Draw and Listen! A Sketch-
Based System for Music
Inpainting

CHRISTODOULOS BENETATOS ®
ZHIYAO DUAN ®

*Author affiliations can be found in the back matter of this article

ABSTRACT

In this work we implement an interactive system for filling in missing measures in a
monophonic music piece. This system takes a user’s hand-drawn curves as input and
generates a melody whose rhythm and pitch contour match with the curves. Contrary
to previous interactive music inpainting work, users of the proposed system do not
need to understand the music notation; they just need a rough idea of the shape of
the melody and draw it out. This system is implemented under the variational auto-
encoder framework and is enabled by a proposed melody disentanglement scheme to
disentangle relative pitch, relative rhythm and musical context. We also create a web-
based graphical user interface to facilitate the user interaction. We evaluate the system
on a commonly used Irish folk song dataset. Objective and subjective evaluations
show that this novel interaction is intuitive and effective for melody inpainting, and
the proposed neural approach outperforms two baselines we developed based on
previous work, in terms of musicality and fidelity to the user’s input.

TISMIR=—

RESEARCH

]u[ubiquity press

CORRESPONDING AUTHOR:
Christodoulos Benetatos

Department of Electrical
and Computer Engineering,
University of Rochester, NY, US

c.benetatos@rochester.edu

KEYWORDS:

music inpainting; human
computer interaction;
automatic music generation;
variational autoencoder

TO CITE THIS ARTICLE:
Benetatos, C., and Duan, Z.
(2022). Draw and Listen! A
Sketch-Based System for Music
Inpainting. Transactions of

the International Society for
Music Information Retrieval,
5(1), 141-155. DOI: https://doi.
0rg/10.5334/tismir.128



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 142

1. INTRODUCTION

In the area of automatic music generation, one of the
research goals is to design interactive systems that
engage users in the creative process. The level of user
engagement varies. Some systems allow users to provide
a seed input (Mao et al,, 2018; Hadjeres and Nielsen,
2020; Huang et al,, 2019) or simple controls (Wuerkaixi
etal., 2021) to guide the music generation process. Other
systems require a constant input stream from the users
for real-time accompaniment generation (Dannenberg
and Raphael, 2006) or collaborative music improvisation
(Lewis, 2000; Benetatos et al., 2020). Another dimension
of user engagement is the level of music knowledge that
the user is assumed to have. Some systems only assume
users to understand high-level semantic meanings such
as genre or mood (Mao et al., 2018), while others require
users to know basic music theory (Chen et al., 2020) or
even keyboard and improvisation skills (Benetatos et al.,
2020).

In this work, we focus on the task of music inpainting,
namely the task of filling in missing measures given a
known musical context. Music inpainting can find many
applications in computer assisted music composition
and human-computer interaction systems for creative
use cases. Previous work on music inpainting either
does not support user interaction (Pati et al, 2019),
or assumes users to know some music theory in order
to achieve musically meaningful results (Chen et al,
2020). Our goal is to design a system that engages users
into the music inpainting process without assuming a
musical background. Specifically, our system! allows
users to draw curves, and the system will turn them into
musically meaningful content matching with the given
musical context (see Figure 1).

We achieve this by factorizing a to-be-generated
melody into three basic aspects: a) the relative pitch, b) the
relative rhythm, and c) music-theory-related information
(e.g., key, pitch distribution). Here a) and b) are provided
by users by drawing a pitch curve and additional note
density curves, while c) is inferred by the system from
surrounding measures to complement the intuitive inputs
from the user. Previous research has shown that ordinary
users, even without any musical background, understand
the concepts of high and low of pitch and dense and sparse
of note events (Dowling et al., 1999). In addition, most
people are able to “hum” the (exact or approximate) pitch
and rhythm of a melody they have in mind, even without
any musical training. Therefore, drawing a relative pitch
curve with additional curves to indicate the relative note
density, in our view, is a feasible task for a wide range of
users. Our proposed system can thus help ordinary users
to engage in music inpainting and other collaborative
music composition practices.

The contributions of this paper are threefold. First,
we propose a novel and intuitive way for users without

musical training to control important musical elements
(pitch and rhythm) in an interactive melody inpainting
process. Second, we design a neural approach that
disentangles relative pitch, relative rhythm, and other
music-theory-related information (e.g., key, note and
onset distributions) for this interaction. Third, objective
and subjective evaluations show that the proposed
neural approach achieves significantly better results than
a rule-based and a genetic algorithm baseline, in terms
of musicality and fidelity to the user’s input.

2. RELATED WORK

2.1 CONTOUR BASED MUSIC GENERATION

The idea of designing music interaction systems based on
human ability of understanding and processing melodic
contours has been investigated for decades. The “UPIC”
(Xenakis, 1977) is a pioneering work by Iannis Xenakis,
which enables users to directly control the characteristics
of a waveform, including pitch and dynamics, using
freehand drawings on a board. Users can draw many
lines which are mapped to oscillators with predefined
timbre characteristics. The highs and lows of the drawn
lines control the highs and lows of each oscillator’s
pitch using a straightforward mapping. This work has
been the inspiration for the development of other works
that convert a graphical score to a synthesized audio
waveform (or events sent to an external synthesizer), such
as “IanniX” (Coduys and Ferry, 2004), “Metasynthesis”
(U&I-Software, 1997), and “Music Sketcher” (Thiebaut et
al., 2008).

A similar idea was exploited by Berg et al. (2012),
where the body movements of a user are used to
generate music by mapping the 3D coordinates of all
body joints to the parameters of a frequency modulation
synthesizer. Even though no drawing is involved here, the
movement trajectory of the body parts can be seen as
melodic contour drawing.

Additionally, there are systems that focus on symbolic
music generation. A famous system is “Hyperscore”
(Farbood et al., 2004), which aims to provide opportunities
to novices, especially children, to compose music
using drawings and other graphical tools. “Hyperscore”
provides a melody-pattern-based composition. First,
users create their own melodic patterns (each with
a different color), and then they compose a piece by
drawing curves of different colors on a canvas. The color
of a curve indicates the melodic pattern to be played,
while its shape indicates transformations on the original
melodic pattern.

In Piano Genie (Donahue et al,, 2019), users can play
melodies on a full 88-key piano by just controlling a small
8-key keyboard, where the 8 keys are lined up from low
to high in pitch. The direction of pitch movement of the
generated melody follows that on the small keyboard,
and the note onsets match the key strokes.



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 143

Another more relevant system to ours is included in
the notation software named “Pizzicato” (Arpege-Music,
2013), where users can fill in a measure by drawing a
pitch curve. However, this is a rule-based system, and
it requires users to provide the exact rhythm as well as
chord labels for every beat. Furthermore, the final notes
are generated by selecting the note contained in the
chord that is closest to the pitch curve at each onset
position, instead of being dependent on the surrounding
measures. As a consequence, to generate music that fits
the context, a user needs to understand music notation,
rhythm and even chords. Therefore, it is not suitable for
ordinary users without a music background.

Finally, “JamSketch” (Kitahara et al., 2018) is a system
that generates melodies based on pitch curves drawn
by the user, in a real-time improvisation task. A genetic
algorithm is designed to determine the notes of the
melody, however, the chord progression is given and
the rhythmic pattern is selected from a predefined set
of rhythms. While this rhythm limitation is addressed in
follow-up work (Yasuhara et al., 2019), where another
genetic algorithm is used to generate an appropriate
rhythmic pattern based on the user’s input, this system
cannot be used in tasks where a chord progression is not
available.

2.2 MUSIC INPAINTING
Music inpainting has been applied to both the audio and
symbolic domains. In the audio domain, the inpainting
methods try to recover missing data in the waveform,
which can occur due to various reasons such as distortions
and transmission errors (Adler et al., 2012; Marafioti et
al., 2020). The same term has also been used to describe
the bandwidth extension problem, where the missing
high frequency content has to be estimated (inpainted)
from the low frequencies (Greshler et al., 2021).
Different from the audio domain, applications for
symbolic music inpainting are not motivated by data
recovery problems but by the need for creating new
interactive tools for music creation. We will describe
two recent neural network based works. In “InpaintNet”
(Pati et al,, 2019), given the past and future content
of a missing part of music, it predicts a latent vector
representation of the missing part which is later decoded
to the symbolic score format using the decoder of a
Variational Autoencoder (VAE). In “InpaintNet”, a user
cannot guide the generated result. “Music SketchNet”
(Chen et al., 2020) builds on “InpaintNet” and tries
to solve this interactivity problem by allowing users
to specify some music ideas to guide the final result.
A user can specify a sequence of note names, or the
rhythmic pattern of a to-be-generated measure. Even
though this interactivity is very useful, the user has
to make decisions based on music theory to achieve
harmonically coherent results, which can be difficult for
non-musician users.

3. PROPOSED METHOD

3.1 KEY IDEA

The key idea behind our proposed system is the following
natural way of modeling a melody. We can think of
any melody as an integration of pitch p, rhythm r, and
other music-theory-related information. Pitch can be
decomposed into the relative pitch rp and the pitch offset
(or average pitch level) po. Similarly, rhythm r can be seen
as the sum of relative rhythm rr and the rhythm offset
(or maximum note duration) ro. Music-theory-related
information can be inferred from surrounding measures,
or the musical context. For example, a melody A
consisting of a quarter note followed by two eighth notes
and a melody B consisting of an eighth note followed
by two sixteenth notes, have the same rr, but different
ro (quarter for A, eighth for B). Finally, the musical
context, or ¢, describes shared patterns with surrounding
measures. Using non-rigorous math language, a melody
can be represented as:

Melody = relative pitch
@ pitch offset
@ relative rhythm (1)
@ rhythm offset
® context.

We make use of the circled addition symbol to note that
this equation is conceptual and does not represent the
actual addition of vectors.

When the first four factors of Equation (1) are “precise”,
the context factor cis not needed to infer the melody. In
case that the information stored in the first 4 factors is
vague, the missing information can be complemented by
the context c. For example, if the relative pitch factor rp
only stores the pitch trend but not the exact intervals, the
missing pitch information can be approximately inferred
from the context c (e.g., the key and pitch distribution).

Another extreme case is when the first 4 factors are
completely missing. In this case, all the information
about the melody has to be inferred from the context c.
A fully automatic inpainting system such as InpaintNet
(Pati et al.,, 2019) is such an example, where the missing
measure is completely estimated from the surrounding
measures.

3.2 TASK DESIGN

As shown in Figure 1, the proposed interactive music
inpainting task is to fill the missing middle measure of
a three-measure excerpt of a monophonic melody by
drawing curves.

The user uses the rectangular shaped canvas (Figure 1
middle) to draw a pitch curve (green) and optional note
density curves (blue) to guide the melody’s relative pitch
and relative rhythm. The horizontal axis of the canvas is
time covering one bar, while the vertical axis is the pitch
axis. The user can also use the two sliders to control the
pitch offset and rhythm offset of the generated melody.



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 144

From these user inputs, the system generates music for
the middle measure and displays it in the score (Figure 1
bottom).

The reason that we allow users to draw optional
note density curves is to give them better control of
the rhythm of the generated melody. A pitch curve
itself may or may not contain important rhythm
information. For example, a pitch curve with many
prominent peaks and valleys, such as that in Figure 4,
should correspond to a melody that has at least as

Previous measure Next measure

Generate

User's Input

N

pitch slider rhythm slider

Listen

Figure 1: Top: A triplet of music measures. The first and

third are the context measures, and the middle one is to be
“inpainted”. Middle: The user input area consisting of a canvas

for drawing the curves and the sliders to control the pitch

offset and note density for the whole measure. Bottom: The

generated result.

drawn curves
( Cp 5 Cnd

User

input < rhythm slider S,

F,,. F, . P

— Pre rps Err ;

[A-'/}—»[PWCESSMQ ampling relative pitch T
@ tokens p

many notes as the peaks and valleys, with onsets
around them. On the other hand, a monotonically
increasing pitch curve, such as the second curve in
Figure 3, does not provide enough information to
decide on the number and the location of notes. The
optional note density curves (i.e., blue lines in Figure 1)
are stacked above or below the pitch curve. The more
note density curves are stacked in an area, the higher
note density the area has, following a similar concept
of beams in music notation.

These four types of user input have a direct
correspondence to the first four factors of Equation (1).
The fifth factor, context, is estimated by the system from
the surrounding measures. As explained in Section 3.1,
when the first four factors provide less complete (or more
vague) information, the generation of the missing melody
is more dependent on the context ¢, i.e., the surrounding
measures. One way to control the “vagueness” of the first
four factors is to apply different levels of quantization to
pitch and rhythm representations computed from the
drawn curves.

3.3 MODEL ARCHITECTURE

The model we propose is a variational auto-encoder
(VAE) (Kingma and Welling, 2014; Higgins et al., 2016)
based architecture. As shown on the left side of Figure 2,
we have two encoders, @ . and Q_ .., to process the
user’s input and the context measures, respectively. The
encoders’ output forms the VAE’s latent vector Z = [Z;
Z,; Z,), i.e, a concatenation of three vectors, where Z,
stores the context information, Z stores the relative
pitch information, and Z_ stores information about the
relative rhythm. On the right side, we use three decoders,
P, P, and P, with different intermediate losses to
achieve the desired disentanglement of the three latent
variables.

pitch slider S,

thythm

;T_*E

r ast M,
P e O context

=

> bi-GRU

T 4 s o
v k2

Context
Measures

future Mpex

»bi-GRU

S====c

———sampling

target My,

—"

- =

= y—
o —— —

[T
|8
!"I

\

P. chroma
Chioze #=1 vector Vehroma

Figure 2: Overall structure of the proposed VAE-based model. Multiple encoders are used to encode user’s input and context
measures, and multiple decoders are used to achieve the desired disentanglement of latent variables and to generate the missing

measure.



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 145

context

— /

Curves ﬂﬁ_— === =

Inpaintings

Figure 3: An example of 4 different input curves using the
same context measures. The rhythm slider was set to 2 (‘high’)
for the first, and 1 (‘medium’) for the last three. Note how the
pitch contour and rhythm of the generated melodies follow
the hand-drawn pitch curves (green) and note density curves

(blue).
=
b= . l

Inpaintings

Figure &: An example of one hand-drawn pitch curve working
with three different context measures to generate different
but context matching melodies. The rhythm slider was set to O
(‘low’) for the first, and 2 (‘high’) for the last two.

3.3.1 Encoders
The VAE encoder @ consists of a CNN encoder Q_ for

curve

the user drawn curves, and a GRU encoder Q_, ..., for

the surrounding context measures. The conditional
probability for the overall encoder is factorized as:

iz | Frpr FrrrMprev)Mnext) =

chrve(zrp’zrr | Frpy’:rr)>< (2)
Qcontext (Zc | Mprev’Mnext)r

where F_and Fdenote the relative pitch and relative
rhythm functions, respectively, which are derived from
the users’” input curves (see Section 3.4.1). Note that Q.
only encodes user drawn curves but not the slider inputs.
Instead, slider inputs go to the decoders directly. This
pushes the latent vectors Z and Z, to learn relative pitch
and rhythm representations.

The pitch and rhythm functions are each a 512-D
vector and are stacked together into a 2x512 matrix.
The curve encoder Q_,, consists of 7 layers of residual
blocks with kernel size 3, batch normalization, no pooling
operations, and leaky ReLU as an activation function. The
output of Q.. is the concatenation of latent vectors Z |
and Z , each with dimension of 85. Q . . consists of two
GRU encoders, one for the previous measure and one for
the next measure. We use an embedding layer of size
128 to encode the input of each GRU encoder, and each

of them has 2 bidirectional layers with 2048 units. Their
outputs are concatenated and then put through a dense
layer to get the latent vector Z,, with a dimension of 85.

3.3.2 Decoders

We design three VAE decoders based on Yang et al.
(2019). Two of them are intermediate decoders, where P |
generates the relative pitch output T, and P, generates
the rhythm output T. The third decoder, P_.., takes the
previous intermediate outputs as input and generates
the MIDI output (i.e., final output of the model) for the
middle measure M_  (see Section 3.4). The conditional

cur

probability is factorized as:

P(Mcur |Z’Sp!sr) = midf(Mcur |Zc!Trp!Tr’Sp) X

Prp(Trp | Zrcp) X (3)
P 1Z,2,,5,),

where S, and S, denote the pitch and rhythm slider
values, respectively.

We can see that Z_is an input not only to the final
decoder P_., but also to the rhythm encoder P. The
reason is that we expect Z_to contain some rhythmic
information about the context measures, which may
be useful for generating the rhythm T_of the missing
measure. This is further explained with an example in
Section 3.5.2. The three VAE decoders each consist of 2
layers of unidirectional GRUs with 2048 units, and we use
cross-entropy losses to train them.

Finallyy, we add an additional MLP decoder,
P omaVeomalZ.), to generate the chroma vector V,
which is the 12-bin binary chroma vector of measure
M., with active pitch classes taking the value of 1. We
use binary cross-entropy to train this branch. This multi-
task scheme helps to reduce out-of-key notes in the
generated melody.

3.4 DATA REPRESENTATION
In this section, we describe the system input and output
representations during inference.

3.4.1 User Drawings

As mentioned in Section 3.2, the user draws a pitch
curve C, and one or more optional note density curves
C., (Figure 1) on a canvas. The user’s 2D input is first split
into connected components using the depth-first search
(DFS) algorithm. The longest component is considered
the pitch curve C, and is converted to a 512-point 1D
signal recording the Y coordinates of the curve. It is
then filtered with a Butterworth low-pass filter with a
normalized cutoff frequency Q,,, = 1/50, to give us the
relative pitch function F . The rest of the components
of the drawing, if any, are treated as the note density
curves, from which the relative rhythm function F_is
calculated. Each note density curve is projected to the
X axis to obtain a binary 512-point 1D signal, whose
value is 1 within the horizontal range of the curve and



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 146

0 outside the range. All of the 1D signals of all projected
note density curves are summed together to create the
relative rhythm function F_, which describes note density
over time. Note that since the system requires 0 < F <2,
values of F,_exceeding 2 will be clipped.

3.4.2 Pitch and Rhythm Slider Inputs
During inference, we simply use 3-value sliders, which
directly map to 0, 1 and 2 from low to high.

3.4.3 MIDI Output

Like Yang et al. (2019), for the MIDI output vector T_ ., we
use MIDI numbers from 0 to 127 for note onsets, 128 for
the holding state and 129 for rests. Instead of a regular
16th note quantization grid, we use the method from Pati
et al. (2019), an uneven grid that is able to encode both
8th-note triplets and 16th notes using 24 grid positions
per measure.

3.4.4 Rhythm and Relative Pitch Outputs

We need to define the two intermediate output vectors for
rhythm T, and relative pitch T, to train the intermediate
decoders P_and P respectively. Both relative pitch and
rhythm output vectors have the same length as the final
MIDI output vector, which is 24. For T, we follow Yang et
al. (2019), and use three tokens: O for onsets, 1 for the
holding state and 2 for rests.

The process for obtaining the T _is the following. For
every pair of consecutive onsets in positions i and j =i+
n where n >0, we calculate the MIDI interval A =T__ [j]-
T .4l and then perform a linear interpolation between
i+1andj,

oI = (k=)= Keli+1]] @)

1

interval between the current position k (not necessarily
an onset) and the previous note onset, as if the note
changed its pitch linearly. The reason for this treatment
is to simulate hand-drawn pitch contours, which typically
show a continuous transition instead of a step from one
note to another.

As explained in Section 3.2, the more precise the T
values (pitchintervals) are, the less information is needed
from the musical context c in the melody generation,
and the more closely the generated melody follows
the input pitch curve. However, our goal is to view the
input curve as providing a prime cue for generating the
melody instead of creating a precise 1-1 mapping like
what “Pizzicato” (Arpege-Music, 2013) does. Therefore,
we quantize the T  values to the closest quantization
levels to make their representations more vague in the
latent vector Z, . By controlling the level of quantization,
we can control the relative influences of the input curves
and the musical context to the final generation. After
some experiments, we empirically choose to use 7 levels

In other words, T, [k] describes the hypothetical pitch

with central bins at {-9, -5, -1, 0, 1, 5, 9} in semitone
units.

3.5 TRAINING

The proposed system takes user drawings and slider
values as the input and generates MIDI notes as the
output. To train the system, one way is to collect
such input-output pairs from experienced users. This,
however, is very time consuming and requires music
expertise of the users. In this paper, we propose to use
MIDI melodies and simulate user drawings and slider
values. Specifically, we derive a relative pitch function,
a relative rhythm function (Section 3.5.2) and pitch and
rhythm slider values (Section 3.5.3), from the middle
measure of each three-measure music excerpt. In this
way, we are able to create many input-output pairs to
train our system.

3.5.1 Datasets

We use the Irish Folk Music dataset (Sturm et al., 2016)
to train our system. We only keep the MIDI files in 4/4
time signature that have more than 3 measures, totaling
24,065 songs and we randomly split them into 8:1:1 for
training, validation, and test sets. After that, we extract
all possible combinations of three consecutive measures
to create the final training dataset, totalling 710,002
three-bar excerpts.

The excerpt melodies extracted from the Irish Folk
Music dataset, though diverse, have a limited note
range, rarely exceeding an octave. This could be a
problem for the Q_, . encoder when users draw curves
with significant fluctuations. To fix that, we also create
a dataset of randomly generated three-bar melodies,
within @ maximum range of 2 octaves. This dataset
contains much more diverse pitch fluctuations and helps
Qe t0 be prepared for a wide range of drawn curves
from users.

3.5.2 Deriving Relative Pitch and Rhythm Functions
As mentioned in the beginning of Section 3.5, we need to
derive the relative pitch and relative rhythm functions for
the middle bar of each training excerpt to simulate the
user input. In order to extract these functions from the
MIDI melodies, we use a regular time quantization grid of
48 positions per measure to represent the melodies. Note
that this melody representation is different from the one
we used in Section 3.4.3. For the relative pitch function
F,» we first obtain a piece-wise linear curve by connecting
note onsets. The Y-axis is measured in MIDI number. We
then evenly sample this curve into a 512-point sequence,
and low-pass filter it using a Butterworth low-pass filter
with a normalized cutoff frequency Q,,, = 1/50. Finally,
since we find that a melody rarely (for this dataset)
exceeds the range of 2 octaves within a measure, we
normalize it by subtracting the middle value of its range
and divide it by 12. In the rare cases (0.015% of all



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 147

measures) that the value range exceeds 2 octaves, we
divide it by the half of the range instead to ensure the
normalized values are in [-1,1].

To derive the relative rhythm (i.e., relative note density)
function F , it is necessary to derive two intermediate
quantities. First, we define a vector rc of length 48
to represent the note density computed from note
durations. At each note onset position i, it takes the value
rc; = log, (1/dur), where dur; is the duration of the current
note divided by the total duration of the measure.

In our data, the smallest note duration is a 16th note,
so0=log, (1/1)<rc;<log, (1/(1/16)) = 4. For positions that
are not onsets, the value of the previous onset position is
used. After that, we also evenly sample this vector into a
512-point sequence, to match the length of the relative
pitch function F . Second, we define a vector grc which is
the result of a 3-level quantization of rc:

0 O<r¢ <125
grc; =11 1.25<r¢; <3.29. (5)
2 r¢;>3.29

Finally, we set F_ = grc - min(grc). Subtracting the
minimum value of grc makes F,_only contain information
about the relative rhythm.

The quantization step is to make the rhythm
representation more vague, as explained in Section 3.1.
The discarded rhythmic information due to quantization
is expected to be retrieved from the context measures
through Z_. An example of rhythmic information that Z_
can encode is whether the context measures have many
triplet notes, or 16th notes. A relative rhythm function
F_may indicate high or low note density, but the actual
note durations that will be used depend on the musical
context. In fact, this is exactly what we see happening
in some of our model outputs in Figure 4, where for the
same note density controls, a pitch curve produces 8th-
note triplets (line 2) and 16th patterns (line 3), depending
on the surrounding measures.

3.5.3 Deriving Slider Values

For the pitch slider S, we calculate the average pitch
value of the melody, and we apply a 3-level quantization,
with central bins at {65, 71, 77}, in the unit of MIDI
numbers. These quantization values correspond to the
low, middle and high areas of a treble stave. As for the
rhythm slider S, we set it to S, = min(grc), where grc is
defined in Section 3.5.2.

3.5.4 Training Configuration

A value of 0.1 was used to weight the KL loss, as proposed
in g-VAE (Higgins et al., 2016). For the stochastic gradient
descent, the Adam algorithm was used (Kingma and Ba,
2015), with a linear learning rate schedule from 0.0003
to 0.00001. We trained for 200 epochs with batch size
128, and used teacher forcing to train the RNN decoders

P P, and P, with probability 1.0, which was gradually
reduced until 0.5.

As for training using the dataset of randomly
generated melodies, since the notes are random, there
is neither correlation among the three bars nor useful
musical information within each measure. Therefore, for
such training data, we only use the intermediate relative
pitch cross-entropy loss but not the other musically
meaningful losses.

During training, we sample these randomly generated
excerpts with probability 0.1 and the Irish excerpts
with probability 0.9. We also apply a random shift with
probability 0.1 to each note in the melodies along both
time and pitch. This is to compensate for the variability
of hand drawn curves of the users during inference.
The shifts along the time axis were no more than an
eighth note, and along the note axis were no more than
2 semitones. We should mention that we apply this
random shift only when deriving the relative pitch and
relative rhythm functions, without applying any shifting
on the training targets.

4. EXPERIMENTS

4.1 BASELINES

In this section, we conduct objective and subjective
evaluations to assess the feasibility and usability of the
proposed system for drawing-based melody inpainting.
We compare it with two closely related methods as
baselinesunderthe same user interface. The comparisons
focus on algorithm design instead of the interface design,
as the former is the main contribution of this work.

4.1.1 Rule-Based Baseline (RB)

We develop a rule-based system as a baseline, following
the gist of “Pizzicato” (Arpege-Music, 2013). Many
necessary modifications have to be introduced, since
in the task described in “Pizzicato” (see Section 2), the
generation of the music measure does not depend
on the surrounding measures, and the user is required
to provide the exact rhythm and chord labels for every
position.

The RB baseline generates the rhythm of the melody
in the following way. Note onsets are placed at local
peaks and valleys of the relative pitch function F . If the
function does not have any pecaks and valleys, then we
fill the measure with notes whose duration depends on
the value of the rhythm slider S, (quarter notes for S =
0, eighth notes for S, = 1 and sixteenth notes for S = 2).
If the user draws extra note density curves C_, we add
extra onsets in the area under the curves fitting in the
16th note grid. Given the variability and the inaccuracy
of a user’s input, we quantize the position of the note
density curves and the indices of the peaks of the pitch
curve to the nearest sixteenth note.



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 148

To decide the pitch at each onset position, we first find
the note n that corresponds to the value of the pitch curve
in the onset position. Then, we replace n with the closest
note (in terms of MIDI numbers) from an appropriate set
of notes.

This set consists of all the notes that belong to the key
implied by the two surrounding measures. We estimate
the key using the Krumhansl key detection algorithm
(Krumhansl and Kessler, 1982) implemented in the
music21 python library (Cuthbert and Ariza, 2010). We
consider this a strong baseline, because the generated
melody always matches the input curves, and notes
always belong to the estimated key.

4.1.2 Genetic Algorithm Baseline (GA)

We also develop a baseline based on the work of the
“JamSketch” system (Kitahara et al., 2018; Yasuhara et
al., 2019). Again, we introduce necessary modifications
to make it comparable with our system. The original
“JamSketch” does not support 16th notes, and the note
selection does not depend on the previous measures but
on the predetermined chord progression for this measure.
Finally, the inputs of our system include additional
note density curves and extra pitch and rhythm sliders,
which do not exist in “JamSketch”. We implement these
modifications by adding new terms in their genetic
algorithms’ fitness functions.

Following their work, we first use a genetic algorithm
to generate the rhythm in a form of a binary vector (1 for
onsets and 0O for holds), and then use another genetic
algorithm to generate the pitches for the onset positions
indicated by the rhythm vector.

For the following analysis, we will use the letters
u,c,s as superscripts to indicate vectors related to the
user input, a chromosome and the solution of a genetic
algorithm.

Rhythm Generation
As mentioned earlier, the rhythm chromosomes r¢ are
binary vectors of size L = 24, where L is the number of
grid positions in a bar as described in Section 3.4.3. We
define FY as the relative rhythm function extracted from
the user’s input and FS as the one extracted from a
chromosome. Additionally, we define n¢ = sum(r¢) as the
number of notes/onsets in a chromosome and d° as a
vector of size n¢ containing the duration of each note of
the rhythm chromosome.

For generating rhythm, we use a combination of global
and local features to design the fitness function

f(R)=w x SIM(R) + w; x lik(R)
+w, x seql(R) +wj; x slid(R) (6)

where w, =6, w, =1, w,=1and w, = 2 are weights for the
four terms, and their values are empirically chosen with
dozens of trials to optimize the performance:

* sim(R) : The similarity of a chromosome’s rhythm
with the desired rhythm of the user
L-1
Sim(R) =~y (/11— F5LiDY. 7)
i=0
 lik(R) : The likelihood of a chromosome, which is the
same as that of Yasuhara et al. (2019).

L-1
lik(R) = —Zp(rf i), (8)
i=0

where P(r¢[i) is the probability of having an onset at
position i, and it is calculated from the dataset.

* seql(R) : The duration bi-grams. This term is not
present in Yasuhara et al. (2019) and it significantly
improves the generated rhythm.

n“ -1

seql(R) = —z P(dr | df,), (9)
i=1

where P(df |df ) is the conditional probability of a
note with duration df ; being followed by one with df,
and it is calculated from the dataset.

* slid(R) : The global note density. This terms takes into
account the rhythm slider input.

slid(R) = —|den® -5, |, (10)

where denc measures the note density of the current
chromosome

0, forO<n“<6
den® =11, for6<n‘ <12, (11)
2, forn®>12

and S, is the slider input taking three values 0,1,2.

After this genetic algorithm runs, we pick the rhythm
solution rs that has the largest fitness score as the
chromosome r¢ in the final generation.

Pitch Generation

Given the rhythm solution r* from the previous rhythm
generation step, we use another genetic algorithm to
generate the pitch solution vector ps, which has size n®.
The pitch chromosome p¢ consists of pitch genes that can
take MIDI values from 48 to 84. From p¢ we can derive the
chromatic pitch class vector of the chromosome using
cpce = pemod 12. We also define F) as the relative pitch
function extracted from the user’s input and F, as the
one extracted from a pitch chromosome. Finally, we
define t* as a vector of size n° containing the position of
each note of the rhythm solution.

The fitness function for pitch generation is

f(P) = wy x sim(P) +w; x seql1(P)
W, x 5eG2(P) + wy x harm(P) (12)
w, x slid(P),



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 149

where the weights w, =3 and w, =w, =w, =w, = 1 were
manually set for the five terms:

* sim(P) : The similarity of the current chromosome’s
pitch curve with the desired pitch curve of the user
n°-1
Sim(P)=—> (Fylt1—Fs[t71). (13)
i=0
* seql(P): The chromatic pitch class bi-grams

n°-1

seql(P)=—» " Plepcf |cpet), (14)
i=1

where P(cpct | cpct ) is the conditional probability of
a note with chromatic pitch class cpc, , being followed
by one with cpc..
* s5eq2(P) : The chromatic pitch class delta bi-grams
n°—1
seq2P)=—» Plcpci —cpci | cpciy —cpci,).  (15)

i=1

*  harm(P) : The fitness of the chromosome’s notes with

the given context
erNlK (X)
IN]

where K is the set of the chromatic pitch classes that
belong to the key implied by the surrounding measures,
and N is the multiset that contains the chromatic pitch
classes of the current chromosome, and

1 ifxek,
0 ifxgK. (17)

harm(P) = —(1— ), (16)

1,(x) =

* slid(P) : The global pitch offset

slid(P) = —| po© - S, |, (18)

where po® measures the pitch offset of the current
solution

and S, is the pitch slider input taking three possible
values 0,1,2.

In the original “JamSketch” implementation, they
added an additional pitch entropy factor to discourage
the generation of melodies with many repetitive notes.
Another trick is that they created a prefix tree from the
dataset melodies, and they used it to randomly generate
the initial pitch chromosomes for the genetic algorithm.
We omit both of those tricks since they did not seem to
affect the result.

4.2 OBJECTIVE EVALUATION ON SIMULATED
INPUTS

We attempt an objective evaluation of the model’s
performance using simulated data. That is, we simulate
users’ inputs to the inpainting task using relative pitch
and rhythm functions extracted from a randomly
selected measure from the test dataset. Specifically,
the simulation process goes as this: first, a random
3-measure excerpt [Mprev, M., M. is selected from the
Irish test dataset. The first and third measures serve
as the context for the inpainting task while the middle
measure is discarded.

Next, we randomly choose another measure M_,, and
extract the relative pitch and rhythm functions F,'p, F.and
slider values S;, and S, as described in Section 3.5, as if
they were derived from a user’s input. Feeding F,'p, F, S;,,
S, and the context measures to each inpainting model,
we generate a new measure M.,, from which we
calculate the functions F, and F, and slider values S,
and S..

Ideally, the generated measure should fit to the
context, and its extracted curves and slider values
should be similar to those of the simulated input. We
therefore design three tasks to measure the pitch
contour similarity, rhythm similarity and context

fitness, respectively. For each task we run the above

0, forn®<65 } ) )
of =11 for5<nt <71 simulation process 1000 times. The results are
= i r —_ ) . . . .
P . (19) summarized in Table 1. Descriptions of these three
2, forn®>71 tasks follow.
METRIC PROPOSED  RULE-BASED  GA M., M, (FROM WHICH
(“MISSING” USER INPUT IS
MEASURE) DERIVED)
Pitch curve DTW cost 6.1+52 3.6+2.4 13.3+10.6 54.6+38.3 -
Pitch slider match rate 98% 100% 93% - -
Rhythm curve DTW cost 841131 23.1%41.1 41.0+525 53.8£61.3 -
Rhythm slider matchrate  97% 92% 90% - -
Context match 86% 100% 80% 87% 45%

Table 1: Objective evaluation of measures generated by the three comparison methods (proposed, rule-based, and GA) taking a
simulated user input that is derived from a random measure. As controls, evaluation of the original “missing” measure M__and the

cur

measure from which the user input is derived M_,, is also provided. Please refer to the main text for explanations of the metrics.



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 150

4.2.1 Pitch Contour Match

For this task, we make the observation that the rhythm
of the generated melody actually affects the melody
pitch contour. Taking the example of the GA method, if
the genetic algorithm responsible for rhythm generation
fails to generate enough note onsets, then the melody
pitch contour will not match the user’s input pitch curve.
To isolate the rhythm effects, we manually interrupt
the normal flow of generation to enforce the ground-
truth rhythm. We use a dense vector that consists of 16
sixteenth note positions to represent the ground-truth
rhythm.

A dense rhythm vector, compared to a sparse vector
that contains fewer note positions, allows the final note
generation stage to realize the pitch curve as faithfully as
possible. It is noted that some of the 16 note positions
will be onsets while the others will be holds, depending
on the ground-truth rhythm. Enforcing a specific rhythm
is easy since for all three methods the generation process
is sequential; first the rhythm and then the pitch. For
the baseline methods RB and GA, we omit the rhythm
generation part and replace the binary rhythm vector
with the desired one, while for our proposed model, we
replace the output logits of the rhythm decoder P, with
those that correspond to our desired rhythm.

We then use dynamic time warping (DTW) to globally
align the relative pitch function extracted from the
generated measure F,p and the one extracted from the
randomly chosen measure Fr'p, and use the alignment
cost to evaluate the match between the simulated input’s
and the generated melody’s relative pitch function for
each method. The mean and standard deviation of the
alignment cost over the 1000 runs is 6.1£5.2 for the
proposed model, 3.6+2.4 for RB, and 13.3£10.6 for GA.
For reference, we also extract the ground-truth relative
pitch function F_from the discarded middle measure
of the 3-measure excerpt where the context measures
come from, and calculate the average alignment cost
between F_ and Frp This reference can be viewed as
the average alignment cost between two random
pitch curves in the dataset. As they are unrelated, the
alignment cost is as high as 54.6£38.3. Furthermore we
measure the percentage of having S, = S/ (i.e., matching
pitch offsets between the randomly chosen and the
generated measure), which is 98% for the proposed
model, 100% for RB and 93% for GA. As expected, the
RB method achieves the best results, as it is designed
to directly maximize the relative pitch contour match.
Additionally, both our method and the GA baseline
significantly improve the relative pitch contour matching
compared to the reference.

4.2.2 Rhythm Match

For this task, we let the systems generate the rhythm
uninterrupted, and the same as before, we use DTW
to globally align the relative rhythm function extracted

from the generated measure F, and the one extracted
from the randomly chosen measure F,, and use the
alignment cost to evaluate the rhythm match. The mean
and standard deviation of the alignment cost over the
1000 runs is 8.4%13.1 for the proposed model, 23.1+41.1
for RB, and 41.0£52.5 for GA. Again for reference, we
extract the ground-truth relative rhythm function F_
from the discarded middle measure of the 3-measure
excerpt where the context measures come from, and we
calculate the average alignment cost between F,, and F.
and the value is 53.8+61.3. Furthermore, we measure
the percentage of having S, = S/ (i.e., matching rhythm
offsets between the randomly chosen and the generated
measure), which is 97% for the proposed model, 92% for
RB and 90% for GA.

4.2.3 Context Match

In an attempt to evaluate the match of the generated
melody with its surrounding measures, we calculate
the percentage of notes (chromatic pitch classes) in
the generated measure M., that also belong to the
key (using the Krumhansl algorithm) of the original
measures M__, M., M, .. The average percentage was
86% for the proposed model, 80% for the GA baseline,
and 100%, which is by design, for the RB baseline. It is
noted that this metric is not an accurate descriptor of
the musicality of the result but just a rough indicator, as
1) the key can be ambiguous when only looking at the
three measures, and 2) even if the key is clear, passing
notes not belonging to the key can still produce musically
pleasant results. Nevertheless, we still think that this
metric provides a basic safequard of ensuring the basic
musicality. For reference, the value of this metric for the
3-measure excerpts in the dataset is 87%, while if we
replace the middle measure with a random one from
the dataset, it goes to 45%. These results suggest that,
even though our proposed method achieves the closest
score to the one calculated from the original excerpts, for
all methods, the generated melody fits well to the the
musical context, at least in terms of pitch selection.

4.3 USER STUDIES

We perform subjective evaluation of the proposed
system and the baseline systems, to answer two research
questions: 1) Is drawing curves and setting sliders an
intuitive way to generate melodies for users with diverse
musical backgrounds? 2) How is the quality of the music
inpainting results of the proposed system compared
to that of the baselines? This study is approved by the
University of Rochester’s Institutional Review Board.

4.3.1 User Recruitment

We recruited 23 participants (11 female, 12 male)
with various musical backgrounds. Their participation
was voluntary (with oral consent) and without money
incentives. We asked them to self-assess their musical



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 151

background with a 4-way choice question. Specifically,
4 were professional musicians; 4 had been playing
an instrument for more than two years, but not
professionally; 6 were not familiar with Western music
notation, but had some general understanding of music
fundamentals, and the last 9 did not belong to any of
the above categories. We regard the latter two groups
as not having received formal musical training, or more
generally, not having a musical background.

Although our system was primarily designed for
non-musicians, we included amateur and professional
musicians as we believe their opinions are important for
assessing the musicality of the results.

4.3.2 User Interface and System Configuration

For this experiment, we developed a simple web-based
interface,showninFigure 5,accordingtothetaskdescribed
in Section 3.2. It consists of a canvas area for users to
draw the curves with their mouse, and three identical
display areas for showing the context measures and the
generated results for each method. The assignment of
methods to the display areas is randomized for every
trial to reduce biases toward a specific method. There
are buttons that affect all three methods: the “Get new
context” button randomly chooses context measures
from the test dataset and displays them in all display
areas. The “Clear Curve” button clears the canvas area.
Additionally, each display area has its own pitch and
rhythm sliders to adjust the relative levels, a “Generate”
button to generate the melody, and a “Play” button to
play the result. The right side of each display area is the

evaluation sub-area, where users are asked to rate the
pitch contour match, note density match and the overall
musicality of the result. At the bottom of the page is the
“Submit” button, which submits all the input, output, and
evaluation data after each trial for later analysis. Finally,
instructions of this task are shown at the bottom left
area of the interface throughout the experiment.

One problem that occurred in the design of this study
was the uneven execution time of these methods. For RB
it was about 2 seconds and for the proposed method it
was about 2.5 seconds, both measured on an Inteli7 CPU.
For GA, the nature of this method allows us to determine
the number of generations and limit the execution time
to our will. We set the execution time limit to 3 seconds,
which seemed sufficient for GA to reach a reasonable
performance without incurring too much time cost on
users. Even though we did not conduct any rigorous
evaluation, letting the GA method run for more than 3
seconds did not seem to improve the results. We then
added a 1 second delay and a 0.5 second delay to RB and
the proposed methods respectively to prevent users from
identifying these methods by their execution time.

4.3.3 Task

To start a user’s task, we dedicated 10-15 minutes to
explain what they had to do, answer their questions, and
runone or two training trials. We found this step necessary
especially for participants with no musical background.
After that, each user had to use the interface for at least 3
trials. Each trial starts by fetching new context measures
from the test dataset, drawing the curves, adjusting the

Get new context

Pitch Level

Note Density

Draw a curve!

—medium

— medium

vexflow.com
Rate Pitch Contour Match

—

Rate Note Density Match

Generate e

Rate Overall Musicality

Pitch Level
Clear Curve

—medium

Note Density

— medium

Instructions

vexflow.com

Rate Pitch Contour Match
—

e ity Match
Generate 0:00/0:00

We implemented an interactive system for filling in missing measures in a monophonic

music piece. This system takes a user's hand-drawn curves as input and generates a

melody whose rhythm and pitch contour match with the curves. The purpose of this
nt s to evaluate our system's performance versus two other baseline models.
e 3 identical rows, each of them representing one of the 3 models
se models is randomized, and changes (randomly) Pitch Level
every time you click the "Get new context" or the "Submit” button
) . Note Density

1. Hit the "Get new context" button. This button fetches 3 bars of music randomly
chosen from a database of Irish folk songs, where the middle bar is emptied.

2. Draw the curve(s). The two axes match the axes in a score. Horizontal is time while

1 is pitch he

a. First draw the curve for the pitch contour. This has to be a continuous curve for

M— medium

— medium

vexflow.com

Rate Pitch Contour Match
—

Rate Note Density Matc]
0:00/0:00
Generate 0:00/0:00 "

Rate Overall Musicality
—

Submit

Figure 5: The web application developed for user studies. Detailed instructions are shown on the bottom left of the page throughout
the duration of the experiment. On the top left is the canvas where users draw the curves. On the right side, three identical rows of
context measures, generated results and control units are displayed corresponding to the three comparison methods (with a random

order for each trial).



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 152

sliders and generating a new melody for each method.
After listening to each result, they had to rate the pitch
contour match, the note density match and the overall
musicality of the inpainting result for each method using
the three evaluation sliders mentioned above. Each slider
uses a five-point scale from 1 to 5, with 5 indicating the
“best”. We refer to these questions with labels Q1-Q3.
The participants were also encouraged to think-aloud
while performing the task, in order to help us get some
more insights.

In addition to the three evaluation questions for each
method in each trial, after finishing all trials, they were
asked three questions to rate their overall user experience
throughout all trials and all three methods using a scale
from 1 to 5, with 5 being “Very Agree”. We refer to these
questions with labels Q4-Q6.

Q1 Rate the similarity between the hand-drawn
pitch curve and the generated pitch contour.

Q2 Rate the effect of the note density inputs
(rhythm slider and note density curves) to the
melody’s rhythm.

Q3 Rate the overall musicality of the final result.
Q4 Do you think this system provided an intuitive
way to generate a melody ?

Q5 Do you think drawing a pitch curve is an intuitive
way to control a melody’s contour?

Q6 Do you think drawing additional note density
curves is an intuitive way to control a melody’s
rhythm?

4.3.4 Results

Figure 6 shows the evaluation results for the six questions.
For Q1-Q3, there are 112 data points each, as each user
completed 4.8 trials on average. For questions Q4-Q6,
23 data points are available, as there was one response
from each user.

Subjects' Responses st
@ ca
D an
501 — — —— T - - =
45
40 o o
35
30 o o
25
20 o e — o o o
15
10 —4 o o o
Q1 Q2 Q3 Q Q5 Q6
Pitch Contour ~ Rhythm Contour Overall Experience
Match Match Musicality Overall Pitch  Rhythm

Figure 6: Boxplots of the answers (ratings on a 1-5 scale)

to the six subjective evaluation questions from all of the

23 participants (the higher the better). Each box for Q1-Q3
contains 112 points, while for Q4-Q6 contains 23 points. The
notch in each plot represents the 95% confidence interval
around the median. Outliers are shown as circles.

For each of the questions Q1-Q3, we run the Kruskal-
Wallis H-test (a non-parametric version of ANOVA), to
determine whether there is any statistical difference in
the performance of the methods. The p-values obtained
for all three questions are less than 10, suggesting the
existence of statistical differences. We then run pairwise
Mann Whitney U tests for each question.

The results of Q1 (pitch contour match) support the
objective evaluation findings in Section 4.2.1, that is,
the melodic contour of the generated melody is closely
related to the input pitch curve for all the methods,
with median values above or equal to 3. In addition, our
proposed method achieves significantly better ratings
compared to the baselines (p < 10* vs RB and p = 10-%
vs GA). One difference from the objective evaluation in
Section 4.2.1 is that the RB baseline achieves a lower
score than our proposed method. This happens because
in the objective evaluation we used the predefined
“dense” rhythm vectors (see Section 4.2.1), while on this
experiment the rhythm vector is generated according
to the user’s input. A “sparse” rhythm vector does not
contain enough notes to realize the user’s pitch curve.
The RB outperforms the GA in terms of pitch contour
matching (p < 0.005).

For Q2 (note density match), the proposed method
also receives significantly better (p < 10 vs RB and p
< 10 vs GA) ratings, showing its superior ability of
following the note density input controls (note density
curves and rhythm slider). Comparing the two baselines,
RB achieves better results (p < 107°). These results are in
agreement with the ones obtained from our objective
evaluation (third and fourth line of Table 1).

For Q3, we can see that the proposed method
generates melodies that are significantly more musical
(p = 10 vs both). Additionally, the users thought that
GA results were similar in musicality to those of RB (p
> 0.4). One reason for the significantly lower musicality
score of the baselines, we believe, is due to the fact
that the baselines are prone to generating uncommon
rhythmic patterns (both of them) and out of context
pitches (GA), as also shown in Section 4.2. For RB, some
of the note positions are determined by the peak and
valley positions of the pitch curve; this sometimes results
in off-beat notes. In contrast, for the proposed method,
the shift invariance of its CNN encoder Q_, . and the data
augmentation tricks introduced in Section 3.5.1 make
it invariant to this type of misalignment. As for the GA,
this method cannot sufficiently explore its large search
spaces given the time constraints (i.e., 3 seconds in our
experiments); compared to the task of Yasuhara et al.
(2019), our search space is much larger.

In Figure 7 we provide two representative examples
obtained during the user studies. On the left example,
the user gave a much higher musicality rating to the VAE-
generated example compared with the baseline ones,
even though the output of all 3 methods received high



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 153

Drawn Curves ————

=, ~ T i o e s e o B S e
! e e o e e e e q
= o o — 3 J
0 y . |'||' £ s T {) —— p——r1
O f—— — fr— T
 — o f — = T e s —— S s s e e i e =
i e = ——f e s e e =y e e e s }
o e s e+ e e e s e e ™ o e e }
— p—— — i — & o & s L =
n P
07— . = S = = .
L ——r— e e — ]
e e e e e e
= p—— T = i —— L4 e o |

Figure 7: Two examples obtained during the user studies. The first line is the output of the proposed VAE model and the next two

contain the baselines’ ouputs.

pitch and rhythm match scores. The VAE output used
more common rhythmic patterns than the baselines and
generated a chromatic passing note that leads to a more
surprising and musical melody.

The results for Q4-Q6 clearly show that this “Draw
and Listen” interaction was very intuitive for most of
the users. We also present some insights we gathered
due to the think-aloud policy, and some discussions we
had with the users. Out of the three users who rated
questions Q4-Q6 less than 3, all of them were musicians
(one professional and two amateurs). The professional
and one of the amateurs expressed their preferences
for the traditional way of melody composition, but they
also believed that this new type of interaction can be
useful for non-musicians. Additionally, some of the not-
so-advanced users who had some basic experience
with music production tools, had many ideas on how
to incorporate a system like this in their preferred digital
audio workstations (DAWSs) to edit and generate MIDI
music.

5. LIMITATIONS

While the proposed model outperforms the two
baselines on all the questions, there is also much room
for improvement. For example, there may be a tradeoff
between faithfully following the user’s input and
musicality; it would be useful to have users control this
tradeoff through a parameter.

Another limitation is that the model only supports
inpainting of a single measure given its immediate
neighbors. Supporting a variable number of context
measures is not the main focus of this work, but it can
be realized by extending our current architecture or
combining it with models that already support this
feature (e.g., Chen et al., 2020).

Furthermore, in areas of high note density (indicated
by the user using note density curves or the slider), the
proposed model tends to generate mostly 8th-triplet
notes instead of 16th notes (first line in Figure 3 or
second line in Figure 4). It also never generates rests.
These limitations are due to the data bias in the Irish
dataset used for training, which contains 3 times more

8th-note triplets than 16th notes and less than 0.1% of
the tokens are rests.

Finally, regarding the user interface, one feature that
most of the users asked, is the ability to click and drag
parts of the curve to make minor adjustments. Some
users also expressed the desire to be able to explicitly
indicate areas for the model to generate rests.

6. APPLICATIONS

As a music inpainting tool, the proposed system could be
used as a composition plugin for music notation editors
where users could use the “pencil” tool to generate
melodies on the spot, conditioned on surrounding
measures. Additionally, since our system uses MIDI
to represent notes, it can work in applications that are
not based on Western music notation to lower the user
barrier. For example, it can be implemented as a plugin
for digital audio workstations (DAWSs), which typically use
MIDI instead of music notation to represent the music
content. Additionally, the melody factorization we just
described can be used to support a number of diverse
applications. We can replace the hand-drawn curves with
anything that resembles a curve, such as a stock price
curve or a human body movement curve, to support
creative use cases.

In addition, we can use it to measure melodic similarity
and query a melody database by converting melodies
in the latent space and calculating their latent vector
distances based on any of the disentangled factors
(relative pitch and rhythm).

7. CONCLUSIONS

In this work we proposed a new melody disentanglement
scheme that decomposes a melody to three basic
aspects: a) the relative pitch, b) the relative rhythm,
and c) music theory-related information (e.g., key, pitch
distribution). Based on this factorization, we developed
a VAE-based system for interactive musical inpainting.
This system allows users to draw pitch and optional note
density curves to guide the pitch contour and rhythm of



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 154

the generated melodies. We ran objective experiments
on simulated data and designed a web application to
conduct subjective experiments with 23 participants.
Results showed that this novel interaction is intuitive and
effective, and that our model outperforms two baselines
based on previous work. In the future we plan to address
some of the limitations of the current system and also
explore more possible applications of the proposed
melody disentanglement in symbolic music generation
and analysis.

NOTE

1 https://github.com/xribene/DrawAndListen.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
grant No. 1846184.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS

Christodoulos Benetatos "= orcid.org/0000-0002-4008-3133
Department of Electrical and Computer Engineering, University
of Rochester, NY, US

Zhiyao Duan " orcid.org/0000-0002-8334-9974
Department of Electrical and Computer Engineering, University
of Rochester, NY, US

REFERENCES

Adler, A,, Emiya, V., Jafari, M. G., Elad, M., Gribonval,
R., and Plumbley, M. D. (2012). Audio inpainting.
IEEE Transactions on Audio, Speech and Language
Processing, 20(3):922-932. DOI: https://doi.org/10.1109/
TASL.2011.2168211

Arpege-Music (2013). Pizzicato notation software. http://www.
arpegemusic.com/manual36/EN855.htm. Online; accessed
9 December 2021.

Benetatos, C., VanderStel, J., and Duan, Z. (2020). BachDuet:
A deep learning system for humanmachine counterpoint
improvisation. In Proceedings of the International
Conference on New Interfaces for Musical Expression, pages
635-640.

Berg, T., Chattopadhyay, D., Schedel, M., and Vallier, T.
(2012). Interactive music: Human motion initiated music
generation using skeletal tracking by Kinect. In Proceedings
of the Conference of the Society for Electro-Acoustic Music
in the United States.

Chen, K., Wang, C.-i., Berg-Kirkpatrick, T., and Dubnov, S.
(2020). Music sketchnet: Controllable music generation
via factorized representations of pitch and rhythm. In
Proceedings of the 21st International Society for Music
Information Retrieval Conference, pages 77-84. ISMIR.

Coduys, T. and Ferry, G. (2004). lannix aesthetical/symbolic
visualisations for hypermedia composition. In Journees
d’informatique musicale.

Cuthbert, M. S. and Ariza, C. (2010). Music21: A toolkit for
computer-aided musicology and symbolic music data. In
Downie, J. S. and Veltkamp, R. C., editors, Proceedings of
the International Society for Music Information Retrieval
Conference, pages 637-642.

Dannenberg, R. B. and Raphael, C. (2006). Music
score alignment and computer accompaniment.
Communications of the ACM, 49(8):38-43. DOI: https://doi.
org/10.1145/1145287.1145311

Donahue, C., Simon, L., and Dieleman, S. (2019). Piano Genie.
In Proceedings of the 24th International Conference on
Intelligent User Interfaces, pages 160-164, New York, NY,
USA. Association for Computing Machinery. DOI: https://
doi.org/10.1145/3301275.3302288

Dowling, W. J., Barbey, A., and Adams, L. (1999). Melodic and
rhythmic contour in perception and memory. In Vi, S,
editor, Music, Mind, and Science, pages 166-188. Seoul
National University Press.

Farbood, M. M., Pasztor, E., and Jennings, K. (2004).
Hyperscore: A graphical sketchpad for novice composers.
IEEE Computer Graphics and Applications, 24(1):50-54.
DOL: https://doi.org/10.1109/MCG.2004.1255809

Greshler, G., Shaham, T. R, and Michaeli, T. (2021). Catch-A-
Waveform: Learning to generate audio from a single short
example. arXiv preprint arXiv:2106.06426.

Hadjeres, G. and Nielsen, F. (2020). Anticipation-RNN:
Enforcing unary constraints in sequence generation,
with application to interactive music generation. Neural
Computing and Applications, 32(4):995-1005. DOI: https://
doi.org/10.1007/s00521-018-3868-4

Higgins, 1., Matthey, L., Pal, A, Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. (2016). beta-
VAE: Learning basic visual concepts with a constrained
variational framework. In 5t International Conference on
Learning Representations.

Huang, A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler,
J., Hong, L., and Howcroft, J. (2019). Bach Doodle:
Approachable music composition with machine learning
at scale. In Proceedings of the 20th International Society
for Music Information Retrieval Conference (ISMIR).

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic
optimization. In Proceedings of the International
Conference on Learning Representations (ICLR).

Kingma, D. P. and Welling, M. (2014). Auto-encoding
variational Bayes. In Proceedings of the 2nd International
Conference on Learning Representations.

Kitahara, T., Giraldo, S., and Ramirez, R. (2018). JamSketch:
Improvisation support system with GA-based melody



Benetatos and Duan Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.128 155

creation from user’s drawing. In Aramaki, M., Davies,
M. E. P, Kronland-Martinet, R., and Ystad, S., editors,
Music Technology with Swing, pages 509-521. Springer
International Publishing. DOI: https://doi.org/10.1007/978-
3-030-01692-0_34

Krumhansl, C. L. and Kessler, E. J. (1982). Tracing the
dynamic changes in perceived tonal organization in a
spatial representation of musical keys. Psychological
Review, 89(4):334. DOI: https://doi.org/10.1037/0033-
295X.89.4.334

Lewis, G. E. (2000). Too many notes: Computers, complexity
and culture in Voyager. Leonardo Music Journal, pages
33-39. DOL: https://doi.org/10.1162/096112100570585

Mao, H. H., Shin, T., and Cottrell, G. (2018). DeepJ:
Style-specific music generation. In 2018 IEEE 12t
International Conference on Semantic Computing (ICSC),
pages 377-382. IEEE. DOL: https://doi.org/10.1109/
1CSC.2018.00077

Maradfioti, A., Majdak, P., Holighaus, N., and Perraudin, N.
(2020). GACELA: A generative adversarial context encoder
for long audio inpainting of music. IEEE Journal of Selected
Topics in Signal Processing, 15(1):120-131. DOI: https://doi.
org/10.1109/JSTSP.2020.3037506

Pati, A,, Lerch, A., and Hadjeres, G. (2019). Learning to traverse
latent spaces for musical score inpainting. In Proceedings

of the 20th International Society for Music Information
Retrieval Conference, pages 343-351. ISMIR.

Sturm, B. L., Santos, J. F,, Ben-Tal, O., and Korshunova, I.
(2016). Music transcription modelling and composition
using deep learning. Conference on Computer Simulation of
Musical Creativity.

Thiebaut, J.-B., Healey, P. G., and Bryan-Kinns, N. (2008).
Drawing electroacoustic music. In International Computer
Music Conference.

U&I-Software (1997). Metasynth + Xx. https://uisoftware.com/
metasynth/. Online; accessed 9 December 2021.

Wuerkaixi, A., Benetatos, C., Duan, Z., and Zhang, C. (2021).
Collagenet: Fusing arbitrary melody and accompaniment into
a coherent song. In Proceedings of the 22nd International
Society for Music Information Retrieval Conference.

Xenakis, I. (1977). Upic. https://en.wikipedia.org/wiki/UPIC.
Online; accessed 9 December 2021.

Yang, R., Wang, D., Wang, Z., Chen, T., Jiang, J., and Xia, G.
(2019). Deep music analogy via latent representation
disentanglement. In Proceedings of the 20th International
Society for Music Information Retrieval Conference, pages
596-603. ISMIR.

Yasuhara, A,, Fujii, J., and Kitahara, T. (2019). Extending
JamSketch: An improvisation support system. In 16th
Sound and Music Computing Conference, pages 289-290.

TO CITE THIS ARTICLE:

Benetatos, C., and Duan, Z. (2022). Draw and Listen! A Sketch-Based System for Music Inpainting. Transactions of the International
Society for Music Information Retrieval, 5(1), 141-155. DOI: https://doi.org/10.5334/tismir.128

Submitted: 22 December 2022  Accepted: 04 August 2022

COPYRIGHT:

Published: 02 November 2022

© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Transactions of the International Society for Music Information Retrieval is a peer-reviewed open access journal published by Ubiquity

Press.

Jul @



