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ABSTRACT

Singing voice beat and downbeat tracking posses several appli-

cations in automatic music production, analysis and manipulation.

Among them, some require real-time processing, such as live perfor-

mance processing and auto-accompaniment for singing inputs. This

task is challenging owing to the non-trivial rhythmic and harmonic

patterns in singing signals. For real-time processing, it introduces

further constraints such as inaccessibility to future data and the im-

possibility to correct the previous results that are inconsistent with

the latter ones. In this paper, we introduce the first system that tracks

the beats and downbeats of singing voices in real-time. Specifi-

cally, we propose a novel dynamic particle filtering approach that

incorporates offline historical data to correct the online inference by

using a variable number of particles. We evaluate the performance

on two datasets: GTZAN with the separated vocal tracks, and an

in-house dataset with the original vocal stems. Experimental result

demonstrates that our proposed approach outperforms the baseline

by 3–5%.

Index Terms— Real-time vocal beat tracking, dynamic parti-

cle filtering, causal singing voice rhythmic analysis, vocal downbeat

detection, real-time vocal tempo

1. INTRODUCTION

Music rhythmic analysis is an essential Music Information Retrieval

(MIR) task with many applications. Recent years have seen sev-

eral deep learning-based models proposed for music beat, downbeat,

tempo, and meter tracking. For instance, some employ Recurrent

Neural Networks (RNN) to model beats and downbeats in music

audio [1, 2, 3, 4]. Another set of works are based on Convolu-

tional Neural Networks (CNN) [5, 6], Convolutional Recurrent Neu-

ral Networks (CRNN) [7] and Temporal Convolutional Networks

(TCN) [8]. More recently, some works take advantage of Trans-

formers [9, 10] and self-supervised learning [11] to improve the

performance. All of the mentioned methods are offline and mostly

utilize a non-causal Dynamic Bayesian Network (DBN) decoder to

infer music beats and downbeats. On the other hand, a group of

works are capable of performing causally for real-time applications.

Examples such as [12, 13] applied a sliding window technique on

an offline model to predict the upcoming beats. Main disadvantages

of this technique include the potential for computational overload

and the lack of continuity between windows [14]. Lately, particle

filtering mechanism in conjunction with the RNN and CRNN struc-

tures is proposed to estimate the rhythmic parameters in an online

fashion [15, 16]. This combination makes the inference inherently

causal.

‡ Main work completed as a research intern at TikTok Inc. This work is
partially funded by National Science Foundation grant No. 1846184.

Recently, beat and downbeat tracking for isolated singing voices

was proposed [17] to fulfill the requirements for applications such as

automatic music arrangement, remix, and sing-to-song, where a user

wants to create a new song starting with an arbitrary acapella singing

melody. However, isolated singing voices are considered to be more

challenging than full music signals (i.e., the mixture of vocal and ac-

companiment) for rhythmic analysis, because they typically lack rich

percussive and harmonic profiles. As demonstrated in [17], apply-

ing general music rhythmic analysis approaches to singing voice beat

and downbeat tracking is less effective. In the same work, two mod-

els are proposed to tackle offline singing beat tracking. The proposed

models employ pre-trained WavLM [18] and DistilHuBERT [19]

speech representations respectively as their front-end to leverage se-

mantic information of singing voices. In addition, they use multi-

head linear self-attention encoder layers [20], followed by an offline

DBN decoder, to infer the singing beats.

For many use cases such as interactive social media gadget de-

sign, singing voice auto-accompaniment, and live performance pro-

cessing, real-time singing voice beat and downbeat tracking is essen-

tial. Real-time processing imposes causality constraints to the sys-

tem, including partial data accessibility and having no second chance

to correct the previously inferred results according to the new data.

Also, the neural network structures need to be causal and computa-

tionally efficient. Therefore, it limits the adequacy of bulky Trans-

formers and massive pre-trained speech models which are previously

demonstrated to be beneficial for offline singing voice beat tracking.

In this paper, we introduce SingNet, the first online joint beat

and downbeat tracking system for singing voices. It is noted that the

term “singing voices” specifically refer to the isolated singing voices

without instrumental accompaniments. SingNet adopts a CRNN to

model the beat and downbeat activations. On top of that, we propose

a novel dynamic particle filtering model that leverages a variable

number of particles for the inference instead of the fixed number

of particles used in traditional particle filtering approaches. The pro-

posed dynamic particle filtering incorporates the offline inference re-

sults on all historical data into the ongoing online inference process

by manipulating the number and positions of the particles. Because

rhythm analysis of singing voices is more robust when taking into

account the past signal, such analysis results can be a informative

prior to improve the online inference. Furthermore, to take all sub-

stantial activations into account, it adds extra particles when there is

a considerable salience happening.

The rest of the paper is organized as follows. Section 2 elabo-

rates the proposed approach. In Section 3, we present the experimen-

tal results with comparisons to those of relevant methods. Finally,

section 4 concludes the paper.IC
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Fig. 1. Overall pipeline of the SingNet system.

2. PROPOSED APPROACH

In this section, we first describe the neural network structure, and

then elaborate the proposed dynamic particle filtering inference ap-

proach. Figure 1 depicts the general diagram of the SingNet system.

2.1. Model

Music rhythmic analysis approaches usually use acoustic features

such as magnitude spectrogram as their input, while isolated vocal

tracks are more similar to speech signals where the para-linguistics,

semantic, and phonemic level features are important as well [17].

Using the features generated from pre-trained speech models to-

gether with a multi-head linear Transformer is proposed to tackle the

offline singing voice beat tracking [17]. However, as the mentioned

models are non-causal and computationally expensive, they cannot

be used for the current task. Therefore, in this work, we focus on the

conventional spectral features with a regular causal model similar to

BeatNet [16].

To define SingNet’s neural structure, we start off with the causal

CRNN as the backbone. Based on our pilot experiments with various

modifications, we expand the model used in BeatNet in both depth

and width to have 3 unidirectional LSTM layers, and each layer has

350 hidden cells. The resulting improvement is in line with our hy-

pothesis: the rhythmic analysis of isolated singing voices needs to

deal with more non-trivial components as compared to the music

pieces of the full mixture, where the harmonic and percussive pat-

terns are clearer. Therefore, using a larger model with higher com-

plexity is beneficial. Finally, the model outputs the beat, downbeat,

and non-beat activations for each time frame, which will be fed to

the inference model later.

2.2. Inference

The inference model consists of a cascade of two-stage Monte Carlo

particle filtering, one for the beat and the other for downbeat track-

ing. The inference state space, observation and transition models

are the same as those of BeatNet. However, instead of using fixed

number of particles in conventional models [15, 16, 21], we intro-

duce a dynamic particle filtering technique, which leverages a vari-

able number of particles depending on the circumstance. Figure 2

is an example of a 2D beat pointer state space [22] and the particle

filtering inference on it.

We propose three schemes: salience-informed, past-informed,

and combined methods, to incorporate the historical data derived

from an offline inference into the online decoding as well as to pre-

vent the model from omitting predominant activations during the in-

ference process.

The salience-informed method takes into account the instant

saliences to gain robustness to local rhythmic fluctuation/change.

The saliences are defined by thresholding the activations with 0.4 in

our implementation. In regular cases, the particle swarm returns to

the beat/downbeat position at the same time when the next predom-

inant activation is happening. However, as shown in Figure 2-(III),

there might be some inconsistency that the time steps of particles

are far from the beat/downbeat states when a strong beat/downbeat

activation is occurring. This can be due to either a tempo change or

an inference mistake. In other words, the inference is not respon-

sive to such salient activations. To prevent that, the method adds

extra particles at beat/downbeat states when a strong activation is

detected.

The past-informed method comprises a fusion of simultaneous

online and offline inferences. Given a period parameter T , the DBN

decoder is applied every T seconds to the past data, i.e., entire

activations from the beginning to the present time step. The his-

torical beat/downbeat timestamps are used to extrapolate the next

upcoming beats/downbeats. When the time steps of the upcom-

ing beats/downbeats arrive, the method injects some particles at

the beat/downbeat states to ‘inform’ the online inference about the

offline extrapolations. If the particle swarm locates in some off-

beat states but the offline inference suggests a beat/downbeat onset,

adding the extra particles can help correct the online inference. Fig-

ure 3 demonstrates the process. To save space, we only show the

(I) (II) (III)

Fig. 2. The particle filtering process of the beat/tempo tracking. The

gray dots are all possible states, φ and φ′ represent the phase and

tempo axes of the state, red dots are the particles, and the vertical

blue line is their median along phase. (I) corresponds to the be-

ginning of the process where the particles are distributed randomly.

(II) displays one of the later time steps when the particles are con-

verged to a swarm which is moving forward according to the tran-

sition model. (III) presents a time step when a salience activation

(in yellow) occurs in the beat states (i.e., the first column in the state

space), but the particle swarm is in a distant position to the beat

states.
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Fig. 3. An example of past-informed process for two time steps (I)

and (II). (a) the arriving streaming audio; (b) solid blue lines are

historical beats inferred by the offline DBN on past activations, and

dotted red lines are the extrapolated results from blue lines. (c) in-

jecting new particles (in green) into the beat/tempo state space before

resampling, based on the extrapolations. (d) the phase correction af-

ter resampling.

beat/tempo process, and the downbeat/meter process is the same.

At time step (I), since there is a big discrepancy between the offline

extrapolations and the online particle swarm (i.e., the median blue

line in (c) is far from the beat state), adding particles shifts the beat

phase significantly. Rather, at time step (II), as the online beat status

is already corrected, adding particles does not change the beat phase

much.

The combined method combines salience-informed and past-

informed methods by intersecting the particle injections of the above

two methods. For all of the mentioned methods, the same number

of particles to the injected ones are randomly selected and removed

from the original particle pool after the resampling step to ensure the

total number of particles is the same for every iteration throughout

the whole inference process.

3. EXPERIMENTS

3.1. Datasets and Evaluation Metrics

Evaluating the beat and downbeat tracking for singing voices is chal-

lenging. To our knowledge, there is no existing public datasets con-

taining clean vocal audio with beat/downbeat annotations. Previous

work has found that annotating beats and downbeats on sole vocal

signals even by human can be difficult and subjective [17], since

no explicit rhythmic clues such as percussive instruments can be re-

ferred to truly understand the singer’s rhythmic intentions. There-

fore, music source separation (MSS) techniques [23] were used to

separate the vocal stems from the original mixture audio, and the

beat/downbeat annotations applied on the mixture audio are adopted

to describe the true rhythmic intentions.

To evaluate our system, we used GTZAN [24] which is a pub-

licly available dataset and was not used during training, as described

in [17]. In GTZAN, 741 clips contain vocals, so we utilized De-

mucs Hybrid [25] to extract the vocal stems for evaluation. How-

ever, MSS can result in leaks of instrument sounds, which would

provide clues for the model to exploit. To this end, we also used

an In-House dataset, which contains about 45,000 music clips of

clean vocal stems as well as accompaniments with beat and down-

beat annotations. Each clip is excerpted from an individual cover

song. Song examples of the In-House dataset may be found online.1

We split the dataset into 43,000 clips for training, 1000 for valida-

tion, and 1000 for testing respectively. The testing set is fully unseen

during the training. The trained model on In-House is evaluated on

GTZAN in a cross-dataset evaluation setting as well.

Following the typical evaluation settings [15], we report the F1

scores with a tolerance of ±70 ms with and without 5-sec skip from

the beginning of a test clip. As mentioned above, annotating beats

and downbeats for pure singing voices can be subjective. Based on

our pilot subjective study, we observed that human tolerance to beat

and downbeat errors can be larger compared to regular music signals,

and the adequate time range is about ±200 ms. As a result, we also

report the F1 scores of ±200 ms tolerance.

3.2. Implementation Details

To train the SingNet neural network, we initialized all weights

and biases randomly and trained the model with Adam optimizer,

weighted cross entropy loss, learning rate of 5 × 10
−5 and a batch

size of 50. Every Batch comprises 8-second long excerpts ran-

domly sampled from each track. To have a more robust model, we

augmented the training samples [26].

We set T = 6 seconds for the aforementioned period parameter.

The choice of applying the DBN every 6 seconds is motivated by the

prior works of conventional beat/downbeat tracking (e.g., [1]), where

they typically adopted 6 second for the input window length. In our

pilot study, we did not find substantial differences when significantly

increasing or decreasing the 6 seconds period parameter.

3.3. Methods Compared

We use BeatNet [16] as our baseline, which is trained on singing

stems and uses default particle filtering. BeatNet and SingNet struc-

tures differ in the number of LSTM layers and hidden cells. BeatNet

has two layers with 150 cells, while SingNet has three layers with

350 cells. We test SingNet with default and three dynamic particle

filtering variants (salience-informed, past-informed, and combined).

Other than that, we also implement the “Online DBN” method,

which uses the extrapolated results from an offline DBN applied ev-

ery 6 seconds on total historical data [22] for the causal uses. For all

the above mentioned online methods that use a DBN inference, we

apply it firstly right after 5 seconds, and every 6 seconds thereafter.

Finally, we include the “Offline DBN” method, which represents

an oracle system that applies the offline DBN on the entire data,

assuming it can access the future signal.

3.4. Results and Discussions

Table 1 presents the evaluation results of different methods. The

training, validation, and test sets remain the same across all of the

methods.

Several observations are made. First, SingNet with dynamic par-

ticle filtering (i.e., salience-informed, past-informed, and combined)

outperforms that using the default particle filtering, and among the

1https://www.karaoke-version.com/
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No Skip Skip First 5 Seconds

Metric
Beat

(70ms)
Downbeat

(70ms)
Beat

(200ms)
Downbeat
(200ms)

Beat
(70ms)

Downbeat
(70ms)

Beat
(200ms)

Downbeat
(200ms)

In-House Dataset

BeatNet (baseline) 53.90 30.06 71.40 42.33 54.90 31.58 71.97 43.90

SingNet (default inference) 56.48 34.36 72.84 46.25 57.57 36.55 73.64 48.43

SingNet (salience-informed) 58.09 35.74 74.54 47.23 59.51 37.99 75.53 49.22

SingNet (past-informed) 57.38 35.06 73.78 46.80 58.86 37.59 74.74 48.90

SingNet (combined) 58.1 35.95 74.62 47.38 59.53 38.04 75.65 49.24

Online DBN 38.94 20.16 55.32 27.14 40.83 20.73 55.20 27.90

Offline DBN (oracle) 60.67 45.17 79.70 55.11 60.81 45.22 79.91 55.20

GTZAN Dataset

BeatNet (baseline) 32.64 14.17 55.39 25.45 32.76 14.55 53.96 25.15

SingNet (default inference) 34.43 16.52 55.81 27.97 34.68 17.45 54.52 27.80

SingNet (salience-informed) 34.91 16.91 56.39 27.94 35.30 17.14 55.05 27.49

SingNet (past-informed) 34.67 16.77 55.97 27.92 35.11 17.61 54.73 28.50

SingNet (combined) 35.14 17.01 56.60 28.02 35.38 18.09 55.50 28.65

Online DBN 22.02 9.34 40.70 16.87 24.43 9.97 45.17 18.00

Offline DBN (oracle) 38.29 23.04 64.09 33.65 38.55 23.83 60.93 32.21

Table 1. Evaluation results (F1 scores in %) of different methods of SingNet and comparing them to the baseline models.

variants, the combined method performs the best in all cases. Al-

though the improvement by the past-informed method is relatively

smaller compared to the salience-informed method, it contributes to

the combined method that leads to the best results. Second, “On-

line DBN” results in the worst performance, since the extrapolations

are not responsive to instant rhythmic fluctuations. Third, “Offline

DNB” can be seen as the upper-bound performance. Causality con-

ditions degrade all online results to be lower than those of the offline

model. Fourth, our models perform significantly better on In-House

than on GTZAN. Other than the data similarity between the training

and testing sets, it is likely due to the artefacts and accompaniment

residuals in GTZAN caused by music source separation. Since our

models are trained on clean vocal stems, it is believed that they do

not take advantage of the data leakage. Consequently, the results

of In-House reflect the true performance when utilizing SingNet for

user singing or humming.

However, we consider that our models still suffer from low per-

formance of online downbeat tracking. Nevertheless, online down-

beat tracking is a challenging MIR task, with the state-of-the-art F1

score being around 50% on the GTZAN dataset for regular music

(not singing voice only) [16]. When it comes to online downbeat

tracking of isolated singing tracks, it becomes even more challeng-

ing, leading to lower results.

In terms of overall computational complexity, the DBN used in

the past-informed and combined methods does not add too much

cost, as it is called rarely (once per 300 frames), and it replies on the

same activations as the online inference model does. More impor-

tantly, since DBN is used to provide extrapolations for future pre-

dictions instead of immediate results, it can run in the background in

parallel with other post-processing modules. Therefore, there is no

perceptual delay in our implementation with T = 6 seconds.

While we acknowledge that online methods, including the one

proposed here, may not perform as well as our previously proposed

offline singing voice rhythmic analysis models (reported in [17]),

they have the advantage of being able to analyze streaming audio

in real-time. The offline methods utilized large self-supervised pre-

trained speech models to extract features and Transformer architec-

tures to model the beat activation, resulting in significant improve-

ments over the baseline methods. For instance, Table 2 of [17]

demonstrates that replacing conventional spectral inputs with the

WavLM embeddings for offline beat tracking leads to a substantial

improvement in F1 score (from 45.4% to 73.3%). However, due to

the causality and real-time constraints, we do not employ these pre-

trained speech models and Transformer architectures in this work.

Instead, we used conventional spectral features and a CRNN archi-

tecture that can be computed in real-time.

4. CONCLUSION

This paper has introduced SingNet, a real-time beat and downbeat

tracking system designed specifically for isolated singing voices. In

addition to presenting SingNet, we have also proposed a dynamic

particle filtering approach for inference, which leverages both instant

predominant observations and offline inference results on historical

data to improve the real-time beat and downbeat tracking accuracy.

Specifically, we have proposed and compared three different meth-

ods for the dynamic particle filtering approach against the baseline

BeatNet model. Evaluation results demonstrate significant improve-

ment compared to the baseline. Overall, our proposed system pro-

vides a promising solution for real-time beat and downbeat tracking

in singing voices, with potential applications in music information

retrieval and interactive music systems.
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