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We initiate the studies on the structural physics of the tower of stable large-N,. mesons through a first
computation of the collinear quark structure of a large-N, pion using lattice Monte Carlo methods.
We adapt the large-N,. continuum reduction for the determination of meson correlation functions involving
the spatially extended quasiparton distribution function operators as a perfect strategy to concentrate only
on the short perturbative length scales. We find the internal structures of a pion in the large-N. and N. = 3
theories to be quite similar. Interestingly, we find hints that even the observed differences could arise to a
large extent via the different perturbative QCD evolution in the two theories from similar initial conditions

at low-factorization scales.
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I. INTRODUCTION

Quantum chromodynamics (QCD) in the limit of large
number of colors, N, at a fixed 't Hooft coupling [1,2]
A= N_ay, is greatly simplified by being a planar model in
which quarks are naturally quenched, and it is well known to
be a realistic QCD-like theory that approximately reproduces
many features in the real world, such as the ratios of low-
lying meson masses [3—8]. The next frontier in QCD physics
is to understand the structural aspects of hadrons in more
detail, so as to relate the emergent properties of hadrons,
such as their masses and spins, to those of the short-distance
quark-gluon (parton) degrees of freedom and their inter-
actions (e.g., see [9-11]). In this respect, the large-N,. limit
motivates and crystallizes concepts in parton phenomenol-
ogy, such as the linear Regge trajectories (proven in two
dimensions [2]), the dipole approach to Balitsky-Fadin-
Kuraev-Lipatov formalism [12], and the concept of quark-
hadron duality [13,14] to name a few.

The large-N,. baryons [15] are O(N,.) heavier degrees of
freedom that can be described as a chiral soliton [16-19].
Such an identification has lead to mean-field theory studies
of the parton distributions inside a nucleon (for initial
works, see [20-23]). In contrast, the large-N, mesons are
the leading lighter degrees of freedom, and nonperturbative
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methods (e.g., lattice simulations) are the only way to study
them. With the access to an infinite tower of completely
stable large-N,. mesons of different JXC, it is an ideal
realization of QCD that is conducive to investigate the
partonic origin of hadron physics. Development of
such realistic models of mesons as hard scatterers is
especially important due to the reinvigorated experimental
[11,24,25] and theoretical efforts towards the meson
structures, especially of the pion, the Goldstone mode of
chiral symmetry breaking (refer to [26] for a review, and
[27-36] for recent numerical works). Quite surprisingly,
despite the continued effort to understand large-N. QCD
over the years, the partonic nature of the large-N,. mesons is
to a large extent unknown. To our knowledge, the study in
Ref. [37] of the distribution amplitude of a pion within a
large-N, Regge model is a singular work toward this
direction.

Through the present work, we bridge this persisting gap
in our understanding of the canonical toy model of QCD
through a first computation of quark distribution function
of the large-N_ pion, and thereby, lay the framework for
comparative studies of internal structures of different stable
species of mesons. As an important feature of the large-N..
theory, we present the large-N, continuum reduction as a
novel tailor-made approach for the operator product
expansion (OPE) based strategies [38—41] to perform
parton physics on the lattice. We display the schematic
of the central idea of the calculation in Fig. 1(a), and we
elaborate on it in the following discussion. As an initial
work in this direction, we keep the discussion simple by
summarizing the main techniques and results in the main
text, and by referring the reader to various appendixes for
the elaborate details.
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FIG. 1.

sized box are obtained as replicas of gauge fields within a ¢ sized box, with £ =

(a) Schematic of large-N, continuum reduction for quasi-PDF operator evaluated within a pion. The gauge fields on the *N _.Z

T! the deconfinement temperature. The quarks hopping

on such crystalline configuration are labeled by their positions in a periodic #* box and their Bloch momenta. The correlation functions
in the larger box can be obtained using lattice implementation of momentum space Feynman diagrams that use quark propagators in the
¢* box. (b),(c) The momentum space Feynman diagrams implemented directly on the lattice. The lines are quark propagators. The
arrows show the off-shell 4-momentum injected at the vertices. The two-point function of a pion is shown in (b). The three-point
function of the quasi-PDF operator (double line) with pion creation and annihilation operators is shown in (c).

I1. BASICS OF CONTINUUM REDUCTION

Owing to the absence of a center symmetry breaking
deconfinement phase transition in two Euclidean space-
time dimensions, the large-N. QCD, is well known to be
reducible to a single-site matrix model [42,43]. We can
extend the Eguchi-Kawai reduction [43] to dimensions
d > 2 [44-48], provided we preserve the U“(1) center
symmetry by reducing the theory not to a point, but instead
to a small box of volume #¢, with # > T! the inverse of
deconfinement temperature. The powerful aspect of the
large-N,. reduction is that we can exactly find the expect-
ation values of gauge-invariant quantities (such as a w; X w,
Wilson loop) in R? just from the expectation values of the
same quantity on the reduced #¢ periodic torus (even if
wi, wy > ) through folding. We can regulate the reduced
continuum theory on an L periodic lattice using a lattice
coupling b = (¢*?N,)~! in the limit N, — oo at fixed b,
using L greater than a critical L.(b). The asymptotic
scaling of L.(b) defined the critical size, £. = T;! [48].
As a corollary, we can unfold the torus by tessellating R?
with the gauge configuration in #¢ box, resulting in a path
integral over crystalline configurations. Consequently, the
quarks are labeled by position x € #? and the Bloch
momentum ¢. Thereupon, we can write functions F of a
lattice Dirac operator P in R¢, such as its propagator G, in
terms of functions F of Dirac operator D in L¢ periodic
lattice as

au

dq g a
any(Uﬂ):/(zﬂ)del T Fﬁs},(Uﬂe’L). (1)

We discuss the details behind such a construction in
Appendix A 1. By using such a relation, along with the
global U%(1) center symmetry, we can reduce all n-point
functions of quark bilinears in R? to computations of n-point
functions on L¢ periodic lattice. For example, as derived in
Appendix A2, we can write the two-point function,
Cop(p) = (m(p)x’(p)), for a pion (x = dysu) in momen-
tum space as

CZpt(p) = <Tr[75GL(Uue_ip”)J’sGL(Uu)D» (2)
where p = (p, p) is the continuous-valued Euclidean four
momentum of the pion, the trace is over spin, color, and the
entire L9 lattice, and the ensemble average (...) is with
respect to the pure gauge action. We show the Feynman
diagram for Eq. (2) in Fig. 1(b). From the spectral decom-
position, é2pt(p0’ P) = > im0 2AE(p)(pg + EF(p))~", we
can obtain the long-distance energy spectrum, E;(p),
and amplitudes, A;. Alternatively, we can access the spec-
trum from the multi-exponential, A;e~%®)%  decay of
Copt(t:P) = [ 22 Chpi(po, p)e’™", in the Euclidean time
t,. We see that the long-distance hadronic spectral physics is
trivialized by the ability to capture |x|, 7, = AQ%:D using only
simulation of a box of size £~ Agp.

III. ZOOMING IN ON PARTON SCALES
WITH CONTINUUM REDUCTION

This large-N, continuum reduction leads to a key
simplification in lattice QCD computations of parton
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distributions. Many recent developments [38—41] in the
ab initio computations of the Bjorken x-dependent parton
distribution functions (PDFs), f(x, u) at a MS factorization
scale y, and related quantities, rely on the leading-twist
expansion of certain equal-time renormalized invariant
amplitudes, M (v, z%) with v = —z - P, involving an oper-
ator pair [38,41] or a bilocal extended operator [39,40] with
a spatial separation z, = 739, 3 that is evaluated within a
state |P) of an on-shell hadron moving with momentum
P = (E(p), p). Through lattice Monte Carlo determination
of M, we can relate it to f(x, #) through an OPE truncated
at leading-twist terms (see [49]),

. \n |
M) = S8, ) [Lepaan @
“— n! -

In the absence of higher-twist corrections, the Wilson
coefficients C,, capture In(—z>u?)-type QCD contributions
to M using perturbation theory and leads to f(x,u) at a
chosen scale p. Thus, along with the necessity of nonzero
P53, the short-distance |z] is crucial for the validities of the
OPE, the perturbation theory, and for ignoring higher-twist
terms. On the other hand, the leading-twist expansion is
performed within hadronic in and out states, and therefore,
having control of the long-distance aspects of QCD is
equally important. Applying the above formalism to the
large-N,. theory is much simpler—we can capture the long-
distance hadronic states easily by the virtue of continuum
reduction, leaving only the relevant partonic scales for z
below the inverse deconfinement transition temperature,
TZ', to be captured by Monte Carlo sampling of gauge

fields within 77! extent.

With this realization, we extend the continuum reduction
approach to n-point functions involving an extended
operator, such as the u-quark quasi-PDF operator O(z; ¢)=
S e yoW, o .u,. ., for purely spatial z = (0,0,0, z3),
and W, .. is a straight Wilson line connecting x to x + z.
The spatial part is ¢ = O for the PDF we want to study.
Following our discussion of the twp-point function and
the method of folding Wilson loops of any size on an L*
lattice, we can similarly write the three-point function

Cap(z.p.q) = (n(p + 9)O(z: q)7 (p)), as

63pt = Z <t1'( [70 WL]x.x+z [GL Vs GL Vs GL ]x+z.x) > ’ (4)

X

where the gauge links U, entering the propagators from
left to right are multiplied by phases 1, e~"P«, and e
respectively. The trace is over color and spin, and W* is the
folded Wilson line obtained by wrapping around the
periodic lattice if |z3| > L. In Appendix A 3, we present
a detailed derivation of the above equation. We show the
Feynman diagram for Eq. (4) in Fig. 1(c). Note that the
quark line disconnected piece in C3pt is N-! suppressed,

and therefore as another large-N, advantage, we have
ignored it in the above equation. As in the two-point
function, we can obtain the required bare quasi-PDF matrix
element,

2PyhP(z, P) = (m; P|O(z)

m, P), (5)

through the spectral analysis of Eq. (4) either in momentum
space or in the real-space f, after Fourier transforming C
with respect to p, to form Csy(z,2,,p.q). A convenient
choice ¢ =(0,0) gives the so-called summation
method [50], wherein, Csy(z.t,,p.q = 0)/Copl(ts. p) =
t;hB(z,p) + constant, up to O(e~F1=Fots) excited-state
corrections.

IV. COMPUTATIONAL DETAILS

We implemented the continuum reduction approach to
determine the u-quark PDF of the large-N . pion in d = 4.
As a first exploratory study, we performed our computation
at a fixed simulation point at a large but finite value of
N, =17 on an L = 8§ lattice using a coupling b = 0.355,
which is in the confined phase [48]. The lattice spacing in
units of string tension [51,52] is \/oa = 0.254(2). Due to
the finite large N, the U?(1) center symmetry reduces to
Z,[f,( discrete symmetry, and therefore, we quantized the
lattice momenta in units of 2/ (LN,.) and multiples thereof,
to leave the above results intact. In this way, we effectively
enlarged the 8* lattice into a 68 x 136° lattice. We used a
Wilson-Dirac operator coupled to smeared gauge links for
DL and tuned the quark mass to produce a pion of mass
m, = 0.86,/c. We stochastically computed C‘zpt( p) and
C3pt(Z, p,g=0) at all values of p, at each given
p = (0,0, P;), using 15000-32000 configurations, and
Fourier transformed them into functions of ¢,. We studied
nine different spatial momentum P;/\/c € [0,5.82]. We
elaborate further on the lattice setup in Appendix B. We
determined 4® using summation type fits to C3pi/ Copy ratio.
For further details on the spectral analysis of two-point and
three-point functions, the reader can refer to Appendixes C
and D, respectively. Since h®(z, P) is multiplicatively
renormalizable [53,54], we took the renormalization group
invariant ratio [55] of quasi-PDF matrix elements at P; # 0
with respect to P; =0 to form the pseudo loffe-time
distribution (pseudo-ITD), M (v, z?).

V. COLLINEAR QUARK STRUCTURE
OF THE LARGE-N, PION

We show the real and imaginary parts of the u-quark
pseudo-ITD M (v, z?) as a function of v in Fig. 2. As seen
from Eq. (3), the two are governed by u — i and u + &
PDFs respectively. In SU(3) theory, u + # PDF mixes with
gluon PDF; however, this mixing is N;' suppressed and
hence ignored here. The data points are the result of our
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FIG. 2. The real and imaginary parts of the pseudo-ITD of pion
M(v, z%) in the large-N, limit are shown. The lattice data from
different values of quark-antiquark separation z3 are shown using
different colored symbols. The bands are fits to the leading-twist
OPE with the large-N, NLO Wilson coefficients at MS scale
u = 4.55\/c. The fit parameters are the Mellin moments.

lattice computation from different (z3, P3) put together.
The near-continuous set of momenta we were able to use
helped us pack the range of v with data points. In the large-
N, limit, the string tension /o sets a fiducial scale that
distinguishes perturbative and nonperturbative length
scales; therefore, we restricted the data for M to only
those up to the borderline y/oz3 < 1.27. At the same time, a
cautious use of |P;| < a~! only let us scan a range of
v < 3.5. The near universality of the data with respect to the
scaling variable v points to the viability of perturbative OPE
methods in the large-N,. theory. By fitting the lattice data
using the leading-twist OPE in Eq. (3), we extracted the
Mellin moments (x"),.; = [ x"f,+a(x, p)dx at a scale
u = 4.55,/c using the one-loop result [49] for the Wilson
coefficients C,,(#*z?) in the large-N . limit; for this we used
the leading-order value limy _Cp(N.)a,(u) = 0.39
using Aygs/+/6=0.503 [56,57]. We chose a scale uxa!
so that it is characteristic of the typical small z; used in
this work. We gather the technical details for the OPE
fits and on the perturbative factors in Appendix E and
Appendix F 1, respectively. We find for the first few
moments

(s (8l =
[ (6%l =

0.25(1),0.10(2)]
0.13(2),0.10(2)]

(via Im M),
(via Re M), (6)

with correlated y?/df ~ 39/26 in the two cases. As a cross-
check that a perturbative OPE framework is working for
the chosen range in z3, we used the fixed-z> moments
analysis [58] as a diagnostic tool [30,59] to detect any

corrections—as discussed in Appendix G, we found the
method to work well within statistical errors. In addition to
the above Mellin moments analysis, we also performed
fits to the valence u — & data assuming a phenomenologi-
cally motivated functional form [60], f,_z(x;a,f,s) =
Nx*(1 = x)P(1 + sx?). Since our access to the range of
v is limited in this work, and the small-x region is believed
to be harder to access on the lattice, we imposed a prior that

€ [-0.6, —0.4] motivated by the Regge phenomenology.
With the caveat of using an Ansatz, we found the data to be
best described by a large-x exponent # = 0.7(3), similar to
what is seen in recent lattice SU(3) QCD results [27-30] as
well as by global fits [60,61]. From an indirect estimation
of the valence momentum fraction, (x),_; = 0.23(2) from
the PDF Ansatz fit, we find it to be the same as (x),,;
within errors; thus, there might only be a negligible amount
of anti-u in the large-N, pion wave function.

VI. PHENOMENOLOGY

In order to use large-N,. theory as a model system to
compare and contrast the SU(3) QCD with, we first set the
GeV scale in the SU(o0) world through a choice /o =
0.44 GeV that is known [3,7,62] to result in a low-energy
meson spectrum that is numerically similar to the real world;
this choice implies, [a™!, u, m,] = [1.73,2.00,0.38] GeV in
our computation. We use the MS Ioffe time distribution
(ITD), Ml;’lfﬁ((y, u), which are the cosine (for u — ) and

sine (for u + i) Fourier transforms of PDFs from x to v
space, to justifiably perform this comparison within the
range of v spanned by our lattice data. In Fig. 3, we compare

/\/luiu for the large-N . pion (red band), as inferred from the
model-independent fits to Mellin moments, with the JAM20
global fit result [60] (gray band) for the real-world pion at
u =72 GeV. We find a good agreement between the two
theories in the case of the valence u — # I'TD. We suspect that
the observed tendency for SU(eo0) data to peel off at v ~ 3
could be a systematic effect due to the absence of constraint
from data beyond v = 3.5, and in fact, such a feature is
absent in the I'TD reconstructed from f,_; (x; @, 3, s) (purple
band). In the inset of Fig. 3, we also see a nearly similar x
dependence of our Ansatz-based reconstruction of f,_;(x)
(purple band) and the JAM20 result. Thus, the valence
structure of pion is likely to be weakly dependent on N. It
appears that features like the valence quarks that carry ~50%
of the pion momentum at few GeV resolutions could be
typical in SU(N,.) theories.

In the bottom panel of Fig. 3, we show a similar
comparison between u + i ITDs at y = 2 GeV. Here, we
see a visible difference between the two theories. Based on a
better agreement seen in the valence sector, we ask if the
difference seen in the singlet u + & distribution could
originate from the perturbative radiative processes in the
large-N, and SU(3) QCD; as a main difference, the g — ¢g
splitting is absent when N, — co. In Appendix F2, we
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FIG. 3. The comparison of MS ITDs in large-N. QCD

[SU(c0)] with the global fit results (JAM20) for the ITDs in
SU3) QCD at scale u = 2 GeV. The top and bottom panels are
u — u and u + u ITDs, respectively. The red bands (moments fit)
are results from OPE analysis by fitting Mellin moments. The
green and blue bands are expectations for I'TDs in SU(3) QCD
based on the assumption of a nearly similar large-N, PDF at a
lower factorization scale y, = 0.8 and 0.6 GeV, respectively. The
results for  — & ITD and PDF assuming an ansatz f,_; (x, @, #, s)
are shown as purple bands (Ansatz fit) in the top panel and its
inset, respectively.

discuss the perturbative evolution aspects in the large-N,
limit. Working under a premise that the large-N . and SU(3)
theories have similar u 4+ # PDFs at a low-factorization
scale y, we first evolved the pairs, [2(x"), 7, (x"),] at
1 =2 GeV in the large-N,_. theory to a scale yy (=0.8 to
0.6) GeV, and evolved that result back to y = 2 GeV using 3
flavor SU(3) QCD DGLAP evolution. Since we have not
explicitly calculated the gluon moments for large-N . theory,
we used the sum rule (x), = 1-2(x),,, and simply set the
other higher moments of the small-x dominant gluon to be
negligible. As we are looking only for qualitative tendencies,
we performed the evolution at leading-logarithmic order
using the same Agy;g in both theories. We show the resulting
ITDs based on evolutions from p, = 0.8 and 0.6 GeV as the
green and the blue bands in Fig. 3 lower panel. Remarkably,
the QCD evolution pulls the large-N . result closer to the
JAM20 result when successively smaller y are used. Thus,
large-N . QCD presents itself as an interesting model system
for singlet parton physics where g — ¢g splitting is switched

off, with all other splitting remaining intact. Such a pro-
cedure only leads to a negligible effect in valence u — it ITD
as seen in Fig. 3 top panel.

VII. DISCUSSION

We presented the large-N. mesons as an interesting
uncharted model system for understanding partonic phys-
ics, using the continuum reduction. Our first lattice com-
putation of large-N_ pion structure shows indeed that the
structural properties in the large-N, theory are likely to be
similar to our real world, as has been seen in the meson
spectrum; their differences seem to be even more interest-
ing as it gives us a version of QCD where the sea is not
radiatively proliferated with quark-antiquark pairs, and
hence could help us understand the role of sea quarks in
real-world QCD. Not to be mistaken, the method needs to
be improved by going to finer coupling, larger N, and also
cross-checked with a complementary twisted Eguchi-
Kawai reduction [63]. An easy generalization of the
method to QCD, might help in pruning the Monte Carlo
methods by direct comparisons with analytical results
[2,64-67]. A large-N. an advantage could be the expo-
nential suppression [68—70], of small instantons in the
large-NN . limit that might suppress instanton-induced power
corrections [71-73] to the OPE at typical short distances
reached in contemporary lattice calculations. It would be
interesting to extend this work to probe the differences
in gluon structures of the radial and angular stable
excitations [31,74] of the ground-state mesons, and perform
x-dependent spin physics of stable higher-spin large-N,
mesons, such as the p.
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APPENDIX A: DETAILS ON
CONTINUUM REDUCTION

We consider a L? periodic lattice. The gauge action in
terms of plaquettes U, is
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S, =bN> Tr(U, + U}). (A1)

p

and gauge fields on an infinite d-dimensional lattice obey
the periodic condition,

Uyx)=U,(x+LD); VYupu,v. (A2)
As long as the lattice coupling b < by (L) the theory is in
the confined phase and infinite volume results can be
computed exactly with finite lattice spacing effects. Below,
we derive expressions for certain n-point functions of
quark bilinears (mesons) using the continuum reduction
framework. We specify the n-point functions as G"). We
derive results using continuum reduction for a general
dimension d, but we finally used only d = 4 in this work.

1. Quark propagator in infinite lattice from finite
periodic lattice: Bloch wave functions and U“(1)
global symmetry

Consider an operator F(U) on an infinite lattice obtained
by copying the gauge fields from the L¢ lattice using
periodicity. As per Bloch’s theorem, the eigenvalue prob-
lem takes the form

[Se]

Zny(U)qu :lz(p)q;(p% Q§c+nL = eip.anc(p)’ (A3)
y

where n is a tuple of integers. Under a gauge trans-
formation g,
Ul(x)

Fry(UY)

= ngx,y(U)g;‘ (A4)

+
:ngy(x)gx.H;,
Of particular interest to us will be Abelian gauge trans-
formations of the form g, = e~ on the infinite lattice.

Under these gauge transformations,

One application of the above reduction we will use
involves the quark propagator, G, ,(U), in a fixed gauge
field background and a smearing operator, Sf,y(U ), in a
fixed gauge field background where ¢ labels the type of
smearing. Specific to this work, S(U,) is the Wuppertal

Uil(x) = U,,(x)e"pfﬂ (written in short as Ue'z), (AS5)
and we can rewrite the eigenvalue problem as
> Fo(Uet)qf (p)=4(p)a?(p);  4i(p)=e"Tqi(p);
5
4 ()= (p)- (A6)

One can use the periodicity of ¢i/(p) to further rewrite the
eigenvalue problem as

ZF)LH (Ue)qy(p) = 4(p)a (p);

= [i FX.yHL(U)},

n=—00

(A7)

and the induced operator F© on the finite periodic lattice
satisfies
L _ L _ L
Fx,y(U) - Fx,)'+nL(U) - Fx+nL,y(U) (AS)
for any vector n with integer entries. The above eigenvalue
equation is for a finite size matrix on a finite periodic
lattice. We can write the operator and its inverse on the
infinite lattice using their finite volume counterparts as

F.,(U) / D ) (Pl (p)]
dp 2=y iy,

— ddp ,M — iL
Fw) = | e TP e,

One can extend the above relation to a product of operators:

(A9)

(A10)

smearing kernel, and Sﬁfﬁy(Uﬂ) = S(eU,) for a phase
¢ = (0,1, Py, ¢p3) with nonzero spatial components in
general, which we also set to 0. Hence, what follows is for a
more general case than actually used in the present

computation. The smearing operator is typically diagonal
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in spinor space. We will assume $?(U) is Hermitian as is
true in most cases that are typically functions of the
covariant Laplacian operator. A form of reduction we will
need is

(U)S% (V)

z S¢l / //
dp e g .
- / ® ’fd G (e,
T

where we have used different smearing operators on either
side of the unsmeared quark propagator and we define the
smeared propagator on the finite periodic lattice by

(Al1)

L ¢1¢z Z SL¢1 / P U) S)I;,?é(U) (AIZ)
which satisfies
G (U) = il (U) = G (U) (A13)

for any vector n with integer entries as expected of a
propagator on a periodic lattice.

2. Two-point function of mesons
Let

M) = > gl st (UITs?(U,)ed

(Al14)

be a gauge invariant meson operator located at x. Since
Syy & 8y, ,» the sums above are actually restricted to s time
slice containing x by construction, but written as a sum over
the entire space-time. The indices i, j provide the quark
flavor indices and I specifies the type of fermion in a spinor

space. For the case of pion, considered in the paper,

n(x) = Mg, (x)
= Zax’sx’,x(Uei(ﬁ)ySSx,x” (Ue_i(ﬁ)ux”'

X . !

(A15)

Using Eq. (A11), the two-point function of a meson of a
type I'; with type ', in the infinite lattice is

G (x,y) = (M} (0)[M;}] (v),

) Ly

(A16)

which after Wick contraction yields

dlq d'q" e
2 . — o
G (x,y;U) = / i n S

x tr [, GEPP (Ut )T, GEP I (Ueit)].
(A17)

If we write down the two-point function in momentum
space using

[Se]

Z el xtpy) G(2) (x.y;U)

X,y

GO (p', p:U) = (A18)

and split the infinite sum over x and y into blocks of finite
sums over finite periodic lattice (i.e., x > x +n mod L,
and replace sum to be over the periodic x and ») and invoke
the periodicity property in Eq. (A13), we will arrive at
condition Lp + ¢’ — g =0 along with momentum con-
servation p 4+ p’ = 0. Using these, we can write the two-
point function as

GA(p'. p:U)
diq
=5(p +p)/—<2”)dTr

x TGl (Ueittr')],

T GL:202 (Uei%)
(A19)

where Tr denotes the trace over the entire lattice and spin.
Invoking the U?(1) global symmetry present in the con-
fined phase, we can shift U et > U , and we can write the
propagator in momentum space at a fixed gauge field
background as

G2 (p',p:U,)

— 5(p/ + p) TE[[, G2 (U)D,GEP (UemP)]. (A20)
For the pion, for which ¢; = —¢, = ¢ so as to preserve
isospin symmetry during quark smearing, we defined the
two-point function in the main text as

Tr[ysGH==?(U)ysGH04 (Ue™™)],

Copl(p) = (A21)

with explicit smearing factors included in the detailed
expression.

3. Quasi-PDF-pion-pion three-point function

The fermion bilinear connected by a spatial Wilson line
from w to w + z for z = (0,0,0, z3), i.e., the quasi-PDF
operator, is given by

O(W; Z) = ﬁWyOWW;W-‘rZuW (A22)

Our focus will be on the three-point function
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G(3)(x, y.w;z) =

(a(x)O(w; 2)7'(y)).  (A23)

Strictly in the large-N, limit, we can ignore the quark-line
disconnected diagrams and write

GO (x,y,wiz) =

NN AN,

R s U

X J/OWW.erz(U)Gerz,x” (U)
X qu’y(Ue‘i’/’)ysSy‘y/(Ue"‘/’)
X Gy (U)Sy (Ue'?)).

(75 Sx,x’ ( Ue_id)) Gx’,w ( U)

(A24)

Replacing infinite lattice propagators by propagators on
periodic lattice as we have done before,

d4q d4q/ d4 q//
GO (x.y.wi2) = / (2r)* (27)* (27)* ¢
x e~ 14 -(y-w=2)/L p=iq"-(x=y)/L

—ig-(w—x)/L

X tr(J/st;J‘/’@(Ueiq/L)yOWW_Wﬂ(U)
X GLESH (Ul 1)y GEAH (U 1),
(A25)

where we have used the following notation:
GEy2 () = ZSL (Ue™ )G (U),
(U)= ZG U)SL (Ue™?),

(U)= ZSL (Ue)GL . (U)SE, (Ue?).  (A26)

Fourier transforming over (x,w,y) —
infinite lattice keeping z fixed,

(p',0,p) on the

G)(p', Q. p:z.U)
4 1 4 1
72 / ‘I d d )4e—fq-(w—x)/Le—iq’-(y—w—z)/L
X,W,y

x e~ ~(x—y)/Le i(p"x+Qw+py)

< tr(ys G "2 (U oW, (U)
x GE2 - (yeid /L)y GEP? (Ueid' L)),

w=+z,y

(A27)

We can split the infinite sum over x, y, w into blocks of
sums over finite periodic lattice, invoke the periodicity
property in Eq. (A13), and use the folded property of
Wilson lines. This will result in

q=q"+p'L=0;
q"—q +pL=0,

4 —q+QL=0;
(A28)

which includes the momentum conservation, p’+Q+ p=0.
We arrive at

®)(p', 0, p;z,U)

=5(p’ +Q—|—p)/ 4Ztr ySwafl’@(Ue( +Q))

x.w,y

X 1gWy (U GEE (Uet)ysGELP (UE))).
(A29)

Using U“(1) symmetry,
GO (p', 0, p;z,U)

L
=5(p'+ 0+ )Y oWy io (U)GE2L (U)

xXw,y

x ysGy Y (UeP)ysGyiy ¥ (Ue'?)). (A30)

We referred to the above equation in the main text, now with
an explicit specification of quark smearing factors, as

L

Z tr(?’O Ww,w+z ( U)

xw,y
X ysGy (Ue)ys Gy 2 (Ue?)).
(A31)

C3pt(z’ P, Q) = @q?zy(ﬁ(U)

We used Q = 0 in this work.

APPENDIX B: DETAILS OF THE
LATTICE CALCULATION

In the present work, we used a fixed large value of
N, = 17, since it is the smallest value of N, beyond which
the 1/N,. corrections are typically found to be small in
previous works. We used L* lattices in this paper with
L = 8. We used the standard single plaquette Wilson gauge
action and set the lattice coupling b = 0.355, such that it is
close to being the largest b possible on L = 8 and keep the
lattice gauge theory in the confined phase (phase Oc). We
used the critical L.(b) = 6.6 for the value of b. Since
fermion loops are 1/N_ suppressed, the quenched lattice
computation of fermionic quantities is exact in the large-N,.
limit. Each update of the gauge fields on the entire lattice

was made up of ( SU(2) heat-bath updates on every
link followed by one SU(N) over-relaxation update on
every link [48]. We performed 100 such updates between
measurements to avoid autocorrelation. To make sure the
configurations thermalized to the Oc phase, we successively
decreased the value of b from a higher value of b = 0.365.
By monitoring the gap in the Polyakov loop eigenvalues
[48] in all four directions, we ensured that the configura-
tions were in the correct phase. We computed the pion-pion
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two-point and pion-quasi-PDF-pion three-point functions
[Egs. (1) and (3) in the main text] on every configuration at
9 different values of momentum,

. 27[7’13
N.L 136"

(B1)

for n; =0,2,4,...,16. We used gradually more numbers
of configuration N, (~32 K) at the higher momenta
compared to the lower ones (N, ~ 12 K). We have
collected the details of the statistics in Table I.

We evaluated the two-point and three-point functions
[Egs. (1) and (3) in the main text] stochastically. Namely,
for the two-point function, the stochastic estimator using
noise vectors &,

Cop(p) = £'75GH(U)rsGH (Ue?)é = 1" (0)h(p).  (B2)
with ¢(p) = G*(Ueit) and #(0) = y5[GH(U)]'7sé. The
combined noise and ensemble average is

N. vec XN cfg

ELAE;.

i=1

- 1

‘;:TAg m (BS)

We used N,.. = 3 number of Z, noise vectors for &; that is

guax — 1_\;%’ for spin, color, and position indices a, a, x,

respectively. We further diluted the noise vectors over even-
odd lattice sites and over the two chiral projections. For the
three-point function, we used the stochastic estimator as

TABLE . The table lists the momenta P; = ( L2N )nsz, and the
amount of statistics at each momentum. The statistics comes from
two sources; namely, independent number of gauge field con-
figurations (second column) and the number of Z, stochastic
vectors in each configuration. We used 3 Z, random vectors
which are diluted in chirality and in even-odd lattice sites, which
comes out to 12 sets of inversions over the components of the
noise vectors. We fixed this for all momenta. To convert P; to
GeV, P, = 0.081n;3 GeV. All the momenta used in this work are

below the lattice a~! scale.

n3 Psa P3/\/o Configurations
0 0 0 15353
2 0.092 0.363 16320
4 0.185 0.727 11520
6 0.277 1.090 19200
8 0.370 1.454 30720
10 0.462 1.817 27552
12 0.554 2.181 30720
14 0.647 2.544 30720
16 0.739 2.910 30504

Cap(z. . q)

#(p)

In this work, we only used ¢ = 0 above. We used two steps
of Stout smearing for the gauge links that are used to
construct the Wilson line W.

We used Wilson-Dirac operator D*(m,,) to compute the
propagators G- = [D]~!. We improved the Dirac operator
by using gauge links that are smeared by two steps of
the large-N,. version of the Stout smearing [76]. With
smearing, we expect the zero quark mass to be in the region
of the Wilson mass m,, = [-0.38,—-0.39]. We tuned to
m,, = —0.36 to realize a pion mass that was feasible given
the computational resource available to us. We imple-
mented the Wilson-Dirac inversion using the BiCG-Stab
algorithm [77].

We used smeared quark sources in the construction of two-
point and three-point functions using a smearing kernel
S(U; Ny, 6) for the Wuppertal smearing [78]. We imple-
mented Wuppertal smearing using (Ny,,.d) = (40,0.6),
which we chose to be optimal through a set of initial tuning
runs. We kept the radius of Wuppertal smearing fixed at all
pion momenta. A puzzling experience during the tuning
process at non-zero momenta was the negligible effect of
phased momentum smearing [79], S(e’?U), which typically
improves the signal-to-noise ratio at higher momenta in
the SU(3) QCD at some value of ¢; we did not find any
such improvement within statistical errors during the tuning
phase in which we used only about ~1000 configurations.
Therefore, we simply used unphased (¢ = 0) Wuppertal
kernel for quark smearing at all momenta.

= Z fiyowx,x+z¢x+z(p);

= GH(U)ysGH(Ue™P)ysGH(Ue)s. (B4

APPENDIX C: SPECTRAL CONTENT
OF PION TWO-POINT FUNCTIONS

1. Construction

We determined the two-point function Cyy(p) with
p = (p6.0,0.Py) for py = 2ane/LST using ny € [0, %]
and the effective temporal extent of LT = 68 = N.L/2.
We could have used an effective temporal extent of up to
136, but instead we used a smaller one to make the
computation easier, and an effective temporal extent of
68 is quite comparable to what is being used in present
structural computations in SU(3) QCD. One possibility to
investigate the spectral content in the two-point function is
to fit the data at different fixed spatial P; to

. Z‘l |A;|? sinh(aE,(P5))
cosh(aE;(P3) — cos(apy))’

A; = (Ei|x"|0),

Cop(Po. P3)

(C1)

where one can truncate the momentum space spectral
decomposition at N number of states. Itis to be remembered
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that, even if higher excited states might not contribute to the
Po dependence of the correlator in the range of smaller p,
they can still contribute a momentum-independent constant
to the above correlator. Therefore, we corrected such a
truncated series by a constant term, B, to account for such
effects of all other higher excited states.

In this paper, we used the computed momentum space
two-point functions to Fourier transform them into real
space, so that we could perform a rather traditional lattice
QCD analysis via effective masses and multiexponential
fits. That is, the real-space correlator is

Left—1
C2Pt(tS’P3) = Z C2pt(P0aP3>eip°%;

ny=0

Cop(L§T = ng, P3) = Cop(ng, Ps3). (C2)
Note that we have used the momenta p and their integer
quanta n interchangeably as arguments above, and we will

do so in the rest of the text without any obvious confusion.

After the above Fourier transformation, we performed the
usual N-state fits to study their spectral content,

%l_l

ZIAI

Cop(ty, P3) = “EG 4 e BTD),(C3)

effective
C2pl<lx+a-P3)
CZp!(tx~P3) :

and obtained their
cosh(E,-(Lgff/Z—(1x+“)/“)) _
cosh(E; (LT /2-1,/a))

masses by solving

2. An issue with long-tailed distributions in the
zero-momentum case

First, we discuss the case of zero spatial momentum
P;3; =0 which we found to be challenging within the
stochastic approach of constructing trace along with
the Fourier transform to real space. In the top panels of
Fig. 4, we show the momentum space correlator C(p,, P3)
as a function of temporal momentum p; the top-left
and top-right panels show the results at P; =0 and

\=4

25 30

30

‘ Terﬁporal momentum
Spatial n3 =0

Temporal momentum

Spatial ng = 10

ng=0— 105, ng=0—|
ng =2 —1 ng =2 —
nyg =10 — nal ng =10 — |
= =
: 210}
O @)
102}
10t £
. . | . 100 . M. . .
0 0.2 0.4 0.6 0.8 1 —0.05 0 0.05 _ 0.1 0.15 0.2
C(po) C(no)

FIG. 4. Top: sample pion-pion two-point functions C‘zpt(no; n3) at spatial momenta n; = 0 (left) and n; = 10 (right) as a function of
temporal momentum r,. The black curves are fits to the momentum space correlator to Eq. (C1) with Ny = 3 to data from n, € [1, 20).

For n3 = 10, the fit automatically passes through the ny =

0 data point. For n3 =0, the ny = 0 data point is slightly above the

expectation. This causes a problem for n; = 0 real-space correlator construction and shows up as a pathological state with near zero
mass. The possible issue is purely numerical and has to do with n; = 0, ny = 0 being the pion susceptibility that is difficult to evaluate
stochastically due to the long-tailed nature of its Monte Carlo histogram. Bottom: Such Monte Carlo histograms for C 2pt(710. 113) are
shown in the bottom two panels for n; = 0 and n; = 10. Indeed the n; = 0, ny = 0 case is long tailed, and it might require even larger
statistics to evaluate it robustly. The histograms immediately get narrower at nonzero n3 and n, and thereby, do not cause any issues.
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P3/(27/136) = ny = 10, respectively. The black curves are
the best fit curves using Eq. (C1) truncated at Ny, = 3 and
fitted over a range of ny € [1,20]. The fits work well with
x*/dof ~ 1. However, we note that the curve for Py = 0
when extrapolated to n, = 0 is slightly, but in a statistically
significant manner, below the actual stochastically evaluated
data point for C(py = 0, P; = 0). Such a problem existed
only in the P; = O case, and at other nonzero P5 (such as
n3 = 10 case on the top right) the fitted curve automatically
passed through ny = 0 data point as well. While the problem
is easy to fix by avoiding the n, =0 data point while
performing fits, it causes a problem when reconstructing
real-space correlators via Fourier transform; namely, if
ng = 0 is not evaluated very accurately, then its effect is
to add a spurious low-mass state into the real-space
correlator. The origin of the problem is easy to understand.
In the bottom left and bottom right panels of Fig. 4, we show
the Monte Carlo histogram of the stochastic estimator in
Eq. (B2) for the two spatial momenta. For each of them, we
have shown the histograms at three values of n,. We see that
for ny = 0, ny = 0, which is nothing but pion susceptibility,
the distribution is very long tailed, and hence, it is likely that
the difficulty we are finding is due to the inability to robustly
estimate the mean and the statistical error of such a long-
tailed distribution. At nonzero ng, the distribution gets
narrower. Also, the distribution at n, = 0 gets narrower at
nonzero n3, and hence we were able to reconstruct real-space
correlators well. Having understood the problem, we found
the following procedure to correct the ny = 0 data points to
solve the issue; we took the lowest three nonzerony = 1,2, 3
data points that are dominated by the ground-state E, and
solved a system of equations,
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A
cos(apg) — cosh(aEy)

+ B = Cyp(po. P3). (C4)

to find the unknown parameters A, B, E,. Using them, we
corrected the ny =0 point with the estimated value
#h(a&)) + B. Using this corrected ny = 0 data point, we
used Eq. (C2) to perform the Fourier transform and obtained
the correlator as a function of z,. With this procedure, the
spurious low mode disappeared at P; = 0. At nonzero P,

such a procedure did not have any significant effect at all.

3. Analysis of two-point functions in real space

In the left panel of Fig. 5, we show our “raw” data for
C'zpt( Po, P3) that we directly computed on the lattice as a
function of p, for the nine different spatial P5. As such, we
find our determination of C‘zpt( Do, P3) to be smoothly
varying in both p, and P3, up to an issue noted above for
P = 0. The well-determined nature of C in Fourier space
is deceiving, as the long-distance exponential falloff in the
Fourier transformed C,(f;) comes from delicate cancel-
lations between different C‘zpt(po), resulting in noise at
larger ¢,. This can be seen in the right panel of Fig. 5, where
we show such an inferred real-space two-point function
Copi(ts, P3) using Eq. (C2). We have displayed the results
at various spatial momenta as a function of #;/a.

In the determination of the quasi-PDF matrix element,
the spectral data of a two-point function does not enter in
the summation type analysis we performed (as we discuss
in the next section). We present our analysis of the spectral
content of the two-point function now for the sake of
completion. In Fig. 6, we show the effective mass E(7,)
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Pion two-point function correlator as a function of temporal Euclidean momentum n, (left) and as a function of temporal

separation #,/a (right) as constructed from the momentum space correlations via Fourier transformation. The different symbols from top
to bottom in the two panels are the data points at different spatial momentum along the z direction, n3, from n; = 0 to 16 in steps of two.
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FIG. 6. The effective mass as determined from the real-space
two-point function Cyy(t,, P3). The different symbols are the
results at different spatial momenta P; = 2zn3/136 from
ny =0,2,...,16, from bottom to top. The bands are two-state
fits to correlators. The horizontal lines are expectations from
continuum single-particle dispersion.

determined from C,(t,, P;). We were able to perform
stable two-state fits [Ny = 2 in Eq. (C3)] to Czpt(ts). For
this, we used a fit range 7, € [2a, 154] forny =0, 2,4, 6, 8,
ty € [2a,10a] for ny =10, 12, and ¢, € [2a,6a] for
ny = 14, 16. We used a smaller minimum of 2a so as to
be sensitive to excited states, and at the same time make the
fits stable. We changed the maximum range of ¢, so as to
avoid the noisier data points, as well as those that are not
well determined after all the intricate cancellations in the
Fourier transform from Czp[( po) resulting in orders of
magnitude smaller values for C, () as seen in Fig. 5 (for
example, the 7, > 6a data points in Fig. 6 for n; = 14, 16
that are suddenly pulled to smaller values than expected,
and it is clear that they are not well determined numerically
and might need more precise data for C). In this way, we
found the pion mass in our calculation to be m,a =
0.219(2) in lattice units. We show the resulting effective
mass curves from the two-state fits at different momentum
ny as the bands in Fig. 6. For comparison, the expected
values for E(P;) from one-particle dispersion relation
based on the value of m,a = 0.219 are shown as the
dot-dashed horizontal lines in the figure. We see that the
resulting ground-state energies agree with the continuum
dispersion within errors. As a curious observation that is
unrelated to the results in the paper, we found the first
excited state energy at n3 =0 to be aE;(P;=0)=
0.79(4) from the two-state fits. Using a string-tension
value of /o = 440 MeV, we find this value to be about
1.3 GeV which seems to agree quite nicely with the pion
radial excitation pole mass in SU(3) QCD. Thus, the usage
of string tension to set the large-N, GeV scale has its

advantage as noted in the main text. However, we only
found a poor agreement of the momentum dependence of
E | (P3) with a single particle dispersion curve and hence we
cannot rule out the possibility of the agreement with pion
(1300) at P; =0 to be a numerical coincidence in our
calculation, and the E; could simply be effectively captur-
ing the tower of excited states.

APPENDIX D: DETERMINATION OF BARE
PION QUASI-PDF MATRIX ELEMENTS

1. Construction of ¢,-dependent three-point function

We used the stochastic estimator in Eq. (B4) to determine
the three-point function in momentum space, C'3pt(z, D.q).
We found it computationally simpler and cheaper to fix the
momentum insertion ¢ and scan the entire set of p, for each
choice of pion’s spatial momentum P5. We chose g, = 0 as
this choice is the summation method as noted in the main
text. Further, we set the spatial part of ¢ also to zero, as we
want the forward matrix element in this work for the case of
PDF; thus ¢ = 0. We reconstructed the ¢, dependence of
the three-point function as

L(e)ff—l
C3pt(z’tsaP3) - Z C3pt(Z,p0,P3’q:0)e’p0f;

ny=0

Cap(2. L§T = ng.n3.q =0) = =Cy(z.n9.n3,g=0). (DI)

The second identity is simply due to the usage of y, in the
definition of a quasi-PDF operator, which makes the three-
point function to be proportional to p,, and hence,
antisymmetric with respect to ng and L§T — ng. As is usual,
we used z = (0, 0,0, z3) along the z axis. By using a folded
Wilson line, we scanned z3/a € [—16, 16]. In the end, we
only used |z3]/a < 6 so as to ensure the applicability of
perturbation theory.

Let us make the connection of a three-point function with
qo = 0 to the summation method obvious. We suppress the
arguments for z, p in the two- and three-point functions for
the sake of brevity, and both of them should be understood
to be at the same p below. For the sake of argument, let
Csp(ty.7) be the three-point function by Fourier trans-
forming with respect to both p, and g; in that case, 7 is the
insertion time of the quasi-PDF operator 7, and it could be
both within and outside the pion source and sink locations.
For the case 7 < t,, we can do a spectral decomposition
to get

Cap(t7) =Y _ATA(i|Oj)e Bilm=Eir A= (0| |E;)
i.j=0

(D2)

for 7<t,. The sum within this region gives
Z?:O C3pt(ts’77) ~ |Ao|2<0|(9|0> tSe_Ei[s + const X e—Eol‘\-, up
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to O(e~E1is) excited state corrections. When the operator is
“outside” the source and sink, 7 > ¢, then the terms which
are not exponentially suppressed with the effective tem-
poral extent, L&, are of the form

Cap(ten7) = Y _(0|Ofi)eFre B (ila| ) (jla'|0),  (D3)

i.j

for 7 > t,. Since the state j cannot be the ground-state pion,
and i # j, the sum over 7 > ¢, cannot have the linear piece
and will contribute simply as yet another exponentially
suppressed excited state contribution. Therefore, we can
sum over 7 for all values from 0 to L&, and the linear piece
in t, gives the information on the ground-state matrix

eff
element. The sum is Z];io Cip(ty.7) = Cap(t5. g9 = 0).
To cancel off the amplitudes A;, we form the ratio

_ C3pt(ts7 qdo = 0)

From the arguments above, we see that
R(t;) = (Eo|O|Eg)t, + C + O(e"r1=Fo)ts).(D5)

By fitting the linear 7, dependence of R(t,), we obtained the
bare quasi-PDF matrix element from the slope.

2. Extraction of ground-state bare quasi-PDF
matrix elements

We fit the functional form
R(ts; P3, z3) = t,h®(z3, P3) + C, (D6)

to the summed ratio R(z,) at different z; and Ps, using
h®(z3,P3) and C as fit parameters over ranges
t, € [fMn, fMX] At the precision allowed by our data, we
restricted the value of t’;‘i“ = 2a,3a,4a, and finally used

min __ : : . . min o .
R(t,) = (D4) M = 3a, which in physical units, /™" /c = 0.76, is on the
Cop(25) : :
20t (s verge of the typical nonperturbative mass-gapped scales.
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FIG.7. Extraction of the real part of the ground-state bare quasi-PDF matrix element, Rei?(z3, n3), via summation method. The bands
are straight line fits A8¢, + C to the data over different ranges of t, that is specified in the legend. The different panels show the data and

the fits from different n3 (rows) and different z3/a (columns).
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By changing ™" to 2a and 4a, we checked for the level of
consistency as a means to test for the residual presence of
excited state contributions. We used 7" between 6a and
8a, and avoided points beyond 8a to not use the noisy as
well as stochastically not-so-well-determined points at even
larger #®*. In the various panels of Figs. 7 and 8, we show
the data points and fitted straight lines to determine Reh®”
and Imh®, respectively. Each column in these figures shows
the fits at z3 = 0, 2a,4a, 6a at fixed momentum n;. The
different rows show them at n3 =0, 4, 8, 12, 16. In each
panel, the points are our lattice determination of R(z,). We
have shown the fits to Eq. (D6) for different fit ranges as the
bands; the slopes of these lines are the needed values of 4%,
Within the statistical errors, it is clear that the data nicely
agrees with a linear ¢, dependence in the ranges of ¢,
specified above. At the smaller n3, where the data quality is
better, we see that the fitted bands from the various ranges
agree quite well. At larger n; = 12 to 16, the data quality
for t, > 6a is quite poor, and the fits that start from #, = 4a

and include t; > 6a data points behave quite differently.
Therefore, for n; > 12, we restricted 77" = 6a.

In Figs. 9 and 10, we show the resulting z;3 dependence
of the quasi-PDF matrix element h%(z3, P3) from the
summation-type fits over the different #; ranges. We have
slightly displaced the different estimations for clarity. We
see that the estimations using 7, € [3a,8a| are quite
consistent with those using [4a,8a] for the momenta
ny < 10. Therefore, we used the estimated values of h®
from ¢, € [3a,8a] in the main text. For the higher
momenta, as we noted above, we see that estimations
using 7™ > 6a are not reliable. Within the larger statistical
errors at the higher momenta n3 > 12, we find the 7, €
[3a,6a] estimates are consistent with the shorter z, €
[2a,6a] estimates, and also within the larger errors of
the 7, € [4a, 8a] estimates which are biased with the poorly
determined data beyond 7, > 6a. Therefore, we chose the
range containing 7, € [3a,6a] for the set of momenta
ny > 12.
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FIG. 8.

Extraction of the imaginary part of the ground-state bare quasi-PDF matrix element, Imh?(z3, n3), via summation method. The

bands are straight line fits 45¢, 4 B to the data over different ranges of ¢,. The different panels show the data and the fits from different 75

(rows) and different z3/a (columns).
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FIG. 9. The real part of the bare quasi-PDF matrix element h®(z3,n3) is shown as a function of z3/a at different spatial
momentum o 73 used in this work as separate panels. The extrapolated results from summation methods over different fit ranges in
t, are shown together in the plots. We used extrapolations from ¢, € [3a, 8a| for ny € [0, 10] and ¢, € [3a, 64] for n; € [12, 16] to
avoid badly determined points beyond 7, > 6a. Using ranges with even larger minimum 7, was not feasible and forms a limitation of

this work.
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FIG. 10. The imaginary part of the bare quasi-PDF matrix element /1% (z3, n3) is shown as a function of z3/a at different n; used in this

work as separate panels. The description is similar to Fig. 9.

As a cross-check, we present the values of
h®(z3 =0,P3) as a function of P; in Fig. 11. The
zz3 = 0 matrix element is nothing but the pion matrix
element of the local vector current operator, and hence
measures the inverse of the vector current renormalization

factor, Zy. If the extraction of matrix elements is done
correctly and there is no momentum-dependent lattice
corrections, we should not find any P; dependence in Zy,.
Indeed, we find that to be the case in Fig. 11 up to
statistical errors.
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FIG. 11. A cross-check on the near-constant behavior
the extracted bare matrix element of local current operator
hB(z3 = 0,n3) as a function of momentum n; in lattice units.
The bare matrix element is an estimate of the inverse of the vector
current renormalization constant Zy,.

APPENDIX E: IMPLEMENTATION
OF LEADING-TWIST OPE AND
CONSTRUCTION OF MS ITD

We implemented the leading-twist OPE using the
truncated form of Eq. (3) written explicitly as

Ninax (_1))1 2n

N v
ReM(v,z5) =1+ ;7(2;1)

dex n 21’1 1
ImM IJ Z3 Z 2n — 1)‘ C2n I(Z%/‘2><x2n_1>u+ﬁ'

n=1

C2n(Z3M )< 2n>u—ﬁ’

(E1)

We used the truncation as N,,,, = 4 to fit the data up to
v = 3.5, and we checked that the results do not change well
within errors when N, is changed from 3 to 4. The
Wilson coefficients C,, are the isovector quark coefficients,
usually written explicitly as C?. For the imaginary part,
which is not a isovector quantity, one would have to include
the corresponding C? and C}? which will cause mixing
with quark and gluon PDFs [80]; here, in the large-N . limit,
the C}’ which are proportional to a,T(N.) are 1/N,
suppressed and hence, we have considered only the Cy’
Wilson coefficients above and in the main text.

Using the above OPE, we performed combined fits to the
73 and P3 dependencies of the lattice data. We performed
two types of fits in the main text:

(1) Moments fit: here, we used the Mellin moments (x")
entering the OPE as the free fit parameters. Since, we
are assuming no functional form for the x depend-
ence of the PDF, we referred to these types of fits as
the model-independent fit analysis. Assuming the
positivity of the underlying u + & and u — i PDFs

help impose additional constraints [30] on their
Mellin moments. We implemented such inequalities
using a change of variable from moments to 4;,

=D e (B2)

and similarly for odd moments (x*"~!'), ..

(2) PDF ansatz fit: Here, we assumed a global fit
analysis inspired ansatz for the x dependence of
the valence PDF, f,_;(x) = Nx*(1 — x)?(1 + sx?),
with [} f,_z(x)dx = 1. In practice, it results in
Mellin moments (x*"),_,(a, 3, s), that in turn enter
Eq. (E1). We fit the parameters «a, 3, and s in this
manner. We imposed a prior a € [-0.4, —0.6] based
on Regge intercept expectation for a valence PDF.
We did not perform an equivalent analysis for u + #,
as it was not clear if we should assume it to be a
combination of ansatz for valence PDF and sea-
quark PDF, and what prior to impose on small-x
behavior of sea-quarks in large-N, theory. There-
fore, we avoided such issues here by performing
only moments fit to the u + & case.

In the main text, we constructed the MS ITD at

1 =72 GeV based on the analysis of pseudo-ITD lattice

data above. These ITDs are defined as

M, (0, ) = / ' fualoot) cos(aw)d;

M, (v, ) / Fsa (o) sin(xw)dx. (E3)

In practice, the construction of MS ITD using the limited
range of v is simplified into a truncated series in v as

Ninay (_1)n 2n

M ap) =145 S (s,

Ninax (_l)nUZn—l

M) =3 =gy 0 salu). - (E4)

n=1

using the best fit estimates of the Mellin moments from the
leading-twist analysis.

APPENDIX F: DETAILS REGARDING
THE PERTURBATIVE ASPECTS

1. Coupling constant and Wilson coefficients

We borrowed various existing perturbative results com-
puted for general N,., and we simply used the large-N,
values of the color factors, Cr(N.) = N./2, C4(N.) = N.
and Tx(N,) — 1/2 in those expressions. In the absence of
a nonperturbative running of the large-N, MS coupling,
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we simply used the LO ’t Hooft coupling in the large-N,
limit,
. 1
Alu) = lim ay(u)N,. =

N.—

: (F1)
Lin(£)
MS

With \/E = 0.44 GeV to set the scale, we used AM—S =0.22.
At u =2 GeV, we get (2 GeV) = 0.778. For the Wilson
coefficients that enter the leading-twist OPE in Eq. (3), we
used the one-loop expressions in Ref [49] with the replace-
ment Cp(N_.)a,(u) = A(u)/2 = 0.389. The Wilson coef-
ficients for the u + # PDF would differ in the SU(3) QCD
due to it being a flavor singlet quantity. In the large-N,. limit,
such differences due to the mixing terms [ Tx(N,.)] are
subleading in 1/N,, and hence, we simply used the non-
singlet Wilson coefficients C, for odd values of n.

2. Large-N, LO DGLAP evolution

In the main text, we checked whether a universal initial
condition at a low-factorization scale y, could explain the
observed differences between SU(3) QCD and in large-N,.
theory. For this, we performed the DGLAP evolution of
large-N_. PDF (or equivalently its ITD) from scale y to a
lower scale py, that is then used as an initial condition for 3
flavor SU(3) QCD evolution back to scale y using corre-
sponding DGLAP evolution in Mellin space. That is, taking

X3 ) = R0)-a ) 20 ). () )

as the array of quark and gluon moments in SU(N.) QCD,
we evolved them as

(F2)

X' ()
PR (n.p i) 0 0
= 0 PEN (') PEYe (nop i)
0 PN (nopd) PEN (nop )
X5 (), (F3)

where PYNe (n, u, i) are the SU(N ) theory DGLAP factors
from parton species i to species j in Mellin space (e.g.,
textbook such as [81]) that evolve the moments from scale u
to u’. The subscript S and NS specify singlet and nonsinglet
respectively. In this paper, we used a LO DGLAP evolution,
at which order P17k = P1?. At LO, the evolution depends on
In(u/Ag5)
In(uo/Agzs)
interested in capturing the qualitative behavior of u + i ITD
in the large-N, theory and SU(3) theory, we simply used
Asis = 0.22 GeV in the DGLAP factors of both the theories.
One should note that the ratios of twist-2 operator anomalous

u only via the logarithms . Since we were only

dimensions to f-function coefficient, yﬁ,l)/ Py have a finite
limit when N, — oo. In the N, — oo limit, the cross term

qu'N ¢ — 0, and hence u + & evolves without mixing with

the gluon. On the other hand, the term PZ”* is nonzero as
gluon radiation from a quark line is still a leading process in
N, counting.

In this work, we only computed the quark moments
(x"),.4a in the large-N,. theory, and we did not explicitly
compute the gluon PDF in the large-N . pion. Therefore, we
deduced the leading moment (x), = 1-2(x),,; from the
momentum sum rule. Since we expect the gluon PDF to be
contributing dominantly in the small-x region, we assumed
that the next moment (x*), (and all other higher odd
moments) can be neglected. With these inputs from the
large-N . theory, we followed the chain of evolution,

X5 () = X3 (o) = X5 (w).

(F4)
Using such an expectation X 513) (u) for SU(3) QCD moments
atu = 2 GeV based on the above evolution, we constructed
the corresponding MS ITD by using Eq. (E4).

APPENDIX G: EFFICIENCY OF ONE-LOOP
LARGE-N, LEADING-TWIST OPE

The leading-twist OPE can be applied to the lattice data
at fixed values of z5 [58], so as to capture the v dependence
coming only via variation in the momentum P;. Such an
application has been found [30,59] to be a nice diagnostic
of the effectiveness of perturbative as well as leading-twist
frameworks in a region of z3, and as way to detect
corrections to the framework. In the left panel of
Fig. 12, we show such a zz-dependent leading nontrivial
moment (x), from the analysis of ImnM (v, z3). In the right
panel, we show a similar z; dependence of (x?) from
ReM(v,z3). We used u =2 GeV in the scale set by
\/o = 0.44 GeV as explained above. The red filled circles
are the results using one-loop Wilson coefficients in the
OPE. If one loop is sufficient, and if there are no higher-
twist corrections to the OPE and z;-dependent lattice
spacing corrections to the continuum OPE, then one should
observe a plateau in the moments as a function of z5. In the
range z3 € [2a, 5a] that we used, we see an approximate
plateau in the one-loop results in the two panels. Our
determinations of the two moments via combined fits to the
entire data in the range of z3 € [2a, 5a] is shown as the gray
bands, which are consistent with the plateau in the data. We
skipped the z3 = a point to be cautious of avoiding any
lattice corrections at those separations. Given the quality of
our data, we did not add any lattice spacing and higher-
twist corrections by hand to the leading-twist continuum
OPE. To see the effect of one-loop evolution in z3 effected
by the Wilson coefficients, we also plot the results using
tree-level (i.e., set a; = 0) in the two panels in Fig. 12. The
effect of one loop is rather small in comparison with typical
statistical errors, but it is quite pronounced at shorter
73 = la —3a.
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FIG. 12. Fixed-z? analysis of pseudo-ITD M (z, z?) by fitting the leading-twist OPE to the P5z; dependence at different values of z3

using the first few Mellin moments as fit parameters. The left and right panels show the resulting z3 dependent (x), ,; and (x?)

u—it

moments, respectively. The filled red circles are the result of performing such an analysis using one-loop large-N,. Wilson coefficients.
The open circles are obtained by setting C,, = 1, that is, to their tree-level values. Our estimates of those moments based on a combined
fit to both z? and v dependencies of M data in the range z; € [2a, 5a] are shown as gray bands.
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