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Data-driven decision-making has drawn scrutiny from policy makers due
to fears of potential discrimination, and a growing literature has begun to de-
velop fair statistical techniques. However, these techniques are often special-
ized to one model context and based on ad-hoc arguments, which makes it
difficult to perform theoretical analysis. This paper develops an optimization
hierarchy, which is a sequence of optimization problems with an increasing
number of constraints, for fair statistical decision problems. Because our hier-
archy is based on the framework of statistical decision problems, this means
it provides a systematic approach for developing and studying fair versions
of hypothesis testing, decision-making, estimation, regression, and classifica-
tion. We use the insight that qualitative definitions of fairness are equivalent
to statistical independence between the output of a statistical technique and
a random variable that measures attributes for which fairness is desired. We
use this insight to construct an optimization hierarchy that lends itself to nu-
merical computation, and we use tools from variational analysis and random
set theory to prove that higher levels of this hierarchy lead to consistency in
the sense that it asymptotically imposes this independence as a constraint in
corresponding statistical decision problems. We demonstrate numerical ef-
fectiveness of our hierarchy using several data sets, and we use our hierarchy
to fairly perform automated dosing of morphine.

1. Introduction. There is growing concern that improperly designed data-driven ap-
proaches to decision-making may display biased or discriminatory behavior. Such concerns
are justified by examples of unfair algorithms that have been deployed in the real world
[4, 10, 38, 74]. In response, researchers have started to develop approaches to encourage fair-
ness in various statistical or learning problems [8, 21, 26, 27, 28, 37, 40, 45, 50, 61, 65, 75, 76,
81, 108, 114]. Fair statistics and learning approaches seek to estimate a model that predicts a
response variable using a vector of predictor variables, while ensuring that model predictions
are fair (we discuss quantitative measures of fairness in the next subsection) with respect to a
finite set of variables that characterize designated protected attributes (e.g., gender or race).

1.1. Quantitative Measures of Fairness. The existing literature proposes several different
fairness measures. We believe the underlying (and unifying) idea behind these measures is
they approximately quantify independence between the output of a model and the variables
of protected attributes. This way of thinking about fairness was first noticed by [53].

Consider fairness for classification: Let (X,Y,Z) ∈ Rp × {±1} × {±1} be a jointly dis-
tributed random variable consisting of a vector of predictors, a binary class label, and a binary
protected attribute. Let δ(x) be a score for a classifier that operates on X , and suppose the
classifier makes binary predictions Ŷ (x, t) = sign(t − δ(x)) for a given threshold t of the
score. Since binary classifiers output a ±1 that can be mapped to desirable/undesirable de-
cisions, one measure of fairness is KS = maxt∈R |P[Ŷ (X, t) = +1|Z = +1]− P[Ŷ (X, t) =

MSC2020 subject classifications: Primary 62C12, 62F12; secondary 49J53, 60D05.
Keywords and phrases: Fairness, Independence, Optimization, Statistical Learning.

1

https://imstat.org/journals-and-publications/annals-of-statistics/
mailto:aaswani@berkeley.edu
mailto:molfat@berkeley.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2

+1|Z =−1]|. This measures how similar the probability of making a prediction of a given bi-
nary class is between the two groups specified by the protected attributed, and it is often called
disparate impact [50, 76]. Disparate impact measures the total disparity in outcomes between
protected classes. By considering the maximum over all thresholds t, this definition ensures
fairness in real-world scenarios where the score δ(x) itself is used for decision-making [76].

This above measure of fairness can be too strict in some applications, as there may be
unavoidable correlation between the classifier output and the protected label. For such cases,
[50] proposes equalized odds as an alternative measure of fairness that instead constrains dis-
parity in outcomes conditional on some informative variable. In the setting of binary classifi-
cation, one possible informative variable is Y ∈ {±1} itself. This choice leads to the follow-
ing quantitative measure of equalized odds fairness EO = maxy∈{±1}maxt∈R |P[Ŷ (X, t) =

+1|Z = +1, Y = y]−P[Ŷ (X, t) = +1|Z =−1, Y = y]|. Restated, EO measures the dispar-
ity in error rates between the protected classes. An additional benefit is that a classifier with
zero training error will also be fair with respect to this measure of fairness [50].

At an initial glance, the above fairness measures do not look like independence. Yet note
event {Ŷ (X, t) = +1} is equivalent to event {δ(X) ≤ t} since Ŷ (x, t) = sign(t − δ(x)),
implying that KS is the Kolmogorov-Smirnov (KS) distance between the distributions of
δ(X)|Z = +1 and δ(X)|Z = −1. Since EO has a very similar interpretation, we will fo-
cus our discussion on KS. Thus when KS = 0, we have that G(t) := P[δ(X) ≤ t|Z =
+1] = P[δ(X)≤ t|Z =−1]. Hence the joint distribution factorizes as P(δ(X)≤ t,Z = z) =
P[δ(X)≤ t|Z = z] ·P(Z = z) =G(t) ·P(Z = z), which means the two random variables are
independent. Summarizing, we have KS = 0 if and only if δ(X) is independent of Z .

1.2. Existing Approaches to Fairness. Pre-processing approaches transform the data be-
fore estimation, to remove information that could cause unfairness. (Non-)parametric ap-
proaches [23, 51, 110], dimensionality reduction approaches based on semidefinite program-
ming (SDP) [75] and the Hilbert Schmidt Independence Criterion (HSIC) [81], and adversar-
ial approaches based on autoencoders [14, 39, 66, 111] have been proposed.

Post-processing approaches process the output of a model to improve its fairness. A canon-
ical example is [50], which designs a method for post-processing an arbitrary classifier in or-
der to ensure fairness; however, it makes a poor tradeoff between accuracy and fairness [104].
Other approaches [28, 45] apply projections based on the Wasserstein distance to explicitly
solve an empirical risk minimization problem with a fairness constraint. Unfortunately, these
three approaches violate a principle called individual fairness [37], which says that individ-
uals with similar predictor variables should have similar model predictions. One of the goals
of this paper is to develop methods that can build models that satisfy individual fairness.

Pre- and post-processing approaches usually unlink the estimation process from ensuring
fairness. This has motivated regularization approaches to fairness, which generally achieve
lower generalization error while improving fairness. Empirical risk minimization formula-
tions for classification [2, 8, 35, 44, 53, 76, 108], regression [3, 13, 22, 61, 81], and general
problems [77] have been proposed. A now common approach is to control the correlation
between model predictions and the protected attribute [22, 108], which can be generalized
by further considering second-order deviations [76]; however, these approaches can only be
used with categorical protected attributes. The approach of [53] works for more general pro-
tected attributes, but it requires a heuristic to approximate a mutual information (MI) measure
of fairness as a constraint. Recent work extends these ideas to fair decision-making [40, 65].

1.3. Contributions and Outline. Though some of the above regularization approaches
can provide strong theoretical guarantees about statistical and computational properties, most
of the above approaches can only be used in specific settings. Many cannot be used with
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more than one fair variable at a time, or cannot be used for models that produce more than
one response variable. Some approaches only apply to categorical fair variables, while some
approaches only apply to continuous fair variables. Similarly, some approaches can only be
used for classification, while some approaches can only be used for regression.

The goal of this paper is to develop a single methodology for incorporating fairness into
statistical decision problems that can be used under a broad number of settings. We first gen-
eralize in Section 3 the framework of statistical decision problems [60] to include fairness.
This provides a systematic approach for developing and studying fair versions of hypothesis
testing, decision-making, estimation, regression, and classification. In Section 4, we propose
an optimization hierarchy, for fair statistical decision problems, that lends itself to numeri-
cal computation. Tools from variational analysis and random set theory are used to prove in
Section 5 that higher levels of this hierarchy lead to consistency in the sense that it asymp-
totically imposes independence as a constraint in corresponding statistical decision problems
for bounded random variables. Section 6 generalizes these results to unbounded random vari-
ables, namely sub-Gaussian random variables and random variables with finite moments. In
Section 7, we demonstrate numerical effectiveness of our hierarchy using several data sets,
and we conclude by using our hierarchy to fairly perform automated dosing of morphine. We
note that all of our proofs can be found in the Supplementary Materials [6].

Our approach is to perform empirical risk minimization with constraints that ensure ap-
proximate independence between the output of a model and the variables of protected at-
tributes. In fact, the broader idea of quantifying independence using an empirical estimate has
a long history in statistics [18, 24, 42, 79, 97, 96, 73, 46]. The distinguishing feature of our ap-
proach to ensuring independence is to use a moment-based characterization of independence
that generalizes Kac’s theorem [16, 52] to multivariate random variables. Some fairness ap-
proaches [53] require solving bilevel programs [30, 78], which can be difficult to numerically
solve. In contrast, our approach results in an optimization problem with constraints that are
smooth polynomial functions, which allows us to leverage advances in convex optimization
[59] and related heuristics such as the constrained convex-concave procedure [93, 101, 107]
for the purpose of numerically solving the resulting optimization problem. The tradeoff is
that we have to include multiple (but a finite number of) constraints.

Our framework differs from recent work on fair empirical risk minimization in several
important ways. Some approaches use HSIC [61, 81] or Renyi correlation [8] as a fairness
constraint, as opposed to the moment approach we take. (There is in fact a history of using
HSIC as a component of optimization problems for tasks such as feature selection [95] and
clustering [94].) Fairness is defined in [2, 35] using conditional probabilities, which because
of the classification setup considered can be exactly rewritten as a conditional expectation.
This allows the fairness constraints to be represented by a finite number of inequalities using
sample averages in place of the conditional expectations. In contrast, our framework applies
to problems such as regression where fairness as defined by statistical independence can-
not be exactly rewritten as a conditional expectation. The work in [3] extends these ideas
to regression by a performing a discretization that results in approximation of regression by
a classification problem. The fairness constraints in this approach require discrete protected
classes, whereas our framework is also able to handle continuous and vector-valued (consist-
ing of both discrete and continuous) protected attributes. The formulation in [77] applies to
general risk minimization problems, defines fairness in terms of conditional expectation, and
proposes an approximation to ensure convexity of the resulting optimization problem. Our
framework uses a different definition of fairness in terms of statistical independence.

Our framework also builds on preliminary work on the use of moment-based constraints
for fair statistical methods [76, 75, 108]. These approaches were restricted to binary classi-
fication with binary protected classes, made use of only first- or second-order moments of
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only the classifier, were based on ad-hoc arguments and justifications, and lacked theoreti-
cal analysis of the resulting statistical methods. The past papers [76, 75, 108] leave open the
larger question of how moment-based approaches to fairness can be generalized to continuous
protected classes, multivariate protected classes, multivariate statistical decisions, and other
classes of statistical problems beyond classification. Our work in this paper unifies these past
approaches into a broader theoretical framework, proves this framework provides asymptotic
and finite-sample guarantees on fairness, and successfully generalizes moment-based meth-
ods in order to handle continuous protected classes, multivariate protected classes, multivari-
ate statistical decisions, and multiple classes of statistical decision problems, including fair
versions of hypothesis testing, decision-making, estimation, regression, and classification.

Because we have to include multiple constraints, this significantly complicates the theoret-
ical analysis of our optimization hierarchy. The limiting behavior of our framework requires
a statistical analysis on the solution to an optimization problem in the limit of a countably-
infinite number of random constraints involving empirical moments. Traditional results in
statistics do not apply to set-valued functions [5], which are one way to interpret constraints
in an optimization problem [84]. In fact, most attention in statistics on sets has been focused
on estimating a single set under different measurement models [34, 47, 57, 80, 91]. The tra-
ditional theoretical argument is to use the Pompeiu–Hausdorff distance to metricize the set
of sets, but this approach is too difficult for use in our setting which has random sets defined
using (in the limit) an infinite number of non-convex constraints. Instead, we build on our
past work on statistics with set-valued functions [5]: We develop new theoretical arguments
for statistics with random sets and set-valued functions, using variational analysis [84, 85]
and random sets [70, 71]. These techniques are of potential interest to other set-based sta-
tistical problems where empirically-successfully approaches without theoretical guarantees
have been used [109]. Examples of such statistical problems include estimation tasks where
the predictor variables are a set and the response variable is a scalar, such as galaxy red-shift
estimation in cosmology [86] and point-cloud classification in computer vision [105].

2. Preliminaries. This section presents our notation. We also describe some notation
and definitions from variational analysis and random sets. Most of the variational analysis
definitions are from [84], and the stochastic set convergence notation is originally from [5].

2.1. Notation. Let M : Rdp→Rd×p be the function that reshapes a vector into a matrix
by placing elements into the matrix columnwise from the vector. Similarly, we define W :=
M−1 : Rd×p→Rdp to be its inverse.

We use En(·) to denote expectation with respect to the empirical distribution. Recall this
is the sample average of the random variable inside parenthesis. As examples, En(Z) =
1
n

∑n
i=1Zi and En(ZX) = 1

n

∑n
i=1ZiXi.

Consider a tensor ϕ ∈Rr1×···×rq , and let [r] = {1, . . . , r}. The norm ‖ϕ‖ is the `∞ vector
norm for the tensor considered as a vector. For two tensors ϕ,ν ∈Rr1×···×rq , we define their
inner product 〈ϕ,ν〉 to be the usual dot product for the tensors interpreted as vectors.

For a tensor interpreted as a multilinear operator ϕ(u1, . . . , uq), we define the two sub-
ordinate norms: first that ‖ϕ‖◦ = max

{
‖ϕ(u, . . . , u)‖ | ‖u‖2 = 1

}
and second that ‖ϕ‖∗ =

max{‖ϕ(u1, . . . , uq)‖ | ‖uk‖2 = 1 for k ∈ [q]}, where ‖·‖2 is the Euclidean norm for vectors.
These are subordinate norms since ‖ϕ(u, . . . , u)‖ ≤ ‖ϕ‖◦

(
‖u‖2

)q and ‖ϕ(u1, . . . , uq)‖ ≤
‖ϕ‖∗

∏q
k=1 ‖uk‖2. When ϕ(·, . . . , ·) is symmetric in its arguments, then ‖ϕ‖◦ = ‖ϕ‖∗ [9, 17].

2.2. Variational Analysis. Let R = [−∞,∞] denote the extended real line. We define
Γ(·,S) : E→ R to be the indicator function defined as: Γ(u,S) = 0 if u ∈ S and Γ(u,S) =
+∞ otherwise, where E is some Euclidean space that will be clear from the context.
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For a sequence of sets Cn, the outer limit is lim supnCn = {x : ∃nk s.t. xnk →
x with xnk ∈ Cnk}, and the inner limit is lim infnCn = {x : ∃xn→ x with xn ∈ Cn}. The
outer limit consists of all the cluster points of Cn, whereas the inner limit consists of all limit
points of Cn. The limit of the sequence of sets Cn exists if the outer and inner limits are
equal, and when it exists we write limnCn := lim supnCn = lim infnCn.

A sequence of extended-real-valued functions fn : X → R is said to epi-converge to
f if at each x ∈ X we have: lim infn fn(xn) ≥ f(x) for every sequence xn → x and
lim supn fn(xn) ≤ f(x) for some sequence xn→ x. Epi-convergence is so-named because
it is equivalent to set convergence of the epigraphs of fn, meaning that epi-convergence is
equivalent to the condition limn{(x,α) ∈X ×R : fn(x)≤ α}= {(x,α) ∈X ×R : f(x)≤
α}. We use the notation e-limn fn = f to denote epi-convergence relative to X .

A sequence of extended-real-valued functions fn : X → R is said to converge pointwise
to f if at each x ∈X we have that limn fn(x) = f(x). We abbreviate pointwise convergence
relative to X using the notation limn fn = f .

2.3. Specific Distributions. We define a multivariate random variable U ∈Rp to be sub-
Gaussian with variance parameter σ2 if we have that E exp(s · 〈t,U−E(U)〉)≤ exp(σ2s2/2)
for all t ∈ Sp−1, which is the unit sphere in p-dimensions. Thus a sub-Gaussian random vari-
able also satisfies E exp(s · 〈t,U〉)≤M exp(σ2s2) for all t ∈ Sp−1, whereM ≥ 1 and σ2 ≥ 0
are constants; we will use this as our primary characterization. An important implication of
this characterization is that E

(
〈t,U〉2k

)
≤Mσ2k · (2k)!/k! for all t ∈ Sp−1.

Sub-Gaussian distributions are ubiquitous. Important examples of sub-Gaussian distri-
butions include: A Gaussian distribution X with mean µ and variance σ2 is denoted
X ∼N (µ,σ2), a Bernoulli random variable X with success probability x ∈ [0,1] is denoted
X ∼Ber(x), and a uniform random variable X with support [a, b] is denoted X ∼Uni(a, b).

2.4. Random Sets. Let (U ,F,P) be a complete probability space, where U is the sample
space, F is the set of events, and P is the probability measure. A map S : U →F is a random
set if {u : S(u) ∈ X} ∈ F for each X in the Borel σ-algebra on F [71]. Like the usual
convention for random variables, we notationally drop the argument for a random set.

When discussing stochastic convergence, we indicate a limit occurs almost surely by
appending “as-” to the limit notation. For instance, notation as-lim supnCn ⊆ C denotes
P(lim supnCn ⊆C) = 1, and notation as-lim infnCn ⊇C denotes P(lim infnCn ⊇C) = 1.

3. Fair Statistical Decision Problems. We use the setting of statistical decision prob-
lems: Consider the random variables (X,Y,Z) that have a joint distribution P ∈D where D
is some fixed family of distributions. The interpretation is that X gives descriptive informa-
tion, Y has information about some target, and Z encodes protected information which we
would like to be fair with respect to. We will not explicitly use Y in this paper, but we note
that it is implicitly included within other terms that we discuss.

The goal is to construct a function δ(·, ·) called a decision rule, which provides a decision
d = δ(x, z). To evaluate the quality of a decision rule δ, we define a risk function R(δ). In
this setup, an optimal decision rule is any function from arg minδ(·,·)R(δ). However, we can
define a related optimization problem that chooses an optimal fair decision rule by solving

(1) δ∗(x, z) ∈ arg minδ(·,·)
{
R(δ)

∣∣ δ(X,Z)⊥⊥ Z
}
,

where the notation δ(X,Z)⊥⊥ Z indicates independence of δ(X,Z) and Z .
The above abstract setup is useful because it allows us to reason about fairness for a wide

class of problems using a single theoretical framework. This is demonstrated by the following
(which is the first to our knowledge) example of a procedure for fair hypothesis testing:
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EXAMPLE 1. We consider a parametric hypothesis test over distributions D given by

(2)
[

Ξ
Ψ

]
∼N

([
µ
0

]
,

[
1 ρ
ρ 1

])
,

where ρ is known and fixed and µ ∈ R. Define the null hypothesis to be H0 : E(Ξ) = 0
under D. Suppose X = (Ξ1, . . . ,Ξn) and Z = (Ψ1, . . . ,Ψn) consist of i.i.d. random vari-
ables. Let d0 be the decision to accept the null, and let d1 be the decision to reject the null.
The traditional hypothesis test with a significance level of a corresponds to a decision rule
δ that minimizes the risk function R(δ) = PH1

(δ = d0) + Γ(PH0
(δ = d1)− a,R≤0), where

H1 = {P ∈D : P 6=H0} [60] and Γ(·, ·) is the indicator function that was defined in Section
2.2. An optimal decision rule for this risk is δ∗ = d0 if p≥ a and δ∗ = d1 if p < a, where p is
a p-value [60]. An optimal decision rule that depends only upon X corresponds to the use of
a traditional p-value: po = 2Φ(−

√
n| 1n

∑n
i=1 Ξi|), with Φ(·) being the standard normal c.d.f.

Using the above framework, we can compute an optimal fair decision rule for this risk. This
corresponds to pf = 2Φ(−

√
n/(1− ρ2)| 1n

∑n
i=1(Ξi − ρΨi)|), which we can interpret as a

fair p-value. Using pf results in a test with greater power than using po, meaning the risk of
the above decision rule with po is higher than the risk of the decision rule with pf . This ex-
ample is interesting because it shows that trying to achieve fairness by removing a protected
attribute may lead to worse performance than a fair decision rule that uses this variable.

In many statistical contexts, D is singleton but unknown. We then instead choose the de-
cision rule using a sample (Xi, Yi,Zi) for i = 1, . . . , n, which is i.i.d. from the distribution
P . Towards this aim, we approximate the risk function R(δ) using an (random) approximate
risk function Rn(δ) that depends upon the sample. However, computing a sample-based fair
decision rule is not obvious because a statistically well-behaved, sample-based analog of the
constraint δ(X,Z)⊥⊥ Z from (1) has not been studied previously.

4. Fair Optimization Hierarchy. We next propose a framework for computing a fair
decision rule by solving a sample-based analog of (1). We first describe our assumptions
about the statistical and numerical properties of the problem. Next we present our frame-
work and provide some intuition to justify the structure of our formulation. We conclude by
discussing some of the favorable computational properties of our framework.

4.1. Problem Setup. We make assumptions about the decision rule to be constructed and
about the random variables present in our setup. The first two assumptions say that we are
solving (1) while constraining the decision rule to belong to a particular parametric class.

ASSUMPTION 1. The decision rule δ(x, z) = B · ω(x, z) belongs to a parametric poly-
nomial family, where B ∈ B is a matrix, B ⊂ Rd×p is a compact set, and ω(x, z) ∈ Rp is
a vector of monomials of the entries of the vectors x, z. Here, B parametrizes the decision
rule δ(x, z), and the function ω(x, z) is assumed to be known and fixed by our design such as
through feature engineering. We define the random variable Ω = ω(X,Z), so δ(X,Z) =BΩ.

REMARK 1. In some settings, it may be desirable to have the fair decision rule depend
upon only X and not Z . The above includes this case by noting that ω(x, z) is free to be
chosen to include only monomials of the entries of x.

REMARK 2. This assumption says the decision rules are linear with respect to some poly-
nomial transformation of the X and Z . Such a linear decision rule may not be competitive
in terms of risk minimization as compared to more sophisticated models, but linear decision
rules are commonly used in many application domains such as health care or economics and
as such are important to theoretically study in the setting of fairness.
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ASSUMPTION 2. Assume B ⊆ {B ∈Rd×p : ‖W (B)‖2 ≤
√
λ} for λ≥ 1.

REMARK 3. For certain distributions, it is possible that only constant decision rules are
feasible for (1) when constrained by the first two assumptions. In some settings, this may in
fact be the most desirable fair decision rule. But in settings where constant decision rules are
too trivial for the corresponding application, we note that our framework handles a gener-
alization of (1) where the independence constraint is replaced with a constraint that ensures
approximate independence. This generalization is discussed in Sections 5.5, 6.2, and 7.1, and
it ensures that our framework is able to generate nontrivial decision rules in all settings.

Our next assumption is about statistical properties of the approximate risk function. Since
our primary interest in this paper is studying independence constraints, we directly make
assumptions about the convergence of the approximate risk function. Showing that such con-
vergence holds typically involves a separate statistical analysis for the problem at hand.

ASSUMPTION 3. Note the function Rn(B · ω(x, z)) is the approximate risk function
composed with the parametric decision rule in Assumption 1. We assume that this function
can be written in the form hn(B) :=Rn(B · ω(x, z)) = fn(B) + Γ(gn(B),{R≤0}η), where
fn : Rd×p→ R and gn : Rd×p→ Rη . Moreover, define the notation h(B) =R(B · ω(x, z)).
We assume as-e-limhn = as-limhn = h relative to B.

REMARK 4. We should interpret the notation of hn(B) as simultaneously specifying an
objective function fn(B) and a set of constraints gn(B)≤ 0.

REMARK 5. This convergence assumption may look unfamiliar, but we note that it is
weaker than the convergence results that are usually shown when proving consistency of
estimators. In particular, almost sure uniform convergence of hn to h implies the above.

The first three assumptions are primarily related to statistical properties. It is instructive to
consider examples that show how linear regression and classification problems match these.

EXAMPLE 2. Linear regression with (Xi, Yi) ∈ Rp × R in our setup would mean we
choose a linear decision rule δ(x) =Bx with B ∈R1×p. We could use a squared loss Rn(B ·
x) = 1

n

∑n
i=1(Yi−BXi)

2 or the least absolute deviation lossRn(B ·x) = 1
n

∑n
i=1 |Yi−BXi|

for our regression. The nondifferentiability of the latter can be managed by introducing the
variables si and noting Rn(B · x) = 1

n

∑n
i=1 si subject to the constraints −si ≤ Yi −BXi ≤

si. This matches the decomposition of Rn(δ) into an objective with constraints. These loss
functions can hence be minimized by many algorithms.

EXAMPLE 3. Linear classification with (Xi, Yi) ∈ Rp × {−1,+1} in our setup would
mean we choose a linear decision rule δ(x) = Bx with B ∈ R1×p. We could use typical
classification losses: Logistic regression uses Rn(B ·x) = 1

n

∑n
i=1 log(1 + exp(−Yi ·BXi)).

Because this logistic loss is convex and differentiable, it can be easily optimized. Support
vector machine uses the hinge loss Rn(B ·x) = 1

n

∑n
i=1 max{0,1−Yi ·BXi}. Its nondiffer-

entiability is handled by introducing variables si and noting Rn(B · x) = 1
n

∑n
i=1 si subject

to constraints si ≥ 0 and si ≥ 1− Yi ·BXi. This matches the decomposition of Rn(δ) into
an objective with constraints, and this can be minimized by many algorithms.

The linear classifier makes binary predictions Ŷ (x, t) = sign(t − Bx) by applying a
threshold t to the decision rule δ(x) = Bx. This interpretation of using the score function
as the decision rule is justified by the general principal of empirical risk minimization, and
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since independence of δ(x) =Bx and Z implies independence between Ŷ (X, t) and Z . Fur-
thermore, the hinge loss is classification-calibrated under certain conditions [55], meaning
the hinge loss composed with the score function is statistically consistent with respect to the
0-1 classification loss composed with the thresholded binary predictions Ŷ (x,0).

EXAMPLE 4. We could consider the above linear classification setup using the 0-1 clas-
sification loss Rn(B ·x) = 1

n

∑n
i=1H(−Yi ·BXi), where H(·) : R→{0,1} is the step func-

tion defined as: H(u) = 0 if u ≤ 0 and H(u) = 1 otherwise. This loss is supported by our
setup because Assumption 3 follows by applying standard uniform convergence results [103].
(Uniform convergence is technically stronger than the type of convergence required in As-
sumption 3.) However, the resulting optimization problem is an integer program [63]. The
idea behind the integer programming formulation is that it uses binary variables to keep track
of whether or not each Yi ·BXi is nonnegative.

4.2. Formulation. We are now ready to present our framework. Given the above assump-
tions, we study use of the following sample-based optimal fair decision rule: The level-(g,h)
fair optimization (FO) is

(3)

min
B∈B

Rn(B · ω(x, z))

s.t.
∥∥En(Z⊗m(BΩ)⊗q

)
−En

(
Z⊗m

)
⊗En

(
(BΩ)⊗q

)∥∥≤∆m,q,

for (m,q) ∈ [g]× [h]

where g,h ≥ 1 are integers and ∆m,q ≥ 0 are nonnegative real numbers. We note that g, h,
and ∆m,q will generally be chosen to depend on n, but for simplicity we will not make this
n-dependence explicit in our notation. Our optimization hierarchy for fair statistical decision
problems is defined by the above formulation given in (3), with the increasing number of
constraints in the hierarchy parametrized by increasing values of g,h. We will study the
constraints of the above problem and show that they are statistically well-behaved analogs of
the independence constraint in (1).

REMARK 6. The above formulation considers fairness in the sense of disparate im-
pact. When the protected attributes are categorical, meaning Z ∈ Z for some finite-
cardinality set Z , then our formulation can be modified to consider fairness in the sense
of equalized odds by replacing the constraints in the above formulation with the constraints
‖En[Z⊗m(BΩ)⊗q|Z = z] − En[Z⊗m|Z = z] ⊗ En[(BΩ)⊗q|Z = z]‖ ≤ ∆m,q, for (m,q) ∈
[g]× [h] and z ∈ Z . Compared to the above formulation, here we take expectations with re-
spect to the empirical distribution conditioned on each possible value in Z .

Our first result provides intuition about the constraints in the FO optimization problem (3).
This result generalizes Kac’s theorem [16, 52], which characterizes independence of random
variables using moment conditions, to the setting of random vectors. This generalization is
novel to the best of our knowledge, and so we include its proof for completeness.

THEOREM 1. Let M(U,V )(s, t) = E exp(〈s,U〉+ 〈t, V 〉) be the moment generating func-
tion for the multivariate random variable (U,V ) where we have U ∈ Rp and V ∈ Rd. If
M(U,V )(s, t) is finite in a neighborhood of the origin, then U and V are independent if and
only if E

(
U⊗mV ⊗q

)
= E

(
U⊗m

)
⊗E

(
V ⊗q

)
for m,q ≥ 1.
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REMARK 7. This result requires that M(U,V )(s, t) exists in a neighborhood of the origin.
Examples of distributions that satisfy this condition are those with a bounded support (al-
most surely), as well as those belonging to the sub-Gaussian, sub-exponential, or sub-gamma
families of distributions. This encompasses a large number of the most common distributions.

Next, we show a similar result that characterizes approximate independence of random
variables using moment conditions. The benefits of this next result are that: it holds for (pos-
sibly unbounded) distributions that have finite moments, and it does not require the existence
of M(U,V )(s, t) in a neighborhood of the origin. Thus it applies to a larger class of distribu-
tions. Our characterization relating moment conditions to approximate independence is the
first result of its kind, to our knowledge.

However, we have to specify how independence is quantified. A natural idea is to consider
a distance between the joint distribution of (Z, B̂nΩ) and the product distribution of Z and
B̂nΩ. This idea is natural because independence means that the joint distribution equals the
product distribution. Thus the pertinent detail is choosing a distance between distributions to
use. Our next example shows a subtle issue in making this choice.

EXAMPLE 5. Consider a setting where B ∈ R, where ω(x, z) = x, and the distribu-
tions are X ∼ Uni(−1,1) and Z = X . Then Ω = X . Next let dl(B) = sups,t |P(Z,BΩ)(Z ≤
s,BΩ≤ t)− PZ(Z ≤ s) · PBΩ(BΩ≤ t)| be the multivariate Kolmogorov-Smirnov distance
between the joint and product distributions of Z and BΩ. Now note dl(0) = 0 because Z is
trivially independent of the constant 0 · Ω ≡ 0. For any B 6= 0 we have dl(B) = dl(1), but
dl(1)> 0 since Z = Ω. Hence for the sequence Bn = n−1, we have that BnΩ is asymptoti-
cally independent of Z but dl(limnBn) = dl(0) = 0 6= limn dl(Bn) = dl(1)> 0 . As a result,
the multivariate Kolmogorov-Smirnov distance cannot quantify independence here.

REMARK 8. Because the total variation distance is greater than or equal to the value
of the multivariate Kolmogorov-Smirnov distance, the above example also applies to the
total variation distance. Thus Pinsker’s inequality implies the above example applies to the
Kullback–Leibler (KL) divergence. So the above example also applies to mutual information,
which is defined as the KL divergence between the joint and product distributions.

REMARK 9. A multivariate version of this example can be constructed where the same
issue occurs for a B 6= 0, where the issue occurs because B does not have full column rank.

The above examples show that several popular distances between distributions cannot be
used for quantifying the degree of independence in our setting of fair optimization. This is
perhaps not surprising given that the notion of convergence in distribution is weaker than
many popular distances. Consequently, we need to consider topologically-weaker metrics on
probability distributions, that are able to metricize convergence in distribution.

One such distance is the Zolotarev metric defined using characteristic functions [115, 56,
82], and we will use this distance to quantify the degree of independence between two ran-
dom variables. Let U ∈ Rp and V ∈ Rd be random vectors, and define i =

√
−1. Then

for s ∈ Rp, t ∈ Rd, and ζ ∈ R; let J(s, t, ζ) = E exp(iζ〈s,U〉 + iζ〈t, V 〉) and P (s, t, ζ) =
E exp(iζ〈s,U〉) · E exp(iζ〈t, V 〉) be the characteristic functions corresponding to the joint
and product distributions, respectively, of U and V . The Zolotarev metric between the joint
and product distributions is given by

(4) H(U ;V ) = sup
(s,t)∈Sp+d−1

[
inf
T>0

max
{1

2
sup
|ζ|≤T

∣∣J(s, t, ζ)− P (s, t, ζ)
∣∣, 1

T

}]
.
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We call the quantity H(U ;V ) the mutual characteristic of U and V , and the choice of this
name is meant to draw a direct analogy to mutual information.

THEOREM 2. Consider the random variable (U,V ) where U ∈ Rp and V ∈ Rd.
If Jg,h = sup(s,t)∈Sp+d−1 E(〈s,U〉g+1〈t, V 〉h+1) is finite and E

(
U⊗mV ⊗q

)
= E

(
U⊗m

)
⊗

E
(
V ⊗q

)
for m,q ∈ [g]× [h], then we have that

(5) H(U ;V )≤
[

Jg,h+Pg,h

(g+1)!·(h+1)!

]1/(g+h+3)

where Pg,h = sups∈Sp−1 E(〈s,U〉g+1) · supt∈Sd−1 E(〈t, V 〉h+1).

These two generalizations of Kac’s theorem allow us to interpret the constraints of the
FO problem (3). Using Theorem 1, we can interpret the constraints as a finite number (g · h
many, for a level-(g,h) FO problem) of sample-based analogs of the corresponding moment
conditions from Theorem 1 for independence. Using Theorem 2, we can also interpret the
constraints as sample-based analogs of the corresponding finite number of moment condi-
tions that achieve approximate independence in the sense of (5).

4.3. Computational Properties. We next discuss some favorable computational proper-
ties of the FO problem (3). A key advantage of our framework is that the moment constraints
are polynomials. This leads to three general approaches to numerically solve the FO problem.

The first approach when the relevant functions are polynomials, which allow us to draw
upon powerful tools for polynomial optimization [59]:

THEOREM 3 (Theorems 5.6, 5.7 of [59]). Suppose Assumptions 1–3 hold. If, in the nota-
tion of Assumption 3, we assume that the functions fn : Rd×p→ R and gn : Rd×p→ Rη are
polynomials on the set B, then the level-(g,h) FO problem (3) can be solved to any desired
accuracy by solving a convex optimization problem that can be explicitly constructed.

REMARK 10. The polynomial assumption is not restrictive since the Stone-Weierstrass
theorem shows that if fn and gn are continuous then they can be approximated to arbitrary
accuracy by polynomials, since the domain of the optimization problem is a compact set B.
So this approach can be used for the squared loss, logistic loss, hinge loss (after the earlier
reformulation), least absolute deviation loss (after the earlier reformulation), and other losses.

Though the convex optimization problems resulting from the explicit construction of [59]
are often large, these resulting optimization problems can be numerically solved for many
interesting instances [67, 112]. We provide some intuition. The first insight is that any poly-
nomial optimization problem min{fn(B) | gn(B)≤ 0,B ∈ B} can be written as maximizing
a scalar subject to nonnegative polynomial constraints max{s | fn(B) − s ≥ 0,−gn(B) ≥
0, s ∈R,B ∈ B}. The second insight is that nonnegative polynomials can be approximated on
a bounded domain to arbitrary accuracy using sum-of-squares (SOS) polynomials [11, 59].
Since our problems involve optimizing a vector that belongs to Euclidean space, SOS polyno-
mials are literally the set of polynomials that are generated by squaring arbitrary polynomials
and then adding them up. Specifically, the nonnegative polynomial constraints can be approx-
imated by instead asking for the polynomials to equal a linear combination of a finite number
of SOS polynomials. This is a tractable approximation because the resulting optimization
problem is a convex semidefinite program, and the following solution can be made arbitrarily
accurate by increasing the finite number of SOS polynomials used in the approximation.
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The second approach applies to cases where the relevant functions are differentiable (but
not necessarily polynomial), which allow us to use standard optimization algorithms. Specif-
ically, the moment constraints for low levels of our FO hierarchy have structures that en-
able numerical solution using algorithms like the constrained convex-concave procedure
[93, 101, 107]. We can say more about the FO problem for specific levels of the hierarchy,
and we omit the proofs since they follow from the definition of the constraint:

PROPOSITION 1. The constraints in the FO problem (3) for q = 1 can be written as the
following linear inequality constraints:

(6)
B
(

1
n

∑n
i=1 Ωi ⊗ (Zi)

⊗m − 1
n

∑n
i=1 Ωi ⊗ 1

n

∑n
i=1(Zi)

⊗m
)
≤∆m,1

−B
(

1
n

∑n
i=1 Ωi ⊗ (Zi)

⊗m − 1
n

∑n
i=1 Ωi ⊗ 1

n

∑n
i=1(Zi)

⊗m
)
≤∆m,1

where the inequality should be interpreted as being elementwise of the left (which is a tensor)
with respect to the scalar ∆m,1 on the right.

This result says constraints with q = 1 are always convex. Thus the FO problem (3) with
h = 1 is a convex optimization problem when Rn is convex in B. Convexity of Rn occurs in
many interesting problems, including linear regression and support vector machines.

PROPOSITION 2. The constraints in the FO problem (3) for q = 2 are inequalities that
each involve a difference of two convex quadratic functions.

This says constraints with q = 2 are always a difference of convex functions. This means
that stationary points of the FO problem (3) with h = 2 can be found using the constrained
convex-concave procedure [93, 101, 107] whenever Rn is convex in B. Recall that Rn is
convex in many interesting problems like linear regression and support vector machines.

PROPOSITION 3. If Z is a binary random variable, which is coded as either Z ∈ {0,1}
or Z ∈ {±1}, then the constraints in the FO problem (3) for m≥ 2 are redundant with the
corresponding constraint for m= 1.

This result says that when Z is binary, then the hierarchy simplifies and we only need to
consider applying the level-(1,h) FO problems. We will use this simplification when con-
ducting numerical experiments in Section 7.

The third approach applies when the relevant functions are mixed-integer non-convex
quadratic-representable, which means the objective and constraints can be represented by
non-convex quadratic functions with some variables constrained to be integer-valued. As de-
scribed in Example 4, this case holds for linear classification using the 0-1 classification loss.

PROPOSITION 4. Suppose Assumptions 1–3 hold. If, in the notation of Assumption 3,
we assume that the functions fn : Rd×p → R and gn : Rd×p → Rη are mixed-integer non-
convex quadratic-representable, then the level-(g,h) FO problem (3) can be solved using a
non-convex mixed-integer quadratically constrained program (non-convex MIQCP).

The development of numerical algorithms to solve non-convex MIQCP problems is an
active research area [20, 54, 25], and software packages [89, 1, 19, 64, 102, 48] are already
available for solving such problems. The proof of the above result is omitted because it fol-
lows immediately from the facts that the moment constraints are polynomials and that any
polynomial inequality constraint can be represented by quadratic constraints and a set of new
variables. To understand the intuition behind this second fact, consider as an example the con-
straintB 3

1 ≤ 0. We can represent this by two non-convex quadratic constraints:B2 =B 2
1 and

B1 ·B2 ≤ 0, where we have introduced a new variable B2.
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5. Statistical Consistency of FO Hierarchy. We prove in this section that the sample-
based constraints of the FO problem (3) are in fact statistically well-behaved analogs of the
independence constraint in (1). Here, we consider the case of bounded random variables:

ASSUMPTION 4. The entries of the random variables X,Z are almost surely bounded
by α ≥ 1. Moreover, the maximal monomial degree of entries in ω(x, z) is ρ ≥ 1, and the
random variable Z has dimensions Z ∈Rr .

5.1. Concentration of Tensor Moment Estimates. We begin by defining several multilin-
ear operators. We define the empirical operators ϕ̂m,q(B1, . . . ,Bq) = En(Z⊗m

⊗q
k=1(BkΩ))

and ν̂m,q(B1, . . . ,Bq) = En(Z⊗m) ⊗ En(
⊗q

k=1(BiΩ)), and we also define the expected
operators ϕm,q(B1, . . . ,Bq) = E(Z⊗m

⊗q
k=1(BkΩ)) and νm,q(B1, . . . ,Bq) = E(Z⊗m) ⊗

E(
⊗q

k=1(BiΩ)). To simply the notation, when the argument of these multilinear operators is
(B) we take that to mean the argument is (B, . . . ,B). We can thus identify these operators
with terms in the FO problem (3): The ϕ̂m,q(B) and ν̂m,q(B) terms appear in the constraints.

PROPOSITION 5. If Assumptions 1, 4 hold, then we have

(7)
P
(
‖ϕ̂m,q −ϕm,q‖◦ > Rm,q[n] + γ

)
≤ 2 exp

(
− nγ2

64pqα2m+2ρq

)
P
(
‖ ν̂m,q − νm,q‖◦ > 2Rm,q[n] + 2γ

)
≤ 4 exp

(
− nγ2

64pqα2m+2ρq

)
for Rm,q[n] = 8αm+ρqpq/2

√
dp log(1+4q)+m log r+q logd

n .

REMARK 11. Though a similar proof was used in [103] for random matrices and in [99]
for random tensors, we use a stronger argument that is adapted to our setup and results in a
faster convergence rate where some terms are logarithmic that would otherwise be polyno-
mial with a weaker argument. We use a stronger chaining argument than [99, 103] by using a
telescoping sum that reduces cross terms. We use a tensor symmetrization construction that
allows us to exploit Banach’s theorem [9, 17]. We achieve better constants than [103] by
more carefully bounding our moment series expansion.

5.2. Feasible Set Consistency. We are now in a position to study the constraints of the FO
problem (3). Towards this goal, we first define S = {B ∈ B :BΩ⊥⊥ Z}. This is the feasible
set of (1), which chooses an optimal fair decision rule when the underlying distributions are
exactly known, for a decision rule that satisfies Assumption 1. We next define the family of
random sets Ŝg,h = {B ∈ B : ‖ϕ̂m,q(B)− ν̂m,q(B)‖ ≤∆m,q, for (m,q) ∈ [g]× [h]}. This is
simply the feasible set of the level-(g,h) FO problem (3).

PROPOSITION 6. S and Ŝg,h are closed, under Assumptions 1, 4.

The sequence of random sets Ŝg,h is difficult to study because each random set is defined
by the intersection of many random constraint inequalities, with the number of these random
constraints increasing towards infinity. A more subtle technical difficulty also needs to be
addressed: The issue is that when intersecting a sequence of sets, the intersection of the
sequence terms generally does not converge to the intersection of the limiting sets [5, 70]. The
next example demonstrates this phenomenon in a deterministic setting, and it provides insight
into how to address this situation through a carefully designed regularization approach.
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(a) Unregularized Set Intersections (b) Regularized Set Intersections

Fig 1: The left shows how the intersection of a sequence of sets may not converge to the
intersection of their limits. The right shows how regularization of the sequence of sets can
ensure that the intersection of the regularized sets converges to the intersection of their limits.

EXAMPLE 6. Fig. 1 provides a visualization of this example. Let us first define Cn =
[−1,− 1

n ] and Dn = [ 1
n ,1], which each specify a deterministic sequence of compact sets.

Then we have that limnCn = [−1,0] =: C0 and that limnDn = [0,1] =:D0. However, note
that Cn

⋂
Dn = ∅. So limnCn

⋂
Dn = ∅ 6=C0

⋂
D0 = {0}. Now suppose we carefully regu-

larize these sequences of sets. Specifically consider the regularized sequence of deterministic,
compact sets C ′n = [−1,− 1

n + ∆n] and D′n = [ 1
n −∆n,1] for ∆n = 2

n , where we think of
the ∆n as regularizing by inflating the sets. Clearly this choice of regularization goes to zero
since limn∆n = 0. More importantly, we now have C ′n

⋂
D′n = [− 1

n ,
1
n ]. Hence we have

limnC
′
n =C0 and limnD

′
n =D0 with limnC

′
n

⋂
D′n = {0}=C0

⋂
D0.

The above example was deterministic, and it may be unclear whether such behavior occurs
in our random setting. The next example demonstrates such non-convergence for Ŝg,h.

EXAMPLE 7. Consider a setting where B ∈R and the distributions are X ∼Ber(x) and
Z ∼Ber(z) withX ⊥⊥ Z . We assume that x ∈ (0,1) and z ∈ (0,1) to prevent degeneracies in
this example. In this setup S = B. Now observe that (Zi)

m = Zi and (Xi)
q =Xi for (m,q)≥

1 since Xi,Zi ∈ {0,1}. This means the (m,q) ≥ 1 constraints in Ŝg,h for ∆m,q = 0 are
|( 1
n

∑n
i=1(Zi)

m(Xi)
q − 1

n

∑n
i=1(Zi)

q · 1
n

∑n
i=1(Xi)

q)Bq| = |( 1
n

∑n
i=1ZiXi − 1

n

∑n
i=1Zi ·

1
n

∑n
i=1Xi)B

q|= 0. Hence Ŝg,h = B when En = { 1
n

∑n
i=1ZiXi = 1

n

∑n
i=1Zi ·

1
n

∑n
i=1Xi}

occurs, and that Ŝg,h = {0} otherwise. And so trivially by the definition of Ŝg,h we have
as-lim supn Ŝg,h ⊆B. If we recall the classical setting of a 2×2 contingency table, this event
En is equivalent to having exact equality between a marginal and cross-term in the contin-
gency table. As a result, we consider a test statistic inspired by the Pearson test for indepen-
dence Tn = n ·

(
En(ZX)− En(Z)En(X)

)2. Clearly by its definition, we have that Tn = 0

if and only if En holds. Also, a straightforward calculation gives E(Tn) = (n−1
n )(zx)(1 −

z − x − zx). Note that E(Tn) > 0 since we assumed x, z ∈ (0,1), and note that E(Tn) is
monotonically increasing towards limnE(Tn) = (zx)(1− z − x− zx)> 0. Now using Mc-
Diarmid’s inequality we get for any t > 0 that P(En)≤ P(Tn ≤ E(Tn)− t)≤ exp(−nt2/8).
Choosing t = (zx)(1 − z − x − zx)/2, the Borel-Cantelli lemma implies En cannot occur
infinitely often. Hence we must have as-lim infn Ŝg,h = {0}+ S .
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Example 6 provides the key intuition for how potential non-convergence of Ŝg,h, as
demonstrated in Example 7, can be resolved. If we can regularize the sets Ŝg,h by sufficiently
inflating them in such a way that the amount of inflation decreases with n, then we may be
able to ensure the almost sure stochastic convergence of Ŝg,h to S . In fact, the notation of
Example 6 was chosen to be suggestive of how we will perform this regularization: We will
purposefully keep the ∆m,q > 0 while allowing them to shrink towards zero.

More broadly, the FO problem (3) has two types of tuning parameters, namely the (g,h)
that controls the number of moment constraints and the ∆m,q that controls the strictness
of the moment constraint. This gives us considerable flexibility when studying asymptotic
properties. In the following results, we have to choose both of these tuning parameters.

THEOREM 4. Suppose ∆m,q = 3(1 + logn) · Rm,q[n] and g = h = O(logn), such that
∆g,h = o(1). If Assumptions 1, 2, 4 hold, then as-limn Ŝg,h = S .

5.3. Solution Set Consistency. Next consider the solution set Ôg,h = arg minB{Rn(B ·
ω(x, z)) | B ∈ Ŝg,h} for the level-(g,h) FO problem (3). Similarly, consider the solution set
O = arg minB

{
R(B · ω(x, z))

∣∣ B ∈ S} for the optimization problem (1), which chooses
an optimal fair decision rule when the underlying distributions are exactly known. Our next
result shows that solving the FO problem (3) provides a statistically consistent approximation
to solving the optimization problem (1), and we state the result using the above solutions sets.

THEOREM 5. Suppose ∆m,q = 3(1 + logn) · Rm,q[n] and g = h = O(logn), so that
∆g,h = o(1). If Assumptions 1–3, 4 hold, then as-lim supn Ôg,h ⊆O.

REMARK 12. IfO consists of a single point, then it can be shown that as-limn Ôg,h =O.

The conclusion “as-lim supn Ôg,h ⊆O” of the above theorem says all cluster points (i.e.,
convergent subsequences) as n increases of optimal solutions to the sample-based FO prob-
lem (3) belong to the set of optimal solutions to the problem (1) that we initially set out to
solve using a sample-based approach. A stronger result is generally not true [84]; however,
as mentioned above it can be shown that if O is singleton then we have as-limn Ôg,h =O.

5.4. Finite Sample Bounds. The consistency results of the previous subsection are
asymptotic, and here we provide finite sample bounds that characterize this consistency. For
our FO problem (3), there are two kinds of consistency to study. One kind of consistency is the
usual notion of how good the sample-based optimal fair decision rule δ̂n(x, z) = B̂n ·ω(x, z)

for any B̂n ∈ Ôg,h is in terms of minimizing the risk R(·). The second kind of consistency is
to quantify how close δ̂n(X,Z) = B̂nΩ is in terms of being independent to Z .

To study the first kind of consistency, we have to strengthen Assumption 3 that says the
approximate risk function composed with the parametric decision rule epi-converges almost
surely. We replace this with a finite sample analog that specifies uniform convergence:

ASSUMPTION 5. Let hn(B) and h(B) be the functions that are defined in Assumption
3. We assume that supB∈B |hn(B)−h(B)| ≤ rn holds with probability at least 1− cn, where
we have that limn rn = 0 and limn cn = 0.

We can now prove finite sample bounds for the FO problem (3). Recall that δ̂n(x, z) =

B̂n · ω(x, z) for any B̂n ∈ Ôg,h is a sample-based optimal fair decision rule, and δ∗(x, z) =
B∗ · ω(x, z) for any B∗ ∈O is an optimal fair decision rule.
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THEOREM 6. Suppose ∆m,q = 3(1 + logn) · Rm,q[n] and g = h = κ1 logn (rounded
down when non-integer), where κ1 = (20p logα+ 5 log p+ 1)−1. If Assumptions 1, 2, 4, 5
hold, then R(δ̂n)≤R(δ∗) + 2rn, with probability at least 1− 6(κ1 logn/n)2 − 2cn; and

(8) H(δ̂n(X,Z),Z)≤ e1/κ2nκ1/κ2∆g,h + κ2(r+d)
κ1 logn+1

with probability at least 1− 6(κ1 logn/n)2, where κ2 = eαρλp.

REMARK 13. The above theorem implies H(δ̂n(X,Z);Z) = O(1/ logn) with high
probability, because nκ1/κ2∆g,h = o(1/ logn) under the conditions of the above theorem.

5.5. Approximate Independence. Let U ∈Rp and V ∈Rd be random vectors, and define
(9)
M(U ;V ) = inf

{
ε
∣∣ ‖E(U⊗mV ⊗q)−E

(
U⊗m

)
⊗E

(
V ⊗q

)∥∥≤ εm+q ·m! · q!, for m,q ≥ 1
}
.

We call the quantity M(U ;V ) the mutual majorization of U and V , and the choice of this
name is meant to draw a direct analogy to mutual information. The mutual majorization is
nonnegative M(U ;V )≥ 0 and symmetric M(U ;V ) = M(V ;U) by definition. One utility of
this definition for the mutual majorization is that it bounds approximate independence.

PROPOSITION 7. Let M(U,V )(s, t) = E exp(〈s,U〉+ 〈t, V 〉) be the moment generating
function for the multivariate random variable (U,V ) where U ∈ Rp and V ∈ Rd. Suppose
that M(U,V )(s, t) is finite in a neighborhood of the origin. If M(U ;V )≤ ε, then we have that
H(U ;V )≤ 2(ε · (r+ d))2/3 when ε · (r+ d)≤ 1.

The implication of this result is we can use mutual majorization as a surrogate for ap-
proximate independence. We thus define an optimization problem that chooses an optimal
ε-approximately-fair decision rule by solving

(10) δ∗(x, z) ∈ arg minδ(·,·)
{
R(δ)

∣∣M(δ(X,Z);Z)≤ ε
}
.

The level-(g,h) FO problem (3) with appropriate choice of ∆m,q is a statistically well-
behaved, sample-based approximation of the above problem. In order to be able to dis-
cuss this, we first define the set S(ε) = {B ∈ B : M(BΩ;Z) ≤ ε} and the solution set
O(ε) = arg minB{R(B · ω(x, z)) | B ∈ S(ε)}. These are respectively the feasible set and
solution set of the optimization problem (10), which chooses an optimal ε-approximately-
fair decision rule when the underlying distributions are exactly known.

THEOREM 7. Let ∆m,q = εm+q ·m! · q! + 3(1 + logn) · Rm,q[n] and suppose g = h =
O(logn), such that logn · Rg,h[n] = o(1). If Assumption 1 holds, then S(ε) is closed. If
Assumptions 2, 4 also hold, then as-limn Ŝg,h = S(ε). If Assumption 3 also holds, then
as-lim supn Ôg,h ⊆O(ε).

We can also prove a finite sample version of the above result, which shows that consistency
holds for sample-based analogs of (10).

THEOREM 8. Suppose ∆m,q = εm+q · m! · q! + 3(1 + logn) · Rm,q[n] and g = h =
κ1 logn (rounded down when non-integer), where κ1 = (20p logα + 5 log p + 1)−1. If
Assumptions 1, 2, 4, 5 hold, then: R(δ̂n) ≤ R(δ∗) + 2rn, with probability at least 1 −
6(κ1 logn/n)2 − 2cn; and when ε · (r+ d)≤ 1 then we also have that

(11) H(δ̂n(X,Z),Z)≤ 2(ε · (r+d))2/3 +κ3 · (1+logn) ·Rg,h[n]+ 1
(g+1)!·(h+1)! ·κ

g+h+2
4

with probability at least 1− 6(κ1 logn/n)2, where κ3 = 3 exp(1/ε) and κ4 = αρλp/ε.
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REMARK 14. The above theorem implies lim supnH(δ̂n(X,Z),Z) ≤ 2(ε · (r + d))2/3

because the second and third terms in (11) converge to zero under the specified conditions.

6. Hierarchy Consistency for Unbounded Random Variables. The underlying gen-
eralizations of Kac’s Theorem, which relate moment conditions to independence, also apply
to unbounded random variables whose moment generating function is finite about the origin
(Theorem 1) and to unbounded random variables with some number of finite moments but
not necessarily with a moment generating function that exists near the origin (Theorem 2).
In this section we show that the sample-based constraints of the FO problem (3) are statisti-
cally well-behaved analogs of the independence constraint in (1) when the involved random
variables are unbounded. We will consider two cases. The first is when the involved random
variables are sub-Gaussian, and the second is for random variables with finite moments.

6.1. Sub-Gaussian Case. Our first task is to relax Assumption 4, which assumed the
involved random variables are bounded. There is a subtlety in relaxing this assumption.

EXAMPLE 8. Let X ∼ N (0,1), and define U = Xk for some k ∈ Z+. Then U is sub-
Gaussian for k = 1, but U is not sub-Gaussian for k ≥ 2. Furthermore, the moment generating
function for U is finite in a neighborhood about the origin only for k ∈ {1,2,4}, or restated
the moment generating function is not well-defined for k = 3 or k ≥ 5 [12].

The consequence of this example is that if we want to consider a sub-Gaussian case, then
we need to specify that the joint distribution of (Z,Ω) is sub-Gaussian rather than assuming
that (X,Z) is sub-Gaussian. Thus, in lieu of Assumption 4 we assume the following:

ASSUMPTION 6. The (joint) random variable (Z,Ω) is sub-Gaussian with M ≥ 1 and
σ2 ≥ 0, and the random variable Z has dimensions Z ∈Rr .

We can now study consistency of the FO problem (3) when the involved random variables
are sub-Gaussian. We first prove a result on the convergence of the tensor moment estimates.

PROPOSITION 8. If Assumptions 1, 6 hold, then we have

(12)
P
(
‖ϕ̂m,q −ϕm,q‖◦ > Cm,q[n] · γ

)
≤
(
γ6 · n2

)−1

P
(
‖ ν̂m,q − νm,q‖◦ > 2Cm,q[n] · γ + Cm,q[n]2 · γ2

)
≤ 4
(
γ6 · n2

)−1

for Cm,q[n] = [ e
2M22753

πn · (1 + 4q)dp(rm3)m(dq3)q(24σ2/e)3m+3q]1/6.

Using the above result on concentration of the moment tensors in the sub-Gaussian case,
we gets results about asymptotic and finite-sample consistency of the FO problem (3).

THEOREM 9. Suppose ∆m,q = 3 · Cm,q[n] + Cm,q[n]2, and suppose g = h =O(
√

logn),
such that ∆g,h = o(1). If Assumption 1 holds, then S(ε) is closed. If Assumptions 2, 6 also
hold, then as-limn Ŝg,h = S(ε). If Assumption 3 also holds, then as-lim supn Ôg,h ⊆O(ε).

THEOREM 10. Suppose ∆m,q = 3 · Cm,q[n] +Cm,q[n]2, and g = h =
√
κ5 logn (rounded

down when non-integer), where κ5 = (max{5,20dp + 5 log(rd) + 30 log(24σ2)})−1. If
Assumptions 1, 2, 5, 6 hold, then: R(δ̂n) ≤ R(δ∗) + 2rn, with probability at least 1 −
6κ5 logn/n2 − 2cn; and H(δ̂n(X,Z),Z) ≤ e1/κ6nκ5/κ6∆g,h + κ6(r + d) · [

√
κ5 logn +

1]−1/2 for n≥ 3> e with probability at least 1−6κ5 logn/n2, where κ6 = max{4,2
√
eσM}.

REMARK 15. The above theorem implies H(δ̂n(X,Z);Z) = O((logn)−1/4) with high
probability, because nκ5/κ6∆g,h = o((logn)−1/4) under the conditions of the above theorem.
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6.2. Finite Moments Case. Our last set of results relax Assumption 4 to the case of un-
bounded random variables with finite moments. Instead of Assumptions 4 or 6, we assume:

ASSUMPTION 7. Consider the (joint) random variable (Z,Ω), and define Mm,q =
sup(s,t)∈Sp+d−1 E(〈s,Z〉m〈t,Ω〉q). Assume that any moments used in the results are finite,
and the random variable Z has dimensions Z ∈Rr .

With this assumption, we can now study approximate consistency of the FO problem (3)
when the involved random variables have finite moments. We first prove a result on the con-
vergence of the tensor moment estimates.

PROPOSITION 9. If Assumptions 1, 7 hold, then we have

(13)
P
(
‖ϕ̂m,q −ϕm,q‖◦ > Ym,q[n] · γ

)
≤
(
γ2 · n

)−1

P
(
‖ ν̂m,q − νm,q‖◦ > 2Ym,q[n] · γ +Ym,q[n]2 · γ2

)
≤ 4
(
γ2 · n

)−1

for Ym,q[n] = (8/n)1/2 · (M4m,0 ·M0,4q)
1/4.

We conclude with a result about the finite sample behavior of solutions to the FO problem
(3) when the involved random variables have finite moments. The difference in the hypoth-
esis of this result, relative to the results for the cases of bounded or sub-Gaussian random
variables, is that here we will characterize solutions when g and h are held as fixed constants.
In the previous results, we assumed g and h were increasing with n.

THEOREM 11. Suppose ∆m,q = 3 · Ym,q[n] +Ym,q[n]2, and that g and h are constants.
If Assumptions 1, 2, 5, 7 hold, then we have: R(δ̂n)≤R(δ∗) + 2rn, with probability at least
1−6 ·g ·h/n−2cn; and H(δ̂n(X,Z),Z)≤ exp((r+d)T ) ·∆g,h+ 1

T with probability at least
1−6 ·g ·h/n, where T g+h+3 = (g+1)! ·(h+1)!/(λ(h+1)/2 ·(Mg+1,h+1 +Mg+1,0 ·M0,h+1)).

REMARK 16. The above theorem implies lim supnH(δ̂n(X,Z),Z) ≤ 1/T with high
probability, because ∆g,h = o(1) under the conditions of the above theorem.

7. Numerical Experiments. In this section, we implement various levels of the FO
problem (3) for: classification, regression, and decision-making. In all cases, fairness is mea-
sured using disparate impact. Unless otherwise noted, all experiments were carried out using
the Mosek 9 optimization package [72]. We first discuss hyperparameter selection for the
FO problem, and then we describe the benchmark fairness methods that we compare our ap-
proach to. Next, we present classification and regression implementations of FO on a series
of datasets from the UC Irvine Machine Learning Repository [62], the full list of which is in
Table 1. Finally, we present a case study on the use of FO to perform fair morphine dosing.

7.1. Hyperparameter Selection. Applying the FO problem (3) to particular datasets re-
quires choosing several hyperparameters, namely: λ, (g,h), and ∆m,q . The parameter λ
bounds the Euclidean norm of the model coefficients B, and it can be shown using standard
duality arguments that varying λ is equivalent to controlling the amount of `2 regularization
of the model coefficients. The parameters (g,h) control the level of the FO problem, and the
theory developed in previous sections says that consistency is achieved when g and h grow
at a logarithmic or square-root-logarithmic rate. This implies that in practice small values of
(g,h) should be used. Last, the formulation in Section 5.5 suggests an approach that makes
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TABLE 1
List of Datasets Used in Numerical Experiments

Dataset p n Z Type Task Source

Arrhythmia 10 453 Binary Classification [49]
Biodeg 40 1055 Categorical Classification [69]
Communities 96 1994 Continuous Regression [31, 32, 33, 83]
EEG 12 4000 Binary Regression [41]
Energy 8 768 Continuous Regression [100]
German Credit 49 1000 Continuous Classification [62]
Letter 15 20000 Continuous Classification [43]
Music 68 1034 Continuous Regression [113]
Parkinson’s 18 5875 Binary Both [62]
Pima Diabetes 7 768 Continuous Classification [92]
Recidivism 6 5278 Binary Classification [4]
SkillCraft 17 3338 Continuous Classification [98]
Statlog 35 3486 Binary Classification [62]
Steel 25 1941 Categorical Classification [62]
Taiwan Credit 22 29623 Binary Classification [106]
Wine Quality 11 6497 Binary Both [29]

the parameter choices ∆m,q = εm+q ·m! · q!. This is beneficial because it replaces multiple
parameters ∆m,q for (m,q) ∈ [g]× [h] with a single parameter ε.

Consequently, applying the FO problem (3) to a particular dataset requires choosing four
hyperparameters, which is feasible using cross-validation. However, there is a subtlety be-
cause we have two criteria to evaluate the quality of a particular model, and these two criteria
are generally (but not always) opposing each other. The first criteria is model accuracy, and
the second criteria is model fairness. Because these criteria are generally opposing, cross-
validation can only generate a Pareto frontier, which is a curve that for a particular quan-
titative level of fairness specifies the most accurate model possible at that level of fairness.
Choosing a particular model from among that Pareto frontier requires a subjective choice for
how much reduction in model accuracy is tolerable for any given increase in model fairness.
To make this discussion more concrete, we consider examples of cross-validation for fair
linear regression and fair linear classification.

EXAMPLE 9. Consider a classification setup with (Xi, Yi) ∈Rp×{−1,+1} and Zi ∈R,
and suppose we choose a linear decision rule δ(x) = Bx with B ∈ R1×p. Then fair SVM
using the level-(2,2) FO problem (3) is given by

(14)

min
B∈R1×p

1
n

∑n
i=1 si

s.t. si ≥ 0, si ≥ 1− Yi ·BXi, for i ∈ [n]

− ε2 ≤BM(1,1) ≤ ε2, −2ε3 ≤BM(2,1) ≤ 2ε3

− 2ε3 ≤BM(1,2)B
T ≤ 2ε3, −4ε4 ≤BM(2,2)B

T ≤ 4ε4

‖B‖2 ≤
√
λ

where we have the matrices M(1,1) = 1
n

∑n
i=1Zi ·Xi − 1

n

∑n
i=1Zi ·

1
n

∑n
i=1Xi, M(2,1) =

1
n

∑n
i=1Z

2
i · Xi − 1

n

∑n
i=1Z

2
i · 1

n

∑n
i=1Xi, M(1,2) = 1

n

∑n
i=1Zi · XiX

T
i − 1

n

∑n
i=1Zi ·

1
n

∑n
i=1XiX

T
i , and M(2,2) = 1

n

∑n
i=1Z

2
i ·XiX

T
i − 1

n

∑n
i=1Z

2
i · 1

n

∑n
i=1XiX

T
i . Observe

that the constraint in (14) involving the matrix M(m,q) for any value of (m,q) ∈ [2] × [2]
is precisely the specific form of the (m,q) constraint in (3) for this particular setup. Fair
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(c) Pareto Frontier

Fig 2: Pareto frontier for fair SVM on the Letter dataset. Cross-validation is used to identify
points of possible tradeoff between model accuracy (measured by area under the curve) and
fairness (measured by Kolmogorov-Smirnov distance between the joint and product distri-
butions of the model prediction and the protected information) using the FO problem (left),
Pareto frontiers can be constructed for each individual level of the FO problem (middle), and
a single Pareto frontier can be constructed for all the levels of the FO problem (right). For
the points, circles are level-(1,1), pluses are level-(1,2), exes are level-(2,1), and triangles are
level-(2,2).

SVM using the level-(g,h) FO problem for 1 ≤ g,h ≤ 2 is given by (14) with the appro-
priate constraints involving M(m,q) removed. An example of using five-fold cross-validation
to construct a Pareto frontier for fair SVM is shown in Fig 2. For each possible value of
the hyperparameters, cross-validation generates a quantitative value for model accuracy and
for model fairness. These pairs of values describe points that are plotted in Fig 2a. Fig 2c
shows the Pareto frontier. Locations on the Pareto frontier with a point marker can be di-
rectly achieved by a model with a given set of hyperparameters, while locations on the Pareto
frontier in between two point markers can be achieved by a randomized prediction that ran-
domly chooses from one of two deterministic predictions that arise from the two models
corresponding to the two point markers.

EXAMPLE 10. Consider a regression setup with (Xi, Yi) ∈ Rp × R and Zi ∈ R, and
suppose we choose a linear decision rule δ(x) = Bx with B ∈ R1×p. Then fair regression
using the level-(2,2) FO problem (3) is

(15)

min
B∈R1×p

1
n

∑n
i=1(Yi −BXi)

2

s.t. − ε2 ≤BM(1,1) ≤ ε2, −2ε3 ≤BM(2,1) ≤ 2ε3

− 2ε3 ≤BM(1,2)B
T ≤ 2ε3, −4ε4 ≤BM(2,2)B

T ≤ 4ε4

‖B‖2 ≤
√
λ

where the matrices are as in Example 9. Observe that the constraint in (15) involving the
matrix M(m,q) for any value of (m,q) ∈ [2]× [2] is precisely the specific form of the (m,q)
constraint in (3) for this particular setup. Fair regression using the level-(g,h) FO problem for
1≤ g,h≤ 2 is given by (15) with the appropriate constraints involving M(m,q) removed. An
example of using five-fold cross-validation to construct a Pareto frontier for fair regression
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Fig 3: Pareto frontier for fair regression on the Communities dataset. Cross-validation is
used to identify points of possible tradeoff between model accuracy (measured by out-of-
sample R2) and fairness (measured by Kolmogorov-Smirnov distance between the joint and
product distributions of the model prediction and the protected information) using the FO
problem (left), Pareto frontiers can be constructed for each individual level of the FO problem
(middle), and a single Pareto frontier can be constructed for all the levels of the FO problem
(right). For the points, circles are level-(1,1), pluses are level-(1,2), exes are level-(2,1), and
triangles are level-(2,2).

is shown in Fig 3. For each possible value of the hyperparameters, cross-validation gener-
ates a quantitative value for model accuracy and for model fairness. These pairs of values
describe points that are plotted in Fig 3a. Fig 3c shows the Pareto frontier. Locations on the
Pareto frontier with a point marker can be directly achieved by a model with a given set of
hyperparameters, while locations on the Pareto frontier in between two point markers can be
achieved by a randomized prediction that randomly chooses from one of two deterministic
predictions that arise from the two models corresponding to the two point markers.

7.2. Comparison Methods. In the following subsections, we compare FO to three other
methods. The methods of [13] and [53] are designed for fair classification and fair regression,
respectively, and are similar to our method in that they enforce fairness at training time. We
also compare FO to the method of [23], although this takes a pre-processing approach. In all
comparison methods, we include an `2 regularization on the model coefficients B. This is
done to ensure an equitable comparison to the FO problem (3), which includes a constraint
on the Euclidean norm of the model coefficients.

Berk et al. [13]. The method of [13] is one of the few comparable methods for fair regres-
sion. They also take an in-training approach, defining two regularization terms that enforce
fairness. Let Pz = {i ∈ [n] : Zi = z}, and note #Pz refers to the cardinality of these sets.
Given a binary protected attribute Z , they define a regularizer for group fairness ((#P−1 ·
#P+1)−1

∑
i∈P−1

∑
j∈P+1

d(Yi, Yj) · (XT
i β − XT

j β))2, for some distance measure d(·, ·).
Note that this is similar to the term constrained in FO for (m,q) = (1,1). They also define
the following regularizer for individual fairness: (#P−1 ·#P1)−1

∑
i∈P−1

∑
j∈P+1

d(Yi, Yj) ·
(XT

i β−XT
j β)2. This term is similar to a term in FO for (m,q) = (1,2), although not equiv-

alent. It has the benefit of being convex, although the double-summation term can be com-
putationally prohibitive for large datasets. In our implementation, we estimate this term from
a sub-sample (10%) of the data when this issue arises. This method can only accommodate
binary-valued protected attributes, and so we cannot provide comparisons to several of the
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Fig 4: Pareto frontiers for fair SVM on datasets with binary protected attribute. The ap-
proaches compared are the FO formulation (solid line), Kamishima et al. [53] (dotted line),
and Calmon et al. [23] (dashed line). The square mark denotes linear SVM without any fair-
ness modifications.

datasets for fair regression. For this method, the group fairness and individual fairness terms
are implemented as a penalty in the objective.

Calmon et al. [23]. This work is comparable to that of [110]. Both of these works formu-
late nonparametric optimization problems whose solution yields a conditional distribution
fX̂,Ŷ |X,Y,Z that then probabilistically transforms the data. We only compare our method to
the approach introduced in [23], since their formulation directly builds on that of [110].

This method minimizes the overall deviation of fX̂,Ŷ from fX,Y . The authors chose to
minimize 1

2

∑
x,y |fX̂,Ŷ (x, y)− fX,Y (x, y)|, and they included constraints on pointwise dis-

tortion EX̂,Ŷ |X,Y [θ((X,Y ), (X̂, Ŷ )] for some user-defined function θ : {Rp × {±1}}2 →
R≥0. There are also bounds on the dependency of the new main label Ŷ on the original
protected label J(fŶ |Z [y|z], fY (y)), where J(a, b) = |ab − 1| is defined to be the probability
ratio measure. Thus, the final formulation is

(16)

min 1
2

∑
x,y |fX̂,Ŷ (x, y)− fX,Y (x, y)|

s.t. EX̂,Ŷ |X,Y [θ((X,Y ), (X̂, Ŷ )|x, y]≤ c, for all x, y

|fY (y)−1fŶ |Z [y|z]− 1| ≤ d, for all y, z

fX̂,Ŷ |X,Y,Z are all distributions.



22

0.04 0.06 0.08
KS

0.5

0.6

0.7

0.8

0.9

AU
C

(a) Biodeg

0.04 0.05 0.06
KS

0.625

0.650

0.675

0.700

0.725

0.750

0.775

AU
C

(b) German Credit

0.02 0.04 0.06
KS

0.50

0.55

0.60

0.65

0.70

0.75

AU
C

(c) Letter

0.04 0.05 0.06 0.07
KS

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

(d) Pima Diabetes

0.020 0.025 0.030 0.035
KS

0.5

0.6

0.7

0.8

0.9

AU
C

(e) Skillcraft

0.025 0.030 0.035
KS

0.55

0.60

0.65

0.70

0.75

AU
C

(f) Steel

Fig 5: Pareto frontiers for fair SVM on datasets with continuous or categorical protected
attributes. The approaches compared are the FO formulation (solid line) and Calmon et al.
[23] (dashed line). The square mark denotes linear SVM without any fairness modifications.

Following the procedure used by the authors, we approximate fX,Y,Z with the empirical
distribution of the original data, separated into a pre-selected number of bins. The resulting
optimization problem will have 8(#bins)2p parameters, which is computationally intractable
when the dataset is high-dimensional. To account for this, we follow the original work and
choose the 3 features most correlated with the main label Y . Each dimension is split into 8
bins. We choose θ((x′, y′), (x, y)) to be 0 if y = y′ and x= x′, 0.5 if y = y′ and x,x vary by
at most one in any dimension, and 1 otherwise: This is similar to the θ in the original paper.

Kamishima et al. [53]. Another comparable method is that of [53], which also aims
to enforce fairness at training time. As opposed to our approach of bounding interac-
tion moments, they instead regularize with a mutual information term. Also, this method
differs from our framework notably in that it imposes different treatments for differ-
ent protected classes, violating the principle of individual fairness; as a result, it is also
unable to handle continuous protected attributes. The authors implement their regular-
izer in the context of logistic regression. Let σ be a sigmoid function and gβ [y|x, z] =
yσ(xTβ) + (1− y)(1− σ(xTβ)), and note that the notation βz indicates that this approach
has a different set of coefficients for each possible value of Z . the authors approximate
mutual information as 1

n

∑n
i=1

∑
y∈{±1} gβZi [y|Xi,Zi] log(P̂ [y|Zi]/P̂ (y)), with P̂ [y|z] =

(#Pz)
−1
∑

i∈Pz gβz [y|Xi, z] and P̂ (y) = 1
n

∑n
i=1 gβzi [y|Xi,Zi]. This is then weighted and

added to the objective as a regularizer. We include this method as a comparison to our fair
SVM, while noting the core differences mentioned above. All experiments for this method
were done using the sequential least squares programming approach of [58].
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Fig 6: Pareto frontiers for fair regression. The approaches compared are the FO formulation
(solid line) and Berk et al. [13] (dashed line). The square mark denotes ridge regression
without any fairness modifications.

7.3. Fair SVM. We consider classification problems using a series of datasets. For the FO
approach, we consider the formulation in Example 9. We perform five-fold cross validation
repeated five times. The Pareto frontiers of different approaches are shown in Fig 4 and
Fig 5. Accuracy is measured by the area under the curve (AUC) since classifier models are
often used as scores that are then subject to different thresholds. Fairness is measured by
the Kolmogorov-Smirnov distance between the joint and product distributions of the model
prediction and the protected information. The variance of the results over the five repetitions
is low, and so this is not plotted to make the results easier to visualize. The 95% standard
error of the results over the five repetitions can be found in the Supplementary Materials
[7]. Since the mutual-information-based method of [53] cannot accommodate continuous
protected variables, results are not reported for this method for the associated datasets. We
note our method often improves fairness with less cost (in terms of accuracy) than the method
of [23]. This is to be expected, as such pre-processing approaches do not take into account
the downstream task that the transformed data is to be used for. Our method is also able to
match or improve the fairness results of the mutual information approach. Recall that this
method maintains explicitly different treatments for different protected classes, while ours
adheres to the principle of individual fairness. Given this, it is unsurprising that the method
of [53] can sometimes achieve fairness at a lower cost to accuracy, although our method
even outperforms on this metric for a number of datasets. Further, this feature of disparate
treatments can yield fairness values notably worse than even a standard SVM. Interestingly,
for the Taiwan Credit, Letter, and Steel datasets our method can do strictly better in terms of
both accuracy and fairness than linear SVM without fairness modifications.
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Fig 7: Pareto frontier of learned morphine dosage rules. Five-fold cross-validation repeated
five times identifies points of possible tradeoff between model accuracy (measured by risk)
and fairness (measured by Kolmogorov-Smirnov distance between the joint and product dis-
tributions of the learned dosage and the insurance type) using the FO problem (left), Pareto
frontiers can be constructed for each individual level of the FO problem (middle), and a single
Pareto frontier can be constructed for all the levels of the FO problem (right). For the points,
circles are level-(1,1), pluses are level-(1,2), and the square is quantile regression without
fairness modifications.

7.4. Fair Regression. We next consider regression problems. For the FO approach, we
consider the formulation in Example 10. We perform five-fold cross validation repeated five
times. The Pareto frontiers of different approaches are shown in Fig 6. Accuracy is mea-
sured by the out-of-sample R2 (OR2), which means that higher values of OR2 implies better
accuracy. Fairness is measured by the Kolmogorov-Smirnov distance between the joint and
product distributions of the model prediction and the protected information.The variance of
the results over the five repetitions is low, and so this is not plotted to make the results easier
to visualize. The 95% standard error of the results over the five repetitions can be found in the
Supplementary Materials [7]. As the method of [13] is unable to accommodate non-binary
protected attributes, we only provide results for the appropriate datasets. Again, we note that
our method can reduce the bias of a typical linear regression problem. Our method generally
does better than [13] on datasets where [13] can be applied.

7.5. Case Study: Morphine Dosing. Opioid overdoses, including from illicit heroine and
synthetic fentanyl, have become the leading cause of death in Americans under 50 [90].
Today, Americans comprise 4.6% of the global population, but 51.2% of global morphine
usage. Hence there has been much recent interest in disciplined methods for dosing [68].
At the same time, recent reports suggest women and low-income patients are more likely to
be under-diagnosed for pain or made to wait longer for a diagnosis [15, 36]. Thus, we seek
to employ FO in order to train an individualized dosing policy that adapts to each patient’s
measurements and status, but can be made certifiably fair with regards to protected labels.

We extracted data for 7156 morphine prescriptions made to 4612 unique patients extracted
from the publicly-available Multiparameter Intelligent Monitoring in Intensive Care (MIMIC
III) database [88]. For each patient, we collected age (at the time of prescription), heart rate,
breath rate, blood pressure (both systolic and diastolic), weight and temperature. In all cases,
measurements are the latest possible within 48 hours of prescription. We also collect, as cat-
egorical variables, admission type (ER, urgent care or other), service type (surgery or medi-
cal), ethnicity (black, white or other), gender (male or female) and insurance type (private or
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Fig 8: Distributions of morphine dosage, conditional on insurance type, for varying levels
of FO. Histograms are shown of morphine dosages recommended by rules generated using
quantile regression with no fairness modifications (left), the level-(1,1) FO problem (center),
and the level-(1,2) FO problem. These histograms are generated by combining the recom-
mended dosages for the hold-out data when doing five-fold cross-validation repeated five
times. These results show that increasing levels of the FO problem can yield more similar
distributions. Note that negative dosages recommendations are replaced with zero.

governmental). We also note the presence of embolism or obesity amongst the diagnoses of
the patients at admission. We exclude all patients who are not prescribed Morphine Sulfate
to be taken intravenously, and all patients for whom the appropriate measurements were not
available. Since there are medical justifications for the consideration of gender and ethnic-
ity in opioid dosing, we decide to instead consider insurance type as our protected variable
in this analysis. To begin, we conduct a standard linear regression to determine if insurance
type does currently play a role in, or is at least highly correlated with, morphine dosage,
conditional on all other variables considered. The results found that insurance type had a
large magnitude coefficient with p < 0.001, which provides some statistical evidence that
insurance type is correlated to dosing even after adjusting for the other predictor variables.

One possible risk function for dosing is analogous to the newsvendor problem from the
operations research community, where supply must be chosen beforehand to meet random
demand and undersupply/oversupply are penalized differently. Recent work formulated a
data-driven newsvendor model, where demand is predicted via a quantile regression problem
[87]. Similarly, we can treat dosage as a matter of supply, with demand being the amount
of medication that a specific patient needs. In our case, we consider decision rules of the
form δ(x) = Bx and impose a linearly increasing cost to both under-prescription and over-
prescription Rn(δ) = 1

n

∑n
i=1 max{0, δ(Xi) − Yi} + 2max{0,−(δ(Xi) − Yi)}, where the

cost to over-prescription increases half as quickly as that of under-prescription. The nondif-
ferentiability of this loss is easily handled by introducing the slack variables si, ti and noting
that Rn(δ) = 1

n

∑n
i=1(si + 2 · ti) subject to the constraints si ≥ 0, si ≥ δ(Xi)− Yi, ti ≥ 0,

and ti ≥−(δ(Xi)−Yi). This reflects the short-term nature of the risks of under-prescription,
and the long-term nature of the risks of over-prescription. Given the features described above
(excluding insurance payer), we then formulate varying levels of our FO to solve the quantile
regression problem for dosing.

Results are displayed in Fig 7 and Fig 8. In Fig 7, the tradeoff between risk and fairness is
displayed, as well as the range of best possible dosage rules. Visual evidence of the reduction
in disparate impact is shown in Fig 8, which presents the difference in the distribution of
dosage levels across insurance types for standard Quantile Regression (QR), the level-(1,1)
FO with hyperparameters that provide an intermediate tradeoff between risk and fairness,



26

and the level-(1,2) FO with hyperparameters that provide the maximum level of fairness
achievable. There is a clear disparity between the distributions in Fig 8a, but this difference
is significantly reduced in Fig 8b and even more so in Fig 8c. In fact, Fig 7 shows that an
intermediate tradeoff between risk and fairness using the level-(1,1) FO problem increases
risk by 0.5% while improving fairness by 45%, whereas the maximum fairness achievable by
the level-(1,2) FO problem increases the risk by only 1.5% while improving fairness by 70%.

8. Conclusion. We proposed an optimization hierarchy for fair statistical decision prob-
lems, which provides a systematic approach to fair versions of hypothesis testing, decision-
making, estimation, regression, and classification. We proved that higher levels of this hier-
archy asymptotically impose independence between the output of the decision rule and the
protected variable as a constraint in corresponding statistical decision problems. We demon-
strated numerical effectiveness of our hierarchy using several data sets. An important ques-
tion that remains to be answered is how to tune the hyperparameters in our hierarchy. Our
theoretical results provide some guidance on how to choose the level of the hierarchy and
how to reduce the number of tuning parameters to just one. However, further theoretical and
empirical study is needed to better understand the tuning process.

Funding. This material is based upon work supported by the NSF under Grant CMMI-
1847666, and by the UC Berkeley Center for Long-Term Cybersecurity.

SUPPLEMENTARY MATERIAL

Proofs Supplement
Proofs of all the theoretical results (i.e., propositions and theorems) in this manuscript.

Standard Errors of Pareto Frontiers
Excel spreadsheets containing 95% standard errors of the points shown on the Pareto frontiers
in Fig 4, Fig 5, and Fig 6.
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Proofs for “Optimization Hierarchy for Fair Statistical Decision Problems”

PROOF OF THEOREM 1. Let MU (s) = E exp(〈s,U〉) and MV (t) = E exp(〈t, V 〉) be the
moment generating functions for U and V , respectively. Observe that these are defined for s
and t in a neighborhood of the origin by the assumption in the hypothesis on M(U,V )(s, t).
Our proof begins with the well-known characterization of independence using moment gener-
ating functions, that is U and V are independent if and only if M(U,V )(s, t) =MU (s)MV (t).
In particular, if the “only if” condition holds then we have

(1)

M(U,V )(s, t) =
∑∞

m=0

∑∞
q=0

1
m!·q! ·E

(
〈s,U〉m〈t, V 〉q

)
=
∑∞

m=0

∑∞
q=0

1
m!·q! · 〈E

(
U⊗mV ⊗q

)
, s⊗mt⊗q〉

=
∑∞

m=0

∑∞
q=0

1
m!·q! · 〈E

(
U⊗m

)
⊗E

(
V ⊗q

)
, s⊗mt⊗q〉

=
∑∞

m=0

∑∞
q=0

1
m!·q! · 〈E

(
U⊗m

)
, s⊗m〉 · 〈E

(
V ⊗q

)
, t⊗q〉

=
∑∞

m=0

∑∞
q=0

1
m!·q! ·E

(
〈s,U〉m

)
·E
(
〈t, V 〉q

)
=
∑∞

m=0
1
m! ·E

(
〈s,U〉m

)
·
∑∞

q=0
1
q! ·
(
E〈t, V 〉q

)
=MU (s)MV (t)

This proves the reverse direction. To prove the forward direction, we note it follows by ap-
plying componentwise for all σ ∈ [p]m and τ ∈ [d]q the standard result that if U and V are
independent, then E(

∏m
k=1Uσk ·

∏q
k=1 Vτk) = E(

∏m
k=1Uσk) · E(

∏q
k=1 Vτk) when these ex-

pectations exist. Indeed, these expectations exist because of the hypothesis assumption on
M(U,V )(s, t).

PROOF OF THEOREM 2. We need to bound the modulus of J(s, t, ζ) − P (s, t, ζ). As a
first step, note that the difference of their Taylor polynomials satisfies
(2)∑g

m=0

∑h
q=0

1
m!·q! ·E

(
〈s,U〉m〈t, V 〉q

)
+−

∑g
m=0

1
m! ·E

(
〈s,U〉m

)
·
∑h

q=0
1
q! ·
(
E〈t, V 〉q

)
= 0

by the same reasoning used to show (1). We note that the above summation is well-defined
because of the finiteness assumption on Jg,h in the hypothesis of this theorem. Next we
apply a standard argument (see for instance Section 26 of Billingsley (1995)) that first uses
Jensen’s inequality and then uses the elementary inequality | exp(iζ)−

∑g
m=0(iζ)m/m!| ≤

|ζ|g+1/(g+ 1)! for the complex exponential. This argument implies that for |ζ| ≤ T we have

(3)
∣∣J(s, t, ζ)− P (s, t, ζ)

∣∣≤ Jg,h+Pg,h

(g+1)!·(h+1)! · T
g+h+2.

If we choose T g+h+3 = (g+ 1)! · (h+ 1)!/(Jg,h +Pg,h), then the result follows by applying
this bound to the definition (4).

PROOF OF PROPOSITION 5. We use a chaining argument. Suppose {ti}Ni=1 is a 1
2q cover-

ing of Sdp−1, and note N ≤ (1 + 4q)dp by the volume ratio bound Wainwright (2019). Define
Ti =M(ti) ∈Rd×p. Let Pq be the set of all permutations of [q], and let

(4) Φ(B1, . . . ,Bq) = 1
q!

∑
π∈Pq

(
ϕ̂m,q(Bπ1

, . . . ,Bπq)−ϕm,q(Bπ1
, . . . ,Bπq)

)
.

Observe that by construction: Φ(·, . . . , ·) is symmetric, and it satisfies the identity Φ(B) =
ϕ̂m,q(B)−ϕm,q(B). Now consider the telescoping sum

(5) Φ(B) = Φ(Ti) +
∑q

k=1 Φ(

q−k︷ ︸︸ ︷
B, . . . ,B,B − Ti,

k−1︷ ︸︸ ︷
Ti, . . . , Ti).
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Recall ‖W (Ti)‖2 = 1 and ‖W (B − Ti)‖2 ≤ 1
2q for W (B) ∈ Sdp−1. Since ‖ · ‖∗ is a sub-

ordinate norm, we have ‖Φ‖◦ ≤ ‖Φ(Ti)‖+
∑q

k=1
1
2q‖Φ‖∗. But note that Φ(·, . . . , ·) is sym-

metric, and so ‖Φ‖◦ = ‖Φ‖∗ Banach (1938); Bochnak and Siciak (1971). Thus we have
‖Φ‖◦ ≤ 2‖Φ(Ti)‖. But by definition of the tensor norm ‖ · ‖ we have

(6) ‖Φ(Ti)‖= max
uk,vk

∣∣〈Φ(Ti),
⊗m

k=1 uk
⊗q

k=1 vk
〉∣∣

for uk ∈Er, vk ∈Ed; where Ed = {x ∈ {0,1}d : ‖x‖1 = 1}. So it holds that

(7) ‖Φ‖◦ ≤ 2 max
i,uk,vk

∣∣〈Φ(Ti),
⊗m

k=1 uk
⊗q

k=1 vk
〉∣∣

for i ∈ [N ], uk ∈Er, vk ∈Ed. Next consider any s ∈R, and observe that

(8)
E exp

(
s‖Φ‖◦

)
≤ E exp

(
2s max

i,uk,vk

∣∣〈Φ(Ti),
⊗m

k=1 uk
⊗q

k=1 vk
〉∣∣)

≤
∑

σ∈±1,i,uk,vk E exp
(
2sσ
〈
Φ(Ti),

⊗m
k=1 uk

⊗q
k=1 vk

〉)
We seek to bound the term on the right-hand side. Towards this end, note ‖BΩi‖ ≤√
p‖W (B)‖2‖Ωi‖ ≤

√
pαρ by the Cauchy-Schwarz inequality and Assumption 4. This

means that for

(9) Si = σ
〈
Z⊗m(TiΩ)⊗q,

⊗m
k=1 uk

⊗q
k=1 vk

〉
we have

∣∣Si∣∣≤ αm+ρqpq/2. Next observe that

(10)

E exp
(
2sσ
〈
Φ(Ti),

⊗m
k=1 uk

⊗q
k=1 vk

〉)
≤
(
E exp

(
4εsSi
n

))n
=
(
E
∑∞

k=0
1
k!

(
4εsSi
n

)k)n
=
(
E
∑∞

k=0
1

(2k)!

(
4sSi
n

)2k)n
≤
(∑∞

k=0
1
k!

(16s2pqα2m+2ρq

n2

)k)n
= exp

(16s2pqα2m+2ρq

n

)
where the first line follows by a stochastic symmetrization step (i.e., Jensen’s inequality,
multiplication with i.i.d. Rademacher random variables ε having distribution P(ε=±1) = 1

2 ,
using the triangle inequality, and concluded by Jensen’s inequality), the third line follows
since ε is a symmetric random variable, and the fourth line follows by replacing (2k!) with
k! and substituting the absolute bound on |Si|. Combining the above with (8) gives

(11) E exp
(
s‖Φ‖◦

)
≤ 2(1 + 4q)dprmdq exp

(16s2pqα2m+2ρq

n

)
.

Using the Chernoff bound gives

(12)
P
(
‖Φ‖◦ > t

)
≤ 2(1 + 4q)dprmdq inf

s∈R
exp

(16s2pqα2m+2ρq

n − st
)

= 2(1 + 4q)dprmdq exp
(
− nt2

64pqα2m+2ρq

)
The first inequality result now follows by choosing

(13) t=
√

64pqα2m+2ρq

n

(
dp log(1 + 4q) +m log r+ q logd

)
+ γ2

and accordingly simplifying the resulting expression.
We cannot prove the second inequality result directly as above because Eν̂m,q(B) 6=

νm,q(B), whereas the above proof used the fact that Eϕ̂m,q(B) = ϕm,q(B) in the sym-
metrization step of (10). We instead have to use an indirect approach to prove this result. We
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begin by noting ϕ̂m,0(B) = En(Z⊗m), ϕm,0(B) = E(Z⊗m), ϕ̂0,q(B) = En((BΩ)⊗q), and
ϕ0,q(B) = E((BΩ)⊗q). For any W (B) ∈ Sdp−1 we have that ‖BΩi‖ ≤

√
p‖W (B)‖2‖Ωi‖ ≤√

pαρ by the Cauchy-Schwarz inequality and Assumption 4. This means that ‖ϕ̂m,0‖◦ ≤ αm
and ‖ϕ0,q‖◦ ≤ αρqpq/2. Now consider

(14)

‖ν̂m,q − νm,q‖◦ = ‖ϕ̂m,0 ⊗ ϕ̂0,q −ϕm,0 ⊗ϕ0,q‖◦
≤ ‖ϕ̂m,0‖◦ · ‖ϕ̂0,q −ϕ0,q‖◦ + ‖ϕ0,q‖◦ · ‖ϕ̂m,0 −ϕm,0‖◦

≤ αm‖ϕ̂0,q −ϕ0,q‖◦ + αρqpq/2‖ϕ̂m,0 −ϕm,0‖◦
Then the union bound implies

(15) P
(
‖ν̂m,q − νm,q‖◦ ≤ 2Rm,q[n] + 2γ

)
≥

1− P
(
αm‖ϕ̂0,q −ϕ0,q‖◦ >Rm,q[n] + γ

)
− P
(
αρqpq/2‖ϕ̂m,0 −ϕm,0‖◦ >Rm,q[n] + γ

)
for Rm,q[n] = 8αm+ρqpq/2

√
dp log(1+4q)+m log r+q logd

n , which upon using the first inequality
result gives the desired second inequality result.

PROOF OF PROPOSITION 6. We first prove the result for S . Consider any convergent se-
quence Bk ∈Rd×p with Bk ∈ S and limkBk =B0. Because of our assumptions, the hypoth-
esis of Theorem 1 is satisfied. This theorem says for all k we have

(16) ϕm,q(Bk) = νm,q(Bk), for m,q ≥ 1.

But the ϕ and ν are continuous since they are multilinear operators on Euclidean space. This
means limk ϕm,q(Bk) = ϕm,q(B0) and limk νm,q(Bk) = νm,q(B0) for m,q ≥ 1. As a result
we have

(17) ϕm,q(B0) = νm,q(B0), for m,q ≥ 1,

which by Theorem 1 implies B0 ∈ S . This proves that S is closed.
The proof for Ŝg,h is a simple modification of the above argument. Consider any conver-

gent sequence Bk ∈ Rd×p with Bk ∈ Ŝg,h and limkBk =B0. By definition of Ŝg,h we have
for all k that

(18)
∥∥ϕ̂m,q(Bk)− ν̂m,q(Bk)∥∥≤∆m,q, for (m,q) ∈ [g]× [h].

But the ϕ̂ and ν̂ are continuous since they are multilinear operators on Euclidean space, and
so the normed function

∥∥ϕ̂m,q(B)− ν̂m,q(B)
∥∥ is also continuous. As a result we have

(19)
∥∥ϕ̂m,q(B0)− ν̂m,q(B0)

∥∥= limk

∥∥ϕ̂m,q(Bk)− ν̂m,q(Bk)∥∥≤∆m,q, for m,q ≥ 1.

This means B0 ∈ Ŝg,h by definition. This proves that Ŝg,h is closed.

PROOF OF THEOREM 4. For the first part of the proof we will show as-lim infn Ŝg,h ⊇ S .
Indeed, suppose this is not true. Then there exists B0 ∈ S and an open neighborhood N ⊆B
of B0 such that N

⋂
Ŝg,h = ∅ infinitely often (Theorem 4.5 of Rockafellar (2009)). We can

rewrite one of these events as

(20)
{
N
⋂
Ŝg,h = ∅

}
=
⋃
m∈[g]

⋃
q∈[h]

{
inf
B∈N

‖Ξ̂m,q(B)‖>∆m,q

}
,

where for convenience we define the multilinear operators Ξm,q = ϕm,q − νm,q , Ξ̂m,q =
ϕ̂m,q − ν̂m,q , Φm,q = ϕ̂m,q − ϕm,q , and Ψm,q = ν̂m,q − νm,q . Because Theorem 1 can be
rewritten under the assumptions of this theorem as

(21) sup
B∈S
‖ϕm,q(B)− νm,q(B)‖= 0 for m,q ≥ 1,
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application of the triangle inequality yields

(22)
‖Ξ̂m,q(B0)‖ ≤ ‖Ξm,q(B0)‖+ ‖Φm,q(B0)‖+ ‖Ψm,q(B0)‖

≤ λq/2‖Φm,q‖◦ + λq/2‖Ψm,q‖◦

Let Gm,q[n] = (1 + logn)λq/2Rm,q[n]. Note that for all n sufficiently large, the union bound
gives us that

(23)

P
(
N
⋂
Ŝg,h = ∅

)
≤
∑

m∈[g]
∑

q∈[h] P
(
λq/2‖Φm,q‖◦ > Gm,q[n]

)
+∑

m∈[g]
∑

q∈[h] P
(
λq/2‖Ψm,q‖◦ > 2Gm,q[n]

)
≤O((logn/n)2)

where the last line used Proposition 5, along with the relation that exp(− nγ2

64pqα2m+2ρq ) =

O(1/n2) for γ = logn · Rm,q[n]. Thus the Borel-Cantelli lemma says N
⋂
Ŝg,h = ∅ only

finitely many times, which is a contradiction. This proves as-lim infn Ŝg,h ⊇ S .
For the second part of the proof we will show as-lim supn Ŝg,h ⊆ S . Indeed, suppose this

is not true. Then there exists B0 ∈ lim supn Ŝg,h and a closed neighborhood N ⊆ B of B0

such thatN
⋂
S = ∅ andN

⋂
Ŝg,h 6= ∅ infinitely often (Theorem 4.5 of Rockafellar (2009)).

But Theorem 1 implies there exists some m,q ≥ 1 such that we have

(24) ζ := inf
B∈N

‖ϕm,q(B)− νm,q(B)‖> 0.

We will keep m,q fixed at these values for the remainder of the proof. Now note that for one
of the events N

⋂
Ŝg,h 6= ∅ we have

(25)
{
N
⋂
Sg,h 6= ∅

}
⊆
{

inf
B∈N

‖Ξ̂m,q(B)‖ ≤∆m,q

}
.

Application of the triangle inequality yields

(26)
ζ = inf

B∈N
‖Ξm,q(B)‖ ≤ inf

B∈N
‖Ξ̂m,q(B)‖+ sup

B∈N
‖Φm,q(B)‖+ sup

B∈N
‖Ψm,q(B)‖

≤ inf
B∈N

‖Ξ̂m,q(B)‖+ λq/2‖Φm,q‖◦ + λq/2‖Ψm,q‖◦.

Let Gm,q[n] = (1 + logn)λq/2Rm,q[n]. Note that for all n sufficiently large, we have ζ −
∆m,q ≥ ζ/2≥ 3Gm,q[n]. Hence the union bound gives

(27)
P
(
N
⋂
Ŝg,h 6= ∅

)
≤ P

(
λq/2‖Φm,q‖◦ > Gm,q[n]

)
+ P
(
λq/2‖Ψm,q‖◦ > 2Gm,q[n]

)
≤O(1/n2)

where the last line used Proposition 5, along with the relation that exp(− nγ2

64pqα2m+2ρq ) =

O(1/n2) for γ = logn · Rm,q[n]. Thus the Borel-Cantelli lemma says N
⋂
Ŝg,h 6= ∅ only

finitely many times, which is a contradiction. This proves as-lim supn Ŝg,h ⊆ S .

PROOF OF THEOREM 5. First consider the indicator function Γ(B, Ŝg,h). Combining our
Theorem 4 with Proposition 7.4 of Rockafellar (2009) gives as-e-lim Γ(·, Ŝg,h) = Γ(·,S) rel-
ative to Rd×p. Next we claim as-lim Γ(·, Ŝg,h) = Γ(·,S) relative to Rd×p. Since Proposition
6 says the Ŝg,h are closed, the remark after Theorem 7.10 of Rockafellar (2009) implies it is
sufficient to show that for every B0 ∈ S we have B0 /∈ Ŝg,h only a finite number of times. A
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similar argument to the first part of the proof for Theorem 4 can be used to show this, and so
we omit the details.

Next we note that the level-(g,h) FO problem (3) can be written as minB hn(B) +

Γ(B, Ŝg,h), and the optimization problem (1) can be written as minB h(B) + Γ(B,S). Now
using Theorem 7.46 of Rockafellar (2009) gives us that

(28) as-e-lim
(
hn(·) + Γ(·, Ŝg,h)

)
= h(·) + Γ(·,S).

The result now follows by direct application of Proposition 7.30 of Rockafellar (2009).

PROOF OF THEOREM 6. We begin by bounding the probability that Ŝg,h ⊇ S . Observe
that we can rewrite the complement of this event as

(29)
{
Ŝg,h + S

}
=
⋃
m∈[g]

⋃
q∈[h]

{
sup
B∈S
‖Ξ̂m,q(B)‖>∆m,q

}
,

where for convenience we define the multilinear operators Ξm,q = ϕm,q − νm,q , Ξ̂m,q =
ϕ̂m,q − ν̂m,q , Φm,q = ϕ̂m,q − ϕm,q , and Ψm,q = ν̂m,q − νm,q . Because Theorem 1 can be
rewritten under the assumptions of this theorem as

(30) sup
B∈S
‖ϕm,q(B)− νm,q(B)‖= 0 for m,q ≥ 1,

then for any B ∈ S the application of the triangle inequality yields

(31)
‖Ξ̂m,q(B)‖ ≤ ‖Ξm,q(B)‖+ ‖Φm,q(B)‖+ ‖Ψm,q(B)‖

≤ λq/2‖Φm,q‖◦ + λq/2‖Ψm,q‖◦

Let Gm,q[n] = (1 + logn)λq/2Rm,q[n], and note that the union bound gives

(32)

P
(
Ŝg,h + S

)
≤
∑

m∈[g]
∑

q∈[h] P
(
λq/2‖Φm,q‖◦ > Gm,q[n]

)
+∑

m∈[g]
∑

q∈[h] P
(
λq/2‖Ψm,q‖◦ > 2Gm,q[n]

)
≤ 6(κ1 logn/n)2

where the last line used Proposition 5. This implies P(Ŝg,h ⊇ S) ≥ 1 − 6(κ1 logn/n)2,
which means that P(hn(B̂n) ≤ hn(B∗) for all B∗ ∈ O) ≥ P(O ⊆ Ŝg,h) ≥ P(Ŝg,h ⊇ S) ≥
1− 6(κ1 logn/n)2. Combining this with Assumption 5 implies R(δ̂n)≤R(δ∗) + 2rn, with
probability at least 1− 6(κ1 logn/n)2 − 2cn. This proves the first part of the result.

We prove the second part of the result in two steps. As the first step, we consider the event

(33) E =
⋃
m∈[g]

⋃
q∈[h]

{
supB̂n∈Ôg,h

‖Ξm,q(B̂n)‖> 2∆m,q

}
,

and note that for B̂n ∈ Ôg,h application of the triangle inequality yields

(34)
‖Ξm,q(B̂n)‖ ≤ ‖Ξ̂m,q(B̂n)‖+ ‖Φm,q(B̂n)‖+ ‖Ψm,q(B̂n)‖

≤∆m,q + λq/2‖Φm,q‖◦ + λq/2‖Ψm,q‖◦

since ‖Ξ̂m,q(B̂n)‖ ≤∆m,q by definition of Ôg,h. Thus the union bound gives

(35)

P
(
E
)
≤
∑

m∈[g]
∑

q∈[h] P
(
λq/2‖Φm,q‖◦ > Gm,q[n]

)
+∑

m∈[g]
∑

q∈[h] P
(
λq/2‖Ψm,q‖◦ > 2Gm,q[n]

)
≤ 6(κ1 logn/n)2
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where the last line used Proposition 5. This implies P(‖Ξm,q(B̂n)‖ ≤ 2∆m,q for (m,q) ∈
[g]× [h])≥ 1− 6(κ1 logn/n)2.

We conclude with the second step for our proof of the second part of the result. Because
our random variables are bounded, we can use series expansions to express the characteristic
functions in the definition (4) of H(B̂nΩ;Z). In particular, we have that

(36) J(s, t, ζ)− P (s, t, ζ) =
∑∞

m=1

∑∞
q=1

(iζ)m+q

m!·q! · 〈Ξm,q(B̂n), s⊗mt⊗q〉.

We need to bound the modulus of the above. Hölder’s inequality gives us that

(37) |〈Ξm,q(B̂n), s⊗mt⊗q〉| ≤ (rm + dq)1/2
∥∥Ξm,q(B̂n)

∥∥≤ (r+ d)(m+q)‖Ξm,q(B̂n)‖.

In the proof of Proposition 5 we showed ‖ψm,q(B̂n)‖◦ ≤ αm+ρqpq/2 and ‖νm,q(B̂n)‖◦ ≤
αm+ρqpq/2. Thus ‖Ξm,q(B̂n)‖ ≤ 2αm+ρq(λp)q/2, which we will use for m= g + 1 and q =
h + 1. We next use these bounds with a standard argument (see for instance Section 26 of
Billingsley (1995)) that first uses Jensen’s inequality and then uses the elementary inequality
for the complex exponential that | exp(iζ)−

∑g
m=0(iζ)m/m!| ≤ |ζ|g+1/(g + 1)!. This two

step argument implies that for |ζ| ≤ T we have

(38)
∣∣J(s, t, ζ)− P (s, t, ζ)−

∑g
m=1

∑h
q=1

(iζ)m+q

m!·q! · 〈Ξm,q(B̂n), s⊗mt⊗q〉
∣∣

≤ 2
(g+1)!·(h+1)! · α

g+1+ρ(h+1) · (λp)(h+1)/2 · ((r+ d)T )g+h+2.

Using the reverse triangle inequality implies the modulus is bounded by

(39)
∣∣J(s, t, ζ)− P (s, t, ζ)

∣∣≤∑g
m=1

∑h
q=1

((r+d)ζ)m+q

m!·q! ·
∥∥Ξm,q(B̂n)

∥∥+ 2
(g+1)!·(h+1)! · (α

ρλp(r+ d)T )g+h+2

for all |ζ| ≤ T . Combining this with the first step of the proof for the second part of the result
implies that with probability at least 1− 6(κ1 logn/n)2 we have for |ζ| ≤ T that

(40)
∣∣J(s, t, ζ)− P (s, t, ζ)

∣∣≤ 2 exp((r+ d)T ) ·∆g,h + 2(αρλp(r+d)T )g+h+2

(g+1)!·(h+1)!

where the first term follows from the exponential series. If we choose that T = (κ1 logn+
1)/(κ2(r+d)), then using the standard error bound (g+1)!≥ (2π(g+1))1/2((g+1)/e)g+1

for Stirling’s approximation leads to

(41)
∣∣J(s, t, ζ)− P (s, t, ζ)

∣∣≤ 2e1/κ2nκ1/κ2 ·∆g,h + 1
π(κ1 logn+1) ,

which holds with probability at least 1−6(κ1 logn/n)2. The second result follows by apply-
ing this bound and choice of T to the definition (4).

PROOF OF PROPOSITION 7. We need to bound the modulus of J(s, t, ζ)−P (s, t, ζ). Be-
cause M(U,V )(s, t) exists in a neighborhood of the origin, this means the characteristic func-
tions can be represented as infinite series. Thus we have

(42)
∣∣J(s, t, ζ)− P (s, t, ζ)

∣∣=∣∣∑∞
m=1

∑∞
q=1

(iζ)m+q

m!·q! · 〈E
(
U⊗mV ⊗q

)
−E

(
U⊗m

)
⊗E

(
V ⊗q

)
, s⊗mt⊗q〉

∣∣≤∑∞
m=1

∑∞
q=1(ε(r+ d)ζ)m+q = (τ/(1− τ))2.

when τ = ε(r + d)ζ ∈ [0,1). If we choose T−1 = ε(r + d) + (ε(r + d))2/3, then the result
follows by applying this bound to the definition (4).
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PROOF OF THEOREM 7. The proof is omitted because it is a straightforward modification
of the proofs for Proposition 6 and Theorems 4 and 5.

PROOF OF THEOREM 8. The proof is identical to that of Theorem 6, up to (39). (This
means the first part of the current result is proved the same way as in Theorem 6.) To complete
the proof we first bound (39) using the ∆m,q in the hypothesis of this theorem. Comparing to
(42), we get with probability at least 1− 6(κ1 logn/n)2 we have that

(43)
∣∣J(s, t, ζ)− P (s, t, ζ)

∣∣≤
2(τ/(1− τ))2 + 6 exp((r+ d)T ) · (1 + logn) · Rg,h[n] + 2(αρλp(r+d)T )g+h+2

(g+1)!·(h+1)!

when τ = ε(r + d)T ∈ [0,1) and for all |ζ| ≤ T . If we choose T−1 = ε(r + d) + (ε(r +
d))2/3, then the second result follows by applying this bound and choice of T to the definition
(4).

PROOF OF PROPOSITION 8. The proof for the first part of this result follows the same
steps as the first part of the proof of Proposition 5 up to and including (7). Next observe that

(44)
E
(
‖Φ‖ 6

◦
)
≤ E

(
26 max

i,uk,vk
|〈Φ(Ti),

⊗m
k=1 uk

⊗q
k=1 vk〉|

6
)

≤ 26 ·
∑

i,uk,vk
E
(
〈Φ(Ti),

⊗m
k=1 uk

⊗q
k=1 vk〉

6
)

We seek to bound the term on the right-hand side. For convenience, define the terms
Si = 〈Z⊗m(TiΩ)⊗q,

⊗m
k=1 uk

⊗q
k=1 vk〉 and Vi = Si − E(Si). Next observe that the

Marcinkiewicz-Zygmund inequality Rio (2009) implies that

(45) E
(
〈Φ(Ti),

⊗m
k=1 uk

⊗q
k=1 vk〉

6
)
≤ 53 ·E(V 6

i )/n3.

We next have to bound the expectation on the right. Consider

(46)

E
(
V 6
i

)
≤ 2E

(
ε6S 6

i

)
≤ 2 ·

[
E
(
〈uk,Z〉12m

)
·E
(
〈vk, TiΩ〉12q

)]1/2
≤ 2 ·

[
E
(
〈uk,Z〉12m

)
·E
(
〈TiTvk,Ω〉12q

)]1/2
≤ 2Mσ6m+6q ·

[ (12m)!·(12q)!
(6m)!·(6q)!

]1/2
≤ 2eM · (24σ2/e)3m+3q ·m3m · q3q/

√
π

where the first line follows by a stochastic symmetrization step (i.e., Jensen’s inequality, mul-
tiplication with i.i.d. Rademacher random variables ε having distribution P(ε=±1) = 1

2 , us-
ing the triangle inequality, and concluded by Jensen’s inequality), the second line follows by
the Cauchy-Schwarz inequality, the third line uses a matrix transpose TiT, the fourth line fol-
lows by the E

(
〈t,U〉2k

)
≤Mσ2k · (2k)!/k! for all t ∈ Sp−1 characterization of sub-Gaussian

distributions because ‖TiTvk‖2 ≤ ‖vk‖2 since Ti = M(ti) for ti ∈ Sdp−1, and the fifth line
uses Stirling’s approximation. Combining the above with (44) gives

(47) E
(
‖Φ‖ 6

◦
)
≤ eM2753
√
πn3 · (1 + 4q)dp(rm3)m(dq3)q(24σ2/e)3m+3q.

Let κ= (eM/
√
π)1/6 and note that Markov’s inequality implies

(48) P
(
‖ϕ̂m,q −ϕm,q‖◦ > Cm,q[n] · γ/κ

)
≤
(
γ6 · n2

)−1
.

The first result now follows by nothing that κ > 1.
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The proof for the second part of this result proceeds slightly differently than the second
part of the proof of Proposition 5. Recall that we have ϕ̂m,0(B) = En(Z⊗m), ϕm,0(B) =
E(Z⊗m), ϕ̂0,q(B) = En((BΩ)⊗q), and ϕ0,q(B) = E((BΩ)⊗q). Let κ = eM/

√
π, and ob-

serve that Jensen’s inequality implies

(49) ‖ϕm,0‖ 6
◦ ≤ E

(
〈uk,Z〉6m

)
≤ eM · (12σ2/e)3mm3m/

√
π ≤ Cm,0[n]6/κ.

A similar calculation shows that for some T =M(t) with t ∈ Sdp−1 we have

(50) ‖ϕ0,q‖ 6
◦ ≤ E

(
〈TTvk,Ω〉6m

)
≤ eM · (12σ2/e)3qq3q/

√
π ≤ C0,q[n]6/κ.

Next note that two applications of the triangle inequality imply

(51) ‖ν̂m,q − νm,q‖◦ ≤ ‖ϕm,0‖◦ · ‖ϕ̂0,q −ϕ0,q‖◦+

‖ϕ0,q‖◦ · ‖ϕ̂m,0 −ϕm,0‖◦ + ‖ϕ̂m,0 −ϕm,0‖◦ · ‖ϕ̂0,q −ϕ0,q‖◦.

Hence the union bound implies

(52) P
(
‖ν̂m,q − νm,q‖◦ > 2Cm,q[n] · γ + Cm,q[n]2 · γ2

)
≤ I + II + III + IV

for terms we define next. To bound these terms, we use (48). Observe that I = P
(
‖ϕ̂0,q −

ϕ0,q‖◦ > Cm,q[n] ·γ
)
≤ (γ6 ·n2

)−1, that II = P
(
‖ϕ̂m,0−ϕm,0‖◦ > Cm,q[n] ·γ

)
≤ (γ6 ·n2

)−1,
that

(53)

III = P
(
Cm,0[n] · ‖ϕ̂0,q −ϕ0,q‖◦ > κ · Cm,q[n] · γ

)
≤ P

(
‖ϕ̂0,q −ϕ0,q‖◦ > C0,q[n] · γ/κ

)
≤ (γ6 · n2

)−1
and that

(54)

IV = P
(
C0,q[n] · ‖ϕ̂m,0 −ϕm,0‖◦ > κ · Cm,q[n] · γ

)
≤ P

(
‖ϕ̂m,0 −ϕm,0‖◦ > Cm,0[n] · γ/κ

)
≤ (γ6 · n2

)−1
Combining the above with (51) gives the second result.

PROOF OF THEOREM 9. The proof is omitted because it is a straightforward modification
of the proofs for Proposition 6 and Theorems 4 and 5.

PROOF OF THEOREM 10. The proof is omitted because it is a straightforward modifica-
tion of the proof for Theorem 6 after noting that Cauchy-Schwarz and Jensen’s inequalities
imply

(55) ‖Ξm,q(B̂n)‖ ≤ 2eM · (
√

4σ2/e)m+qmm/2qq/2/
√
π.

PROOF OF PROPOSITION 9. The proof is omitted because it is a straightforward modifi-
cation of the proof for Proposition 8.

PROOF OF THEOREM 11. The proof is omitted because it is a straightforward modifica-
tion of the proof for Theorems 2 and 6.
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