Journal of Glaciology

£

IGS

Article

Cite this article: Riel B, Minchew B (2023).
Variational inference of ice shelf rheology with
physics-informed machine learning. Journal of
Glaciology 1-20. https://doi.org/10.1017/
jog.2023.8

Received: 6 September 2022
Revised: 22 January 2023
Accepted: 30 January 2023

Keywords:
Glacial rheology; glacier modeling; ice
dynamics; ice rheology; ice shelves

Author for correspondence:
Bryan Riel, E-mail: briel@zju.edu.cn

© The Author(s), 2023. Published by
Cambridge University Press on behalf of The
International Glaciological Society. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

cambridge.org/jog

https://doi.org/10.1017/jog.2023.8 Published online by Cambridge University Press

Variational inference of ice shelf rheology with
physics-informed machine learning

Bryan Riel2 @ and Brent Minchew?

school of Earth Sciences, Zhejiang University, 310027 Hangzhou, China and “Department of Earth, Atmospheric
and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

Floating ice shelves that fringe the coast of Antarctica resist the flow of grounded ice into the
ocean. One of the key factors governing the amount of flow resistance an ice shelf provides is
the rigidity (related to viscosity) of the ice that constitutes it. Ice rigidity is highly heterogeneous
and must be calibrated from spatially continuous surface observations assimilated into an ice-
flow model. Realistic uncertainties in calibrated rigidity values are needed to quantify uncertain-
ties in ice sheet and sea-level forecasts. Here, we present a physics-informed machine learning
framework for inferring the full probability distribution of rigidity values for a given ice
shelf, conditioned on ice surface velocity and thickness fields derived from remote-sensing
data. We employ variational inference to jointly train neural networks and a variational
Gaussian Process to reconstruct surface observations, rigidity values and uncertainties.
Applying the framework to synthetic and large ice shelves in Antarctica demonstrates that rigidity
is well-constrained where ice deformation is measurable within the noise level of the observations.
Further reduction in uncertainties can be achieved by complementing variational inference with
conventional inversion methods. Our results demonstrate a path forward for continuously
updated calibrations of ice flow parameters from remote-sensing observations.

1. Introduction

Viscous flow of ice in glaciers and ice sheets is governed by gravitational driving forces and
resisting tractions at ice-rock boundaries, as well as internal stresses resulting from stretching
and compression. For laterally confined ice shelves that flow within embayments, flow is
resisted by shear stresses at the margins where faster-flowing ice is in contact with rock or
immobile ice. Basal shear stresses can further resist flow where ice is locally grounded at ice
rises or pinning points. The total resistance, or buttressing, provided by ice shelves to upstream
grounded ice is a key modulator for potential changes in flow speed of the grounded ice to
changes in atmospheric or oceanic conditions. However, accurate quantification of buttressing
stresses and modeling of ice shelf flow depends on well-calibrated estimates of ice rheological
parameters throughout the modeling domain.

Observations of ice flow, whether in an experimental or natural setting, are the only means
by which we can infer mechanical properties such as ice rheology. Specifically, spatially
continuous flow velocity measurements permit robust strain rate estimates, which can have
considerable spatial variability due to differing flow regimes, ice rheology, ice geometry and
other factors. These strain rates are linked to stresses within the ice through an appropriate
constitutive relation, where the most commonly used relation is Glen’s Flow Law:
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where 7;; is the deviatoric stress tensor, 77 is the effective dynamic viscosity, B is the ice rigidity,
n is the stress exponent, €; is the strain rate tensor and & = ,/€;;€;;/2 (where we apply the
summation convention for repeated indices) is the effective strain rate computed as the square
root of the second invariant of the strain rate tensor (Glen, 1958). Note that a prefactor defined
as A =B™" is also commonly used in Glen’s Flow Law. All of the terms in Eqn (1) vary spatially
with different intrinsic lengthscales. The stress exponent, #, is set by the dominant mechan-
isms of creep that drive the deformation of ice and is dependent on the stress regime, grain
size, ice temperature and crystallographic fabric (Goldsby and Kohlstedt, 2001). The prefactor,
B, which we refer to as the ice rigidity, shares the same dependencies as the exponent, in add-
ition to interstitial water content, impurities and damage (Cuffey and Paterson, 2010). Thus,
both B and # are lumped parameters in Glen’s Flow Law that represent a combination of fac-
tors and mechanisms which generally cannot be observed continuously at the scale of ice
shelves and ice sheets. Rather, B and n must be inferred from ice surface velocity and thickness
observations for each area of interest.

To construct a tractable inverse problem, Glen’s Flow Law is first injected into an
appropriate dynamical framework (i.e. governing equations for ice flow) to obtain a non-linear
mapping from parameters (B and n) to observables (ice velocity) over the entire modeling
domain. This mapping, or forward problem, can be used in an optimization framework to
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estimate parametric values that optimally reconstruct the surface
observations (MacAvyeal, 1989, 1993). The outcome of the inverse
problem, a 2D map of B and #, can then be used in Glen’s Flow
Law to compute stresses within the ice, which allows for further
prognostic simulations to project the evolution of ice flow for a
given study area in response to changing climatic conditions.
However, for static datasets, i.e. snapshots of velocity and thick-
ness at a given time epoch, B and n cannot be uniquely deter-
mined, and independent constraints on one of the parameters is
required to reduce the non-uniqueness. In this work, we focus
only on inference of a spatially varying rigidity B, noting that
recent work has demonstrated that n may be estimated in
Greenland and Antarctica independently under certain flow con-
ditions (e.g. Bons and others, 2018; Millstein and others, 2022),
leading to a value of n =~ 4 which is consistent with experimental
analysis of ice deformation under realistic pressure environments
and strain rates (Qi and Goldsby, 2021).

Still, estimation of the optimal rigidity field is equivalent to
drawing only a single sample of B from the total statistical distri-
bution of fields that could explain the observations nearly as well
as the optimal one. This distribution is influenced by observa-
tional uncertainties as well as modeling uncertainties. For the lat-
ter, modeling uncertainties can stem from factors such as model
resolution (sensitivity of the forward model to variations in par-
ameter values) and model misspecification where the model
fails to capture relevant physics or makes improper assumptions
about certain aspects of the physics. Overall, quantification of
the distribution of parameter values is of equal importance to esti-
mating the optimal values, and it is ultimately necessary for
obtaining a realistic distribution of future ice states conditioned
on current-day observations (Aschwanden and others, 2021).

In this work, we aim to develop a framework for estimating the
distribution of ice rigidity for large study areas that combines
information extracted from relevant surface observations with
information obtained from prior theories, experimental/observa-
tional studies, etc. While such a framework has a long history
in Bayesian inference, our primary consideration in this work is
a matter of scalability to large datasets as well as to a large number
of effective model parameters. To that end, we build upon recent
developments in variational inference and physics-informed
machine learning to address the problem of scalability. We use
a combination of neural networks for modeling continuous sur-
face observations with variational Gaussian Processes for model-
ing ice rigidity probability distributions. The mapping between
surface observations and rigidity is provided by partial differential
equations (PDEs) describing ice flow, which ultimately allow us to
include a physics-informed loss function to the training objective
for the machine learning models. Both classes of models allow for
training with stochastic gradient descent, which is critical for scal-
ing the inference method to large datasets. We target select ice
shelves in Antarctica for demonstrating the proposed methods
as they provide a number of favorable modeling simplifications
while maintaining adequate complexity and large spatial extents
suitable for examining the advantages and disadvantages of the
proposed methods.

2. Methodology

In this section, we will introduce the governing equations for ice
flow that link spatial variations in our parameter of interest, ice
rigidity, to observations of ice shelf velocity and thickness. We
then introduce a probabilistic physics-informed machine learning
framework designed to produce a probability distribution of rigid-
ity fields consistent with the surface observations. We discuss how
we utilize variational Bayesian techniques to perform inference at
the scale of large ice shelves, observed with large datasets.
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2.1. Ice flow momentum balance forward model

Given a spatial domain with spatial coordinates specified by x,
where for two dimensions x =[x, y], our goal is to estimate the
most likely spatial field of ice rigidity, B = B(x), conditional on
observations of the flow of ice shelves and their geometry. To
that end, we utilize a momentum balance method to estimate B
that computes resistive stresses that optimally balance gravita-
tional driving stresses. Within ice shelves, resistive (vertical)
shear stresses at the base are negligible due to contact with rela-
tively inviscid seawater. Ice is a thin film with small thicknesses
relative to the horizontal dimensions (aerial extent). Thus, we
are justified in employing the widely used shallow-shelf approxi-
mation (SSA), which assumes negligible vertical shearing in a thin
film and vertically integrates viscosity and stresses in the ice
column to obtain a simplified 2D framework for the governing
equations of flow in ice shelves. We write the SSA momentum
balance as:

-2 2nh 28&4_@ -i—2 h %-}—&
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where u and v are the horizontal velocity components of the vel-
ocity vector, u, along the x- and y-directions, respectively, and
taken to be constant with depth; & is the ice thickness; s is the
ice surface elevation; 2m = B&. ™" is the effective dynamic vis-
cosity of ice (Eqn 1); p; is the mass density of ice (assumed to
be constant at p; = 917 kg/m?); and g is the gravitational acceler-
ation. In the above formulation, r, and r, on the left-hand side
represent residual terms in the momentum balance. For the gen-
eral SSA as applied to flowing ice where ice is grounded, such as at
ice streams, these residual terms are non-zero and correspond to
basal drag. However, since drag at the base of ice shelves is
assumed to be negligible because of the negligible viscosity of sea-
water, r, and r,, are nominally zero. Thus, we seek to construct the
field B(x) that provides an optimal balance between the mem-
brane stresses (first two terms on the right-hand side) and the
driving stress (last term on the right-hand side) such that r,
and r, are close to zero.

2.2. Reparameterization for ice rigidity

Before proceeding, we first introduce a commonly used reparame-
terization of the rigidity B:

B(x) = By(x) "™, 4)

where B, (x) represents some reference field of the rigidity and 6
(x) corresponds to logarithmic rigidity variations about By (x).
Since B is a strictly positive quantity, this reparameterization
allows for the transformation of an inequality-constrained infer-
ence problem on B to an unconstrained inference problem on 6
while also compressing the dynamic range of rigidity variations
to log-space (Shapero and others, 2021; Brinkerhoff, 2022).
Analysis of inferred variations in B can thus be performed by
inserting any inferred variations in 6 into the above equation.
Proper choice of the reference rigidity B, depends on the prior
information available, which we discuss in detail in later sections.
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2.3. Probabilistic inference of ice rigidity from remote-sensing
data

Observations of horizontal ice velocity over ice-sheet margins
have been widely available for the past decade thanks to the preva-
lence of remote-sensing platforms and efficient data processing
methodologies (Joughin and others, 2010; Mouginot and others,
2017; Gardner and others, 2019). At the same time, improved
integration of ice-penetrating radar and surface velocities using
mass conservation techniques have allowed for more accurate
and higher resolution maps of ice thickness and bathymetry
(Morlighem and others, 2017). Specifically, over ice shelves, it is
common practice to convert observations of surface elevation,
which are well constrained, to ice thickness by assuming hydro-
static equilibrium and applying corrections for firn layers derived
from in situ thickness data (Morlighem and others, 2020). Thus,
we can estimate spatial gradients and compute the SSA momen-
tum balance directly for a given rigidity field when velocity and
thickness observations are spatially continuous over an ice shelf.
However, observation noise and data gaps generally degrade esti-
mates of observation gradients, resulting in non-physical esti-
mates of SSA terms that require an additional gradient
operation. Therefore, we seek to formulate a method for approxi-
mating the continuous functions underlying the surface velocity,
ice thickness and ice rigidity fields that balance the reconstruction
accuracy of the observed data while resulting in minimal SSA
residuals, r. Furthermore, such a method should allow for rigor-
ous quantification of the uncertainties associated with 6, which
will be driven by observation noise, varying sensitivities of the
SSA equations to spatial variables, and prior knowledge on the
range of values for 6.

To that end, we utilize Bayes’ Theorem to construct the joint
posterior probability distribution for rigidity and the recon-
structed surface velocity and ice thickness, conditioned on a set
of velocity and thickness observations assimilated into the SSA
momentum balance. Let us first define the observation vector
d=[u, v, h], reconstructed observation vector d = [&, ¥, h],
and SSA residual vector r = [r,, 7,]. In the following, we consider
that all three vectors vary spatially over an ice shelf, i.e. d =d(x),
d=d(x) and r= r(x). We can then write the joint posterior dis-
tribution for 6 and d as (Appendix A):

p(6,dld, r) oc p(d|d)p(r|, d)p(6). (5)

The first two terms on the right-hand side of the equation are the
data likelihood distributions, where p(d|d) measures the probabll—
ity of observing d for a given set of predictions d while p(r|6, d)
measures the probability of computing r (which is nominally
[0, 0] for ice shelves) through evaluation of the SSA momentum
balance using d and 6. The last term on the right is the prior dis-
tribution p(6), which encodes our prior knowledge on 6 values
without having seen any observations.

2.4. Variational inference of ice rigidity

Due to non-linearities in the SSA momentum balance and poten-
tially non-Gaussian data likelihoods, the posterior for 6 and d
must be approximated, either by drawing random samples from
p(6, d|d, r) or by constructing a suitable approximating distribu-
tion. The former strategy is based on the general class of Markov
Chain Monte Carlo (MCMC) approaches and tends to be suitable
for a low or moderate number of model dimensions. However,
for spatial domains with sizes typical of Antarctic ice shelves,
the number of model dimensions will be quite high, regardless
of the model used to represent the spatial fields. Therefore, we
instead employ a variational inference framework wherein we
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aim to construct an approximating distribution, q(6, d), for 6
and d that is minimally divergent from the true posterior
p(6, d|d, ). The choice of approximating distribution generally
involves a trade-off between computational complexity (e.g. num-
ber of trainable parameters) and accuracy in capturing relevant
statistics and correlations in the target posterior (Blei and others,
2017). We discuss the choice of approximating distribution in the
next section.

At this stage, let us also enforce that g(6, d) is the product of
two independent variational distributions, g(6, d) = q(@)q(d)
This independence will allow us to use separate machine learning
models to reconstruct observations and predict rigidity while
using a joint objective function to tune their parameters simultan-
eously. Moreover, we restrict g(d) to produce only the mean
reconstructed velocity and thickness, assuming that information
about formal observation uncertainties can be obtained. Later,
we will discuss how this assumption on g(d) will affect the poster-
ior variance estimates for 6.

As is commonly done in variational inference, we utilize the
Kullback-Leibler (KL) divergence for measuring the difference
between two probability distributions:

LGP

6, d)|p(6, d|d, r)] = | q(6, d)1
£[q(6, d)lip(6, did, )] Jq‘ o8, 6, dla v “

By minimizing the KL-divergence, we are tuning the variational
distribution to be close to the target posterior distribution from
an informational perspective. However, the existence of the pos-
terior distribution in the denominator of the log term generally
makes computing the KL-divergence intractable. As shown in
Appendix A, we can instead maximize a stochastic variational
lower bound, referred to as the Evidence Lower Bound (ELBO):

ELBO = Eyy(p[logp(r|6, d)] + log p(d|d)
— KL[9(0)p(6)]. )

The first term for the ELBO is the expected value of the
log-likelihood for the SSA residual vector, r, for a given set of pre-
dictions d and integrated over the variational distribution for 6
(see Appendix A for estimation of this integral over ice shelves).
The second t erm for the ELBO is the data log-likelihood for
the observations d given predictions d. The last term is the
KL-divergence between the variational distribution g(6) and
prior p(6) for the rigidity, which can be computed analytically
for certain pairs of distributions, e.g. two multivariate normal dis-
tributions. Overall, the ELBO provides an objective function for
learning an approximating distribution for the spatial field of
rigidity, as well as the mean ice velocity and thickness fields. In
the next section, we discuss the choice of approximating distribu-
tion g(0) and the parameterization of spatial fields such that the
ELBO can be computed efficiently for large datasets and spatial
domains.

2.5. Parameterization of spatial fields and physics-informed
machine learning

We seek representations of the mean spatial fields d(x) and an
approximating distribution g(6) that permit efficient evaluation
of the ELBO in Eqn (7). For ice-sheet modeling in general, spatial
fields are typically discretized into an irregular mesh of triangular
finite elements. However, this approach can lead to a large num-
ber of nodal parameters for a given spatial field, particularly for
fields with high spatial variability with length scales on the
order of a few ice thicknesses. Large numbers of nodes can



severely restrict the choice of approximating distributions that are
computationally feasible. For example, for a mesh with N nodes,
an approximating multivariate normal distribution with a mean
vector of N elements and a covariance matrix of N> elements
would require excessive computer memory when N is greater
than a few thousand nodes.

Our strategy in this work is to adopt mesh-free parameteriza-
tions of spatial fields using two different machine learning mod-
els: (1) a neural network for the mean fields d(x); and (2) a
variational Gaussian Process (VGP) for the approximating distri-
bution for the rigidity field 6(x). Both models fall under the broad
classification of function approximators for a given set of data,
while the VGP (and Gaussian Processes in general) also approx-
imates the probability distribution of functions that generate the
given dataset. For the mean fields d(x), a dense, feedforward
neural network, f,, is used to represent the surface observations
on a point-by-point basis:

d; = fy(x), ®)

where d; is the vector of neural network predictions at the i-th
coordinate x;, and y represents the total set of weights and biases
of the hidden layers. The choice of feedforward networks in
this work is motivated by the ability to generate predictions of
d; at arbitrary coordinates, which facilitates mini-batch training
by stochastic gradient descent. For the ice shelf models investi-
gated here, we found that four-layer feedforward networks with
50-100 nodes per layer provide a suitable balance between expres-
sivity and computational efficiency. Additionally, we use tanh
activation functions as they are continuously differentiable and
result in spatial gradients that are spatially smooth (Riel and
others, 2021).

For the rigidity variational distribution, we exploit the ability
of Gaussian Processes (GPs) to construct an approximating multi-
variate normal distribution through computation of a mean vec-
tor for any set of coordinates and a covariance matrix for any
pairwise set of coordinates (Rasmussen, 2003). Multivariate nor-
mal distributions permit modeling of correlations between vari-
ables and have been shown to agree well with MCMC-sampled
posteriors for ice dynamics inverse problems (Petra and others,
2014). The mean and covariance both require the evaluation of
a kernel function that describes the expected similarity between
data points for a given coordinate pair. Here, we use a squared
exponential kernel:

(€)

nNT /
Ko x) — O;exp<_%),

where o is the kernel variance and L is a covariance length scale
that describes the characteristic distance up to which function
values at x and x' are correlated. However, as described in
Appendix B, the use of standard GPs to infer an approximating
distribution for a given dataset will be computationally prohibitive
for large datasets, which stems from the need to evaluate the ker-
nel at N coordinates in order to construct and invert a covariance
matrix of size N x N. For our study areas, N is usually on the order
of tens of thousands of points. Variational GPs are a modification
of standard GPs that utilize the concept of sparse inducing index
points for overcoming the prohibitive O(N?) memory and O(N?)
time requirements of large sets of index points for standard GPs
(Titsias, 2009). Rather than evaluating the kernel at N coordinates,
we evaluate the kernel at M inducing index coordinates, z, where
M < N. The inducing index points are sometimes referred to as
support points and act as a low-dimensional latent representation
of the data (Quinonero-Candela and Rasmussen, 2005). As

https://doi.org/10.1017/jog.2023.8 Published online by Cambridge University Press

Riel and Minchew

explained in Appendix B, computation of a posterior mean and
covariance matrix at an arbitrary number of prediction points
involves evaluation of the kernel at the prediction and inducing
index points and combining the kernel evaluations with a full-
rank covariance matrix at the inducing points. The number of
inducing points, M, is a prescribed parameter that provides
additional control on the complexity of the predicted variable
field. For the ice shelves studied here, we find that M between
300 and 1000 provides sufficient expressiveness for the rigidity
fields. Overall, the total set of trainable variables, ¢, for the
VGP consists of the inducing point locations z, the inducing
point mean values, the covariance matrix values at the inducing
points and the hyperparameters of the kernel (¢ and L). In the
following, we denote the approximating multivariate normal
distribution as g4(6).

While GPs and VGPs are usually trained in a supervised fash-
ion for a training dataset of N examples, we do not have a set of
ground truth rigidity values for 6. We instead insert g4(6) into the
ELBO in Eqn ( 7) in order to train f,, and g,(6) simultaneously.
This style of training is consistent with recent developments in
physics-informed machine learning where available physics
knowledge (in our case, the SSA momentum balance) is used to
augment observables with pseudo-observables, which can be use-
ful in domains where direct observations are impossible or diffi-
cult to obtain (Raissi and others, 2019; Riel and others, 2021).
Here, ice surface velocity and thickness are observable, and
their reconstructed values (generated by f,,) are used in conjunc-
tion with rigidity samples drawn from g,(6) in order to compute
the SSA residual pseudo-observables, which should nominally be
zero. We evaluate the SSA residuals at a random set of C ‘colloca-
tion’ coordinates, X, not included in the training data for f,, in
order to maximize the information extracted from the
pseudo-observables (Raissi and others, 2019).

The ELBO in Eqn (7) can now be written in terms of the
neural network parameters y and the VGP parameters ¢:

ELBO(‘% ¢) = E0[~q¢,(0[)[10gp(r|ewfl[l(xc))]

+ log p(dlfy(x)) — KL[q4(6)lp(6.)],  (10)

where we use the shorthand notation 8(x.) =6, and 6(z) = 6, to
indicate the rigidity field evaluated at the collocation points x.
and the inducing index points z, respectively. The neural network
fy is evaluated at the surface observation coordinates x. In this
work, we minimize the negative of the ELBO using the Adam
optimizer (Kingma and Ba, 2014) with a learning rate between
le™* and 5¢™* and batch sizes varying from 256 to 1024 examples.
Additionally, we often found it beneficial to pre-train the network
fy using only the middle term of the ELBO (i.e. fitting the obser-
vations without the rigidity field). The pre-training results in a f,,
that can then be fine-tuned with the full ELBO in order to
improve overall training convergence with the VGP. Typically,
we make a qualitative assessment of convergence by monitoring
the loss values for training and testing datasets (using a train-test
split of 85 and 15% of the data, respectively) and stop training
when reductions in the loss value are negligible (Fig. S1). A sum-
mary of the neural network and variational inference training
framework is described in Figure 1.

2.6. Selection of data likelihood and prior distributions

To concretize the ELBO training objective for the neural network
fv and VGP g,(6), we now discuss specification of the data like-
lihoods for the surface observations and SSA residuals and the
prior distribution for the rigidity.
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Fig. 1. lllustration of physics-informed variational inference framework. The two main components of the framework are the neural network f,, tasked with recon-
structing surface observations (grey box) and the variational Gaussian Process (VGP) tasked with generating the distribution g(6) (white box), which is a variational
approximation to the posterior distribution of the normalized ice rigidity parameter 6. The training loss function is the sum of: (1) a data likelihood loss measuring
the consistency between the reconstructed (predicted) and observed observations; (2) the expected value of the SSA residual likelihood given predicted rigidity
values and observations; and (3) the KL-divergence between the variational and prior distributions for rigidity. For the data likelihood, training data and corre-
sponding uncertainties and spatial coordinates are sampled from remote-sensing observations (red dots). For the SSA residual likelihood, an independent set
of collocation coordinates (x. and y., blue dots) are sampled from the model domain, which are input to f,, and the VGP in order to evaluate the SSA momentum

balance at those coordinates.

2.6.1. Data likelihood specification
For the likelihood p(d|d), we use independent normal distribu-
tions for the velocity components and ice thickness:

p(d|d) = p(ul@)p(v|P)p(hlh),
p(ultr) = N(u; 11, 02),
P[P = N(v; 9, 02),
p(hlh) = N'(hs b, 02,

1y

where the different o> variables correspond to the variances of
each observable. The observation variances may be prescribed
or learned, and in this work, we prescribe the variances to be
scaled values of formal observation uncertainties provided with
the datasets. We found that a scaling factor between 10 and 30
prevented the neural network f,, from overfitting the velocity
data in order to generate velocities that are more consistent
with the SSA momentum balance (e.g. mitigating high spatial fre-
quency velocity variations that are not well-modeled by the SSA
approximation). We further note that we apply a limited amount
of spatial smoothing to the velocity and thickness data (using a
Gaussian filter with a window size of roughly half of the mean
ice thickness of the shelf) in order to mitigate high-frequency
observation noise and improve training convergence.

For the likelihood p(r|6, d), we again use a normal
distribution:

p(r|6, d) = N'(x(6, d); 0, 0?), (12)
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where the mean of zero encodes that we expect r = r(6, 21) to be
zero on ice shelves, and o? is the expected variance of the
residuals. Prescribing a proper value of o2 for the likelihood dis-
tribution involves a careful consideration of the observation
uncertainties and the expected uncertainties in 6. In the general
case, one could perform a Monte Carlo estimate of o2 by input-
ting random realizations of the velocity data and samples of 6
from the prior into the SSA equations to get an expected range
of values for r. Using this approach, we find that o,~1kPa
works well for most cases and can be decreased for lower obser-
vation noise. Note that this approach does not explicitly consider
situations where the SSA (with zero basal drag for ice shelves) is
expected to perform poorly, such as pinning points where ice
shelves become locally grounded over bathymetric highs. These
epistemic uncertainties should correspond to an increase in o?2.
An additional improvement to the methods presented here is to
use a full variational distribution for g(d), rather than using only
the mean values d. Our restriction to the mean values for d likely
reduces the estimated posterior variance for 6, which can be par-
tially compensated by inflating 2. Overall, the likelihood formula-
tion can be improved by modeling the full probability distribution
for the surface observations, explicit handling of epistemic uncer-
tainties, incorporation of spatially correlated uncertainties (e.g.
Brinkerhoff, 2022) and using a non-Gaussian probability distribu-
tion. We leave these improvements for future exploration.

2.6.2. Prior distribution
As discussed earlier, the VGP uses a squared exponential kernel
function for posterior inference of rigidity (Eqn 9). Likewise, we



use the squared exponential kernel to construct the GP prior p(6)
in order to encourage spatial coherence between predictions of 6
at different coordinates:
nNT ’
Kprior(3, X)) = o%exp(— o) xmx) X;Lé" = )), (13)
where the prior variance and length scale, 0% and Ly, are pre-
scribed and not tuned during minimization of the negative
ELBO. For ice dynamics well-described by the SSA approxima-
tion, Ly can usually be chosen to be some finite multiple of the
mean ice shelf thickness, which is commensurate with the longi-
tudinal stress coupling length scale (Cuffey and Paterson, 2010).
The complete prior distribution is written as:
P(O(X)) = N (0, Kprior (%, X)) (14)
Since we enforce a prior mean of zero, the prior variance 0% will
depend on the value of B, used for the reparameterization of
rigidity. In this work, we investigate two different strategies: (i)
assume that By is uniform; or (ii) estimating a spatial field By(x)
independently through an inversion using traditional control
methods. For the second strategy, recall that traditional control
methods generally use an optimization objective based on the
misfit between observed and predicted ice velocities, which is dif-
ferent from the momentum balance optimization objective used
here. Therefore, the velocity misfit-based objective will implicitly
have different spatially varying sensitives to the parameter field
than the momentum balance objective, which provides an oppor-
tunity to combine the two objectives in a complementary manner.
For the two different strategies for selecting By, we also corres-
pondingly adjust the prior variance. For a uniform B,, we set
0% =1 to allow for a relatively large variation in 6 over the ice
shelf. For a B, obtained from a control method inversion, we
reduce o7 to 0.2, which encodes our belief that the values of B
from the inversion are relatively well-constrained, and 6 thus
represents smaller deviations of B dictated by the momentum
balance optimization objective.

2.7. Generating shelf-wide samples of the ice rigidity

While the VGP utilizes inducing index points to allow for per-
batch prediction of 8 and the corresponding posterior covariance
matrices, we require an algorithm for generating a random sample
of 6 with a given spatial resolution over the entire modeling
domain. Even with the use of inducing points, assembling global
posterior mean and covariance matrices for the entire domain
would require a very large amount of memory for uniform
grids with sizes exceeding tens of thousands of grid points
(O(NM) memory requirements for N grid points and M inducing
points). We therefore utilize an MCMC-based approach where a
random sample of 6 is generated at a limited set of coordinates
within the ice shelf and used as a seed to grow a full chain over
the entire shelf, which is equivalent to block-sampling approaches
for sampling Gaussian Markov Random Fields (e.g. Rue, 2001).
Note that this form of MCMC utilizes the posterior statistics
learned from variational inference and does not involve evalu-
ation of a physics-based forward model. Specifically, we apply
Gibbs sampling on a block-by-block basis where a block is
defined as a small subset of the uniform grid. For each block,
the mean m, and covariance matrix 24 are computed using the
trained VGP. In this way, we can grow a random chain through
successive evaluation of smaller multivariate normal distributions
rather using a multivariate normal with a very large global covari-
ance matrix. As an example, assume that the first two blocks are
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combined in the following partition:

(15)

Then, initialization of a Gibbs chain would use the following
identities:

Mo 2 < 4,(0(x)), (16a)
0, ~ N(my, 2n1), (16b)
02 ~ N(”’Z + 2'212'1_11(01 - ”1)’ 222 - 22121_11212). (16C)

In words, we use the trained VGP to generate a mean vector and
covariance matrix for two blocks of coordinates, which are then
partitioned according to Eqn (15). A sample 6, = 6(x;) is drawn
directly from the mean and covariance of the first block. Then,
a sample 6, = 6(x,) is drawn from a multivariate normal with a
mean and covariance that are computed using the Schur comple-
ment. We then set g, < i, 6, < 0, X, < X,,, and use the VGP to
predict the mean and covariance for the next set of blocks. The
process is repeated for all blocks in the modeling domain. With
this approach, each sample is independent of the previous sample
and is accepted with a probability of 1. In our experiments, we
found that if the block size was chosen to be too small, the vari-
ance of the final sample was artificially large, likely due to exces-
sive truncation of the covariance matrix (depending on the
resolution of the uniform grid relative to the length scale of the
posterior variations in rigidity). Here, we found a block size of
1000 grid points works well for grids with cell sizes equal to
roughly half or a quarter of the prior covariance lengthscale.
Opverall, we can validate the samples derived from the Gibbs sam-
pler by viewing traceplots (plots of samples at independent coor-
dinates) and cross-comparing the standard deviation fields
between the sample standard deviation and the standard deviation
predicted directly by the VGP (Fig. S6).

2.8. Related work

Bayesian inference has long been applied to geophysical inverse
problems, and as computational resources and inference algo-
rithms improve, the complexity and size of the physical models
investigated has increased. Within glaciological inverse pro-
blems, Bayesian formulations of the posterior distributions
have been used as cost functions for obtaining point estimates
of basal topography and friction for grounded ice streams
(Pralong and Gudmundsson, 2011). For fully Bayesian inference,
Petra and others (2014) developed an MCMC method for esti-
mating the posterior distribution for ice-sheet models with a
large number of parameters, utilizing low-rank approximations
of data likelihood Hessian matrices in order to reduce computa-
tional complexity while improving sample efficiency. Similarly,
Gopalan and others (2021) used a Gibbs sampler in order to
sample for ice stream model parameters for a simpler model
applicable to slower-flowing ice. While MCMC methods gener-
ally serve as ‘gold standards’ for Bayesian inference, they do not
scale well to large problem sizes. MCMC methods that invoke
simpler proposal distributions usually require many more
samples in order to sufficiently sample the posterior, whereas
methods that can utilize the problem structure to improve
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sample efficiency require more computational resources (Petra
and others, 2014).

Methods that approximate the posterior distribution, rather
than sample from it, provide appealing alternatives to MCMC.
Both Isaac and others (2015) and Babaniyi and others (2021) util-
ize a Gaussian approximation of the posterior centered on the
maximum a posteriori (MAP) point (i.e. a Laplace approxima-
tion) in order to infer basal drag parameters for ice sheets.
While Laplace approximations subvert the need for generating
posterior samples (and the forward model evaluations associated
with each sample), they can lead to posterior approximations that
fail to capture much of the probability mass when the posterior is
sufficiently non-Gaussian or multi-modal (Penny and others,
2007). In contrast, variational methods that utilize the KL-
divergence as an optimization criterion (as done here) tend
to favor approximating distributions that match the moments of
the target distribution (e.g. mean and variance), which tends to
capture more probability mass. Sufficient capturing of probability
mass can be especially important for posterior predictive model-
ing where non-linearities can lead to a large spread of predictions
(e.g. see the section on ice shelf buttressing).

To that end, Brinkerhoff (2022) introduced a variational
inference method to jointly infer basal drag and ice rheology
at a catchment-scale for glaciers. Importantly, the KL-
divergence was used to estimate an optimal approximating
distribution that also uses a Gaussian process prior, similar to
the approximating distributions used in our work. A finite
number of eigenvectors of the prior covariance are used to con-
struct a linear model that permits inference at a lower dimen-
sion, similar to the sparse inducing points used in the VGP.
The construction of the eigenvectors utilizes a coarse grid in
the Fourier domain to model signals with a discrete set of spa-
tial frequencies. Thus, the method of Brinkerhoff (2022) shares
many of the same features proposed here, with two main differ-
ences. Firstly, we take the ice surface velocity and thickness as
given (subject to smoothing) and use the momentum balance
based on the SSA as our forward model in order to compute
r. On the other hand, all of the previous approaches strictly
enforce r =0 (i.e. they take satisfaction of the SSA momentum
balance as a constraint) and use predicted velocities as the for-
ward model. The difference between the two approaches may be
interpreted as taking two different pathways to the same solu-
tion, where the difference in forward models will lead to differ-
ent sensitivities to the ice rheology parameters (see Discussion
section). Furthermore, our parameterization of the spatial fields
with neural networks and VGPs permits independent evalu-
ation of the spatial gradients in the SSA momentum balance
using automatic differentiation. This independence allows for
batch-based stochastic gradient descent, which is advantageous
for large datasets.

3. Application to simulated ice shelves

We now apply the physics-informed variational framework to
simulated ice shelves in order to evaluate the recovery of ice rigid-
ity under varying degrees of model complexity and uncertainty
and data noise. Furthermore, the simulated ice shelves allow us
to isolate which mechanical factors control the inferred rigidity
uncertainties, which will aid in building intuition for application
of the framework to natural settings.

3.1. 1D ice shelf

We first simulate a laterally confined ice shelf using 1D SSA equations
where lateral drag is parameterized assuming a rectangular bed with
width w in the across-flow direction (Nick and others, 2010). The
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momentum equation in the along-flow direction reduces to:

0 (4 20\ _2Bh (5\'"_ G
ax U oy w \w) TP

As there are no time derivatives in the momentum balance for ice
flow, the above equation is solved for u for a given thickness profile
h. The thickness is then evolved using mass conservation:

17)

oh dq
- 18
ot ox (1%)
where a is the accumulation rate (set to 0 for this example) and g = uh
is the horizontal ice flux through a vertical column of ice.

3.1.1. Simulation setup

We simulate an ice shelf with a width of 30 km and a length of
100 km, which is comparable to ice shelves of several ice streams
in West Antarctica, such as Rutford Ice Stream. We prescribe a
spatially varying B profile that is periodic in the along-flow dir-
ection while setting the flow law exponent to be uniform at n = 3.
After simulating the shelf for 400 years to an approximate
steady-state, we extract 200 random velocity and thickness
values over the model domain to use as training data. We add
spatially correlated noise by convolving a 1D field of independ-
ent Gaussian noise with a Gaussian kernel with a lengthscale of
5 km. We train a feedforward neural network with four hidden
layers of 50 nodes each in order to reconstruct the velocity and
thickness and a VGP with 15 inducing index points in order to
predict the log rigidity 6. We use an a priori value of the prefac-
tor By =400 yr'’kPa. For the prior distribution for 6, we
describe a prior standard deviation of oy = 1 and a correlation
lengthscale of Ly = 15 km. For the data likelihood parameteriz-
ing the residual SSA terms, we use an independent normal
distribution with a mean of zero and a standard deviation of
o,=2.0.

3.1.2. Evaluation of variational inference

As is commonly done in studies investigating variational infer-
ence techniques to approximate a target posterior distribution,
we compare the estimated variational distribution with direct
samples from the posterior using MCMC. Here, we utilize a No
U-Turn Sampler scheme implemented in the NumPyro Python
package (Phan and others, 2019), which uses automatic differen-
tiation to efficiently generate sample trajectories for moderately
high numbers of model parameters. We use the velocity and
thickness predictions from the neural network as the observations
such that MCMC only samples the rigidity posterior distribution,
which allows for a more direct comparison between the vari-
ational and sampled posterior.

We find that both MCMC and variational inference recover a
posterior mean profile for 6 that is close to the true values for
areas >20 km upstream from the ice front (Fig. 2). Close to the
ice front, both methods predict uncertainties that are substantially
larger due to thinner ice, which reduces the sensitivity of the
longitudinal and lateral membrane stresses (left-hand terms in
Eqn (17)) to rigidity variations. These uncertainties near the ice
front can likely be reduced by augmenting the SSA residual loss
with a dynamic boundary condition at the ice front that balances
longitudinal stresses normal to the ice front with the difference in
hydrostatic pressure between the ice and ocean water (Larour and
others, 2005). Pair plots of marginal distributions of € at different
locations along the ice shelf show that the variational approach is
able to recover strong covariances between 6 samples for locations
that are relatively close to each other while ensuring samples
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Fig. 2. Posterior inference of ice rigidity for simulated 1D ice shelf. (a) Posterior marginal distributions for 6 at different locations along the ice shelf. The grounding
line is at X=0km and the ice front is at X =100 km. Diagonal plots show the 1D marginals computed from posterior samples generated with MCMC (blue) and the
variational Gaussian process (VGP; orange). Off-diagonal plots show 2D covariance plots for the same sample set. All marginals have been smoothed using a
Gaussian kernel density estimator. (b) Velocity (blue) and ice thickness (orange) of ice shelf used for posterior inference. (c) Comparison of the true 6(X) against
the mean 6(X) computed from the MCMC samples (blue) and the VGP (orange). The shaded regions correspond to 2o posterior uncertainties. Overall, the posterior
distributions for MCMC and VGP are very similar. The largest deviations occur near the ice front where the marginals exhibit stronger non-Gaussian behavior, which

cannot be modeled by the VGP.

are uncorrelated for larger pair-wise distances. In general, the
strength of the posterior covariance will be modulated by the
physical model as well as the prior correlation lengthscale.
Closer to the ice front, the marginal distributions derived from
MCMC indicate a slight deviation from Gaussian behavior,
which is again likely due to the lower ice thicknesses limiting
ice stress sensitivity to rigidity variations. Since the variational dis-
tribution is constrained to be a multivariate normal, it is unable to
recover the skewed, non-Gaussian behavior in the marginals in
these areas. For applications where it is desirable to place more
probability mass in the longer-tails of the posterior distribution,
one could simply increase relevant variances (oy, o,) to inflate
the variational posterior variances or use a more flexible vari-
ational approximation not restricted to multivariate normals
(Rezende and Mohamed, 2015).
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3.2. 2D ice shelf

We now simulate a 2D ice shelf using the icepack ice flow mod-
eling software (Shapero and others, 2021). Similar to the synthetic
ice shelf presented in Shapero and others (2021), we prescribe a
semi-circular shelf geometry with four inlet glaciers of varying
widths (Fig. 3). Additionally, we prescribe a bed topography
that results in a few pinning points where the flotation height is
positive, ie. the ice is actually grounded at these locations.
Under the shallow-stream approximation, we prescribe a basal
drag friction coefficient proportional to the flotation height
such that friction is only non-zero for grounded ice. Such pinning
points in the form of ice rumples are common in ice shelves in
Antarctica. However, assuming a fully floating ice shelf during
inversion for rheological parameters will introduce errors into
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Fig. 3. 2D ice shelf with simulated damage evolution and pinning points. The simulation outputs shown are computed from 700 years of spinup in order to achieve
steady state. The ice shelf is fed by four inlet ice streams, as evidenced by the flow speed (a) and ice thickness (b). Height-above-flotation (HAF) in (c) shows the
location and orientation of the prescribed pinning points. The steady-state ice rigidity B (d) reflects damage accumulation due to shear margin weakening and ice
thinning due to large strain-rates over the pinning points. The effective strain rate (e) and effective dynamic viscosity (f) are approximately inversely related and
show strong shearing in the ice between the inlet flow, as well as over the pinning points. Strain rates are lower closer to the ice front. The effective viscosity
exhibits a mix of long-wavelength variations within flow units and short-wavelength variations near the shear margins.

the inferred parameter field due to model mismatch. Therefore,
by purposefully injecting modeling errors into the estimation pro-
cedure, we can assess how the two different cost functions and the
estimated parameter uncertainties respond to such errors.

We use icepack to first simulate the evolution of shelf velocity
and thickness for roughly 500 years with a constant ice rigidity,
By, corresponding to an ice temperature of —5°C, a net surface
mass balance of 0, and a stress exponent of n = 4. Here, we choose
n =4 1in order to evaluate the sensitivity of the rigidity inference to
2D ice stress variations that are more likely to be found in natural
environments of fast-flowing ice (Bons and others, 2018; Millstein
and others, 2022). After the first simulation stage, we apply a con-
tinuum damage mechanics model that modulates the rigidity field
with an evolving damage factor, D, such that Bp=(1 —D)B,
(Borstad and others, 2013; Albrecht and Levermann, 2014).
This approach provides a physically realistic means to obtain a
spatially varying prefactor field with rheology-modifying pro-
cesses such as shear weakening. We run the damage-enhanced
model for an additional 200 years to achieve approximate
steady-state. At the end of the simulation, we can observe substan-
tial spatial variation in damage, where ice is nearly undamaged at
the grounding line (due to a zero-damage boundary condition)
and highly damaged near the ice front, at shear margins and
downstream of the pinning points. The dynamic effective viscos-
ity field shows concentrated low viscosities near the pinning
points and higher viscosities between the inlet ice streams
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where deformation rates are lower. Overall, the viscosities exhibit
a mix of short- and long-wavelength features, which are mirrored
in the effective strain rate field.

3.2.1. Variational inference setup

For recovery of the rigidity field, as we discussed during selection
of the prior variance, we explore both the conventional control
method-based inversion and the variational inference approach
based on the momentum balance objective, as well as a combin-
ation of the two where we use the inversion to set By for the prior.
For all approaches, we use the simulated ice surface elevation to
compute ice thickness by assuming hydrostatic equilibrium
(buoyancy). Over floating ice, the thickness values derived from
buoyancy are identical to the simulated thickness, but over the
pinning points, the actual thickness values are lower, which
results in an overestimation of the driving stress variations
using the buoyancy conversion (Fig. S2). Furthermore, assuming
flotation for the entire ice shelf will neglect the basal drag pro-
vided by the pinning points. The combined data and modeling
errors will impact recovery of the prefactor field, which we explore
shortly.

The control method inversion is again performed with ice-
pack, using a Gauss—-Newton solver to minimize a joint objective
function that combines a velocity prediction error function and a
regularization function based on the first-derivative of the log
rigidity field, 6. The inversion includes Dirichlet boundary
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conditions for velocity values at the grounding line and Neumann
(dynamic) boundary conditions at the ice-ocean interface. For the
variational inference problem, we select 20 000 uniformly random
locations on the ice shelf to extract velocity and thickness values
to use as training data for the network f,, (feedforward network of
four layers of 100 nodes each), which is only tasked with recon-
structing the surface observations. We select an additional, inde-
pendent set of 20 000 random locations, or collocation points, for
training the VGP (with 750 inducing index points), which is
tasked with predicting the parameters of the variational distribu-
tion g(6). Both the number of observations and collocation points
will influence the effective spatial resolution of 8 and can be inter-
preted as a mesh-free analog of the mesh element size. For all
priors, we prescribe a lengthscale of 15km, and for the prior
with a uniform By, we use a value of By=260 yr'/*kPa. After
training, we evaluate training performance by reconstructing the
surface observations over the entire model domain (using f,),
as well as the predicted SSA residuals (using f,, and mean rigidity
as predicted by the VGP). For the variational inference predic-
tions, the observation misfits and drag residual are minimal
over most of the modeling domain but are higher over the two
largest pinning points (Fig. S4). The higher errors are a function
of oversmoothing of the observations and model mismatch, which
amounts to assuming ice is floating over the grounded pinning
points. As a consistency check, we use the posterior samples of
6 to generate stochastic predictions of velocity using the standard
forward model and find that velocity errors are generally <5% of
the flow speed, with higher error values localized to the pinning
points (Fig. S5). We note that the velocity errors are commensur-
ate with those from the conventional inversion.

3.2.2. Evaluation of rigidity reconstruction errors

A more detailed comparison of the recovery error for B (recovered
using B = By e%) between the control method inversion and vari-
ational inference reveals that the two methods are complemen-
tary. The control method inversion has the lowest overall error
bias, but the areas where the errors are largest are systematically
upstream of the pinning points (Fig. 4). Since we assume all ice
is floating for the forward model, the missing resistive stress pro-
vided by drag at grounded ice is compensated by artificially mak-
ing the ice stiffer upstream of the pinning points, which acts to
slow the ice down in a manner that allows the predicted velocities
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to match the observed velocities. In contrast, the B recovered by
variational inference (which uses the SSA momentum balance
as a forward model) shows larger errors directly over the pinning
points, as well as in areas where ice is stagnant (low strain rate).
Over the pinning points, the true rheology sharply varies from
about 250 to 200 prior yr'/*kPa (Fig. 3d). However, the prior
lengthscale of 15km encourages spatially smoother fields of ice
rigidity, which limits the dynamic range of ice stresses that can
be modeled in order to satisfy the SSA momentum balance.
Since the driving stress variations over the pinning points are
overestimated due to the buoyancy assumption (Fig. S2), the pre-
ferred solution is to smooth out all stress variations over the
grounded ice in order to minimize the residual SSA terms.
Upstream of the pinning points and closer to the grounding
line, the recovery errors are actually lower using variational infer-
ence as compared to the control method inversion. The spatial
patterns in the recovery errors are similar to the patterns of
residual SSA components (Fig. S4). Finally, by using the control
method inversion as the reference B, for variational inference,
we can minimize much of the recovery errors closer to the ice
front and in areas where strain rates are lower but flow speeds
are still high, i.e. areas where the inversion has greater sensitivity
and where the dynamic boundary condition at the ice-ocean
interface provides additional constraints on the rigidity (Fig. 4c).

3.2.3. Evaluation of rigidity uncertainties

The predicted uncertainties for @ are consistent with the recon-
struction errors: uncertainties are higher closer to the ice front
where ice thicknesses are lower (as observed in the 1D case), as
well as in more stagnant ice where strain rates are lower
(Figs 4d, 5). Uncertainties near the ice front are reduced when
using B, from the control method inversion (Fig. S3), which is
again likely due to the incorporation of the dynamic boundary
condition at the ice-ocean interface which also reduced recon-
struction errors. In areas where ice is thinner but strain rates
are higher (e.g. higher shear strain rate in the areas between the
fast-flowing ice), the balance between extensional stresses and lat-
eral drag also provides sufficient signal for reducing uncertainties.
In a few isolated patches, even when effective strain rates are low
and ice is relatively thin, slightly positive lateral forces that act as a
‘pull’ on the ice can also reduce uncertainties (Fig. 5). Directly
over the pinning points, uncertainties are low due to the high
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Fig. 4. Comparison of reconstruction errors for mean inferred ice rigidity between control method inversion and the proposed variational inference method. (a)
Error (B — Byye) for control method inversion using icepack. (b) Error for variational inference with a uniform B, field. (c) Error for variational inference using the
control method inversion for By. (d) Inferred uncertainty for normalized rigidity parameter 6 using the control method inversion for B,. Black dashed lines corres-
pond to a thickness contour of 150 m while the white dashed lines correspond to an effective strain rate contour of 107>® a™. (e) Histograms of errors for different
methods. Higher reconstruction errors and uncertainties are mostly concentrated in thinner ice and areas with lower effective strain rates.
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strain rates there. This mismatch between low uncertainties and
high SSA residuals over the pinning points may be compensated
by inflating the variance o2 over areas where measured flotation
height is near zero (see Discussion section). Downstream of the
pinning points, we observe higher uncertainties due to down-
stream thinning of the ice. Overall, the uncertainty maps for 6
indicate that areas with thicker ice and higher strain rates are
better constrained, and targeted inverse modeling (e.g. estimating
B, from a control method inversion) can be an effective tool for
further reducing uncertainties (Fig. S3).

4. West Antarctica ice shelves

We now apply our methods to select large ice shelves in West
Antarctica, specifically the Larsen C Ice Shelf (LCIS),
Filcher-Ronne Ice Shelf (FRIS), Ross Ice Shelf (RIS) and the com-
bined Brunt Ice Shelf with Stancombe-Wills Ice Tongue and
Riiser-Larsen Ice Shelf (B-SW-RL) (Fig. 6). These ice shelves
are fairly representative of shelf environments on the Antarctic
coast and serve as a robust testing suite for several reasons. Firstly,
they encompass a large area (48, 380, 440 and 68 x 10> km® for
LCIS, FRIS, RIS and B-SW-RL, respectively), corresponding to a
large number of effective modeling parameters in order to test the
inference capacity of the VGP. Secondly, the ice shelves are subject
to different flow and buttressing environments. Large ice rises in
Larsen C have favored the formation of large rifts, the evolution
of which are complicated by the presence of mechanically weak
suture zones that likely contain large proportions of mechanically
weak marine ice (Jansen and others, 2013; Kulessa and others,
2014; Borstad and others, 2017). Within Ross Ice Shelf (the largest
ice shelf in Antarctica), a mix of ice rises, ice rumples and large
islands serve to create a heterogeneous flow environment involv-
ing localized grounding, rift formation and shear margin weaken-
ing. Many of these pinning points lie in the western portion of the
shelf off the Siple Coast, which drains much of the West Antarctic
Ice Sheet through fast-flowing ice streams. Filchner-Ronne is also
fed by several fast-flowing ice streams with large ice thicknesses,
leading to larger driving stresses over the ice shelf with the highest
overall flow speeds of the ice shelves examined here. The
Brunt-Stancomb-Wills-Riiser-Larsen shelf complex (B-SW-RL)
is subject to lower buttressing than Larsen C or Ronne-Filchner
due to lack of embayments. However, within the Riiser-Larsen
shelf are a few prominent pinning points that do provide limited but-
tressing but also serve as potential areas of model mismatch, similar
to the synthetic ice shelf we previously investigated. Additionally,
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much of the ice in the Stancomb-Wills ice tongue is more loosely
packed, leading to large surface gradients at the edges of individual
ice units that are not well-matched to velocity variations.

4.1. Remote-sensing data and pre-processing strategy

For RIS and B-SW-RL, we use the MEaSUREs velocity mosaic
(Rignot and others, 2011; Mouginot and others, 2012), which
combines speckle tracking of SAR images from various satellite
platforms with feature tracking of Landsat 8 images and has a
nominal temporal coverage between 2009 and 2016. For LCIS
and FRIS, we use a 2020 annual velocity mosaic provided by
ITS_LIVE, which is derived from feature tracking of Landsat 7
and 8 images over Antarctica (Gardner and others, 2019). From
a visual inspection, we found that the ITS_LIVE mosaic exhibited
fewer velocity artifacts for LCIS and FRIS, whereas the
MEaSUREs mosaic exhibited fewer artifacts over B-SW-RL and
provided full coverage over RIS. Ice thickness and elevation data
are derived from BedMachine V2 (Morlighem and others,
2020), which combines radar-estimated thickness profiles with
mass conservation constraints and firn corrections in order to
obtain continuous thickness maps. While the nominal year for
the thickness data is 2015, the correspondence between the vel-
ocity and thickness data are sufficient for the spatial resolution
of our analysis (assuming an upper bound of ~5km of motion
for feature advection). For all velocity and thickness rasters, we
first perform a void-filling operation that uses a spring-based
PDE constraint to fill in missing data (D’Errico, 2012). The rasters
are then filtered to ~10—15 times the average ice thickness using a
Savitzky-Golay filter in order to remove high-frequency compo-
nents not resolvable by the SSA momentum balance.

4.2. Variational inference setup

As with the simulated ice shelf, we first invert for B using icepack
in order to optimize a cost function combining a velocity misfit
term (weighted by the formal uncertainties for the velocity esti-
mates) and a regularization term based on first-order spatial gra-
dients to encourage smoother solutions. All ice shelves are
discretized into 2D triangular finite elements with an average
size of 5km. A penalty parameter controlling the relative contri-
bution of the regularization term is selected with a standard
L-curve analysis, independently for each ice shelf. For each ice
shelf, we use feedforward neural networks with four layers of
100 nodes each and VGPs with 600-900 inducing index points.
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in compressional zones.

The training data for the feedforward neural networks and the
collocation points for the VGP are independently constructed
with a point density of 2 points per 10 square kilometers,
which is commensurate with the size of the mesh elements used
for the icepack inversion. This point density for the VGP is suf-
ficient to model a moderate-resolution (~20km) 6 field, which
when combined with the higher-resolution B, from the control
method inversion results in rigidity samples that resolve import-
ant variations near shear margins and rifts. The neural network
training observations are randomly sampled directly from the ras-
ter grids, whereas the collocation points are randomly generated
using a latin hypercube sampling scheme. Finally, we use the esti-
mated B field as the reference field B, for parameterization of 6,
setting the prior variance for 8 to 0.2

4.3. Analysis of rigidity mean and uncertainty fields

To a first-order approximation, ice is inferred to be stiffer for FRIS
and RIS than for LCIS and BWSRL, and average rigidity values
for LCIS are the lowest of the four (Fig. 6). These first-order
trends are well-matched by modeled ice shelf surface temperatures
where temperatures for FRIS are generally around —25 to —30°C,
whereas for LCIS they range from —15 to —10°C (Fig. S8).
However, all ice shelves exhibit significant spatial variability in
inferred ice rigidity beyond surface temperature variations in
order to minimize SSA residuals (Figs S9, $10). For FRIS, the esti-
mated mean B field is broadly consistent with results from prior
studies (e.g. MacAyeal and others, 1998; Larour and others, 2005).
Ice is inferred to be substantially softer in the shear margins where
strong lateral shearing leads to viscous dissipation and elevated ice
temperatures. These shear margins are prominent in the Ronne
Ice Shelf where fast-flowing floating ice is in contact with rock
(along the Orville coast and Berkner Island) or stagnant ice, as
is the case downstream of the Korff Ice Rise. As discussed in
Larour and others (2005), larger basal melt rates on the northern
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tip of the Henry Ice Rise are coincident with softer ice. Within the
Filchner Ice Shelf, lower overall values of B indicate softer ice,
again in the shear margins where ice streams flow onto the
shelf and are in contact with stagnant ice. A large lateral surface
crevasse close to the ice front is also associated with higher strain
rates and softer ice. We can also observe localized regions of sub-
stantially stiffer ice, such as downstream of the Foundation Ice
Stream and upstream of the Korff and Henry Ice Rises. These
regions are associated with larger driving stresses (Fig. S7) such
that ice is inferred to be stiffer in order to provide enough resistive
stresses to balance those driving stresses. Ice is also inferred to be
stiffer closer to the grounding line where colder ice is advected by
the ice streams. For all ice shelves, rigidity uncertainties are mostly
lower where ice is thicker and strain rates are larger, similar to what
was observed for the simulated 1D and 2D ice shelves (Fig. 7).
Similar to FRIS, the ice in the central portions of RIS are
inferred to be more rigid, likely due to relatively cold surface tem-
peratures of —20 °C. However, we can also observe zones of softer
ice near shear margins and localized areas of grounding. At the
inlet of the Byrd Glacier to the west, prominent shear margins
separating the fast-flowing inlet ice from more stagnant shelf ice
are coherent for more than 300 km downstream of the grounding
line (Fig. S7), which results in substantial shear weakening. In the
central trunk of the Byrd Glacier inlet, the reduction in flow speed
as the ice flows onto RIS leads to enhanced compressional stress
and thickening of the ice, leading to inferred higher B values. On
the east side of RIS, the Shirase Coast Ice Rumples (SCIR) at the
outlet of the MacAyeal and Bindschadler Ice Streams significantly
modify the flow field and ice thickness due to grounding of the
ice, consistent with the simulated pinning points for the synthetic
ice shelf. Thinning of ice downstream of SCIR and diversion of
the shear margins toward Roosevelt Island (RI) are both dynam-
ical effects that modify the buttressing capability of ice in this
region (Still and others, 2019; Still and Hulbe, 2021). In our
inferred B field, the ice covering the rumples is inferred to be
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softer while the downstream ice connected to RI is inferred to be
stiffer. Alternatively, the ice upstream of Steershead Ice Rise (SIR)
is near-stagnant, leading to very high inferred values for B.
Downstream of SIR is a streakline of thin ice coincident with
the shear margin of the inlet of MacAyeal and Bindschadler Ice
Streams, leading to a narrow zone of soft ice that persists nearly
all the way to the ice front.

At LCIS, the softest ice is inferred within highly localized areas
corresponding to surface crevassing, including the large rift ori-
ginating from the Gipps Ice Rise (Khazendar and others, 2011;
Larour and others, 2021). It is likely that some fraction of the
inferred softness is due to not explicitly including rifts (geomet-
rically and dynamically) within the ice flow model, which can
reproduce a significant proportion of the observed strain rates
with active opening/closing of rifts (Larour and others, 2021).
As is the case with FRIS, stiffer ice is inferred near the grounding
line where colder and thicker ice is advected downstream by the
inlet ice streams. Within the ice shelf, areas in between faster flow-
ing ice correspond to thinner ice and higher strain rates, resulting
in softer ice. Unlike FRIS, the proximity of the fast flowing inlet
ice streams with one another limits the areal extent of stagnant
ice over Larsen C. High effective strain rates between ice streams
are aligned with the initiation of suture zones where mechanically
weak marine ice (sourced from warmer ocean water) has been
observed to accumulate at the base of LCIS (Kulessa and others,
2014). The initial portion of the suture zones within approximately
20-30km downstream of promontories and peninsulas are asso-
ciated with inferred softer ice. Upstream of the Bawden Ice Rise
(BIR), strain rates are substantially lower and correspond to larger
inferred B values. Here, the correspondence between large fractures
and a simulated confluence of meltwater plumes is hypothesized to
stimulate abundant accretion of marine ice, which can actually lead
to ice stiffening (Khazendar and others, 2011).

Finally, for B-SW-RL, ice is inferred to be substantially softer
in the mélange area that separates the Brunt Ice Shelf from the
Stancomb-Wills Ice Tongue, as well as in the mélange that
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Fig. 7. Estimated 1-o B uncertainties for West Antarctic ice shelves.
Uncertainties are generally larger for higher B values (scale-
dependence) and for areas with thinner ice and lower driving stres-
ses. Uncertainties tend to be lower closer to the grounding line.

separates the latter from the Riiser-Larsen Ice Shelf. These
areas, which contain a heterogeneous mixture of marine ice, sea
ice and ice shelf debris, have previously been inferred to exhibit
lower rigidity values (within a continuum mechanics model)
and act to bind large ice fragments to the coast (Khazendar and
others, 2009). Since the mélange is less coherent than meteoric
ice advected from the ice streams, it deforms readily and corre-
sponds to high strain rates. Additionally, prominent surface cre-
vasses throughout B-SW are also associated with softer ice,
including several transverse rifts close to the grounding line of
Brunt Ice Shelf and a frontal rift separating the northeastern cor-
ner of Brunt Ice Shelf from the Stancomb-Wills Ice Tongue. Since
the nominal temporal coverage of the MEaSURESs velocity data is
2009-2016, the Halloween Crack has not yet initiated (De Rydt
and others, 2019). At the southern edge of Brunt Ice Shelf at
the base of Chasm 1, ice is actually inferred to have high mean
B, but since uncertainties are large here (Fig. 7), we consider
this to be a smoothing artifact stemming from larger thickness
errors near the large rifts. Upstream of the prominent pinning
point on the Riiser-Larsen Ice Shelf (PP in Fig. 6), ice is inferred
to be stiffer, similar to what we observed with the pinning points
for the simulated ice shelf as a compensation for unmodeled basal
drag. The thinner ice downstream of the pinning point is corres-
pondingly inferred to be softer. We do note that the orientation of
the flow field relative to the pinning point is more oblique than
that of our simulated shelf, which likely is the source of the
more complex strain rate pattern adjacent to the pinning point
(Figs S7, S11). Finally, upstream of Lyddan Island in the mélange
at the eastern edge of Stancomb-Wills, ice is inferred to have
high rigidity, but as this area corresponds to both low strain rates
and low driving stress, the uncertainty in rigidity is very large.

4.4. Posterior predictive distributions and ice shelf buttressing

After obtaining the variational distribution that best approximates
the posterior distribution for the ice rigidity, we can compute a
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posterior predictive distribution for any quantity or forward
model that depends on the rigidity. The most straightforward
way to accomplish this is to generate random samples from the
variational distribution and pass each sample through the forward
model of interest, i.e. Monte Carlo approximation. For example,
one could perform a dynamic perturbation analysis on specific
ice shelves by applying some form of stress perturbation at the
ice front (calving event, gain/loss of buttressing sea ice, etc.)
and running prognostic simulations for different realizations of
the rigidity, sampled from the posterior distribution. This type
of analysis has been performed in many studies to assess sensitiv-
ity of ice shelves to changing climate conditions (e.g. Schlegel and
others, 2018; Nias and others, 2019), but usually the rigidity field
is varied by choosing some uniform upper and lower bound
guided by expected temperature variations or other a priori
knowledge on creep mechanisms. By instead using the posterior
distribution to draw samples of the rigidity, we automatically
incorporate information derived from surface observations while
also allowing known physical laws (e.g. SSA equations) to induce
realistic covariances between values of the rigidity over finite
length scales. In other words, the combined information from
data and flow equations results in more realistic samples of phys-
ical parameters consistent with all available knowledge.

Since one of the most important physical implications of ice
shelf rheology is the amount of buttressing applied to inland
grounded ice, we use the variational distribution for B to compute
the distribution of maximum buttressing factors following Fiirst
and others (2016). The normal buttressing number is defined as
(Gudmundsson, 2013):

K, —1_ 2™ (19)
n — NO >
where 7 is the deviatoric stress tensor, the quantity

No =1p(1—p;/p,)gh is the vertically integrated pressure
exerted by the ocean (with density p,,) on the ice shelf, and f is
a normal vector selected to be aligned with the second principal
stress, following Fiirst and others (2016). By performing system-
atic calving simulations where ice is removed from an ice shelf
up to different buttressing factor isolines, the increase in ice
flux across the ice front or grounding line can be predicted for
various buttressing factors (Fiirst and others, 2016). The buttres-
sing factor above which ice flux is projected to rapidly increase
then serves as a buttressing threshold for a given ice shelf. The
isoline corresponding to the threshold can then delineate regions
of ‘passive’ shelf ice (PSI), defined as ice that can be removed
without significantly altering the flow dynamics of the adjacent
ice. As the normal force in the buttressing factor is computed
from the ice stress tensor, which itself depends on the rigidity B
to estimate the stress components, the buttressing factor will be
subject to random variations consistent with the posterior sam-
ples of B. We can therefore estimate the expected variation in
PSI consistent with the surface observations. To estimate a
more realistic estimate of PSI area specific to calving, we only
include buttressing factor isolines that form polygons that inter-
sect the ice front, meaning we exclude areas of isolated PSI closer
to the grounding line.

The buttressing thresholds originally presented by Fiirst and
others (2016) corresponded to flux increases across the ice
front, leading to threshold values of 0.3-0.4 for the ice shelves
investigated here. Alternatively, thresholds defined for increased
ice flux across the grounding line are found to be a better pre-
dictor for ice shelf stability in response to instantaneous calving
events (Reese and others, 2018; Mitcham and others, 2022).
These buttressing values tend to range from 0.8 to 0.9. For the
purposes of comparison with the result of Fiirst and others
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(2016), we use a lower threshold of 0.4 roughly corresponding
to a step increase in flux across the ice front. Due to slight biases
between our inferred mean B fields and the fields estimated by
First and others (2016), our threshold value of 0.4 is slightly
higher than that used by Fiirst and others (2016) in order to
roughly match the PSI regions in that study.

We observe variations in PSI that lie roughly within the
bounds computed from £10% variation of the mean B, following
First and others (2016) (Fig. 8). However, we can observe add-
itional spatial and statistical patterns beyond the simple +10%
variations. For the ice shelves that are laterally confined by embay-
ments, there are a significant number of samples of the PSI
boundary that exceed the upper and lower bounds. Over Larsen
C, the PSI boundary samples are slightly skewed toward lower
PSI areas. However, several posterior samples of B actually con-
nect passive ice centered on the rift originating from GIR to pas-
sive ice at the ice front, which increases total PSI area and slightly
reduces the vulnerability of Larsen C to ice loss. Over FRIS and
Ross, the PSI distribution is more symmetrical, although the for-
mer has a long tail of lower PSI areas, which correspond to a
slight increase in vulnerability of those shelves to ice loss.
Finally, over B-SW-R, the distribution of PSI is near-symmetric
and lies well within the +10% bounds. However, the difference
in spatial extent between the +10% bounds is larger than for
the other ice shelves, particularly for the Stancomb-Wills ice ton-
gue, which indicates a greater sensitivity to variations and uncer-
tainties in inferred ice rigidity. This sensitivity is likely reflective of
the lack of lateral confinement and drag and highlights the
importance of embayment geometry on ice shelf buttressing
force. Overall, these results demonstrate that calibration of ice
shelf rigidity and associated uncertainties using surface data can
both inflate/deflate predictive uncertainties and needs to be per-
formed on a shelf-by-shelf basis.

5. Discussion

We demonstrated our proposed physics-informed variational
inference framework by estimating the posterior distribution
of ice rigidity for synthetic and large-scale ice shelves in
Antarctica. The variational inference scheme produces poster-
ior distributions of rigidity that agree well with those estimated
by MCMC methods while providing a scalable approach for
exploring uncertainties in parameter fields and forward predic-
tions. We now briefly discuss potential avenues for further
exploration of ice rheological parameters using distributions
of B, as well as future algorithmic and computational
improvements.

5.1. Uncertainties in ice rigidity propagated to flow law
parameters

In this work, we focused on estimating the variational distribu-
tion for ice rigidity, B, and demonstrate how the the inferred
uncertainties can be used to form predictive distributions on a
derived buttressing factor. However, B was defined using the
form of Glen’s Flow Law in Eqn (1), which aggregates multiple
physical factors into a single prefactor. The prefactor can be dis-
aggregated using an Arrhenius-type relation with the following
form (using the convention that B=A""") (Cuffey and
Paterson, 2010):

_Qc 1 1
A :EA() exp R ?—? N
0

where A, is a reference prefactor value, R is the ideal gas

(20)
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constant, T is temperature, T, ~ —10 °C is a transition tempera-
ture corresponding to a switch in the activation energy for creep,
Q. and E is an enhancement factor that depends on the ice crys-
tallographic fabric, grain size, damage, and water and impurity
content. Therefore, it is possible to decompose the inferred dis-
tribution of B into probability distributions for the unknown
parameters in the above relation (all parameters except R, the
ideal gas constant, a universal constant whose value is well-
constrained) (Ranganathan and Minchew, 2022). However,
such a decomposition is highly ill-posed and only possible if
relatively strong prior constraints are available for the para-
meters. For example, ice temperatures can be measured at select
locations and modeled independently with an appropriate ther-
momechanical model. The spatial variations in E are likely to be
highly correlated with the deformation mode (e.g. simple shear
vs extension), which can be well-approximated from surface
strain-rates. On the other hand, the activation energy Q.
which is temperature dependent through Ty, is likely to be rela-
tively uniform within the two separate temperature regimes par-
titioned by Ty. The differences in expected spatial variation can
thus be used as prior constraints when forming the joint poster-
ior distribution of the parameters in Eqn (20).

5.2. Influence of modeling errors

Models of complex physical systems are generally incomplete
and do not fully represent all physical processes found in natural
settings. Modeling errors will therefore affect inference of par-
ameter values and associated posterior distributions (Kennedy
and O’Hagan, 2001). In the case of ice shelves, we have repre-
sented ice flow in a continuum mechanics framework with a
momentum balance based on the SSA, which assumes that the
vertical profile of ice rigidity for an ice column can be repre-
sented by its depth-averaged value and that all ice is floating
within the ice shelf. The former assumption likely results in
inconsequential prediction errors since ocean water provides
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Fig. 8. Stochastic analysis of maximum buttressing
factor for West Antarctic ice shelves, following Fiirst
and others (2016). Background 2D buttressing
fields are computed from the mean B inferred
from variational inference for each ice shelf. The
colormap is constructed to highlight a threshold
buttressing value of 0.4, which roughly corre-
sponds to a step increase in ice flux across the
ice front for removal of ice up to the 0.4 buttressing
isoline. Thus, blue areas correspond to ‘passive’
ice. The thick solid and dashed dark blue lines cor-
respond to the 0.4 isoline for a +10% variation of B
about the mean, respectively. Thin gray lines cor-
respond to the 0.4 isoline for B samples from the
variational posterior distribution. For each ice
shelf, a histogram is shown of the passive ice
shelf area estimated from samples from the poster-
jor, along with the same +10% lower and upper
bounds shown in the maps.

minimal drag to the base of ice shelves. The assumption of float-
ing ice is violated in areas where ice is locally grounded, which in
the 2D synthetic shelf we observed can cause a localized bias in
inferred rigidity values around and upstream of the grounded
area. These biases arise from the uniform uncertainties, o,, we
prescribed in the likelihood model in Eqn (12). In reality,
these uncertainties should be scaled according to expected
variations in SSA residuals, which when corresponding to
un-modeled basal drag can be informed by estimates of flotation
height. A simple scaling of the uncertainties follows from con-
sideration of the sensitivity of the forward model to the SSA resi-
duals r, and r,, which are nominally zero over ice shelves. Since
the forward model used here directly uses the SSA momentum
balance, the sensitivity matrix for each SSA residual component
is identity, and the total prediction uncertainty is proportional to
the uncertainties in the nominal values for the residuals
(Duputel and others, 2014). This approach is appropriate
when the primary objective is physical interpretation of the dis-
tribution of rigidity values (as discussed in the previous section).
However, if the primary goal is to use the posterior distribution
of rigidity to construct ensembles of ice flow model runs (e.g. to
estimate range of probable contributions to sea level rise), then a
bias in the distribution for rigidity is acceptable since an increase
in ice rigidity will compensate for the missing basal drag for
grounded ice.

Another source of modeling uncertainty comes from our use
of a conventional inverse method to pre-compute a B field to
be used as a prior mean. This strategy nominally reduces uncer-
tainties in ice rigidity near the ice front (Fig. S3). However, the
conventional inversion requires specification of a dynamic
boundary condition at the ice front based on the hydrostatic pres-
sure provided by the ocean water. In areas where considerable sea
ice has formed at the ice front, uncompensated buttressing stress
provided by the sea ice will lead to biased estimates of By, which
can be considered as an additional source of modeling uncer-
tainty. One strategy to account for such uncertainties is to treat
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By as a hyperparameter in order to formulate a hyperprior for the
rigidity. However, this approach would require a reformulation of
the variational lower bound. A simpler approach would be to pre-
construct a spatial map of uncertainties in By due to uncertainties
in the dynamic boundary condition by repeating the control
method inversion for different values of buttressing stress at the
ice front. The map of B, uncertainties can then be used to inflate
the prior variance o% in areas where By is more uncertain. A more
direct quantitative approach would be to incorporate the dynamic
boundary conditions in an additional loss function for the
VGP-generated rigidity. The hydrostatic pressure provided by
the ocean water would be treated as a random variable with
some uncertainty, which would allow for the construction of a
likelihood function that measured the misfit between the prob-
abilistic longitudinal stress and the probabilistic hydrostatic pres-
sure, both of which can be readily computed by the neural
network and VGP using automatic differentiation.

5.3. Integration with numerical ice flow models

The SSA momentum balance is the basis of the forward model for
our method, which differs from the forward model of predicted
ice velocities used in traditional control-method-based inversions
and previous studies investigating Bayesian methods for param-
eter estimation for ice dynamics (see section on related work).
If the surface data are noise-free and the boundary conditions
at the grounding line and ice front are known perfectly, the two
different forward models would result in identical point estimates
of ice rigidity. However, even in this ideal scenario, posterior
inference with the two different forward models would lead to
uncertainties with different spatial variations due to different
model sensitivities. The velocity-based forward model is most
sensitive to rigidity variations where velocities are higher, usu-
ally closer to the ice front. On the other hand, the momentum-
based forward model is most sensitive to rigidity variations
closer to the grounding line where driving stresses are higher,
as well as in high strain-rate regions where driving stresses are
lower (Fig. 5).

The different sensitivities will also lead to different systematic
errors in the inferred rigidity. As shown with the synthetic 2D ice
shelf, inference with the velocity-based forward model can lead to
erroneously high rigidity values upstream of pinning points in
order to compensate for omission of the basal drag of the pinning
points in the ice shelf momentum balance. Alternatively, for the
momentum-based forward model, when observed strain rates
are relatively large in magnitude and have spatial length scales
smaller than the prior length scale, the inferred rigidity will
tend to be lower in order to minimize stresses in the momentum
balance. This situation is more likely when the noise level in the
velocity data is relatively high compared to the signal or if the vel-
ocity data contain high-frequency signals below the resolution of
the momentum balance. In these cases, one possible strategy is to
use the predicted velocities from the control method inversion as
the ‘observed’ velocities for the variational inference framework.
The predicted velocities from the former would have essentially
been pre-filtered according to the momentum balance, leading
to manageably low initial values of SSA residuals r for the
momentum-based variational inference.

One possible avenue for future work is to integrate the vari-
ational inference scheme of Brinkerhoff (2022), which uses a
velocity-based forward model, with the methods presented
here in order to provide complementary model sensitivities.
Furthermore, recent advances in deep learning-based surrogate
modeling could significantly improve the computational effi-
ciency of velocity-based forward models by replacing expensive

https://doi.org/10.1017/jog.2023.8 Published online by Cambridge University Press

Riel and Minchew

forward solves with much cheaper neural network predictions
(Jouvet and others, 2021).

5.4. Uncertainty quantification in physics-informed machine
learning and computational considerations

In this work, we focused on estimating a variational distribution
for the ice rigidity, conditional on observations of ice surface vel-
ocity and thickness and the SSA governing equations for ice flow.
The methods presented here are also applicable to similar classes
of physics-informed machine learning problems where parameter
fields govern the evolution of observable spatiotemporal fields
(e.g. Raissi and others, 2020). For example, the variational infer-
ence framework could be used to infer a spatially varying thermal
diffusivity for a model governed by the heat equation.
Time-dependent observations of temperature profiles would be
reconstructed by a neural network, T(x, y)=f,(x, y, t), and a
VGP would be trained to generate samples of the thermal diffu-
sivity at arbitrary spatial coordinates. Furthermore, if temporal
gradients are computable, then the variational inference can be
extended to time-dependent PDEs. Overall, as long as the govern-
ing equations of the physical system can be evaluated at arbitrary
coordinates, the methods presented here are transferable. In some
cases, the use of the feedforward neural network f,, is not neces-
sary when high-quality observations (and their necessary gradi-
ents) are available or can be pre-processed. Then, one would
only have to estimate the parameters of the VGP for estimating
the posterior distribution of the parameter field of interest.

From a computational efficiency standpoint, the VGP used for
the variational distribution is a marked improvement from stand-
ard GPs, but the need to learn a full-rank Gaussian distribution at
the inducing points still prevents the VGP from being applicable
to very large spatial domains (or, equivalently, model domains
where high-spatial resolution of parameter fields is desired). As
the number of inducing points exceeds =1000, computational
and memory requirements become excessive and training effi-
ciency drops dramatically. While training efficiency of VGPs
could be improved through the use of second-order optimizers
(e.g. Newton- or quasi-Newton-based optimizers), joint training
of VGP and neural network parameters would become intractable
since neural networks tend to have a significantly larger number
of parameters. Therefore, future work must involve the develop-
ment of alternative models for variational distributions that are
suitable for large effective model dimensions (e.g. Brinkerhoff,
2022).

6. Conclusions

In this work, we present a framework for inferring the posterior
distribution of ice rheology for large ice shelves in West
Antarctica. Motivated by recent advances in physics-informed
machine learning and variational inference, the framework uti-
lizes neural networks to reconstruct spatially dense observations
of ice surface velocity and thickness, which allows for mesh-free
evaluation of surface variable values and associated spatial gradi-
ents. At the same time, we task a variational Gaussian Process to
predict the mean and covariance of ice rheological parameters for
arbitrary spatial coordinates. By using the momentum balance for
ice-flow appropriate for ice shelves, we formulate a mapping from
parameters (rheology) to observables (residual momentum) that
is inherently parallelizable and allows for joint training of the
neural networks and variational Gaussian Process using stochastic
gradient descent. The training objective utilizes a variational
approximation to Bayesian inference, which provides an explicit
way to encode prior rheology information in the form of spatial
lengthscales (to modulate smoothing of the inferred rheology
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field) and range of variation relative to a reference field. For the
latter, we show that using a conventional inversion method to
estimate a prior mean field can reduce reconstruction errors,
which demonstrates a potentially favorable approach to exploring
uncertainties in large-scale ice flow models without injecting
them into computationally expensive MCMC samplers.

Using these methods, we demonstrate posterior inference of
ice rheology for synthetic 1D and 2D ice shelves. We find that
rheological uncertainties are lowest where driving stresses and
strain rates are higher, corresponding to larger components of
the momentum balance and higher levels of ice deformation,
which implies more information about ice rheology. Using the
synthetic 2D ice shelves, we also demonstrate how the momentum
balance-based forward model can help reduce biases in inferred
ice rigidity near areas of localized grounding where the shallow-
shelf approximation of the momentum balance is violated.
Inference of the distribution of ice rigidity values for select
West Antarctic ice shelves reveal a wide range of spatial patterns
consistent with highly heterogeneous flow environments.
Generally, we find softer inferred ice in shear margins, near pin-
ning points, and around visible surface crevasses. Conversely, ice
is inferred to be stiffer where bulk ice temperatures are lower and
where compressional stresses result in thickening of ice, such as
upstream of certain ice rises or where fast-flowing ice streams
flow onto slower shelf ice. Finally, using the posterior covariances
of rigidity, we generate stochastic predictions of buttressing fac-
tors for the West Antarctic ice shelves and show how different
flow environments can result in different ranges of passive shelf
ice areas, as well as different levels of non-Gaussian behavior.
These results demonstrate the utility of site-specific posterior
inference for predictive modeling as opposed to assuming uni-
form lower and upper bounds for an entire ice sheet.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/jog.2023.8.

Data. ITS_LIVE velocity data can be downloaded at https:/nsidc.org/apps/
itslive/.. MEaSUREs velocity data can be downloaded at https:/nsidc.org/
data/NSIDC-0484/versions/2. BedMachine V2 thickness data can be down-
loaded at https:/nsidc.org/data/NSIDC-0756. Example scripts for variational
inference for 1D and 2D ice shelves can be found at https:/github.com/
bryanvriel/physics-informed-vi. Neural network and variational Gaussian
Process models were written using TensorFlow (https://www.tensorflow.org)
and TensorFlow Probability (https:/www.tensorflow.org/probability).
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Appendix A. Probabilistic formulation of physics-informed
ice rigidity inference

We aim to formulate an objective function for estimating a probability distribu-
tion for ice rigidity fields 6(x) on ice shelves, conditioned on noisy observations
of surface velocity and ice thickness (or thickness derived from surface elevations
using a hydrostatic assumption). Additionally, we aim to construct mean fields
(i.e. smoothed fields) for ice surface velocity and thickness that are consistent
with the observations and their uncertainties while also minimizing the SSA
momentum balance residuals for random samples of 6. To that end, let us
first define an augmented parameter vector for a given ice shelf, m = [6, d],
where d = [2, 9, f1] is the vector of reconstructed surface observations. As sta-
ted in the main text, 6= 6(x) and d = d(x) are implied, i.e. all scalar and vector
quantities in this discussion are spatial fields spanning the ice shelf.
Furthermore, we make no assumption on the parameterization of 6 and d as
this section is focused on formulating the probabilistic relationships between
modeled and observed fields. For our observations, we have d =[u, v, h], as
well as a vector of pseudo-observations corresponding to the momentum bal-
ance residuals in Eqns (2 and 3), r=[r,, r,]. Recall that in our physics-informed
machine learning framework, r = [0, 0] as we seek to learn 6 that minimizes the
SSA momentum balance residuals for a given set of surface predictions d.
We use Bayes’ Theorem to obtain an expression for the posterior distribu-
tion of m given our combined observations:
p(m|d, r) oc p(d|r, m)p(rlm)p(m). (A1)
The first two terms on the right-hand side correspond to the joint data like-
lihood, which encodes the probability of having ‘observed’ d and r for a given
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m within the SSA equations. The third term corresponds to the prior distri-
bution which encodes our prior knowledge on m values without having seen
any observations. We can expand and simplify the above posterior distribu-
tion by utilizing what we know about the dependencies between the augmen-
ted parameters and observations in the physics-informed machine learning
framework. Firstly, the surface observations d are only being reconstructed
by a regression model (e.g. the neural network f,) that does not explicitly
depend on 6; thus, d is only dependent on d. Similarly, the prior can be
expressed as p(m) = p(6)p(d) since the predictions d are again generated by
an independent regression model and are independent of the prior values
for 6. Furthermore, we can prescribe a uniform prior for d as no explicit
regularization is imposed on its values. We can therefore write the posterior
distribution for 6 and d as:

p(6,did, 1) o< p(d|d)p(r|6, d)p(6), (A2)

which matches Eqn (5) in the main text.

A.1. Variational lower bound to posterior distribution

As discussed in the main text, we use a variational inference framework
wherein we aim to construct an approximating, variational distribution
q(6, d) that is minimally divergent from the true posterior p(6, d|d, r).
Generally, the variational distribution is a parametric distribution that is
easy to sample from and has a likelihood that can be easily evaluated.
Therefore, choosing an appropriate variational distribution will depend on
the desired level of computational complexity (e.g. number of trainable para-
meters) and the expressiveness of the distribution for capturing the relevant
features and statistics of the target posterior. Expected features such as skew-
ness, multiple modes, correlations between parameters, etc., will impact the
choice of variational distribution. Posterior distributions with highly complex
probability topologies tend to be ill-suited for variational inference and will
likely require MCMC-based methods. Even for less complex posteriors, vari-
ational distributions that are overly simple, such as an independent normal
for each parameter, will fail to capture parameter correlations and can lead
to significantly underestimated posterior variances (Blei and others, 2017).
In this work, as discussed in Appendix B, we choose to use multivariate nor-
mal distributions in which the elements of the mean vector and covariance
matrix are the learnable parameters.

A commonly used metric for quantifying the similarity between variational
and target distributions is the Kullback-Leibler (KL) divergence, which for our
problem is defined as:

L[q(@,&)llp(@,&\d,r)]=[q(0,&) 969 054 (A3)

® (6. d1d, 1)

It is important to note that the above equation is referred to as the
reverse-KL-divergence, denoted as KL[ql|p] for brevity, as opposed to the
forward-KL-divergence, KL[p|lq]. As documented in previous studies (e.g.
Huszar, 2015; Albergo and others, 2021), training the variational distribution
with a reverse-KL divergence loss encourages mode-seeking behavior (but does
not enforce it like the Laplace approximation), i.e. the distribution will be centered
closer to regions with the highest posterior probabilities. A forward-KL divergence
tends to encourage mean-seeking behavior. For inference of rigidity with posterior
distributions that are generally unimodal and well-approximated by Gaussian dis-
tributions, the two KL-divergences should lead to similar variational distributions.
However, the reverse-KL formulation leads to a more computationally efficient
variational lower bound, which we now turn to.

The posterior p(6, &Id, r) in the denominator of the second term in
Eqn (A3) causes the integration over all 6 to be intractable. In this case, it
can be shown (e.g. Titsias, 2009; Hensman and others, 2013; Matthews and
others, 2016; Blei and others, 2017) that minimization of the KL-divergence
can be replaced by maximization of a stochastic variational lower bound,
often referred to as the Evidence Lower Bound (ELBO):

ELBO(6, d) = Eyj_, 54 [logp(d|d) + logp(r|6, d)]

— KL[q(6, d)p(6, d)]. (A4)

The first term of the ELBO is the expected value of the joint data log-likelihood,
integrated over 6 and d. The second term is the KL-divergence between the
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variational distribution and the prior distribution. Thus, the ELBO can be inter-
preted as an optimization objective that encourages the variational distribution
q(6, d) to produce samples of 6 and d that best fit the surface observations and
minimize the SSA momentum balance residuals while also maintaining consist-
ency with the prior distribution. We can further decompose the variational dis-
tribution to be g(6, &) = q(O)q(&), i.e. the rigidity field and surface predictions
are modeled independent of each other. The independence allows us to use dif-
ferent machine learning models for predicting the surface variables and rigidity
field. Here, we use a neural network f,, for the former and a variational Gaussian
Process for the latter. Moreover, as the network f,, only predicts the mean d
values, g(d) is equivalent to a &- distribution, e.g. [x8(x — x) dx = x.
Additionally, we prescribe a uniform prior for d such that p(d)) = b where
a; <d; < b; for the i-th component of d. These formulations allows the
KL-divergence in Eqn (A.4) to be simplified in the following manner:

KL[q(6, D)llp(6, d)] = KL[q(6)q(d) [ p(O)p(d)]

o (a0a@)
= 6)g(d) 1 — |d6dd
fq( )q(d) °g<p(e)p< d)>

- 1q(6) log(pié)d@

=C-KL[q(0)]p(6)],

where C is a constant resulting from the uniform prior p(d). Altogether, the
ELBO can be written as:

ELBO(6, &) = E-[logp(r] 6, )] + log p(did) — KL[q(0)Ip(0)],  (A5)
which is Eqn (7) in the main text. Note that we exclude the constant C from the
above equation, but generally, one can include a multiplicative factor on the
remaining KL-divergence to tune the regularization effect of the prior on the
posterior inference.

The expectation operator on the log-likelihood of p(r|6, d) can be numer-
ically estimated using either a Monte Carlo integration or a quadrature-based
integration. For high-dimensional integrals, Monte Carlo methods are favor-
able over quadrature methods, which require an exponential amount of quad-
rature points in the number of dimensions. However, the SSA residual vector r
can be evaluated at each point on the ice shelf independently, provided that
gradients of 6 and d are available in order to compute relevant stress gradients.
Both the neural network and variational Gaussian Process models permit the
computation of spatial gradients on a coordinate-by-coordinate basis by util-
izing automatic differentiation. Therefore, the expectation of logp(r|6, d)
can be decomposed into a series of one-dimensional integrals. We follow
the approach of Dillon and others (2017) and evaluate each 1D integral
with a Gauss-Hermite quadrature with 3 quadrature points, which is exact
for 1D Gaussian log-likelihoods:

o 1 & o
Egq0)[ log p(x|6, d)] ~ 7772 wilogp(rly/ (g + i ), (A6)
i=1

where 7 is the number of quadrature points, w; are the quadrature weights for
the quadrature grid points g;, 07 is the predicted posterior standard deviation
for 6, and [, is the predicted posterior mean for 6. Here, we compute w; and g;
using the NumPy function np.polynomial.hermite.hermgauss (Harris and
others, 2020).

Appendix B. Variational Gaussian processes

In this work, we use a variational Gaussian Process (VGP) to model the vari-
ational distribution g(6) introduced in Appendix A. Gaussian Processes (GPs)
are a class of machine learning models that describe a set of random variables,
{f(x)Ix € &}, where x is a finite set of index points (i.e. spatial or temporal
coordinates) from X'. GPs assume that every finite collection of random variables
follows a multivariate normal distribution (Rasmussen, 2003). Thus, to describe a
GP, one needs to specify a mean function, x(x), and a covariance, or kernel, func-
tion k(x, x) that describes the pairwise similarity between index pointsxand x'. In
this work, we use a squared exponential kernel function for both posterior infer-
ence (Eqn 9) and for constructing the prior distribution (Eqn 13). The difference
in usage between the two is that for posterior inference, o-and L are tunable hyper-
parameters, whereas for the prior, o and Ly are fixed values.
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Given a vector of training data, y = f (x¢) + €, where x, represent the train-
ing index points and € represents independent Gaussian observation noise, the
mean and covariance functions can be inferred via Bayesian inference in order
to to estimate a GP posterior. For predictive points x, i.e. index points not used
for training, the closed-form expressions for the GP posterior mean, u,(x), and
covariance, k,(x, x'), functions are:

/‘LP(X) = K (€ + Kx’x‘)ily:

(B7)
kp(x, X') = k(x, X') — Kyt (€ + Kyx) ™' Ky
where we adopt the shorthand notation K,y =k(x, x). The above formula-
tions therefore allow for generation of samples of f(x) at any arbitrary index
points x by computing a mean and covariance matrix for a multivariate nor-
mal distribution.

For a training set of size N, the time complexity of GP inference scales as
O(N?) with a storage complexity of O(N?), primarily due to the need for com-
puting and inverting a covariance matrix of size N x N in Eqn ( B7). Therefore,
when N exceeds several thousand data points, the computational requirements
become excessive, even for modern computing platforms. VGPs address this
limitation by building a low-dimensional representation of the dataset by
introducing a set of inducing variables, which are indexed by a set of M coor-
dinates, z, which live in the same space as X (Quinonero-Candela and
Rasmussen, 2005; Titsias, 2009). Importantly, M < N, such that the inducing
variables serve as a much smaller set of latent observations that are used in the
above GP inference equations rather than the full training data. In the formu-
lation presented by Hensman and others (2013) which we use here, the loca-
tions of z are unknown and must be estimated during training of the VGP.
Two key approximations are used for the inducing variables: (1) function
values at non-inducing points, X, are mutually independent given function
values at the inducing index points, z; and (2) the posterior distribution
p(f(z)|y), which can be expensive to compute for large N, can be approxi-
mated with a multivariate normal distribution with mean m € R™*! and
covariance S € RM™*M The VGP posterior predictive mean, 414(x), and covari-
ance, ky(x, x'), functions then take the form:

,LLq(X) = szK;zlm)
(B8)
kq(x, X') = k(x, X') — KK, ' Kox' + Ko BKox,
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where B = K,'SK,'. The mean and covariance are then used to form the
variational distribution for the ice rigidity, q(6(x)) = N (p,q(x), k,(x, x)).
The above equations now have a time complexity of O(NM?) and a storage
complexity of O(NM). Note that one still cannot evaluate the variational ker-
nel function for exceedingly large x, which may be the case for large ice shelves
in Antarctica. For this reason, we predict covariance matrices for finite blocks
of the modeling domain in order to seed a Gibbs sampler, as explained in the
Methodology section of the main text Eqns (16a-16c¢).

The total set of trainable variables for the VGP, ¢, consists of the inducing
point locations, z, the inducing point mean values, m, the full-rank inducing
point covariance matrix, S, and the hyperparameters of the base kernel func-
tion (o and L of the squared exponential kernel). As we only need to estimate
the lower-triangular portion of S, the number of covariance parameters
becomes W Furthermore, since the diagonal values of S must strictly
be positive, we apply a sotfplus transformation followed by small shift of
le™ in order to avoid numerical issues (see the FillScaleTriL bijector imple-
mented in TensorFlow Probability). The number of inducing points, M, is a
prescribed parameter that depends on the complexity of the signal being
inferred. For example, for the ice shelves studied in this work, we find that
M between 300 and 1000 provided a reasonable trade-off between computa-
tional complexity and resolution of the inferred 6(x). The optimal value of M
will also depend on the choice of the length scale Ly for the prior distribu-
tion. Smaller Ly will lead to 6(x) with more spatial variability, which will
require a larger M.

Optimization of the variational parameters is achieved by inserting the
variational distribution g(0(x)) = N (,uq(x), k4(x, x)) into the ELBO in
Eqn (10). Note that the last term of the ELBO is the KL-divergence of g
(6) from the prior evaluated at the inducing points, z, which is consistent
with the VGPs formulated by Titsias (2009) and Hensman and others
(2013). With this formulation, g can be constructed using the variational
mean and covariance directly, g(6(z)) = N(m, S) (note how Eqn (B8)
simplifies to m and S when K,,=K,,). Empirically, we found that
KL[gx(0)]p(6)] can also be well-approximated by using Eqn (B8) to con-
struct q(6(x.)) and p(6(x.)) at a mini-batch of collocation coordinates x,,
assuming the mini-batch of coordinates are roughly uniformly distributed
throughout the modeling domain. This approach can improve training
time when the number of inducing points is significantly larger than the
batch size.
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