which submits all the input, output, and

evaluation data after each trial for later analysis. Finally,

instructions of this task are shown at the bottom left

area of the interface throughout the experiment.

One problem that occurred in the design of this study

was the uneven execution time of these methods. For RB

it was about 2 seconds and for the proposed method it

was about 2.5 seconds, both measured on an Intel i7 CPU.

For GA, the nature of this method allows us to determine

the number of generations and limit the execution time

to our will. We set the execution time limit to 3 seconds,

which seemed sufficient for GA to reach a reasonable

performance without incurring too much time cost on

users. Even though we did not conduct any rigorous

evaluation, letting the GA method run for more than 3

seconds did not seem to improve the results. We then

added a 1 second delay and a 0.5 second delay to RB and

the proposed methods respectively to prevent users from

identifying these methods by their execution time.

4.3.3 Task

To start a user’s task, we dedicated 10-15 minutes to

explain what they had to do, answer their questions, and

run one or two training trials. We found this step necessary

especially for participants with no musical background.

After that, each user had to use the interface for at least 3

trials. Each trial starts by fetching new context measures

from the test dataset, drawing the curves, adjusting the

Figure 5: The web application developed for user studies. Detailed instructions are shown on the bottom left of the page throughout

the duration of the experiment. On the top left is the canvas where users draw the curves. On the right side, three identical rows of

context measures, generated results and control units are displayed corresponding to the three comparison methods (with a random

order for each trial).

152Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

sliders and generating a new melody for each method.

After listening to each result, they had to rate the pitch

contour match, the note density match and the overall

musicality of the inpainting result for each method using

the three evaluation sliders mentioned above. Each slider

uses a five-point scale from 1 to 5, with 5 indicating the

“best”. We refer to these questions with labels Q1-Q3.

The participants were also encouraged to think-aloud

while performing the task, in order to help us get some

more insights.

In addition to the three evaluation questions for each

method in each trial, after finishing all trials, they were

asked three questions to rate their overall user experience

throughout all trials and all three methods using a scale

from 1 to 5, with 5 being “Very Agree”. We refer to these

questions with labels Q4-Q6.

Q1 Rate the similarity between the hand-drawn

pitch curve and the generated pitch contour.

Q2 Rate the effect of the note density inputs

(rhythm slider and note density curves) to the

melody’s rhythm.

Q3 Rate the overall musicality of the final result.

Q4 Do you think this system provided an intuitive

way to generate a melody ?

Q5 Do you think drawing a pitch curve is an intuitive

way to control a melody’s contour?

Q6 Do you think drawing additional note density

curves is an intuitive way to control a melody’s

rhythm?

4.3.4 Results

Figure 6 shows the evaluation results for the six questions.

For Q1-Q3, there are 112 data points each, as each user

completed 4.8 trials on average. For questions Q4-Q6,

23 data points are available, as there was one response

from each user.

For each of the questions Q1-Q3, we run the Kruskal-

Wallis H-test (a non-parametric version of ANOVA), to

determine whether there is any statistical difference in

the performance of the methods. The p-values obtained

for all three questions are less than 10–5, suggesting the

existence of statistical differences. We then run pairwise

Mann Whitney U tests for each question.

The results of Q1 (pitch contour match) support the

objective evaluation findings in Section 4.2.1, that is,

the melodic contour of the generated melody is closely

related to the input pitch curve for all the methods,

with median values above or equal to 3. In addition, our

proposed method achieves significantly better ratings

compared to the baselines (p < 10–19 vs RB and p = 10–21

vs GA). One difference from the objective evaluation in

Section 4.2.1 is that the RB baseline achieves a lower

score than our proposed method. This happens because

in the objective evaluation we used the predefined

“dense” rhythm vectors (see Section 4.2.1), while on this

experiment the rhythm vector is generated according

to the user’s input. A “sparse” rhythm vector does not

contain enough notes to realize the user’s pitch curve.

The RB outperforms the GA in terms of pitch contour

matching (p < 0.005).

For Q2 (note density match), the proposed method

also receives significantly better (p < 10–5 vs RB and p

< 10–19 vs GA) ratings, showing its superior ability of

following the note density input controls (note density

curves and rhythm slider). Comparing the two baselines,

RB achieves better results (p < 10–5). These results are in

agreement with the ones obtained from our objective

evaluation (third and fourth line of Table 1).

For Q3, we can see that the proposed method

generates melodies that are significantly more musical

(p = 10–14 vs both). Additionally, the users thought that

GA results were similar in musicality to those of RB (p

> 0.4). One reason for the significantly lower musicality

score of the baselines, we believe, is due to the fact

that the baselines are prone to generating uncommon

rhythmic patterns (both of them) and out of context

pitches (GA), as also shown in Section 4.2. For RB, some

of the note positions are determined by the peak and

valley positions of the pitch curve; this sometimes results

in off-beat notes. In contrast, for the proposed method,

the shift invariance of its CNN encoder Q
curve

 and the data

augmentation tricks introduced in Section 3.5.1 make

it invariant to this type of misalignment. As for the GA,

this method cannot sufficiently explore its large search

spaces given the time constraints (i.e., 3 seconds in our

experiments); compared to the task of Yasuhara et al.

(2019), our search space is much larger.

In Figure 7 we provide two representative examples

obtained during the user studies. On the left example,

the user gave a much higher musicality rating to the VAE-

generated example compared with the baseline ones,

even though the output of all 3 methods received high

Figure 6: Boxplots of the answers (ratings on a 1–5 scale)

to the six subjective evaluation questions from all of the

23 participants (the higher the better). Each box for Q1–Q3

contains 112 points, while for Q4–Q6 contains 23 points. The

notch in each plot represents the 95% confidence interval

around the median. Outliers are shown as circles.

153Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

pitch and rhythm match scores. The VAE output used

more common rhythmic patterns than the baselines and

generated a chromatic passing note that leads to a more

surprising and musical melody.

The results for Q4–Q6 clearly show that this “Draw

and Listen” interaction was very intuitive for most of

the users. We also present some insights we gathered

due to the think-aloud policy, and some discussions we

had with the users. Out of the three users who rated

questions Q4–Q6 less than 3, all of them were musicians

(one professional and two amateurs). The professional

and one of the amateurs expressed their preferences

for the traditional way of melody composition, but they

also believed that this new type of interaction can be

useful for non-musicians. Additionally, some of the not-

so-advanced users who had some basic experience

with music production tools, had many ideas on how

to incorporate a system like this in their preferred digital

audio workstations (DAWs) to edit and generate MIDI

music.

5. LIMITATIONS

While the proposed model outperforms the two

baselines on all the questions, there is also much room

for improvement. For example, there may be a tradeoff

between faithfully following the user’s input and

musicality; it would be useful to have users control this

tradeoff through a parameter.

Another limitation is that the model only supports

inpainting of a single measure given its immediate

neighbors. Supporting a variable number of context

measures is not the main focus of this work, but it can

be realized by extending our current architecture or

combining it with models that already support this

feature (e.g., Chen et al., 2020).

Furthermore, in areas of high note density (indicated

by the user using note density curves or the slider), the

proposed model tends to generate mostly 8th-triplet

notes instead of 16th notes (first line in Figure 3 or

second line in Figure 4). It also never generates rests.

These limitations are due to the data bias in the Irish

dataset used for training, which contains 3 times more

8th-note triplets than 16th notes and less than 0.1% of

the tokens are rests.

Finally, regarding the user interface, one feature that

most of the users asked, is the ability to click and drag

parts of the curve to make minor adjustments. Some

users also expressed the desire to be able to explicitly

indicate areas for the model to generate rests.

6. APPLICATIONS

As a music inpainting tool, the proposed system could be

used as a composition plugin for music notation editors

where users could use the “pencil” tool to generate

melodies on the spot, conditioned on surrounding

measures. Additionally, since our system uses MIDI

to represent notes, it can work in applications that are

not based on Western music notation to lower the user

barrier. For example, it can be implemented as a plugin

for digital audio workstations (DAWs), which typically use

MIDI instead of music notation to represent the music

content. Additionally, the melody factorization we just

described can be used to support a number of diverse

applications. We can replace the hand-drawn curves with

anything that resembles a curve, such as a stock price

curve or a human body movement curve, to support

creative use cases.

In addition, we can use it to measure melodic similarity

and query a melody database by converting melodies

in the latent space and calculating their latent vector

distances based on any of the disentangled factors

(relative pitch and rhythm).

7. CONCLUSIONS

In this work we proposed a new melody disentanglement

scheme that decomposes a melody to three basic

aspects: a) the relative pitch, b) the relative rhythm,

and c) music theory-related information (e.g., key, pitch

distribution). Based on this factorization, we developed

a VAE-based system for interactive musical inpainting.

This system allows users to draw pitch and optional note

density curves to guide the pitch contour and rhythm of

Figure 7: Two examples obtained during the user studies. The first line is the output of the proposed VAE model and the next two

contain the baselines’ ouputs.

154Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

the generated melodies. We ran objective experiments

on simulated data and designed a web application to

conduct subjective experiments with 23 participants.

Results showed that this novel interaction is intuitive and

effective, and that our model outperforms two baselines

based on previous work. In the future we plan to address

some of the limitations of the current system and also

explore more possible applications of the proposed

melody disentanglement in symbolic music generation

and analysis.

NOTE
1 https://github.com/xribene/DrawAndListen.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation

grant No. 1846184.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS

Christodoulos Benetatos orcid.org/0000-0002-4008-3133

Department of Electrical and Computer Engineering, University

of Rochester, NY, US

Zhiyao Duan orcid.org/0000-0002-8334-9974

Department of Electrical and Computer Engineering, University

of Rochester, NY, US

REFERENCES

Adler, A., Emiya, V., Jafari, M. G., Elad, M., Gribonval,

R., and Plumbley, M. D. (2012). Audio inpainting.

IEEE Transactions on Audio, Speech and Language

Processing, 20(3):922–932. DOI: https://doi.org/10.1109/

TASL.2011.2168211

Arpege-Music (2013). Pizzicato notation software. http://www.

arpegemusic.com/manual36/EN855.htm. Online; accessed

9 December 2021.

Benetatos, C., VanderStel, J., and Duan, Z. (2020). BachDuet:

A deep learning system for humanmachine counterpoint

improvisation. In Proceedings of the International

Conference on New Interfaces for Musical Expression, pages

635–640.

Berg, T., Chattopadhyay, D., Schedel, M., and Vallier, T.

(2012). Interactive music: Human motion initiated music

generation using skeletal tracking by Kinect. In Proceedings

of the Conference of the Society for Electro-Acoustic Music

in the United States.

Chen, K., Wang, C.-i., Berg-Kirkpatrick, T., and Dubnov, S.

(2020). Music sketchnet: Controllable music generation

via factorized representations of pitch and rhythm. In

Proceedings of the 21st International Society for Music

Information Retrieval Conference, pages 77–84. ISMIR.

Coduys, T. and Ferry, G. (2004). Iannix aesthetical/symbolic

visualisations for hypermedia composition. In Journees

d’informatique musicale.

Cuthbert, M. S. and Ariza, C. (2010). Music21: A toolkit for

computer-aided musicology and symbolic music data. In

Downie, J. S. and Veltkamp, R. C., editors, Proceedings of

the International Society for Music Information Retrieval

Conference, pages 637–642.

Dannenberg, R. B. and Raphael, C. (2006). Music

score alignment and computer accompaniment.

Communications of the ACM, 49(8):38–43. DOI: https://doi.

org/10.1145/1145287.1145311

Donahue, C., Simon, I., and Dieleman, S. (2019). Piano Genie.

In Proceedings of the 24th International Conference on

Intelligent User Interfaces, pages 160–164, New York, NY,

USA. Association for Computing Machinery. DOI: https://

doi.org/10.1145/3301275.3302288

Dowling, W. J., Barbey, A., and Adams, L. (1999). Melodic and

rhythmic contour in perception and memory. In Yi, S.,

editor, Music, Mind, and Science, pages 166–188. Seoul

National University Press.

Farbood, M. M., Pasztor, E., and Jennings, K. (2004).

Hyperscore: A graphical sketchpad for novice composers.

IEEE Computer Graphics and Applications, 24(1):50–54.

DOI: https://doi.org/10.1109/MCG.2004.1255809

Greshler, G., Shaham, T. R., and Michaeli, T. (2021). Catch-A-

Waveform: Learning to generate audio from a single short

example. arXiv preprint arXiv:2106.06426.

Hadjeres, G. and Nielsen, F. (2020). Anticipation-RNN:

Enforcing unary constraints in sequence generation,

with application to interactive music generation. Neural

Computing and Applications, 32(4):995–1005. DOI: https://

doi.org/10.1007/s00521-018-3868-4

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,

Botvinick, M., Mohamed, S., and Lerchner, A. (2016). beta-

VAE: Learning basic visual concepts with a constrained

variational framework. In 5th International Conference on

Learning Representations.

Huang, A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler,

J., Hong, L., and Howcroft, J. (2019). Bach Doodle:

Approachable music composition with machine learning

at scale. In Proceedings of the 20th International Society

for Music Information Retrieval Conference (ISMIR).

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic

optimization. In Proceedings of the International

Conference on Learning Representations (ICLR).

Kingma, D. P. and Welling, M. (2014). Auto-encoding

variational Bayes. In Proceedings of the 2nd International

Conference on Learning Representations.

Kitahara, T., Giraldo, S., and Ramirez, R. (2018). JamSketch:

Improvisation support system with GA-based melody

155Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128

TO CITE THIS ARTICLE:

Benetatos, C., and Duan, Z. (2022). Draw and Listen! A Sketch-Based System for Music Inpainting. Transactions of the International

Society for Music Information Retrieval, 5(1), 141–155. DOI: https://doi.org/10.5334/tismir.128

Submitted: 22 December 2022 Accepted: 04 August 2022 Published: 02 November 2022

COPYRIGHT:

© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Transactions of the International Society for Music Information Retrieval is a peer-reviewed open access journal published by Ubiquity

Press.

creation from user’s drawing. In Aramaki, M., Davies,

M. E. P., Kronland-Martinet, R., and Ystad, S., editors,

Music Technology with Swing, pages 509–521. Springer

International Publishing. DOI: https://doi.org/10.1007/978-

3-030-01692-0_34

Krumhansl, C. L. and Kessler, E. J. (1982). Tracing the

dynamic changes in perceived tonal organization in a

spatial representation of musical keys. Psychological

Review, 89(4):334. DOI: https://doi.org/10.1037/0033-

295X.89.4.334

Lewis, G. E. (2000). Too many notes: Computers, complexity

and culture in Voyager. Leonardo Music Journal, pages

33–39. DOI: https://doi.org/10.1162/096112100570585

Mao, H. H., Shin, T., and Cottrell, G. (2018). DeepJ:

Style-specific music generation. In 2018 IEEE 12th

International Conference on Semantic Computing (ICSC),

pages 377–382. IEEE. DOI: https://doi.org/10.1109/

ICSC.2018.00077

Marafioti, A., Majdak, P., Holighaus, N., and Perraudin, N.

(2020). GACELA: A generative adversarial context encoder

for long audio inpainting of music. IEEE Journal of Selected

Topics in Signal Processing, 15(1):120–131. DOI: https://doi.

org/10.1109/JSTSP.2020.3037506

Pati, A., Lerch, A., and Hadjeres, G. (2019). Learning to traverse

latent spaces for musical score inpainting. In Proceedings

of the 20th International Society for Music Information

Retrieval Conference, pages 343–351. ISMIR.

Sturm, B. L., Santos, J. F., Ben-Tal, O., and Korshunova, I.

(2016). Music transcription modelling and composition

using deep learning. Conference on Computer Simulation of

Musical Creativity.

Thiebaut, J.-B., Healey, P. G., and Bryan-Kinns, N. (2008).

Drawing electroacoustic music. In International Computer

Music Conference.

U&I-Software (1997). Metasynth + Xx. https://uisoftware.com/

metasynth/. Online; accessed 9 December 2021.

Wuerkaixi, A., Benetatos, C., Duan, Z., and Zhang, C. (2021).

Collagenet: Fusing arbitrary melody and accompaniment into

a coherent song. In Proceedings of the 22nd International

Society for Music Information Retrieval Conference.

Xenakis, I. (1977). Upic. https://en.wikipedia.org/wiki/UPIC.

Online; accessed 9 December 2021.

Yang, R., Wang, D., Wang, Z., Chen, T., Jiang, J., and Xia, G.

(2019). Deep music analogy via latent representation

disentanglement. In Proceedings of the 20th International

Society for Music Information Retrieval Conference, pages

596–603. ISMIR.

Yasuhara, A., Fujii, J., and Kitahara, T. (2019). Extending

JamSketch: An improvisation support system. In 16th

Sound and Music Computing Conference, pages 289–290.

