ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/369205491

Fast prediction of indoor airflow distribution inspired by synthetic image
generation artificial intelligence

Article in Building Simulation - March 2023

DOI: 10.1007/512273-023-0989-1

CITATIONS READS
0 78

8 authors, including:

Cary Faulkner Dominik Jankowski
University of Colorado Boulder Graz University of Technology
18 PUBLICATIONS 79 CITATIONS 2 PUBLICATIONS 1 CITATION
SEE PROFILE SEE PROFILE
John Castellini Wangda Zuo
ri w University of Colorado Boulder Pennsylvania State University
9 PUBLICATIONS 46 CITATIONS 174 PUBLICATIONS 2,759 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Coupled Simulation of Indoor Environment, Envelope, HVAC, and Control Systems View project

Project Comprehensive Pliant Permissive Priority Optimization View project

All content following this page was uploaded by Wangda Zuo on 15 May 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/369205491_Fast_prediction_of_indoor_airflow_distribution_inspired_by_synthetic_image_generation_artificial_intelligence?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/369205491_Fast_prediction_of_indoor_airflow_distribution_inspired_by_synthetic_image_generation_artificial_intelligence?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/publication/369205491_Fast_prediction_of_indoor_airflow_distribution_inspired_by_synthetic_image_generation_artificial_intelligence?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cary_Faulkner2?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Colorado_Boulder?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cary_Faulkner2?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Castellini3?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Colorado_Boulder?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Castellini3?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik-Jankowski?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Graz-University-of-Technology?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik-Jankowski?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wangda-Zuo-2?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pennsylvania-State-University?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wangda-Zuo-2?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/project/Coupled-Simulation-of-Indoor-Environment-Envelope-HVAC-and-Control-Systems?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Comprehensive-Pliant-Permissive-Priority-Optimization?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wangda-Zuo-2?enrichId=rgreq-b990e2bdf86a10188c4b4dcbd35a3f91-XXX&enrichSource=Y292ZXJQYWdlOzM2OTIwNTQ5MTtBUzoxMTQzMTI4MTE1ODI3OTc1MEAxNjg0MTE0NDY1ODc0&el=1_x_10&_esc=publicationCoverPdf

Fast Prediction of Indoor Airflow Distribution Inspired
by Synthetic Image Generation Artificial Intelligence

Abstract

Prediction of indoor airflow distribution often relies on high-fidelity, computationally
intensive Computational Fluid Dynamics (CFD) simulations. Artificial intelligence
(Al) models trained by CF D data can be used for fast and accurate prediction

of indoor airflow, but current methods have limitations, such as only predicting
limited outputs rather than the entire flow field. Furthermore, conventional

Al models are not always designed to predict different outputs based on a
continuous input range, and instead make predictions for one or a few discrete
inputs. This work addresses these gaps using a Conditional Generative
Adversarial Network (CGAN) model approach, which is inspired by current
state-of-the-art Al for synthetic image generation. We create a new Boundary
Condition CGAN (BC-CGAN) model by extending the original CGAN model

to generate 2D airflow distribution images based on a continuous input
parameter, such as a boundary condition. Additionally, we design a novel

feature-driven algorithm to strategically generate training data, with the goal

Preprint submitted to Building Simulation December 14, 2022

1

3

of minimizing the amount of computationally expensive data while ensuring
training quality of the Al model. The BC-CGAN model is evaluated for
two benchmark airflow cases: an isothermal lid-driven cavity flow and a
non-isothermal mixed convection flow with a heated box. We also investigate
the performance of the BC-CGAN models when training is stopped based on
different levels of validation error criteria. The results show that the trained
BC-CGAN model can predict the 2D distribution of velocity and temperature
with less than 5% relative error and up to about 75,000 times faster when
compared to reference CFD simulations. The proposed feature-driven algorithm
shows potential for reducing the amount of data and epochs required to train
the Al models while maintaining prediction accuracy, particularly when the

flow changes non-linearly with respect to an input.

Keywords: artificial intelligence, indoor airflow, conditional generative

adversarial network, computational fluid dynamics.

1. Introduction

Simulation of indoor airflow distribution can be used for understanding
indoor air quality, thermal comfort, and building energy eficiency. Computational
Fluid Dynamics (CFD) methods are a popular approach for indoor airflow

simulation [1] that numerically solve the governing equations of fluid flow,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

such as conservation of mass, momentum, and energy. For example, Han
et al. [2] used a CFD approach to simulate data center cooling scenarios to
provide guidance for reducing energy consumption while meeting thermal
requirements. Researchers have also used CFD methods to study the impact
of ventilation strategies on thermal comfort [3, 4, 5], evaluate dispersion of
airborne pollutants [6, 7, 8], and more. While these methods have been
useful in many applications related to indoor airflow, they are still limited in
a number of ways. First, CFD simulations are computationally expensive [9]
and may be too slow for applications such as long-term evaluations (e.g.,
annual simulations) or optimization problems requiring thousands of realizations.
Additionally, it is often infeasible to perform real-time or faster simulations
using CFD, which can be required for emergency management scenarios [10].
Therefore, there is a need for computationally eficient methods of indoor
airflow distribution prediction.

Modifications to traditional CF D methods have been proposed to accelerate
these numerical simulations, such as Fast Fluid Dynamics methods [11, 12].
While these methods can be used for real-time or faster flow simulations,
they may sacrifice some accuracy compared to traditional CFD methods.

They are also unable to perform real-time simulations for more complex

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

airflow scenarios. Data-driven regression methods, such as in situ adaptive
tabulation [13, 14], can quickly predict key flow information, such as the
occupied zone temperature. However, these methods are often used to predict
a few key outputs rather than the entire flow distribution.

Artificial intelligence (Al) methods have emerged as a popular approach

to address some of the limitations of indoor airflow prediction. Zhou and

Ooka [15] analyzed using deep neural networks for isothermal airflow distribution

prediction in an ofice room and found the trained networks could accurately
predict the velocity distribution 1.9 million times faster than reference CFD
simulations. Generative Adversarial Network (GAN) [16] models have become
a popular Al approach, particularly for generating synthetic images [17,
18]. Variations of the original GAN model have been introduced, such as
Conditional Generative Adversarial Network (CGAN) [19] models, which
generate synthetic data based on categorical labels. In [19], the categorical
labels include different single digit numbers and the CGAN model generates
synthetic hand-drawn images for each specified digit. These models have
been used for generating synthetic images of faces at different ages [20],
producing power demand profiles for different types of buildings [21], and

predicting wireless networking environments [22]. CGAN models trained by

44

45

46

47

18

49

50

51

52

53

54

55

56

57

58

59

60

61

62

CFD simulations have been used for flow prediction, for example Chen et
al. [23] predicted airflow over different airfoil shapes and Wang et al. [24]
predicted the temperature distribution of different vortex generator designs
for film cooling.

While significant advances have been made to use Al for indoor airflow
prediction, some limitations still exist. First, many Al models are designed to
predict one or a few critical outputs in the airflow (e.g., average temperature
in the occupied zone or temperature values at a few sensor locations) rather
than the entire airflow distribution, which is necessary for many modeling
applications. GAN and CGAN models have shown significant potential for
image generation, including prediction of flow distribution, and are thus
worthy of further research for indoor airflow prediction. However, they are
often designed to make predictions based on discrete categorical inputs, for
example different specific designs or geometries. However, in many scenarios
it is useful to be able to make predictions based on continuous input parameters.
For example, boundary conditions, such as supply airflow rate in indoor
airflow simulations, may be optimized based on a continuous design space.
This is because the supply airflow rate can be optimized to be any possible

value within a defined range, rather than being limited to a few select values.

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Finally, generating training data for Al models using CF D simulations can be
time consuming, and it is not always clear how much data should be included
to train the models.

To address the limitations discussed, we create a new Boundary Condition
CGAN (BC-CGAN) model for predicting indoor airflow distribution based on
a continuous input parameter, such as a boundary condition. Furthermore,
we design a novel feature-driven algorithm for eficiently generating training
data. The algorithm minimizes the amount of generated data while ensuring
a diverse set of training data for Al models by selecting data points based on
significant changes in the flow output. The feature-driven algorithm and
BC-CGAN model are evaluated for two benchmark airflow cases: 1) an
isothermal lid-driven cavity flow and 2) a non-isothermal mixed convection
flow with a heated box. CFD simulations are used to generate the training,
validation, and test data for both cases. Using the dimensionless Reynolds
number as an input, the BC-CGAN model predicts the velocity magnitude
distribution for the lid-driven cavity case. For the mixed convection flow with
heated box case, the BC-CGAN model predicts the velocity magnitude and
temperature distributions based on the heat flux of the box. The model is

also designed to reproduce the existence of an obstruction in the flow, in this

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

case the box within the flow. Finally, noise is added to some of the boundary
conditions in the CFD simulations for this case to mimic uncertainty in
experimental conditions.

Our specific scientific contributions include: 1) creating a new BC-CGAN
model by extending the traditional CGAN model to generate images of flow
distribution using a continuous input parameter (e.g., a boundary condition);
2) designing a novel feature-driven algorithm to strategically reduce the
amount of required training data while ensuring training quality for Al
models; and 3) demonstrating the BC-CGAN model framework for two
benchmark flow cases and showing the trained model can predict airflow
distribution with less than 5% relative error and up to about 75,000 times
faster when compared to reference CFD simulations.

The rest of this paper is organized as follows. The BC-CGAN model
is introduced in Section 2. We then detail the feature-driven algorithm for
generating training data in Section 3. Next, Section 4 outlines the entire
workflow including generation of training data, model training, and model
evaluation. After that, Section 5 presents the results for the isothermal
lid-driven cavity flow case and Section 6 shows the results for the non-isothermal

mixed convection flow with heated box case. Finally, conclusions are drawn

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

in Section 7.

2. New Boundary Condition Conditional Generative Adversarial

Network (BC-CGAN) Model

In this section, we first provide an overview of the original GAN and

CGAN models, then detail our new BC-CGAN model.

2.1. Original GAN and CGAN Models

The CGAN model used to develop BC-CGAN is based on the original
GAN model [16], but modified to generate images based on different classes.
GAN-based models are selected for this study because of their strength in
image generation [25], which is useful for applying to prediction of indoor
airflow distribution. Furthermore, they have been extended for 3D image
generation applications [26, 27, 28], which can be beneficial for 3D airflow
prediction. As shown in Figure 1 (left), the original GAN model consists
of two competing neural networks: a generator (G) and discriminator (D).
The generator receives a vector containing randomly generated noise (z)
as an input and attempts to output an image accordingly (G(z)). The
discriminator receives a mixture of real images (x) randomly selected from

the training data and synthetic or “fake” images produced by the generator.

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

The discriminator then attempts to correctly classify each image as real or
fake, and the output of the discriminator (D(G(z)|x)) is compared with the
correct classification of real or fake. Based on this final outcome, the weights
of the generator (8g) and discriminator (8p) networks are updated and the
process repeats, starting with new batches of training images and new noise
inputs. Early in the training process, the generator has not learned how
to output realistic images, so the discriminator is able to easily classify the
images and the generator performs poorly. As the generator is trained over
many iterations, it learns how to produce more realistic images and is able to
fool the discriminator. Eventually, the generator produces images that are
so realistic that the discriminator can no longer distinguish between the real
and fake images. ldeally, the training process would reach a quasi-equilibrium
state where the discriminator has a 50-50 guess at whether images are real
or fake, and the training process can stop. Once the model is trained, the
discriminator is no longer needed and synthetic images can be generated
by providing a noise input to the generator. Although GAN models can
be dificult to train [29], in part because they involve two neural networks,
they have demonstrated advantages in image prediction over other types of

models [29].

138

139

140

141

142

143

144

145

146

Labeled real images, x,

Real or Fake, Update Real or Fake, Update E
D(x|G(z)) models | D(x,|G(zy)) models
classification? > classification? >~ !

Figure 1: GAN training architecture (left) and CGAN training architecture (right).

What differentiates the CGAN model from the original GAN model is
the addition of labels, as shown in Figure 1 (right). The generator receives
a label (y) as an input in addition to the noise input and attempts to
produce an image based on this label (G(z,y)), for example an image of
a specific digit in [19]. The discriminator then instead receives labeled
real images (xy) mixed with labeled images produced by the generator, and
determines whether an image is real or fake considering the received label.
After training, synthetic images can be generated for a specific category by

providing the generator with a label and noise input. The use of labels

10

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

is convenient for generation of images based on specific categories, which
is accomplished by assigning unique labels to the training data from each
category. Since the original GAN model generates images based on the
aggregated, non-categorized training data, the CGAN model is adopted in
this work to utilize labels for categorizing training data. This can mean
predicting airflow patterns for different labeled building designs, as in [30].

The use of labels, however, also adds complexity to training the model,

because the model needs to be trained to generate images for multiple categories.

2.2. BC-CGAN Model

We extend the previously described CGAN model to create anew BC-CGAN

model in this work that generates images using continuous inputs, rather
than a few discrete input classes. An example of using discrete input classes
would be prediction of airflow distribution in different rooms, where each
specific room configuration would be the discrete input class determining the
output airflow. Indoor airflow simulations often involve input parameters
that can be considered continuous rather than discrete, such as a boundary
condition like the supply airflow rate. This can be considered as a continuous
parameter because it can have any possible value within a defined range (e.g.,
any value between 1-5 kg/s), rather than only a few possible values (e.g., a

11

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

few potential room configurations). The change in output airflow distribution
can then be studied by varying the input parameter continuously within its

range.

Modifying the existing CGAN model to make predictions based on continuous

input variables poses a challenge, since the original CGAN model is designed
to make predictions based on discrete integer labels. Although a continuous
input range can be discretized to assign labels for a CGAN model to many
possible values within that range, this cannot cover every possible value, and
a simpler method can be adopted. Thus, the structure of the CGAN models
needs to be changed to address this challenge. First, the we want the trained
CGAN model to receive an input that represents a specific continuous input
value. Additionally, it is convenient during the training process to assign
discrete labels to the training data, but a method is needed to convert these
labels to the actual values of the continuous input for the model.

The new BC-CGAN model is shown in Figure 2. The difference in this
model is the input to the generator, where the noise inputs are replaced with
inputs defined specifically by labels, using a translator. A noise input is used
in the previous CGAN models to generate a distribution of images within a

category, for example different handwriting styles for a specific digit in [19].

12

155 In this work, we want to generate a specific output given a specific input,
1ss rather than some distribution of outputs for a given input. Thus, the noise
157 aspect is removed, since a single output for each input is desired rather than
18 a distribution of outputs for each input. It should be noted Zheng et al. [31]
189 proposed an alternative CGAN approach considering continuous inputs with

190 the noise aspect included to produce a distribution of outputs.

[Translator

Labeled real images , x,,

Update

Real or Fake,
models

D, |G()

Correct
classification?

BC-CGAN

Figure 2: BC-CGAN training architecture.

191 The BC-CGAN model uses labels during the training process as a convenient

13

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

method for categorizing training data using an integer value. For generating
images after the model is trained, we want to provide the model specific input
parameter values directly instead of labels. The translator is thus needed
during the training process to convert the received integer label to a specific
input parameter value for the generator. This allows for: 1) the convenient
use of labels during the training process and 2) the ability for the generator
to learn to produce images based on an input parameter value, therefore
removing the need for labels and a translator after the model is trained.
Since the discriminator is only used during the training process, a simple
integer value label can be provided to the discriminator and a translator is
not needed to convert the label to its parameter value.

The goal of the translator is to map the received labels to the associated
input parameter values. Consider a scenario where the input boundary
condition for a given flow is a characteristic velocity Ug. For this case, a
training label (y) is assigned to each training data image defined by their
different Uy values. The purpose of the translator is then to map y to
its corresponding Up value. The function the translator uses to map these
values, Up(y), is dependent on the training data distribution. Assume a

uniformly distributed training dataset where each data point is chosen based

14

211

212

213

214

215

216

217

218

219

220

221

222

223

on a change in Ug of AUy, calculated as:

AUg = (UO,max - UO,min)/ntrain' (1)

where Ug max and Ug min are the minimum and maximum Up values in the
training dataset, respectively, and n¢ain is the total number of training
data points in the dataset. The function for the translator to map y to

a corresponding Ug would then be:

Uo(y) = AUq -y + Ug min. (2)

Finally, interpolation is used so the input to the generator, z(y), is a value

between zero and one:

Z(y) = [UO(y) - UO,min]/[UO,max - UO,min]r (3)

After training, images can be generated for a specific Ug value by replacing
Uo(y) in Equation 3 with the desired Uy value. allows for prediction of
images using the continuous input value directly and without the need for
a label or translator. Furthermore, the BC-CGAN model can be trained to
make predictions considering multiple boundary conditions by using a vector
containing multiple labels. The translator would then output a vector based

15

224

225

226

227

228

229

230

231

232

234

235

236

237

238

239

240

241

on the input label vector (i.e., z(y)). As a starting point, this paper considers

one varying input parameter for each case.

3. Novel Feature-driven Algorithm for Generation of Training Data

Although trained Al models can produce results quickly, generation of
training data for the Al models can be time consuming (e.g., by using CFD).
Using uniformly distributed inputs for training data generation is a simple
approach, but this may include more training data than an Al model actually
needs. For an indoor airflow prediction Al model, training data may be
generated by varying the supply airflow rate by a constant step of Am in
each CFD simulation. This may pose a problem when the outputs vary
non-linearly with the inputs, for example if the airflow distribution varies
non-linearly with the supply airflow rate. If the resolution of generated
training data is not suficiently high, a uniformly distributed training dataset
may exclude crucial points in regions where the gradient of the outputs with
respect to the inputs (B,f) is high. This may exclude crucial data points
that capture the non-linear trends between inputs and outputs. On the other
hand, in regions where Bf is low, a high resolution of generated training

data may result in many redundant data points and excessive time required

16

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

to produce the training data. When generation of training data is costly,
a non-uniformly distributed training dataset can be beneficial for training
Al models, since redundant training data points can be avoided while still
including suficient training data for the Al models.

To address this problem, we propose a novel feature-driven algorithm to
create non-uniformly distributed training datasets that minimize the amount
of generated training data for Al models. The algorithm strategically selects
training data points based on significant changes in the outputs with respect
to the inputs. In its strategic selection, the algorithm includes more data
points in regions where B,f is high and excludes redundant data points in
regions where B,f is low. The feature-driven algorithm can be used for
multiple inputs (e.g., multiple varying boundary conditions). However, we
focus on a single varying input parameter in this paper and explain the
algorithm in detail assuming one varying input.

The feature-driven algorithm flowchart is detailed in Figure 3. First,
initial grid points for the training dataset are included to provide a few
baseline points, as well as to create a defined range for the training data. The
grid points for the training data are defined by their different values of inputs,

represented by x. The algorithm begins by computing the changes in critical

17

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

279

outputs between neighboring grid points, for example between x; and x,. For
each pair of neighboring grid points, if the change in critical outputs (e.g.,
[f(x2) = f(x1)]|) is greater than the defined threshold, €, a new grid point is
added between those two points (e.g., at (x+x1)/2). In this case, a new CFD
simulation is performed based on the input parameter defined by the new grid
point, and the simulation output is added to the training data. The results
from comparing neighboring grid points are cached to avoid performing the
same comparison redundantly during the process. If the change in critical
outputs does not exceed g, then no new grid point is added between those
two points and a CFD simulation is not performed. After completing this
for each pair of neighboring grid points, the algorithm checks if any new
grid points were added in the most recent iteration. If no new points were
added, then the process ends since further iterations will not add any new
grid points. If there were new grid points added in the most recent iteration,
then the algorithm checks if a maximum resolution has been reached. The
initial resolution is the difference between values of the initial neighboring
grid points, e.g., x — x1. A defined maximum resolution can be useful to
prevent excessive training data from being generated with neighboring inputs

very close together. The process ends if the maximum resolution has been

18

280

281

282

283

284

285

286

reached. If the maximum resolution has not been reached, then the resolution
increases by a factor of two (e.g., (x2—x1)/2). After increasing the resolution,
the set of grid points are reset with the newly added grid points. The process
repeats by computing the change in critical outputs between neighboring grid
points, now with the newly added grid points. The process ends once either
no new grid points are added in an iteration or once the maximum resolution

is reached.

19

Figure 3: Flowchart of the feature-driven algorithm.

20

287

288

289

290

291

4. Description of Workflow

The description of the entire workflow including generation of training
data, model training process, and model evaluation is shown in Figure 4 and

described in this section.

/ 1. Generate initial training data points 2. Fill out training dataset using feature-driven algorithh

X initial grid points X initial grid points

@ 1stiteration

4 2nd iteration

* 3rd iteration

Data
X x X X x 0 X*® © & X & O X L] x X
Generation

O b | 4

ya 4. Stop training based on error metric 3. Begin training BC-CGAN model using .
[against validation data generated training data

Validation Validation
data data
| Model
S— Training
BC-CGAN A BC-CGAN
prediction b prediction

1,640 iterations 0 iterations

5. Test generator of BC-CGAN model against randomly selected data points

Test } '
data ‘ Model

Evaluation

Figure 4: Description of entire workflow including generation of training data, model

training, and model evaluation.

The workflow begins with the data generation process. Initial training

21

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

data points are first generated to provide baseline points for the feature-driven
algorithm and to define a range for the training data. In this case, a few
CFD simulations are performed to generate these initial points. Using too
many initial points can potentially include redundant training data, so fewer
initial points should be used to allow the algorithm to determine what data is
necessary to be included. For the cases studied in this paper, we find that, for
a given g, the feature-driven algorithm only becomes sensitive to the initial
data points when a large amount of initial data is included. This is because
using a large amount of initial data may include redundant data points that
the algorithm would not include. Using fewer initial data points often results
in very similar training data sets, because the algorithm is designed to find
the necessary data points within the input range, which are similar regardless
of the initial data points. Thus, we use only about ten initial data points for
the cases in this paper, which uniformly span the range of the studied input
parameters.

Next, the feature-driven algorithm is used to select what input parameter
values should be used for the additional CFD simulations to generate the rest
of the training data. In this paper, a few training datasets are generated with

different settings of the feature-driven algorithm for each case. Additionally,

22

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

uniformly distributed training datasets are generated for comparison against
the training datasets produced by the feature-driven algorithm. BC-CGAN
models are then trained using the different training datasets, where the
initial settings of each BC-CGAN model are identical. We then compare the
training speed and prediction performance for the BC-CGAN models trained
by the different datasets. Since the training process is inherently stochastic,
we train ten BC-CGAN models for each training dataset to understand their
training and prediction performance over several runs.

To train the BC-CGAN models, one unique label is assigned to each
training data image within its dataset. Additionally, a few reference data
points are generated using CFD simulations for validation of the BC-CGAN
models during training. Periodically during the training process, the BC-CGAN
model produces flow distribution outputs based on the validation data input
values. Its outputs are then compared against the validation data points
and a relative error metric is computed for each output. The error metric
is calculated based on error between the flow outputs (e.g., velocity and/or
temperature) at each point in the flow. If the error metric between the
BC-CGAN prediction and validation data is below a defined threshold for all

the validation data points, then the model is considered to be suficiently

23

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

trained and the training stops. Otherwise, training continues until this
criteria is satisfied. In this paper, we save the trained BC-CGAN models
at different error metric thresholds to compare the tradeoff between training
speed and prediction performance for different error thresholds.

Finally, the trained BC-CGAN models are evaluated against test data
points that were not selected from the training or validation data. The test
data is selected by using a bin sampling technique to produce ten random
input values that span the defined input range. CFD simulations are then
performed to generate the test data based on the ten input values. The
BC-CGAN models are evaluated by generating their flow distribution outputs
based on the test input values and computing their relative error against
the test data. The BC-CGAN models are trained to predict 2D airflow
distribution in this paper, but can be extended for 3D airflow prediction in

future research.

5. Isothermal Case: Lid-driven Cavity Flow

The first case studied in this paper is an isothermal lid-driven cavity
flow. We begin with a description of the setup for this flow case. Next, we

show the settings used for the BC-CGAN model and the generated training

24

348

349

350

351

352

353

354

355

356

357

358

359

360

361

datasets for the BC-CGAN models in this case. Finally, the training and
evaluation results for the BC-CGAN models trained by the different datasets

are detailed.

5.1. Case Description

The setup of the isothermal lid-driven cavity flow case is shown in Figure
5. This is a meaningful case because, despite having a simple configuration,
the flow pattern changes significantly depending on the initial conditions
and boundary conditions. Because of this, it is a benchmark flow case that is
frequently studied in the literature using both physical experiments [32, 33]
and numerical simulations [34, 35, 36, 37]. This flow is contained in a box of
length L on all sides. The left, right, and bottom walls are stationary, while
the lid moves at a constant velocity of Ug to the right. The motion of the lid
causes a circulation pattern of the flow within the box. The flow is modeled

as 2D, steady, incompressible, and isothermal in this study.

25

362

363

364

365

366

367

368

s

Figure 5: Diagram of the lid-driven cavity flow.

The lid-driven cavity flow is often defined by its Reynolds number (Re)
in the literature [38, 39], which characterizes the ratio of inertial to viscous
forces in the flow. Thus, we use Re as the input parameter for the flow in

this study. For this case, Re is calculated as:

Re = Ugl/v, (4)

where Up is the constant velocity of the lid, L is the length of each side of
the box, and v is the kinematic viscosity of the flow.
We define the range of Re values to be from 100 to 10,000. We hold Uy

26

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

and L constant while changing v to vary the Reynolds number for the CFD
simulations in this paper. All the other simulations settings and boundary
conditions remain the same for each simulation, so the BC-CGAN models
only receive Re as an input. The flow output we study for this case is the
steady-state distribution of velocity magnitude. This means the training data
produced by CF D simulations is comprised of velocity magnitude distribution
data based on the input Re. The BC-CGAN models are then trained to
output the velocity magnitude distribution based on the input Re. The
CFD simulations used to generate the training, validation, and test data
for this case are performed using the Fast Fluid Dynamics method [11, 12]
on an AMD Radeon™ Pro WX 7100 GPU. The CFD simulations use a
64 x 64 non-uniform, structured grid, which is translated to a 36 x 36
uniform structured grid for the model training and evaluation to simplify
the predictions while providing suficient resolution of the flow data. This
prediction resolution was selected to balance the tradeoff of training time and
resolution. The BC-CGAN model can be trained to predict a more resolved
flow output, but this may increase the training time and require re-tuning of

the model hyperparameters.

27

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

5.2. BC-CGAN Model Settings

The BC-CGAN model settings including neural network architectures and
hyperparameters are described in this section. First, the architectures of the
generator and discriminator are shown in Table 1 and Table 2, respectively.
The generator uses a deconvolutional neural network [40] and the discriminator
uses a convolutional neural network [41]. The generator receives an input
defined by Re (which is the only varying parameter), as described in Section
2.2, and outputs a 36x36 image representing the velocity magnitude distribution.
The discriminator receives a 36 x 36 image input as well as a label input
corresponding to a Re value. The label input uses one-hot encoding to give
the label of the image within the training dataset, with total number of
training data points of n¢ain. The discriminator produces an output of zero
or one, where zero corresponds to a classification of a “fake” image produced
by the generator and one corresponds to a classification of a “real” image
from the training dataset. The number of convolutional/deconvolutional
layers and filter sizes for these layers impact the training performance of
the generator and discriminator. For example, reducing the number of
layers in these neural networks can speed up each training step, but can

also negatively affect the training performance and result in more overall

28

a6 iterations to successfully train the models. We selected these architectures
a7 for the generator and discriminator to have reasonable training speed and

w8 consistent convergence of the models.

Table 1: Summary of generator architecture.

Layer Shape Activation function
Input 200 N/A

Reshape 9x 9x 128 N/A
Deconvolution 18 x 18 x 128 ReLU
Deconvolution 36 x 36 x 64 RelLU
Deconvolution 36 x 36 x 32 ReLU
Deconvolution (output) 36 x 36 x 1 Sigmoid

29

Table 2: Summary of discriminator architecture.

Layer Shape Activation function
Label input Ntrain N/A
Image input 36 x 36 x 1 N/A
Reshape 36 x 36 x 2 N/A
Convolution 18 x 18 x 32 LeakyRelLU
Convolution 9x 9x 64 LeakyRelLU
Convolution 5x 5x 128 LeakyRelLU
Convolution 5x 5x 256 LeakyRelLU
Flatten 6400 N/A
Output 1 Sigmoid

409 The hyperparameters for the BC-CGAN models were tuned carefully for

a0 this case. Certain hyperparameters, such as the learning rate, can significantly
a1 impact model training time and convergence or lead to overfitting [42]. For
a2 this case we used the Adam optimizer [43] with learning rate of 0.0002 and

a3 decay rate of 0.5. A batch size of 32 was used for training the models as well.

30

as 5.3, Training Datasets

a15 Four training datasets are generated using the novel feature-driven algorithm
a6 and are compared against four uniformly generated datasets. A summary of
a7 all the training datasets is included in Table 3. The uniformly distributed
as datasets are defined by their uniform step (ARe), which describes the difference
a9 in Re for which training data is generated. These datasets include training
a0 data points from Re = 100 up to Re = 10,000 by step of ARe. Thus,
a1 a higher ARe results in fewer training data points that are further apart
a2 Wwithin the defined Re range, while a lower ARe results in more training
a3 data. The selected values of ARe are chosen to be factors of the input Re
a4 range, which is 9,900 in this case, as well as to include similar nyain values
a5 as the non-uniform datasets.

a26 The non-uniform datasets are defined by their € threshold, which is the
a7 threshold to decide whether a training data point is needed based on the
a8 change in outputs between neighboring data points, as described in Section
a9 3. In this case, € is dimensionless and is described by the change in velocity
a0 Mmagnitude (A|U |) at any of the critical output locations between neighboring
21 Re data points, normalized by the velocity of the moving lid (Ug). A lower

a2 € results in higher nain, since it defines a smaller change in outputs to

31

433

434

435

436

437

438

439

440

determine that additional training data points are needed. The € values in
this case were chosen to provide datasets with a wide range of data points and
study the impact of training data size on the model training and evaluation.
The locations of the critical outputs used for the feature-driven algorithm in
this case are the center points of each cell when dividing the flow domain into
a 4 x4 grid, resulting in 16 locations. These locations were chosen to include
a range of possible locations where the flow can change, but the critical

locations can be narrowed based on the studied flow in future research.

32

441

442

443

444

445

446

Table 3: Summary of training datasets.

Uniform/ Uniform step € threshold nyrain
Non-uniform (A Re) (AU |/Uo)
Uniform 25 N/A 397
Uniform 50 N/A 199
Uniform 100 N/A 100
Uniform 275 N/A 37
Non-uniform N/A 0.001 378
Non-uniform N/A 0.005 120
Non-uniform N/A 0.01 67
Non-uniform N/A 0.05 19

Histograms of the non-uniform training datasets are shown in Figure 6.
The results show a clear trend: the lid-driven cavity flow changes more
significantly at lower Re values, especially between 100 and 1,000. The
€ = 0.05 dataset includes less than 5% of the training data points compared
to the € = 0.001 dataset, but still includes more of its training data between

Re values of 100 and 1,000. This is unsurprising as the lid-driven cavity flow

33

a7 transitions from laminar to turbulent in this region of Re. In particular,
as the boundary layer near the lid and circulation pattern along the right wall

as change more significantly in this region of Re.

100 A

80

60

404

Number of training samples
Number of training samples

20 A

N S & & & O &
S S S

SIS TS
b)) © A k3 N

Re Number Re Number

(a) €= 0.001. (b) € = 0.005.

100 - 100 A
80 80
60 q 60

401 40 4

Number of training samples
Number of training samples

201 204

Re Number Re Number

(c) e= 0.01. (d) €= 0.05.

Figure 6: Histograms of training datasets generated using the feature-driven algorithm

with different € thresholds.

34

450

451

452

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

5.4. Training Results

We select five data points as validation data for this case using Re values
of 100, 500, 1,000, 5,000, and 10,000. These points span the range of
Re for this study, as well as include more points in the lower Re regime,
since we found this is the regime where the flow changes more significantly.
Sample validation results of the BC-CGAN model are shown in Figure 7.
The top row shows the validation data from the CFD simulations, while the
remaining rows show the BC-CGAN predictions at different error thresholds.
For example, the BC-CGAN prediction results at the 40% error threshold
are the saved validation results from when the BC-CGAN predictions were
first below the error metric of 40% for all five validation data points. The
error metric in this case is computed by weighting two error calculations:
55% root mean squared error (RMSE) and 45% maximum error. Rather
than simply using RMSE, we include maximum error in this case to prevent
points of large error in the predictions. The errors are also both normalized
by Ug. The RMSE is calculated by considering the mean squared normalized
error in velocity magnitudes at each location in the 36 x 36 2D flow domain.
The maximum error is then the highest normalized error within the 36 x 36

domain. Initially during the training process, we saved the validation results

35

469

470

471

472

473

474

475

for different error metric thresholds of 5%, 10%, 15%, 25%, and 40%. Based
on the qualitative results, we can see the BC-CGAN prediction at an error
metric of 40% does not match well with the validation data. However, the
BC-CGAN prediction seems to capture the trends of the validation data for
error metrics of 15% and below. Consequently, for the remainder of this
paper we save the trained BC-CGAN model and their validation results for

error metric values of 5%, 10%, and 15%.

36

Re =1000 Re = 5000 Re =10000

Uo

Validation Data

BC-CGAN Prediction
(5.0% Image Error)

BC-CGAN Prediction
(10.0% Image Error)

BC-CGAN Prediction
(15.0% Image Error)

BC-CGAN Prediction
(25.0% Image Error)

BC-CGAN Prediction
(40.0% Image Error)

i

Figure 7: Sample validation results of the BC-CGAN prediction for different error metric

thresholds.

476 The training results of the BC-CGAN models with different training

37

477

478

479

480

481

482

483

484

485

486

487

datasets and at different error metrics are shown in Figure 8. The training
process is performed ten times for each training dataset since the training
process is inherently stochastic. During each training process, the model
is saved once the validation results satisfy error metric thresholds of 5%,
10%, and 15%. The number of training iterations or “epochs” required to
achieve these error thresholds is also recorded and plotted (on a log-scale) in
Figure 8. Each box plot shows the range of the number of epochs required
to satisfy the different error metric thresholds over the ten runs for each
training dataset. The training datasets are differentiated by the number of
training data points included in each dataset, as well as whether they are

non-uniformly or uniformly generated sets.

38

488

490

491

492

104 104

g ; |
g 1034 S 10% %
& & + ? i
1024 T T T T T T T T 102 4 T T T T T T T T
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Number of training data points Number of training data points
(a) 5% error metric. (b) 10% error metric.

104
I Non-uniform

3 Uniform

Epochs
=
<

—
HIH
—0—
-

i

0 50 100 150 200 250 300 350 400
Number of training data points

(c) 15% error metric.

Figure 8: Box plots of the number of epochs required to train the BC-CGAN model for

different training datasets and error metrics.

First, we see less epochs are required to train the models when the error
metric is higher. This is because less training is required for a looser error
threshold compared to a stricter one. We also see that the non-uniform
training datasets often require less epochs, especially for the error thresholds

of 10% and 15%. This can occur because the non-uniform datasets are more

39

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

capable of capturing the non-linear trends between the input Re and output
velocity distribution. For the 5% error metric, the non-uniform training
dataset with 378 training data points required a wide range of epochs to
converge. A wider range of epochs for model convergence often occurs for the
lower error metrics, because there is more variability of when the model is able
satisfy the convergence criteria for stricter error metrics. This seems more
apparent for the non-uniform training datasets, especially the dataset with
378 data points. We found that the model often converged after around 1,000
epochs using this dataset, but when it took more epochs to converge it was
usually because of higher error for the validation data point of Re = 10, 000.
The non-uniform datasets included less training data around this input value
since the flow changes less significantly in this range. This seems to have a
negative impact for a few training runs, especially when overfitting occurs
based on more data included in Re regions where the flow outputs change
more significantly. Finally, it seems that using less training data points
often leads to fewer epochs required to train the models, especially for the
uniform datasets. This can be a result of overfitting of the models when too
much training data is included. For the non-uniform datasets, decreasing

the amount of training data when there is less than about 150 data points

40

512

513

514

515

516

517

518

519

520

521

does not always reduce the number of epochs required to train the models.
There may be an optimal amount of training data points for the non-uniform

datasets around 50-150 data points.

5.5. Evaluation Results

Example evaluation results of the BC-CGAN model for the randomly
selected test data points are shown in Figure 9. The BC-CGAN predictions
match well with the test data based on a qualitative comparison, even at
higher error metrics. The BC-CGAN predictions also capture the change in

the lid-driven cavity flow pattern over the wide range of Re.

o o v 0, |
0 e o v v
10 e e v v o v o
o) o o e e o v o v

Figure 9: Example evaluation results for the trained BC-CGAN model with different error

s
£
a
z
&

BC-CGAN Prediction
(5% Error Metric)

BC-CGAN Prediction
(10% Error Mets

£
5
s
B
55}
53
2

BC-CGAN Prediction

metrics.

A comprehensive quantitative evaluation for the BC-CGAN models trained

41

522

523

524

525

526

527

528

with different datasets and at different error metric thresholds is shown in
Figure 10. The box plots show the range of calculated RMSE (normalized by
Uo) for the trained BC-CGAN models against the test data. Similar to Figure
8, the BC-CGAN models trained by the different datasets are differentiated
by the number of training data points and whether they are non-uniform or
uniform datasets. The defined training error metric threshold is also included

in each plot for comparison.

42

529

530

531

532

533

15.0 15.0
125 125
w w
(%] wn
Z 100 2100 mmmmmmm e
o o
Q o
N N
© 7.5 © 7.5
E E
o o
c c
R 50 mommmmememecm e e e m e e e < 501
2.54 2.54 + i
NI 2s] | et l]
’ 0 50 100 150 200 250 300 350 400 ’ 0 50 100 150 200 250 300 350 400
Number of training data points Number of training data points
(a) 5% error metric. (b) 10% error metric.
150 ====mmmm e e
12.51
w
0
Z 10.01
] I Non-uniform
= =3 Uniform
© 7.5 .
£ === Training error threshold
S
c
2 501
SR] il
0.0 T T T T T T T T T
0 50 100 150 200 250 300 350 400

Number of training data points

(c) 15% error metric.

Figure 10: Box plots of the % normalized RMSE of the test predictions for the BC-CGAN

models trained by diffrent datasets and error metrics.

First, the prediction error is higher when the training error metric threshold
is higher. However, even for the error metric of 15%, the prediction error
is almost always lower than 5%. This is because the error metric in the
training process is only satisfied once all the validation data points are below

the metric, so it is possible one validation data point had much higher error

43

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

compared to others. Furthermore, the error metric used to train the models
included a combination of max error and RMSE to ensure predictions without
points of very high error. Since the evaluation results are shown in terms of
just RMSE for an easier understanding of the results, the prediction error is
much lower than the training error metric. Finally, we see the BC-CGAN
models trained by the uniform dataset often had lower prediction error
compared to those trained by the non-uniform datasets. This may occur
because the BC-CGAN models trained by the non-uniform datasets required
less training epochs to satisfy the error metric criteria. Thus, while their
predictions for the validation data may be similar to those of the models
trained by the uniform datasets, they seem to perform slightly worse against
the test data, perhaps due to less overall training. We also find that the
test error for the models trained by the non-uniform datasets tended to be
higher for the larger Re test values, which is the region of Re where the
non-uniform datasets included less data. Conversely, the models trained by
the uniform datasets often had higher error for the smaller Re test values,
which is the region of Re where the flow changes more non-linearly. However,
the prediction error is still well below the threshold for all the BC-CGAN

models. Additionally, the difference in error for the models trained by the

44

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

different datasets is almost negligible, especially for the stricter training error
metric thresholds. This is reasonable because the validation process to stop
the training of the models is the same regardless of the dataset. So while
the models trained by the different datasets may take different paths in their
training processes, the final trained models should be similar in performance.

Once trained, the BC-CGAN models can generate predictions with an
average speed of 7 ms per prediction. For this case, a CFD simulation took
an average of 56 s, which means the trained BC-CGAN prediction was on
average about 7,900 times faster than a CFD simulation. However, the time
to generate data and train the BC-CGAN models must be considered as
well. For all the training datasets considered in this case, it took an average
of 11.4 minutes to train the models to satisfy the 5% error metric. We found
that using less training data could often improve the training speed of the
models while maintaining suficient accuracy, and the smallest tested training
dataset required about 17.7 minutes to generate the training data. If only a
few predictions are needed, then it would be faster to use CFD simulations
because of the time required to generate data and train the BC-CGAN
model. On the other hand, the time savings when using the BC-CGAN model

increases as the number of required predictions increases. After accounting

45

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

for the time to generate data and train the BC-CGAN model, it becomes
beneficial to use the BC-CGAN model over CFD simulations when more

than 31 predictions are required for this case.

6. Non-isothermal Case: Mixed Convection Flow with Heated Box

The next case we study is a mixed convection flow with heated box. This
case is chosen as a more complex flow compared to the lid-driven cavity flow,
since it is non-isothermal, 3D, and includes an obstacle in the flow. It has also
been used for indoor airflow simulation studies in the literature [44, 45]. We
first describe the case setup, then summarize the BC-CGAN model settings
and generated training datasets. Finally, the training and evaluation results

are detailed.

6.1. Case Description

The setup of this case is shown in Figure 11. The flow is contained in
a room with length of L in all dimensions. A heated box is in the center
of the room, with dimensions of L/2 in all dimensions. The box generates
heat with a uniform flux of Quox. This is meant to represent an internal heat
load within a room, for example occupants. Cold air is supplied to the room

through the inlet along the top of the left wall with a velocity of U;, and

46

590

591

592

593

594

595

596

597

598

temperature of T;,. An outlet is located along the bottom of the right wall.
The ceiling, floor, and remaining walls have temperatures of T, Tf0, and
Totn, respectively. The flow is modeled as steady and incompressible in this

study.

cei

Heated box

Outlet

1

Ty

(]

Figure 11: Diagram of the mixed convection flow with heated box case.

We select Quox to be the input parameter for this case and vary this value
from 0 W/m? to 50 W/m?2. Furthermore, we add noise to the boundary
conditions of Ui,, Tin, Tcei, Ttlo, and Town for all the CFD simulations used
to generate training, validation, and test data. Noise is added to U;, by

randomly increasing or decreasing this value by up to + 5% of its default

47

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

value of 1.36 m/s for each simulation. Similarly, the temperature boundary
conditions are randomly increased or decreased by up to £ 0.5 °C of their
default values. The default values for Ti,, Tcei, Tfio, and Town are 22.2 °C,
25.8°C, 26.9°C. and 27.4°C. This added noise can represent uncertainty in
experimental conditions, for example. It also adds a potential challenge for
the BC-CGAN model, since the model is only given the value of Qo as an
input. Since the BC-CGAN models assume the other boundary conditions
are unchanged, their values (including the added noise) are not given as an
input. Similarly, since the geometry (including locations of the box, inlet,
and outlet), is unchanged, these are not given as an input. Future research
can extend the BC-CGAN model to consider multiple varying boundary
conditions for this case. The CFD simulations use a 44 x44 x 44 non-uniform
grid, similar to in [44]. For this case, the BC-CGAN model outputs the 2D
airflow distribution at the mid-plane of the flow. It outputs both the velocity
and temperature distribution, since it is a non-isothermal flow. Thus, the
CFD data is translated to provide a 36 x 36 uniform grid of velocity and
temperature data at the mid-plane of the flow. The model also must generate
the box within the surrounding flow. This can be useful for when Al models

are needed to detect obstacles in the flow.

48

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

6.2. BC-CGAN Model Settings

The architectures for the generator and discriminator are shown in Table
4 and Table 5, respectively. While they are mostly similar to the architectures
used in the previous case described in Section 5.2, there are a few key
differences. First, the generator produces a 72x36 output and the discriminator
receives 72 x 36 image inputs. This is because the flow outputs in this
study are the 36 x 36 distribution of both velocity and temperature. The
other key difference is the output layer of the generator uses the Tanh
activation function rather than Sigmoid. The activation function in the
output layer outputs the value of velocity or temperature in the flow based
on the information received at that node within the layer. In the training
data for this case, a value of -1 is assigned to the points where the box
is located to differentiate it from the fluid flow (represented by normalized
velocity/temperature values from 0 to 1). Thus, the Tanh activation function
is chosen for the generator in this case, because it can output values from -1
to 1 while the Sigmoid activation function only outputs values from 0 to 1.
For this case, we used the Adam optimizer with learning rate of 0.0001 and

decay rate of 0.25, as well as a batch size of 32 for training the models.

49

Table 4: Summary of generator architecture.

Layer Shape Activation function
Input 200 N/A
Reshape 18 x 9 x 128 N/A
Deconvolution 36 x 18 x 128 RelLU
Deconvolution 72 x 36 x 64 ReLU
Deconvolution 72 x 36 x 32 ReLU
Deconvolution (output) 72 x 36 x 1 Tanh

50

636

637

638

639

640

641

Table 5: Summary of discriminator architecture.

Layer Shape Activation function
Label input Ntrain N/A

Image input 72 x 36 x 1 N/A

Reshape 72 x 36 x 2 N/A

Convolution 36 x 18 x 32 LeakyRelLU
Convolution 18 x 9 x 64 LeakyRelLU
Convolution 9x 5x 128 LeakyRelLU
Convolution 9 x 5x 256 LeakyRelLU
Flatten 11520 N/A

Output 1 Sigmoid

6.3. Training Datasets

Two training datasets are generated using the feature-driven algorithm
and are compared against three uniformly generated datasets, summarized
in Table 6. The thresholds for the non-uniform datasets are dimensionless
values of 0.05 and 0.10 and are chosen to provide two different sizes for the

non-uniform datasets. These thresholds correspond to a relative change in

51

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

either velocity magnitude or temperature. If this threshold is exceeded for
significant changes in either velocity or temperature at any of the critical
output locations, a new point is added. The change in velocity magnitude is
normalized by the maximum velocity for the case, which is the inlet velocity
(Uin). The change in temperature is normalized by the difference between
the maximum and minimum temperatures for the entire case (Tmax — Tmin),
where Tmax comes from the highest Quox scenario and Tmin is the cold inlet
air temperature. The locations of the critical outputs are the center points
of the cells when dividing the flow into a 5 x 5 grid, resulting in 25 locations.

Uniform steps of 0.5, 2, and 25 W/m? are chosen to produce three uniform
datasets with very different amounts of training data. In the previous case in
Section 5, we found that using less training data often reduced the number
of epochs required to train the models. Thus, we include the training dataset
with uniform step of 25 W/m? to observe the impact of using very few training
data points on the training and prediction performance of the BC-CGAN
models. Furthermore, the training data points in this dataset are identical
to the validation data points for this case. This was done intentionally to
observe the impact on the performance of the BC-CGAN models when the

training data is more biased towards the validation data.

52

661

662

663

664

665

666

667

668

669

Table 6: Summary of training datasets.

Uniform/ Uniform step € threshold Total number of
Non-uniform (A W/m?) training data points
Uniform 0.5 N/A 101

Uniform 2 N/A 26

Uniform 25 N/A 3

Non-uniform N/A 0.05 40

Non-uniform N/A 0.10 14

Histograms of the two non-uniform training datasets generated by the
feature-driven algorithm are shown in Figure 12. Unlike the lid-driven cavity
case, there is not a clear trend in the non-linearity between the inputs and
outputs. It seems that there are more changes in the flow between Qpoy
values of 25-40, as shown in Figure 12a. In this region, the flow pattern
in the room transitions from being dominated by the cold supply airflow to
being significantly impacted by the thermal plume from the heated box. We
see more noticeable changes in the boundary layers around the box because

of this effect in this region. However, these changes do not seem to be very

53

670

671

672

673

674

675

676

677

678

679

large, as shown by the more uniform training dataset in Figure 12b with the

looser € threshold.

o ~
L L

v
L

w
L

N
L

Number of training samples
)

Number of training samples
E

-
L

o
I

R N I I R S I . S R
N e S 2 O M. | » > o N N % 4 5 g % » > 9
RS A A A ARSI A A A LA
Qbox (W/m?) Qpox (W/m?)
(a) € = 0.05. (b) € = 0.10.

Figure 12: Histograms of training datasets generated using the feature-driven algorithm

with different € thresholds.

6.4. Training Results

Sample validation results of the BC-CGAN model are shown in Figure
13. The validation data points selected for this case are Quox values of 0, 25,
and 50 W/m?2. The error metric is computed only using RMSE in this case,
instead of a combination of RMSE and max error as in the previous case. This
change was made because it was dificult for the model training to converge
using a stricter error metric for this more complex flow case. Additionally,

the error metric combines the error for both velocity and temperature by

54

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

scaling the ranges of both these values from 0 to 1. The RMSE is then
calculated by considering the mean squared error using the scaled errors
for both velocity and temperature at each location in the 36 x 36 2D flow
domain. Because of the change in error metric calculation for this case, the
BC-CGAN predictions are qualitatively more different than the reference
CFD simulations, especially for error metric thresholds of 10% and 15%.
The change in velocity magnitude is more subtle for this case, since the input
parameter is a heat flux rather than Re. The most noticeable difference in
velocity magnitude is between the right side of the box and the right wall.
The boundary layer along the right wall thins as Quox increases. There is
also a more noticeable boundary layer along the right side of the box as
Quox increases, because the heat of the box causes the surrounding air to
heat up and rise. The velocity magnitude just above the box also slightly
increases with Quox because of this buoyant flow. The change in temperature
distribution for the different Quox Values is more apparent, since the increase

in Quox Creates a significant thermal boundary layer surrounding the box.

55

696

697

698

699

700

701

702

Qpox=0 Quox=25 _ _ Qpox=50

'3‘) 7°C

_Obx=0 __Qbox=25 ___Qbox=50

S

=
=

Validation Data

Box

BC-CGAN Prediction
(5.0% Image Error)

BC-CGAN Pred
(5.0% Ima

BC-CGAN Prediction
(10.0% Image Error)
'
BC-CGAN Pr
(10.0% Imag

BC-CGAN Prediction
(15.0% Image Error)

|
BC-CGAN Pre
(15.0% Image
=
l

(a) Velocity prediction. (b) Temperature prediction.

Figure 13: Validation results for velocity and temperature prediction with different error

metrics.

The quantitative training results of the BC-CGAN model with different
training datasets is shown in Figure 14. Similar to before, the higher error
metric results in less epochs to train the models. Reducing the amount of
training data seems to decrease the number of required epochs to train the
models, until the uniform training dataset with only three data points. It
seems that the training epochs can increase when the amount of training data
is drastically reduced, especially for the looser error metric thresholds. The

56

703

704

705

706

707

708

non-uniform dataset with the least amount of training data typically requires
the least number of epochs to train the models, while the non-uniform dataset
with the most amount of training data often requires the most epochs to train
the models. This discrepancy is likely because the outputs did not vary as
non-linearly with the inputs for this case compared to the previous lid-driven

cavity case.

104 104

HIH
Epochs
1
<
HIOIH
Hil—
—1—

j ¥

Epochs
=
o

%

102 4 T T T T 102 4 T T T T
0 25 50 75 100 125 0 25 50 75 100 125
Number of training data points Number of training data points
(a) 5% error metric. (b) 10% error metric.

104
Il Non-uniform
3 uniform

Epochs
=
=)

©

.}@* .

102 4 T T T T
0 25 50 75 100 125
Number of training data points

(c) 15% error metric.

Figure 14: Box plots of the number of epochs required to train the BC-CGAN model for

different training datasets and error metrics.

57

709

710

711

712

713

714

715

716

717

6.5. Evaluation Results

Example evaluation results of the BC-CGAN model for the randomly
selected test data points are shown in Figure 15. The BC-CGAN predictions
capture the main trends and features of the velocity and temperature distributions
at different Qpox values. However, the qualitative differences between the
BC-CGAN predictions and reference test data are more apparent for this
case compared to the previous. This is because the error metric is calculated
entirely based on RMSE for this case rather than a combination of RMSE

and max error, so locations with higher error may persist in these predictions.

58

Qbox =15.7 Qbox =17.6 Qpox =213 Qbox =258 Qbox =30.0 Qpox =34.6 Qbox =394 Qbox =439

_Ouo=57

_OQpo =101
Qo

gUlin

IO
- - - Box

Test Data

.
J |
.

on BC-CGAN Prediction BC-CGAN Prediction
10% Error Metric i

-'"

15% Error Metric 5% Error Metric

(a) Velocity prediction.

Qpox =5.7 Qpox =10.1 Qpox=15.7 Qpox = 17.6 Qpox =21.3 Qpox =25.8 Qbox =30.0 Qpox = 34.6 Qbox =39.4 Qpox =43.9 !39_7 e

- - IZI N
- - - - - - - - Box

g
[a]
z
=

5% Error Metric

10% Error Metric

(b) Temperature prediction.

BC-CGAN Prediction BC-CGAN Prediction BC-CGAN Prediction
15% Error Metric

Figure 15: Evaluation results for velocity and temperature prediction for the trained

BC-CGAN model with different error metric thresholds.

718 The comprehensive quantitative evaluation results for the BC-CGAN

59

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

models trained with different datasets is shown in Figure 16. The results
show the error threshold is satisfied by the predictions from all the datasets
except the smallest training dataset with only three points. This shows the
consequences of drastically reducing the amount of training data, since it is
not able to capture the trends across the range of Quox as well. Additionally,
the non-uniform training dataset with more training data points often performs
the best in terms of its predictions. This was also the training dataset that
typically required the most epochs to train the models. The results from this
case as well as the previous case appear to show a tradeoff between training
epochs and prediction performance. While some training datasets may take
more time to satisfy the validation criteria, they can perform better on a
wider range of test data, perhaps because of the additional training. The
difference in error is more apparent for the looser error metric thresholds
compared to the 5% error threshold. The change in error among the models
trained by the different datasets is almost negligible for this strict error
threshold, except for the dataset with only three data points. Tuning either
the uniform step of the input parameter or € for the training datasets may

help balance training time and evaluation performance.

60

737

738

739

740

741

20.0

17.5 17.5

15.0 15.0
w w
[%] wn
Z 125 Z 125
o o
GJ o
£ 10.0 N 100 =fm--mmmmmcmmcmcccmcc e,
© ©
£ E
S 7.5 G 7.5
c <
N X

501 sEemmmesmsmcmmseeesseme e m————————————— 5.0 é

2.5 ; L l - 251 L é

0.0 T T T T T T 0.0 T T T T T T

0 25 50 75 100 125 0 25 50 75 100 125
Number of training data points Number of training data points
(a) 5% error metric. (b) 10% error metric.

20.0

I Non-uniform
17.54 = Uuniform

==~ Training error threshold
15.0{ =f===m=mmmm e e mmmmmm e

-

2.51

oy *
il

2.54

% normalized RMSE
=

0.0

0 25 50 15 100 125
Number of training data points

(c) 15% error metric.

Figure 16: Box plots of the % normalized RMSE of the test predictions for the BC-CGAN

models trained by different datasets and error metrics.

For this case, the BC-CGAN models can generate predictions with an
average speed of 11 ms per prediction, while a CFD simulation took an
average of 13.7 minutes. Both the BC-CGAN prediction and CFD simulation
times are higher for this case because of the additional complexity compared

to the lid-driven cavity flow, with the increase in CFD time being more

61

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

significant. The trained BC-CGAN prediction was on average about 75,680
times faster than a CFD simulation for this case. It took an average of 18
minutes to train the models to satisfy the 5% error metric, when considering
all the training datasets used in this case except for the one with only
three data points, which was found to have poor evaluation performance.
When excluding that dataset, it took a minimum of 3.2 hr to generate
training data. After accounting for the time to generate data and train
the BC-CGAN models, it becomes beneficial to use the BC-CGAN approach
over CFD simulations when more than 15 predictions are required for this
case. The results for this case show the significant potential of this model for

accelerating flow prediction with more complex cases.

7. Conclusion

In this paper, we proposed a new BC-CGAN model for fast prediction
of indoor airflow distribution. We extended the original CGAN model to
make predictions based on a continuous input parameter, such as a boundary
condition, rather than a discrete parameter, like a specific design. We also
designed a novel feature-driven algorithm for generating training data for

Al models. The algorithm includes training data points based on significant

62

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

changes between the flow outputs and inputs, with the goal of minimizing
the amount of generated training data while ensuring training quality. The
new BC-CGAN model and feature-driven algorithm are evaluated for two
benchmark flow cases: an isothermal lid-driven cavity flow and non-isothermal
mixed convection flow with a heated box.

The results show the trained model can predict velocity and temperature
distribution with less than 5% normalized RMSE and up to 75,000 times
faster than reference CFD simulations. For the lid-driven cavity case, the
trained models were able to make predictions for the test data with much less
than 5% normalized RMSE, even for the higher error metric threshold cases.
This is because we could use a stricter error metric that combined RMSE
and max error during the training process, which allowed for the predictions
to produce images without points of very high error. For the more complex
mixed convection flow with heated box case, this type of training error metric
could not be used, since it was dificult for the models to converge during
training with this method. Despite this, the trained BC-CGAN models for
this case make predictions below their error threshold for the test data,
except for the models trained by the dataset with only three data points.

While reducing the amount of training data often reduces the training time

63

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

in this paper, drastically reducing the amount of training data caused the
BC-CGAN models to perform poorly against the test data.

Use of the feature-driven algorithm often reduces the epochs required to
train the BC-CGAN models for the lid-driven cavity flow case, since it was
able to capture the non-linear trend between the change in flow outputs and
inputs. However, the feature-driven algorithm did not always produce this
same effect for the mixed convection flow with heated box case, perhaps
because there was not a clear non-linear trend between the flow outputs
and inputs. For both cases, there is an apparent tradeoff between training
time and test performance. The BC-CGAN models that took longer to train
often performed better on the test data compared to the BC-CGAN models
that were trained quicker. For the lid-driven cavity case, the increase in test
prediction error was very small for the models that were trained quicker,
particularly since all the models were very accurate because of the use of
max error in the training process. The change in error for the predictions on
the test data in the mixed convection flow with heated box case was more
significant when the error metric threshold was higher. A strict error metric
in this case resulted in small changes in test error among the models trained

by the different datasets, except for the dataset with only three data points,

64

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

which performed poorly for this case.

Future studies can be conducted based on the work in this paper. First,
more practical applications can be studied, for example data center airflow
scenarios. One input parameter was used for each of the studies in this paper,
but the BC-CGAN models and feature-driven algorithm can be evaluated for
applications with multiple input parameters. This is important for expanding
the BC-CGAN models to more applications, for example optimizing both
supply airflow rate and temperature considering the indoor environment.
Additionally, the models in this paper were trained to predict 2D airflow
distributions, but a 3D prediction may be necessary for certain applications.
The impacts of the additional complexity when considering multiple inputs
and 3D outputs on the model training and evaluation needs to be studied in
future research. Incremental training, by either expanding the training range
to new data or using “online” training when deploying the models [46, 47]
can be performed to improve the models over time with new data. Finally,
the trained BC-CGAN models can be used for a long-term evaluation or
optimization study that requires many realizations to show the computational
benefits of using this model over other numerical methods in these scenarios.

They can also provide real-time or faster predictions of airflow distribution,

65

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

which can be useful for emergency management scenarios.

Acknowledgements

This research was supported in part by the U.S. Defense Threat Reduction
Agency and performed under U.S. Department of Energy Contract No.
DE-AC02-05CH11231. This research was also partially supported by the
National Science Foundation under Awards No. 11S-1802017, CBET-2217410,

CNS-2025377, and CNS-2241361.

References

[1] Y. Li, P. V. Nielsen, CFD and ventilation research, Indoor Air 21 (6)

(2011) 442-453.

[2] X. Han, W. Tian, J. VanGilder, W. Zuo, C. Faulkner, An open source
fast fluid dynamics model for data center thermal management, Energy

and Buildings 230 (2021) 110599.

[3] X. Zhu, T. Shi, X. Jin, Z. Du, Multi-sensor information fusion based
control for VAV systems using thermal comfort constraints, Building

Simulation 14 (4) (2021) 1047-1062.

66

833

834

835

836

837

838

840

841

842

843

844

845

846

847

848

849

850

(4]

(5]

[6]

(7]

(8]

X. Kong, Y. Chang, N. Li, H. Li, W. Li, Comparison study of thermal
comfort and energy saving under eight different ventilation modes for

space heating, Building Simulation 15 (7) (2022) 1323-1337.

K. Gangisetti, D. E. Claridge, J. Srebric, M. T. Paulus, Influence of
reduced VAV flow settings on indoor thermal comfort in an ofice space,

Building Simulation 9 (1) (2016) 101-111.

J. E. Castellini Jr, C. A. Faulkner, W. Zuo, D. M. Lorenzetti, M. D.
Sohn, Assessing the use of portable air cleaners for reducing exposure
to airborne diseases in a conference room with thermal stratification,

Building and Environment 207 (2022) 108441.

F. Mohamadi, A. Fazeli, A review on applications of CFD modeling
in COVID-19 pandemic, Archives of Computational Methods in

Engineering (2022) 1-20.

B. Jayaraman, E. U. Finlayson, M. D. Sohn, T. L. Thatcher, P. N. Price,
E. E. Wood, R. G. Sextro, A. J. Gadgil, Tracer gas transport under
mixed convection conditions in an experimental atrium: Comparison
between experiments and CFD predictions, Atmospheric Environment

40 (27) (2006) 5236-5250.

67

8

«

1

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

[9]

[10]

[11]

[12]

[13]

[14]

S.-J. Cao, Challenges of using CFD simulation for the design and online
control of ventilation systems, Indoor and Built Environment 28 (1)

(2019) 3-6.

L. Wang, Q. Chen, Applications of a coupled multizone-CFD model to
calculate airflow and contaminant dispersion in built environments for

emergency management, HVAC&R Research 14 (6) (2008) 925-939.

W. Zuo, Q. Chen, Real-time or faster-than-real-time simulation of

airflow in buildings, Indoor Air 19 (1) (2009) 33.

W. Zuo, Q. Chen, Fast and informative flow simulations in a building by
using fast fluid dynamics model on graphics processing unit, Building

and Environment 45 (3) (2010) 747-757.

S. B. Pope, Computationally eficient implementation of combustion
chemistry using in situ adaptive tabulation, Combustion Theory and

Modelling 1 (1) (1997) 41-63.

W. Tian, T. A. Sevilla, D. Li, W. Zuo, M. Wetter, Fast and self-learning
indoor airflow simulation based on in situ adaptive tabulation, Journal

of Building Performance Simulation 11 (1) (2018) 99-112.

68

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

[15]

[16]

[17]

[18]

[19]

[20]

Q. Zhou, R. Ooka, Comparison of different deep neural network
architectures for isothermal indoor airflow prediction, Building

Simulation 13 (6) (2020) 1409-1423.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, Advances

in Neural Information Processing Systems 27 (2014).

R. Barth, J. Hemming, E. J. Van Henten, Optimising realism
of synthetic images using cycle generative adversarial networks for
improved part segmentation, Computers and Electronics in Agriculture

173 (2020) 105378.

T. Igbal, H. Ali, Generative adversarial network for medical images

(MI-GAN), Journal of Medical Systems 42 (11) (2018) 1-11.

M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv

preprint arXiv:1411.1784 (2014).

G. Antipov, M. Baccouche, J.-L. Dugelay, Face aging with conditional
generative adversarial networks, in: 2017 IEEE international conference

on image processing (ICIP), IEEE, 2017, pp. 2089-2093.

69

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

[21]

[22]

[23]

[24]

[25]

Y. Ye, M. Strong, Y. Lou, C. A. Faulkner, W. Zuo, S. Upadhyaya,
Evaluating performance of different generative adversarial networks for

large-scale building power demand prediction, Energy and Buildings 269

(2022) 112247.

Q. Zhang, A. Ferdowsi, W. Saad, M. Bennis, Distributed conditional
generative adversarial networks (GANs) for data-driven millimeter wave
communications in UAV networks, |[EEE Transactions on Wireless

Communications 21 (3) (2021) 1438-1452.

D. Chen, X. Gao, C. Xu, S. Chen, J. Fang, Z. Wang, Z. Wang,
FlowGAN: a conditional generative adversarial network for flow
prediction in various conditions, in: 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 2020,

pp. 315-322.

Y. Wang, W. Wang, G. Tao, H. Li, Y. Zheng, J. Cui, Optimization
of the semi-sphere vortex generator for film cooling using generative
adversarial network, International Journal of Heat and Mass Transfer

183 (2022) 122026.

L. Gonog, Y. Zhou, A review: generative adversarial networks, in:

70

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

[26]

[27]

[28]

[29]

[30]

2019 14th IEEE conference on industrial electronics and applications

(ICIEA), IEEE, 2019, pp. 505-510.

L. Sun, J. Chen, Y. Xu, M. Gong, K. Yu, K. Batmanghelich, Hierarchical
amortized gan for 3D high resolution medical image synthesis, |IEEE

journal of biomedical and health informatics 26 (8) (2022) 3966—3975.

M. D. Cirillo, D. Abramian, A. Eklund, Vox2Vox: 3D-GAN for brain
tumour segmentation, in: International MICCAI Brainlesion Workshop,

Springer, 2021, pp. 274-284.

X. Zhao, F. Ma, D. Guera, Z. Ren, A. G. Schwing, A. Colburn,
Generative multiplane images: Making a 2d gan 3d-aware, in: European

Conference on Computer Vision, Springer, 2022, pp. 18-35.

M. El-Kaddoury, A. Mahmoudi, M. M. Himmi, Deep generative models
for image generation: A practical comparison between variational
autoencoders and generative adversarial networks, in: International
Conference on Mobile, Secure, and Programmable Networking, Springer,

2019, pp. 1-8.

S. Mokhtar, A. Sojka, C. C. Davila, Conditional generative adversarial
networks for pedestrian wind flow approximation, in: Proceedings of

71

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

[31]

[32]

[33]

[34]

[35]

[36]

the 11th Annual Symposium on Simulation for Architecture and Urban

Design, 2020, pp. 1-8.

Y. Zheng, Y. Zhang, Z. Zheng, Continuous Conditional Generative
Adversarial Networks (cGAN) with Generator Regularization, arXiv

preprint arXiv:2103.14884 (2021).

C. Blohm, H. C. Kuhlmann, The two-sided lid-driven cavity:
experiments on stationary and time-dependent flows, Journal of Fluid

Mechanics 450 (2002) 67-95.

H. Kuhlmann, M. Wanschura, H. Rath, Flow in two-sided lid-driven
cavities: non-uniqueness, instabilities, and cellular structures, Journal

of Fluid Mechanics 336 (1997) 267-299.

S. Albensoeder, H. C. Kuhlmann, Accurate three-dimensional lid-driven

cavity flow, Journal of Computational Physics 206 (2) (2005) 536-558.

O. R. Burggraf, Analytical and numerical studies of the structure
of steady separated flows, Journal of Fluid Mechanics 24 (1) (1966)

113-151.

U. Ghia, K. N. Ghia, C. Shin, High-Re solutions for incompressible flow

72

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

[37]

using the Navier-Stokes equations and a multigrid method, Journal of

Computational Physics 48 (3) (1982) 387-411.

M. Khan, N. Delbosc, C. J. Noakes, J. Summers, Real-time flow
simulation of indoor environments using lattice Boltzmann method,

Building Simulation 8 (4) (2015) 405-414.

[38] T. Chiang, W. Sheu, R. R. Hwang, Effect of Reynolds number on the

[39]

[40]

[41]

[42]

eddy structure in a lid-driven cavity, International Journal for Numerical

Methods in Fluids 26 (5) (1998) 557-579.

N. Ramanan, G. M. Homsy, Linear stability of lid-driven cavity flow,

Physics of Fluids 6 (8) (1994) 2690-2701.

M. D. Zeiler, D. Krishnan, G. W. Taylor, R. Fergus, Deconvolutional
networks, in: 2010 IEEE Computer Society Conference on computer

vision and pattern recognition, IEEE, 2010, pp. 2528-2535.

K. O’Shea, R. Nash, An introduction to convolutional neural networks,

arXiv preprint arXiv:1511.08458 (2015).

L. N. Smith, A (disciplined approach to neural network

73

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

[43]

[44]

[45]

[46]

[47]

hyper-parameters: Part 1-learning rate, batch size, momentum,

and weight decay, arXiv preprint arXiv:1803.09820 (2018).

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,

arXiv preprint arXiv:1412.6980 (2014).

M. Wang, Q. Chen, Assessment of various turbulence models for
transitional flows in an enclosed environment (RP-1271), HVAC&R

Research 15 (6) (2009) 1099-1119.

M. Wang, Q. Chen, On a hybrid rans/les approach for indoor airflow

modeling (rp-1271), HVAC&R Research 16 (6) (2010) 731-747.

L. C. Jain, M. Seera, C. P. Lim, P. Balasubramaniam, A review of
online learning in supervised neural networks, Neural Computing and

Applications 25 (3) (2014) 491-509.

B. Pérez-Sanchez, O. Fontenla-Romero, B. Guijarro-Berdifias, A review
of adaptive online learning for artificial neural networks, Artificial

Intelligence Review 49 (2) (2018) 281-299.

74

https://www.researchgate.net/publication/369205491

