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Fast Prediction of Indoor Airflow Distribution Inspired
by Synthetic Image Generation Artificial Intelligence

Abstract

Prediction of indoor airflow distribution often relies on high-fidelity, computationally

intensive Computational Fluid Dynamics ( C F D )  simulations. Artificial intelligence

(AI)  models trained by C F D  data can be used for fast and accurate prediction

of indoor airflow, but current methods have limitations, such as only predicting

limited outputs rather than the entire flow field. Furthermore, conventional

A I  models are not always designed to predict different outputs based on a

continuous input range, and instead make predictions for one or a few discrete

inputs. This work addresses these gaps using a Conditional Generative

Adversarial Network (CGAN) model approach, which is inspired by current

state-of-the-art A I  for synthetic image generation. We create a new Boundary

Condition CGAN (BC-CGAN) model by extending the original CGAN model

to generate 2D airflow distribution images based on a continuous input

parameter, such as a boundary condition. Additionally, we design a novel

feature-driven algorithm to strategically generate training data, with the goal
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of minimizing the amount of computationally expensive data while ensuring

training quality of the A I  model. The BC-CGAN model is evaluated for

two benchmark airflow cases: an isothermal lid-driven cavity flow and a

non-isothermal mixed convection flow with a heated box. We also investigate

the performance of the BC-CGAN models when training is stopped based on

different levels of validation error criteria. The results show that the trained

BC-CGAN model can predict the 2D distribution of velocity and temperature

with less than 5% relative error and up to about 75,000 times faster when

compared to reference C F D  simulations. The proposed feature-driven algorithm

shows potential for reducing the amount of data and epochs required to train

the A I  models while maintaining prediction accuracy, particularly when the

flow changes non-linearly with respect to an input.

Keywords: artificial intelligence, indoor airflow, conditional generative

adversarial network, computational fluid dynamics.

1        1. Introduction

2 Simulation of indoor airflow distribution can be used for understanding

3        indoor air quality, thermal comfort, and building energy eficiency. Computational

4        Fluid Dynamics ( C F D )  methods are a popular approach for indoor airflow

5        simulation [1] that numerically solve the governing equations of fluid flow,
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6        such as conservation of mass, momentum, and energy. For example, Han

7        et al. [2] used a C F D  approach to simulate data center cooling scenarios to

8        provide guidance for reducing energy consumption while meeting thermal

9        requirements. Researchers have also used C F D  methods to study the impact

10        of ventilation strategies on thermal comfort [3, 4, 5], evaluate dispersion of

11        airborne pollutants [6, 7, 8], and more. While these methods have been

12        useful in many applications related to indoor airflow, they are still limited in

13        a number of ways. First, C F D  simulations are computationally expensive [9]

14        and may be too slow for applications such as long-term evaluations (e.g.,

15        annual simulations) or optimization problems requiring thousands of realizations.

16        Additionally, it is often infeasible to perform real-time or faster simulations

17        using C F D ,  which can be required for emergency management scenarios [10].

18        Therefore, there is a need for computationally eficient methods of indoor

19        airflow distribution prediction.

20 Modifications to traditional C F D  methods have been proposed to accelerate

21        these numerical simulations, such as Fast Fluid Dynamics methods [11, 12].

22        While these methods can be used for real-time or faster flow simulations,

23        they may sacrifice some accuracy compared to traditional C F D  methods.

24        They are also unable to perform real-time simulations for more complex
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25        airflow scenarios. Data-driven regression methods, such as in situ adaptive

26        tabulation [13, 14], can quickly predict key flow information, such as the

27        occupied zone temperature. However, these methods are often used to predict

28        a few key outputs rather than the entire flow distribution.

29 Artificial intelligence (AI )  methods have emerged as a popular approach

30        to address some of the limitations of indoor airflow prediction. Zhou and

31        Ooka [15] analyzed using deep neural networks for isothermal airflow distribution

32        prediction in an ofice room and found the trained networks could accurately

33        predict the velocity distribution 1.9 million times faster than reference C F D

34        simulations. Generative Adversarial Network (GAN) [16] models have become

35        a popular A I  approach, particularly for generating synthetic images [17,

36        18]. Variations of the original GAN model have been introduced, such as

37        Conditional Generative Adversarial Network (CGAN) [19] models, which

38        generate synthetic data based on categorical labels. In [19], the categorical

39        labels include different single digit numbers and the CGAN model generates

40        synthetic hand-drawn images for each specified digit. These models have

41        been used for generating synthetic images of faces at different ages [20],

42        producing power demand profiles for different types of buildings [21], and

43        predicting wireless networking environments [22]. CGAN models trained by
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44        C F D  simulations have been used for flow prediction, for example Chen et

45        al. [23] predicted airflow over different airfoil shapes and Wang et al. [24]

46        predicted the temperature distribution of different vortex generator designs

47        for film cooling.

48 While significant advances have been made to use A I  for indoor airflow

49        prediction, some limitations still exist. First, many A I  models are designed to

50        predict one or a few critical outputs in the airflow (e.g., average temperature

51        in the occupied zone or temperature values at a few sensor locations) rather

52        than the entire airflow distribution, which is necessary for many modeling

53        applications. GAN and CGAN models have shown significant potential for

54        image generation, including prediction of flow distribution, and are thus

55        worthy of further research for indoor airflow prediction. However, they are

56        often designed to make predictions based on discrete categorical inputs, for

57        example different specific designs or geometries. However, in many scenarios

58        it is useful to be able to make predictions based on continuous input parameters.

59        For example, boundary conditions, such as supply airflow rate in indoor

60        airflow simulations, may be optimized based on a continuous design space.

61        This is because the supply airflow rate can be optimized to be any possible

62        value within a defined range, rather than being limited to a few select values.
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63        Finally, generating training data for A I  models using C F D  simulations can be

64        time consuming, and it is not always clear how much data should be included

65        to train the models.

66 To  address the limitations discussed, we create a new Boundary Condition

67        CGAN (BC-CGAN) model for predicting indoor airflow distribution based on

68        a continuous input parameter, such as a boundary condition. Furthermore,

69        we design a novel feature-driven algorithm for eficiently generating training

70        data. The algorithm minimizes the amount of generated data while ensuring

71        a diverse set of training data for A I  models by selecting data points based on

72        significant changes in the flow output. The feature-driven algorithm and

73        BC-CGAN model are evaluated for two benchmark airflow cases: 1) an

74        isothermal lid-driven cavity flow and 2) a non-isothermal mixed convection

75        flow with a heated box. C F D  simulations are used to generate the training,

76        validation, and test data for both cases. Using the dimensionless Reynolds

77        number as an input, the BC-CGAN model predicts the velocity magnitude

78        distribution for the lid-driven cavity case. For the mixed convection flow with

79        heated box case, the BC-CGAN model predicts the velocity magnitude and

80        temperature distributions based on the heat flux of the box. The model is

81        also designed to reproduce the existence of an obstruction in the flow, in this
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82        case the box within the flow. Finally, noise is added to some of the boundary

83        conditions in the C F D  simulations for this case to mimic uncertainty in

84        experimental conditions.

85 Our specific scientific contributions include: 1) creating a new BC-CGAN

86        model by extending the traditional CGAN model to generate images of flow

87        distribution using a continuous input parameter (e.g., a boundary condition);

88        2) designing a novel feature-driven algorithm to strategically reduce the

89        amount of required training data while ensuring training quality for A I

90        models; and 3) demonstrating the BC-CGAN model framework for two

91        benchmark flow cases and showing the trained model can predict airflow

92        distribution with less than 5% relative error and up to about 75,000 times

93        faster when compared to reference C F D  simulations.

94 The rest of this paper is organized as follows. The BC-CGAN model

95        is introduced in Section 2. We then detail the feature-driven algorithm for

96        generating training data in Section 3. Next, Section 4 outlines the entire

97        workflow including generation of training data, model training, and model

98        evaluation. After that, Section 5 presents the results for the isothermal

99        lid-driven cavity flow case and Section 6 shows the results for the non-isothermal

100        mixed convection flow with heated box case. Finally, conclusions are drawn
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101        in Section 7.

102        2. New Boundary Condition Conditional Generative Adversarial

103 Network ( B C - C G A N )  Model

104 In this section, we first provide an overview of the original GAN and

105        CGAN models, then detail our new BC-CGAN model.

106        2.1. Original GAN and CGAN Models

107 The CGAN model used to develop BC-CGAN is based on the original

108        GAN model [16], but modified to generate images based on different classes.

109        GAN-based models are selected for this study because of their strength in

110        image generation [25], which is useful for applying to prediction of indoor

111        airflow distribution. Furthermore, they have been extended for 3D image

112        generation applications [26, 27, 28], which can be beneficial for 3D airflow

113        prediction. As shown in Figure 1 (left), the original GAN model consists

114        of two competing neural networks: a generator (G)  and discriminator (D).

115        The generator receives a vector containing randomly generated noise (z)

116        as an input and attempts to output an image accordingly (G(z)). The

117        discriminator receives a mixture of real images (x )  randomly selected from

118        the training data and synthetic or “fake” images produced by the generator.
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119        The discriminator then attempts to correctly classify each image as real or

120        fake, and the output of the discriminator (D(G(z)|x)) is compared with the

121        correct classification of real or fake. Based on this final outcome, the weights

122        of the generator (θG ) and discriminator (θD ) networks are updated and the

123        process repeats, starting with new batches of training images and new noise

124        inputs. Early in the training process, the generator has not learned how

125        to output realistic images, so the discriminator is able to easily classify the

126        images and the generator performs poorly. As the generator is trained over

127        many iterations, it learns how to produce more realistic images and is able to

128        fool the discriminator. Eventually, the generator produces images that are

129        so realistic that the discriminator can no longer distinguish between the real

130        and fake images. Ideally, the training process would reach a quasi-equilibrium

131        state where the discriminator has a 50-50 guess at whether images are real

132        or fake, and the training process can stop. Once the model is trained, the

133        discriminator is no longer needed and synthetic images can be generated

134        by providing a noise input to the generator. Although GAN models can

135        be dificult to train [29], in part because they involve two neural networks,

136        they have demonstrated advantages in image prediction over other types of

137        models [29].
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Figure 1: GAN training architecture (left) and C G A N  training architecture (right).

138 What differentiates the CGAN model from the original GAN model is

139        the addition of labels, as shown in Figure 1 (right). The generator receives

140        a label (y) as an input in addition to the noise input and attempts to

141        produce an image based on this label (G(z, y)), for example an image of

142        a specific digit in [19]. The discriminator then instead receives labeled

143        real images (xy ) mixed with labeled images produced by the generator, and

144        determines whether an image is real or fake considering the received label.

145        After training, synthetic images can be generated for a specific category by

146        providing the generator with a label and noise input. The use of labels
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147        is convenient for generation of images based on specific categories, which

148        is accomplished by assigning unique labels to the training data from each

149        category. Since the original GAN model generates images based on the

150        aggregated, non-categorized training data, the CGAN model is adopted in

151        this work to utilize labels for categorizing training data. This can mean

152        predicting airflow patterns for different labeled building designs, as in [30].

153        The use of labels, however, also adds complexity to training the model,

154        because the model needs to be trained to generate images for multiple categories.

155        2.2. BC-CGAN Model

156 We extend the previously described CGAN model to create a new BC-CGAN

157        model in this work that generates images using continuous inputs, rather

158        than a few discrete input classes. An example of using discrete input classes

159        would be prediction of airflow distribution in different rooms, where each

160        specific room configuration would be the discrete input class determining the

161        output airflow. Indoor airflow simulations often involve input parameters

162        that can be considered continuous rather than discrete, such as a boundary

163        condition like the supply airflow rate. This can be considered as a continuous

164        parameter because it can have any possible value within a defined range (e.g.,

165        any value between 1-5 kg/s), rather than only a few possible values (e.g., a
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166        few potential room configurations). The change in output airflow distribution

167        can then be studied by varying the input parameter continuously within its

168        range.

169 Modifying the existing CGAN model to make predictions based on continuous

170        input variables poses a challenge, since the original CGAN model is designed

171        to make predictions based on discrete integer labels. Although a continuous

172        input range can be discretized to assign labels for a CGAN model to many

173        possible values within that range, this cannot cover every possible value, and

174        a simpler method can be adopted. Thus, the structure of the CGAN models

175        needs to be changed to address this challenge. First, the we want the trained

176        CGAN model to receive an input that represents a specific continuous input

177        value. Additionally, it is convenient during the training process to assign

178        discrete labels to the training data, but a method is needed to convert these

179        labels to the actual values of the continuous input for the model.

180 The new BC-CGAN model is shown in Figure 2. The difference in this

181        model is the input to the generator, where the noise inputs are replaced with

182        inputs defined specifically by labels, using a translator. A  noise input is used

183        in the previous CGAN models to generate a distribution of images within a

184        category, for example different handwriting styles for a specific digit in [19].
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185        In this work, we want to generate a specific output given a specific input,

186        rather than some distribution of outputs for a given input. Thus, the noise

187        aspect is removed, since a single output for each input is desired rather than

188        a distribution of outputs for each input. It should be noted Zheng et al. [31]

189        proposed an alternative CGAN approach considering continuous inputs with

190        the noise aspect included to produce a distribution of outputs.

Figure 2: B C - C G A N training architecture.

191 The BC-CGAN model uses labels during the training process as a convenient

13



192        method for categorizing training data using an integer value. For generating

193        images after the model is trained, we want to provide the model specific input

194        parameter values directly instead of labels. The translator is thus needed

195        during the training process to convert the received integer label to a specific

196        input parameter value for the generator. This allows for: 1) the convenient

197        use of labels during the training process and 2) the ability for the generator

198        to learn to produce images based on an input parameter value, therefore

199        removing the need for labels and a translator after the model is trained.

200        Since the discriminator is only used during the training process, a simple

201        integer value label can be provided to the discriminator and a translator is

202        not needed to convert the label to its parameter value.

203 The goal of the translator is to map the received labels to the associated

204        input parameter values. Consider a scenario where the input boundary

205        condition for a given flow is a characteristic velocity U0. For this case, a

206        training label (y) is assigned to each training data image defined by their

207        different U0 values. The purpose of the translator is then to map y to

208        its corresponding U0 value. The function the translator uses to map these

209        values, U0(y), is dependent on the training data distribution. Assume a

210        uniformly distributed training dataset where each data point is chosen based

14



211        on a change in U0 of ∆U0 , calculated as:

∆U0  =  (U0,max −  U0,min)/ntrain, (1)

212        where U0,max and U0,min are the minimum and maximum U0 values in the

213        training dataset, respectively, and ntrain is the total number of training

214        data points in the dataset. The function for the translator to map y to

215        a corresponding U0 would then be:

U0(y) =  ∆U0  · y +  U0,min. (2)

216 Finally, interpolation is used so the input to the generator, z(y), is a value

217        between zero and one:

z(y) =  [U0(y) −  U0,min]/[U0,max −  U0,min], (3)

218 After training, images can be generated for a specific U0 value by replacing

219        U0(y) in Equation 3 with the desired U0 value. allows for prediction of

220        images using the continuous input value directly and without the need for

221        a label or translator. Furthermore, the BC-CGAN model can be trained to

222        make predictions considering multiple boundary conditions by using a vector

223        containing multiple labels. The translator would then output a vector based

15



224        on the input label vector (i.e., z(y)).  As a starting point, this paper considers

225        one varying input parameter for each case.

226        3. Novel Feature-driven Algorithm for Generation of Training Data

227 Although trained A I  models can produce results quickly, generation of

228        training data for the A I  models can be time consuming (e.g., by using CFD) .

229        Using uniformly distributed inputs for training data generation is a simple

230        approach, but this may include more training data than an A I  model actually

231        needs. For an indoor airflow prediction A I  model, training data may be

232        generated by varying the supply airflow rate by a constant step of ∆ṁ in

233        each C F D  simulation. This may pose a problem when the outputs vary

234        non-linearly with the inputs, for example if the airflow distribution varies

235        non-linearly with the supply airflow rate. If the resolution of generated

236        training data is not suficiently high, a uniformly distributed training dataset

237        may exclude crucial points in regions where the gradient of the outputs with

238        respect to the inputs (�x f )  is high. This may exclude crucial data points

239        that capture the non-linear trends between inputs and outputs. On the other

240        hand, in regions where �x f  is low, a high resolution of generated training

241        data may result in many redundant data points and excessive time required
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242        to produce the training data. When generation of training data is costly,

243        a non-uniformly distributed training dataset can be beneficial for training

244        A I  models, since redundant training data points can be avoided while still

245        including suficient training data for the A I  models.

246 To  address this problem, we propose a novel feature-driven algorithm to

247        create non-uniformly distributed training datasets that minimize the amount

248        of generated training data for A I  models. The algorithm strategically selects

249        training data points based on significant changes in the outputs with respect

250        to the inputs. In its strategic selection, the algorithm includes more data

251        points in regions where �x f  is high and excludes redundant data points in

252        regions where �x f  is low. The feature-driven algorithm can be used for

253        multiple inputs (e.g., multiple varying boundary conditions). However, we

254        focus on a single varying input parameter in this paper and explain the

255        algorithm in detail assuming one varying input.

256 The feature-driven algorithm flowchart is detailed in Figure 3. First,

257        initial grid points for the training dataset are included to provide a few

258        baseline points, as well as to create a defined range for the training data. The

259        grid points for the training data are defined by their different values of inputs,

260        represented by x. The algorithm begins by computing the changes in critical
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261        outputs between neighboring grid points, for example between x1 and x2. For

262        each pair of neighboring grid points, if the change in critical outputs (e.g.,

263        |f (x2) −  f (x1)|) is greater than the defined threshold, ε, a new grid point is

264        added between those two points (e.g., at (x2 +x1 )/2). In this case, a new C F D

265        simulation is performed based on the input parameter defined by the new grid

266        point, and the simulation output is added to the training data. The results

267        from comparing neighboring grid points are cached to avoid performing the

268        same comparison redundantly during the process. If the change in critical

269        outputs does not exceed ε, then no new grid point is added between those

270        two points and a C F D  simulation is not performed. After completing this

271        for each pair of neighboring grid points, the algorithm checks if any new

272        grid points were added in the most recent iteration. If no new points were

273        added, then the process ends since further iterations will not add any new

274        grid points. If there were new grid points added in the most recent iteration,

275        then the algorithm checks if a maximum resolution has been reached. The

276        initial resolution is the difference between values of the initial neighboring

277        grid points, e.g., x2 −  x1. A  defined maximum resolution can be useful to

278        prevent excessive training data from being generated with neighboring inputs

279        very close together. The process ends if the maximum resolution has been
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280        reached. If the maximum resolution has not been reached, then the resolution

281        increases by a factor of two (e.g., (x2 −x1 )/2). After increasing the resolution,

282        the set of grid points are reset with the newly added grid points. The process

283        repeats by computing the change in critical outputs between neighboring grid

284        points, now with the newly added grid points. The process ends once either

285        no new grid points are added in an iteration or once the maximum resolution

286        is reached.
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Figure 3: Flowchart of the feature-driven algorithm.
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287        4. Description of Workflow

288 The description of the entire workflow including generation of training

289        data, model training process, and model evaluation is shown in Figure 4 and

290        described in this section.

Figure 4: Description of entire workflow including generation of training data, model

training, and model evaluation.

291 The workflow begins with the data generation process. Initial training
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292        data points are first generated to provide baseline points for the feature-driven

293        algorithm and to define a range for the training data. In this case, a few

294        C F D  simulations are performed to generate these initial points. Using too

295        many initial points can potentially include redundant training data, so fewer

296        initial points should be used to allow the algorithm to determine what data is

297        necessary to be included. For the cases studied in this paper, we find that, for

298        a given ε, the feature-driven algorithm only becomes sensitive to the initial

299        data points when a large amount of initial data is included. This is because

300        using a large amount of initial data may include redundant data points that

301        the algorithm would not include. Using fewer initial data points often results

302        in very similar training data sets, because the algorithm is designed to find

303        the necessary data points within the input range, which are similar regardless

304        of the initial data points. Thus, we use only about ten initial data points for

305        the cases in this paper, which uniformly span the range of the studied input

306        parameters.

307 Next, the feature-driven algorithm is used to select what input parameter

308        values should be used for the additional C F D  simulations to generate the rest

309        of the training data. In this paper, a few training datasets are generated with

310        different settings of the feature-driven algorithm for each case. Additionally,
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311        uniformly distributed training datasets are generated for comparison against

312        the training datasets produced by the feature-driven algorithm. BC-CGAN

313        models are then trained using the different training datasets, where the

314        initial settings of each BC-CGAN model are identical. We then compare the

315        training speed and prediction performance for the BC-CGAN models trained

316        by the different datasets. Since the training process is inherently stochastic,

317        we train ten BC-CGAN models for each training dataset to understand their

318        training and prediction performance over several runs.

319 To  train the BC-CGAN models, one unique label is assigned to each

320        training data image within its dataset. Additionally, a few reference data

321        points are generated using C F D  simulations for validation of the BC-CGAN

322        models during training. Periodically during the training process, the BC-CGAN

323        model produces flow distribution outputs based on the validation data input

324        values. Its outputs are then compared against the validation data points

325        and a relative error metric is computed for each output. The error metric

326        is calculated based on error between the flow outputs (e.g., velocity and/or

327        temperature) at each point in the flow. If the error metric between the

328        BC-CGAN prediction and validation data is below a defined threshold for all

329        the validation data points, then the model is considered to be suficiently

23



330        trained and the training stops. Otherwise, training continues until this

331        criteria is satisfied. In this paper, we save the trained BC-CGAN models

332        at different error metric thresholds to compare the tradeoff between training

333        speed and prediction performance for different error thresholds.

334 Finally, the trained BC-CGAN models are evaluated against test data

335        points that were not selected from the training or validation data. The test

336        data is selected by using a bin sampling technique to produce ten random

337        input values that span the defined input range. C F D  simulations are then

338        performed to generate the test data based on the ten input values. The

339        BC-CGAN models are evaluated by generating their flow distribution outputs

340        based on the test input values and computing their relative error against

341        the test data. The BC-CGAN models are trained to predict 2D airflow

342        distribution in this paper, but can be extended for 3D airflow prediction in

343        future research.

344        5. Isothermal Case: Lid-driven C av i ty  Flow

345 The first case studied in this paper is an isothermal lid-driven cavity

346        flow. We begin with a description of the setup for this flow case. Next, we

347        show the settings used for the BC-CGAN model and the generated training
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348        datasets for the BC-CGAN models in this case. Finally, the training and

349        evaluation results for the BC-CGAN models trained by the different datasets

350        are detailed.

351        5.1. Case Description

352 The setup of the isothermal lid-driven cavity flow case is shown in Figure

353        5. This is a meaningful case because, despite having a simple configuration,

354        the flow pattern changes significantly depending on the initial conditions

355        and boundary conditions. Because of this, it is a benchmark flow case that is

356        frequently studied in the literature using both physical experiments [32, 33]

357        and numerical simulations [34, 35, 36, 37]. This flow is contained in a box of

358        length L  on all sides. The left, right, and bottom walls are stationary, while

359        the lid moves at a constant velocity of U0 to the right. The motion of the lid

360        causes a circulation pattern of the flow within the box. The flow is modeled

361        as 2D, steady, incompressible, and isothermal in this study.
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Figure 5: Diagram of the lid-driven cavity flow.

362 The lid-driven cavity flow is often defined by its Reynolds number (Re)

363        in the literature [38, 39], which characterizes the ratio of inertial to viscous

364        forces in the flow. Thus, we use R e  as the input parameter for the flow in

365        this study. For this case, R e  is calculated as:

Re  =  U0 L/ν, (4)

366        where U0 is the constant velocity of the lid, L  is the length of each side of

367        the box, and ν is the kinematic viscosity of the flow.

368 We define the range of R e  values to be from 100 to 10,000. We hold U0
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369        and L  constant while changing ν to vary the Reynolds number for the C F D

370        simulations in this paper. All the other simulations settings and boundary

371        conditions remain the same for each simulation, so the BC-CGAN models

372        only receive R e as an input. The flow output we study for this case is the

373        steady-state distribution of velocity magnitude. This means the training data

374        produced by C F D  simulations is comprised of velocity magnitude distribution

375        data based on the input Re. The BC-CGAN models are then trained to

376        output the velocity magnitude distribution based on the input Re. The

377        C F D  simulations used to generate the training, validation, and test data

378        for this case are performed using the Fast Fluid Dynamics method [11, 12]

379        on an AMD RadeonTM Pro WX 7100 GPU. The C F D  simulations use a

380        64 ×  64 non-uniform, structured grid, which is translated to a 36 ×  36

381        uniform structured grid for the model training and evaluation to simplify

382        the predictions while providing suficient resolution of the flow data. This

383        prediction resolution was selected to balance the tradeoff of training time and

384        resolution. The BC-CGAN model can be trained to predict a more resolved

385        flow output, but this may increase the training time and require re-tuning of

386        the model hyperparameters.
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387        5.2. BC-CGAN Model Settings

388 The BC-CGAN model settings including neural network architectures and

389        hyperparameters are described in this section. First, the architectures of the

390        generator and discriminator are shown in Table 1 and Table 2, respectively.

391        The generator uses a deconvolutional neural network [40] and the discriminator

392        uses a convolutional neural network [41]. The generator receives an input

393        defined by R e (which is the only varying parameter), as described in Section

394        2.2, and outputs a 36×36 image representing the velocity magnitude distribution.

395        The discriminator receives a 36 ×  36 image input as well as a label input

396        corresponding to a R e  value. The label input uses one-hot encoding to give

397        the label of the image within the training dataset, with total number of

398        training data points of ntrain. The discriminator produces an output of zero

399        or one, where zero corresponds to a classification of a “fake” image produced

400        by the generator and one corresponds to a classification of a “real” image

401        from the training dataset. The number of convolutional/deconvolutional

402        layers and filter sizes for these layers impact the training performance of

403        the generator and discriminator. For example, reducing the number of

404        layers in these neural networks can speed up each training step, but can

405        also negatively affect the training performance and result in more overall
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406        iterations to successfully train the models. We selected these architectures

407        for the generator and discriminator to have reasonable training speed and

408        consistent convergence of the models.

Table 1: Summary of generator architecture.

Layer

Input

Reshape

Deconvolution

Deconvolution

Deconvolution

Deconvolution (output)

Shape

200

9 ×  9 ×  128

18 ×  18 ×  128

36 ×  36 ×  64

36 ×  36 ×  32

36 ×  36 ×  1

Activation function

N/A

N/A

ReLU

ReLU

ReLU

Sigmoid
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Table 2: Summary of discriminator architecture.

Layer

Label input

Image input

Reshape

Convolution

Convolution

Convolution

Convolution

Flatten

Output

Shape

ntrain

36 ×  36 ×  1

36 ×  36 ×  2

18 ×  18 ×  32

9 ×  9 ×  64

5 ×  5 ×  128

5 ×  5 ×  256

6400

1

Activation function

N/A

N/A

N/A

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

N/A

Sigmoid

409 The hyperparameters for the BC-CGAN models were tuned carefully for

410        this case. Certain hyperparameters, such as the learning rate, can significantly

411        impact model training time and convergence or lead to overfitting [42]. For

412        this case we used the Adam optimizer [43] with learning rate of 0.0002 and

413        decay rate of 0.5. A  batch size of 32 was used for training the models as well.

30



414        5.3. Training Datasets

415 Four training datasets are generated using the novel feature-driven algorithm

416        and are compared against four uniformly generated datasets. A  summary of

417        all the training datasets is included in Table 3. The uniformly distributed

418        datasets are defined by their uniform step (∆R e),  which describes the difference

419        in R e  for which training data is generated. These datasets include training

420        data points from R e =  100 up to R e  =  10, 000 by step of ∆R e .  Thus,

421        a higher ∆R e  results in fewer training data points that are further apart

422        within the defined R e range, while a lower ∆R e  results in more training

423        data. The selected values of ∆R e  are chosen to be factors of the input R e

424        range, which is 9,900 in this case, as well as to include similar ntrain values

425        as the non-uniform datasets.

426 The non-uniform datasets are defined by their ε threshold, which is the

427        threshold to decide whether a training data point is needed based on the

428        change in outputs between neighboring data points, as described in Section

429        3. In this case, ε is dimensionless and is described by the change in velocity

430        magnitude (∆|U|) at any of the critical output locations between neighboring

431        Re  data points, normalized by the velocity of the moving lid (U0). A  lower

432        ε results in higher ntrain, since it defines a smaller change in outputs to
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433        determine that additional training data points are needed. The ε values in

434        this case were chosen to provide datasets with a wide range of data points and

435        study the impact of training data size on the model training and evaluation.

436        The locations of the critical outputs used for the feature-driven algorithm in

437        this case are the center points of each cell when dividing the flow domain into

438        a 4 × 4 grid, resulting in 16 locations. These locations were chosen to include

439        a range of possible locations where the flow can change, but the critical

440        locations can be narrowed based on the studied flow in future research.
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Table 3: Summary of training datasets.

Uniform/ Uniform step ε threshold ntrain

Non-uniform ( ∆  Re)

Uniform 25

Uniform 50

Uniform 100

Uniform 275

Non-uniform N/A

Non-uniform N/A

Non-uniform N/A

Non-uniform N/A

(∆|U |/U0)

N/A 397

N/A 199

N/A 100

N/A 37

0.001 378

0.005 120

0.01 67

0.05 19

441 Histograms of the non-uniform training datasets are shown in Figure 6.

442        The results show a clear trend: the lid-driven cavity flow changes more

443        significantly at lower R e values, especially between 100 and 1,000. The

444        ε =  0.05 dataset includes less than 5% of the training data points compared

445        to the ε =  0.001 dataset, but still includes more of its training data between

446        Re  values of 100 and 1,000. This is unsurprising as the lid-driven cavity flow
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447        transitions from laminar to turbulent in this region of Re. In particular,

448        the boundary layer near the lid and circulation pattern along the right wall

449        change more significantly in this region of Re.

(a) ε =  0.001.

(c) ε =  0.01.

(b) ε =  0.005.

(d) ε =  0.05.

Figure 6: Histograms of training datasets generated using the feature-driven algorithm

with different ε thresholds.
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450        5.4. Training Results

451 We select five data points as validation data for this case using R e values

452        of 100, 500, 1,000, 5,000, and 10,000. These points span the range of

453        Re  for this study, as well as include more points in the lower R e regime,

454        since we found this is the regime where the flow changes more significantly.

455        Sample validation results of the BC-CGAN model are shown in Figure 7.

456        The top row shows the validation data from the C F D  simulations, while the

457        remaining rows show the BC-CGAN predictions at different error thresholds.

458        For example, the BC-CGAN prediction results at the 40% error threshold

459        are the saved validation results from when the BC-CGAN predictions were

460        first below the error metric of 40% for all five validation data points. The

461        error metric in this case is computed by weighting two error calculations:

462        55% root mean squared error (RMSE) and 45% maximum error. Rather

463        than simply using RMSE, we include maximum error in this case to prevent

464        points of large error in the predictions. The errors are also both normalized

465        by U0. The RMSE is calculated by considering the mean squared normalized

466        error in velocity magnitudes at each location in the 36 × 36 2D flow domain.

467        The maximum error is then the highest normalized error within the 36 ×  36

468        domain. Initially during the training process, we saved the validation results
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469        for different error metric thresholds of 5%, 10%, 15%, 25%, and 40%. Based

470        on the qualitative results, we can see the BC-CGAN prediction at an error

471        metric of 40% does not match well with the validation data. However, the

472        BC-CGAN prediction seems to capture the trends of the validation data for

473        error metrics of 15% and below. Consequently, for the remainder of this

474        paper we save the trained BC-CGAN model and their validation results for

475        error metric values of 5%, 10%, and 15%.
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Figure 7: Sample validation results of the B C - C G A N prediction for different error metric

thresholds.

476 The training results of the BC-CGAN models with different training
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477        datasets and at different error metrics are shown in Figure 8. The training

478        process is performed ten times for each training dataset since the training

479        process is inherently stochastic. During each training process, the model

480        is saved once the validation results satisfy error metric thresholds of 5%,

481        10%, and 15%. The number of training iterations or “epochs” required to

482        achieve these error thresholds is also recorded and plotted (on a log-scale) in

483        Figure 8. Each box plot shows the range of the number of epochs required

484        to satisfy the different error metric thresholds over the ten runs for each

485        training dataset. The training datasets are differentiated by the number of

486        training data points included in each dataset, as well as whether they are

487        non-uniformly or uniformly generated sets.
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(a) 5% error metric. (b) 10% error metric.

(c) 15% error metric.

Figure 8: Box plots of the number of epochs required to train the B C - C G A N  model for

different training datasets and error metrics.

488 First, we see less epochs are required to train the models when the error

489        metric is higher. This is because less training is required for a looser error

490        threshold compared to a stricter one. We also see that the non-uniform

491        training datasets often require less epochs, especially for the error thresholds

492        of 10% and 15%. This can occur because the non-uniform datasets are more
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493        capable of capturing the non-linear trends between the input R e and output

494        velocity distribution. For the 5% error metric, the non-uniform training

495        dataset with 378 training data points required a wide range of epochs to

496        converge. A  wider range of epochs for model convergence often occurs for the

497        lower error metrics, because there is more variability of when the model is able

498        satisfy the convergence criteria for stricter error metrics. This seems more

499        apparent for the non-uniform training datasets, especially the dataset with

500        378 data points. We found that the model often converged after around 1,000

501        epochs using this dataset, but when it took more epochs to converge it was

502        usually because of higher error for the validation data point of R e  =  10, 000.

503        The non-uniform datasets included less training data around this input value

504        since the flow changes less significantly in this range. This seems to have a

505        negative impact for a few training runs, especially when overfitting occurs

506        based on more data included in R e regions where the flow outputs change

507        more significantly. Finally, it seems that using less training data points

508        often leads to fewer epochs required to train the models, especially for the

509        uniform datasets. This can be a result of overfitting of the models when too

510        much training data is included. For the non-uniform datasets, decreasing

511        the amount of training data when there is less than about 150 data points
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512        does not always reduce the number of epochs required to train the models.

513        There may be an optimal amount of training data points for the non-uniform

514        datasets around 50-150 data points.

515        5.5. Evaluation Results

516 Example evaluation results of the BC-CGAN model for the randomly

517        selected test data points are shown in Figure 9. The BC-CGAN predictions

518        match well with the test data based on a qualitative comparison, even at

519        higher error metrics. The BC-CGAN predictions also capture the change in

520        the lid-driven cavity flow pattern over the wide range of Re.

Figure 9: Example evaluation results for the trained B C - C G A N model with different error

metrics.

521 A  comprehensive quantitative evaluation for the BC-CGAN models trained
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522        with different datasets and at different error metric thresholds is shown in

523        Figure 10. The box plots show the range of calculated RMSE (normalized by

524        U0) for the trained BC-CGAN models against the test data. Similar to Figure

525        8, the BC-CGAN models trained by the different datasets are differentiated

526        by the number of training data points and whether they are non-uniform or

527        uniform datasets. The defined training error metric threshold is also included

528        in each plot for comparison.
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(a) 5% error metric. (b) 10% error metric.

(c) 15% error metric.

Figure 10: Box plots of the % normalized RM S E  of the test predictions for the B C - C G A N

models trained by diffrent datasets and error metrics.

529 First, the prediction error is higher when the training error metric threshold

530        is higher. However, even for the error metric of 15%, the prediction error

531        is almost always lower than 5%. This is because the error metric in the

532        training process is only satisfied once all the validation data points are below

533        the metric, so it is possible one validation data point had much higher error
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534        compared to others. Furthermore, the error metric used to train the models

535        included a combination of max error and RMSE to ensure predictions without

536        points of very high error. Since the evaluation results are shown in terms of

537        just RMSE for an easier understanding of the results, the prediction error is

538        much lower than the training error metric. Finally, we see the BC-CGAN

539        models trained by the uniform dataset often had lower prediction error

540        compared to those trained by the non-uniform datasets. This may occur

541        because the BC-CGAN models trained by the non-uniform datasets required

542        less training epochs to satisfy the error metric criteria. Thus, while their

543        predictions for the validation data may be similar to those of the models

544        trained by the uniform datasets, they seem to perform slightly worse against

545        the test data, perhaps due to less overall training. We also find that the

546        test error for the models trained by the non-uniform datasets tended to be

547        higher for the larger R e  test values, which is the region of R e  where the

548        non-uniform datasets included less data. Conversely, the models trained by

549        the uniform datasets often had higher error for the smaller R e  test values,

550        which is the region of R e  where the flow changes more non-linearly. However,

551        the prediction error is still well below the threshold for all the BC-CGAN

552        models. Additionally, the difference in error for the models trained by the
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553        different datasets is almost negligible, especially for the stricter training error

554        metric thresholds. This is reasonable because the validation process to stop

555        the training of the models is the same regardless of the dataset. So while

556        the models trained by the different datasets may take different paths in their

557        training processes, the final trained models should be similar in performance.

558 Once trained, the BC-CGAN models can generate predictions with an

559        average speed of 7 ms per prediction. For this case, a C F D  simulation took

560        an average of 56 s, which means the trained BC-CGAN prediction was on

561        average about 7,900 times faster than a C F D  simulation. However, the time

562        to generate data and train the BC-CGAN models must be considered as

563        well. For all the training datasets considered in this case, it took an average

564        of 11.4 minutes to train the models to satisfy the 5% error metric. We found

565        that using less training data could often improve the training speed of the

566        models while maintaining suficient accuracy, and the smallest tested training

567        dataset required about 17.7 minutes to generate the training data. If only a

568        few predictions are needed, then it would be faster to use C F D  simulations

569        because of the time required to generate data and train the BC-CGAN

570        model. On the other hand, the time savings when using the BC-CGAN model

571        increases as the number of required predictions increases. After accounting
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572        for the time to generate data and train the BC-CGAN model, it becomes

573        beneficial to use the BC-CGAN model over C F D  simulations when more

574        than 31 predictions are required for this case.

575        6. Non-isothermal Case: Mixed Convection Flow with Heated B ox

576 The next case we study is a mixed convection flow with heated box. This

577        case is chosen as a more complex flow compared to the lid-driven cavity flow,

578        since it is non-isothermal, 3D, and includes an obstacle in the flow. It has also

579        been used for indoor airflow simulation studies in the literature [44, 45]. We

580        first describe the case setup, then summarize the BC-CGAN model settings

581        and generated training datasets. Finally, the training and evaluation results

582        are detailed.

583        6.1. Case Description

584 The setup of this case is shown in Figure 11. The flow is contained in

585        a room with length of L  in all dimensions. A  heated box is in the center

586        of the room, with dimensions of L / 2  in all dimensions. The box generates

587        heat with a uniform flux of Qbox. This is meant to represent an internal heat

588        load within a room, for example occupants. Cold air is supplied to the room

589        through the inlet along the top of the left wall with a velocity of Uin and
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590        temperature of Tin. An outlet is located along the bottom of the right wall.

591        The ceiling, floor, and remaining walls have temperatures of Tcei, Tf lo , and

592        Toth, respectively. The flow is modeled as steady and incompressible in this

593        study.

Figure 11: Diagram of the mixed convection flow with heated box case.

594 We select Qbox to be the input parameter for this case and vary this value

595        from 0 W/m2 to 50 W/m2. Furthermore, we add noise to the boundary

596        conditions of Uin, Tin, Tcei, Tf lo, and Toth for all the C F D  simulations used

597        to generate training, validation, and test data. Noise is added to Uin by

598        randomly increasing or decreasing this value by up to ±  5% of its default
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599        value of 1.36 m/s for each simulation. Similarly, the temperature boundary

600        conditions are randomly increased or decreased by up to ±  0.5 ◦ C  of their

601        default values. The default values for Tin, Tcei, Tf lo, and Toth are 22.2 ◦C ,

602        25.8 ◦C ,  26.9 ◦C .  and 27.4 ◦C .  This added noise can represent uncertainty in

603        experimental conditions, for example. It also adds a potential challenge for

604        the BC-CGAN model, since the model is only given the value of Qbox as an

605        input. Since the BC-CGAN models assume the other boundary conditions

606        are unchanged, their values (including the added noise) are not given as an

607        input. Similarly, since the geometry (including locations of the box, inlet,

608        and outlet), is unchanged, these are not given as an input. Future research

609        can extend the BC-CGAN model to consider multiple varying boundary

610        conditions for this case. The C F D  simulations use a 44 × 44 × 44 non-uniform

611        grid, similar to in [44]. For this case, the BC-CGAN model outputs the 2D

612        airflow distribution at the mid-plane of the flow. It outputs both the velocity

613        and temperature distribution, since it is a non-isothermal flow. Thus, the

614        C F D  data is translated to provide a 36 ×  36 uniform grid of velocity and

615        temperature data at the mid-plane of the flow. The model also must generate

616        the box within the surrounding flow. This can be useful for when A I  models

617        are needed to detect obstacles in the flow.
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618        6.2. BC-CGAN Model Settings

619 The architectures for the generator and discriminator are shown in Table

620        4 and Table 5, respectively. While they are mostly similar to the architectures

621        used in the previous case described in Section 5.2, there are a few key

622        differences. First, the generator produces a 72×36 output and the discriminator

623        receives 72 ×  36 image inputs. This is because the flow outputs in this

624        study are the 36 ×  36 distribution of both velocity and temperature. The

625        other key difference is the output layer of the generator uses the T anh

626        activation function rather than S igmoid. The activation function in the

627        output layer outputs the value of velocity or temperature in the flow based

628        on the information received at that node within the layer. In the training

629        data for this case, a value of -1 is assigned to the points where the box

630        is located to differentiate it from the fluid flow (represented by normalized

631        velocity/temperature values from 0 to 1). Thus, the T anh activation function

632        is chosen for the generator in this case, because it can output values from -1

633        to 1 while the S igmoid activation function only outputs values from 0 to 1.

634        For this case, we used the Adam optimizer with learning rate of 0.0001 and

635        decay rate of 0.25, as well as a batch size of 32 for training the models.
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Table 4: Summary of generator architecture.

Layer

Input

Reshape

Deconvolution

Deconvolution

Deconvolution

Deconvolution (output)

Shape

200

18 ×  9 ×  128

36 ×  18 ×  128

72 ×  36 ×  64

72 ×  36 ×  32

72 ×  36 ×  1

Activation function

N/A

N/A

ReLU

ReLU

ReLU

Tanh
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Table 5: Summary of discriminator architecture.

Layer

Label input

Image input

Reshape

Convolution

Convolution

Convolution

Convolution

Flatten

Output

Shape

ntrain

72 ×  36 ×  1

72 ×  36 ×  2

36 ×  18 ×  32

18 ×  9 ×  64

9 ×  5 ×  128

9 ×  5 ×  256

11520

1

Activation function

N/A

N/A

N/A

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

N/A

Sigmoid

636        6.3. Training Datasets

637 Two training datasets are generated using the feature-driven algorithm

638        and are compared against three uniformly generated datasets, summarized

639        in Table 6. The thresholds for the non-uniform datasets are dimensionless

640        values of 0.05 and 0.10 and are chosen to provide two different sizes for the

641        non-uniform datasets. These thresholds correspond to a relative change in
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642        either velocity magnitude or temperature. If this threshold is exceeded for

643        significant changes in either velocity or temperature at any of the critical

644        output locations, a new point is added. The change in velocity magnitude is

645        normalized by the maximum velocity for the case, which is the inlet velocity

646        (Uin). The change in temperature is normalized by the difference between

647        the maximum and minimum temperatures for the entire case (Tmax −  Tmin),

648        where Tmax comes from the highest Qbox scenario and Tmin is the cold inlet

649        air temperature. The locations of the critical outputs are the center points

650        of the cells when dividing the flow into a 5 × 5 grid, resulting in 25 locations.

651 Uniform steps of 0.5, 2, and 25 W/m2 are chosen to produce three uniform

652        datasets with very different amounts of training data. In the previous case in

653        Section 5, we found that using less training data often reduced the number

654        of epochs required to train the models. Thus, we include the training dataset

655        with uniform step of 25 W/m2 to observe the impact of using very few training

656        data points on the training and prediction performance of the BC-CGAN

657        models. Furthermore, the training data points in this dataset are identical

658        to the validation data points for this case. This was done intentionally to

659        observe the impact on the performance of the BC-CGAN models when the

660        training data is more biased towards the validation data.
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Table 6: Summary of training datasets.

Uniform/ Uniform step ε threshold Total number of

Non-uniform ( ∆  W/m2) training data points

Uniform 0.5 N/A 101

Uniform 2 N/A 26

Uniform 25 N/A 3

Non-uniform N/A 0.05 40

Non-uniform N/A 0.10 14

661 Histograms of the two non-uniform training datasets generated by the

662        feature-driven algorithm are shown in Figure 12. Unlike the lid-driven cavity

663        case, there is not a clear trend in the non-linearity between the inputs and

664        outputs. It seems that there are more changes in the flow between Qbox

665        values of 25-40, as shown in Figure 12a. In this region, the flow pattern

666        in the room transitions from being dominated by the cold supply airflow to

667        being significantly impacted by the thermal plume from the heated box. We

668        see more noticeable changes in the boundary layers around the box because

669        of this effect in this region. However, these changes do not seem to be very
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670        large, as shown by the more uniform training dataset in Figure 12b with the

671        looser ε threshold.

(a) ε =  0.05. (b) ε =  0.10.

Figure 12: Histograms of training datasets generated using the feature-driven algorithm

with different ε thresholds.

672        6.4. Training Results

673 Sample validation results of the BC-CGAN model are shown in Figure

674        13. The validation data points selected for this case are Qbox values of 0, 25,

675        and 50 W/m2. The error metric is computed only using RMSE in this case,

676        instead of a combination of RMSE and max error as in the previous case. This

677        change was made because it was dificult for the model training to converge

678        using a stricter error metric for this more complex flow case. Additionally,

679        the error metric combines the error for both velocity and temperature by
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680        scaling the ranges of both these values from 0 to 1. The RMSE is then

681        calculated by considering the mean squared error using the scaled errors

682        for both velocity and temperature at each location in the 36 ×  36 2D flow

683        domain. Because of the change in error metric calculation for this case, the

684        BC-CGAN predictions are qualitatively more different than the reference

685        C F D  simulations, especially for error metric thresholds of 10% and 15%.

686        The change in velocity magnitude is more subtle for this case, since the input

687        parameter is a heat flux rather than Re. The most noticeable difference in

688        velocity magnitude is between the right side of the box and the right wall.

689        The boundary layer along the right wall thins as Qbox increases. There is

690        also a more noticeable boundary layer along the right side of the box as

691        Qbox increases, because the heat of the box causes the surrounding air to

692        heat up and rise. The velocity magnitude just above the box also slightly

693        increases with Qbox because of this buoyant flow. The change in temperature

694        distribution for the different Qbox values is more apparent, since the increase

695        in Qbox creates a significant thermal boundary layer surrounding the box.
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(a) Velocity prediction. (b) Temperature prediction.

Figure 13: Validation results for velocity and temperature prediction with different error

metrics.

696 The quantitative training results of the BC-CGAN model with different

697        training datasets is shown in Figure 14. Similar to before, the higher error

698        metric results in less epochs to train the models. Reducing the amount of

699        training data seems to decrease the number of required epochs to train the

700        models, until the uniform training dataset with only three data points. It

701        seems that the training epochs can increase when the amount of training data

702        is drastically reduced, especially for the looser error metric thresholds. The
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703        non-uniform dataset with the least amount of training data typically requires

704        the least number of epochs to train the models, while the non-uniform dataset

705        with the most amount of training data often requires the most epochs to train

706        the models. This discrepancy is likely because the outputs did not vary as

707        non-linearly with the inputs for this case compared to the previous lid-driven

708        cavity case.

(a) 5% error metric. (b) 10% error metric.

(c) 15% error metric.

Figure 14: Box plots of the number of epochs required to train the B C - C G A N model for

different training datasets and error metrics.

57



709        6.5. Evaluation Results

710 Example evaluation results of the BC-CGAN model for the randomly

711        selected test data points are shown in Figure 15. The BC-CGAN predictions

712        capture the main trends and features of the velocity and temperature distributions

713        at different Qbox values. However, the qualitative differences between the

714        BC-CGAN predictions and reference test data are more apparent for this

715        case compared to the previous. This is because the error metric is calculated

716        entirely based on RMSE for this case rather than a combination of RMSE

717        and max error, so locations with higher error may persist in these predictions.
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(a) Velocity prediction.

(b) Temperature prediction.

Figure 15: Evaluation results for velocity and temperature prediction for the trained

B C - C G A N model with different error metric thresholds.

718 The comprehensive quantitative evaluation results for the BC-CGAN
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719        models trained with different datasets is shown in Figure 16. The results

720        show the error threshold is satisfied by the predictions from all the datasets

721        except the smallest training dataset with only three points. This shows the

722        consequences of drastically reducing the amount of training data, since it is

723        not able to capture the trends across the range of Qbox as well. Additionally,

724        the non-uniform training dataset with more training data points often performs

725        the best in terms of its predictions. This was also the training dataset that

726        typically required the most epochs to train the models. The results from this

727        case as well as the previous case appear to show a tradeoff between training

728        epochs and prediction performance. While some training datasets may take

729        more time to satisfy the validation criteria, they can perform better on a

730        wider range of test data, perhaps because of the additional training. The

731        difference in error is more apparent for the looser error metric thresholds

732        compared to the 5% error threshold. The change in error among the models

733        trained by the different datasets is almost negligible for this strict error

734        threshold, except for the dataset with only three data points. Tuning either

735        the uniform step of the input parameter or ε for the training datasets may

736        help balance training time and evaluation performance.
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(a) 5% error metric. (b) 10% error metric.

(c) 15% error metric.

Figure 16: Box plots of the % normalized RM S E  of the test predictions for the B C - C G A N

models trained by different datasets and error metrics.

737 For this case, the BC-CGAN models can generate predictions with an

738        average speed of 11 ms per prediction, while a C F D  simulation took an

739        average of 13.7 minutes. Both the BC-CGAN prediction and C F D  simulation

740        times are higher for this case because of the additional complexity compared

741        to the lid-driven cavity flow, with the increase in C F D  time being more
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742        significant. The trained BC-CGAN prediction was on average about 75,680

743        times faster than a C F D  simulation for this case. It took an average of 18

744        minutes to train the models to satisfy the 5% error metric, when considering

745        all the training datasets used in this case except for the one with only

746        three data points, which was found to have poor evaluation performance.

747        When excluding that dataset, it took a minimum of 3.2 hr to generate

748        training data. After accounting for the time to generate data and train

749        the BC-CGAN models, it becomes beneficial to use the BC-CGAN approach

750        over C F D  simulations when more than 15 predictions are required for this

751        case. The results for this case show the significant potential of this model for

752        accelerating flow prediction with more complex cases.

753        7. Conclusion

754 In this paper, we proposed a new BC-CGAN model for fast prediction

755        of indoor airflow distribution. We extended the original CGAN model to

756        make predictions based on a continuous input parameter, such as a boundary

757        condition, rather than a discrete parameter, like a specific design. We also

758        designed a novel feature-driven algorithm for generating training data for

759        A I  models. The algorithm includes training data points based on significant
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760        changes between the flow outputs and inputs, with the goal of minimizing

761        the amount of generated training data while ensuring training quality. The

762        new BC-CGAN model and feature-driven algorithm are evaluated for two

763        benchmark flow cases: an isothermal lid-driven cavity flow and non-isothermal

764        mixed convection flow with a heated box.

765 The results show the trained model can predict velocity and temperature

766        distribution with less than 5% normalized RMSE and up to 75,000 times

767        faster than reference C F D  simulations. For the lid-driven cavity case, the

768        trained models were able to make predictions for the test data with much less

769        than 5% normalized RMSE, even for the higher error metric threshold cases.

770        This is because we could use a stricter error metric that combined RMSE

771        and max error during the training process, which allowed for the predictions

772        to produce images without points of very high error. For the more complex

773        mixed convection flow with heated box case, this type of training error metric

774        could not be used, since it was dificult for the models to converge during

775        training with this method. Despite this, the trained BC-CGAN models for

776        this case make predictions below their error threshold for the test data,

777        except for the models trained by the dataset with only three data points.

778        While reducing the amount of training data often reduces the training time
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779        in this paper, drastically reducing the amount of training data caused the

780        BC-CGAN models to perform poorly against the test data.

781 Use of the feature-driven algorithm often reduces the epochs required to

782        train the BC-CGAN models for the lid-driven cavity flow case, since it was

783        able to capture the non-linear trend between the change in flow outputs and

784        inputs. However, the feature-driven algorithm did not always produce this

785        same effect for the mixed convection flow with heated box case, perhaps

786        because there was not a clear non-linear trend between the flow outputs

787        and inputs. For both cases, there is an apparent tradeoff between training

788        time and test performance. The BC-CGAN models that took longer to train

789        often performed better on the test data compared to the BC-CGAN models

790        that were trained quicker. For the lid-driven cavity case, the increase in test

791        prediction error was very small for the models that were trained quicker,

792        particularly since all the models were very accurate because of the use of

793        max error in the training process. The change in error for the predictions on

794        the test data in the mixed convection flow with heated box case was more

795        significant when the error metric threshold was higher. A  strict error metric

796        in this case resulted in small changes in test error among the models trained

797        by the different datasets, except for the dataset with only three data points,
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798        which performed poorly for this case.

799 Future studies can be conducted based on the work in this paper. First,

800        more practical applications can be studied, for example data center airflow

801        scenarios. One input parameter was used for each of the studies in this paper,

802        but the BC-CGAN models and feature-driven algorithm can be evaluated for

803        applications with multiple input parameters. This is important for expanding

804        the BC-CGAN models to more applications, for example optimizing both

805        supply airflow rate and temperature considering the indoor environment.

806        Additionally, the models in this paper were trained to predict 2D airflow

807        distributions, but a 3D prediction may be necessary for certain applications.

808        The impacts of the additional complexity when considering multiple inputs

809        and 3D outputs on the model training and evaluation needs to be studied in

810        future research. Incremental training, by either expanding the training range

811        to new data or using “online” training when deploying the models [46, 47]

812        can be performed to improve the models over time with new data. Finally,

813        the trained BC-CGAN models can be used for a long-term evaluation or

814        optimization study that requires many realizations to show the computational

815        benefits of using this model over other numerical methods in these scenarios.

816        They can also provide real-time or faster predictions of airflow distribution,
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817        which can be useful for emergency management scenarios.
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