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Abstract
We present a shuffle realization of the GKLO-type homomorphisms for shifted
quantum affine, toroidal, and quiver algebras in the spirit of Feigin and Odesskii
(Funktsional. Anal. Prilozhen. 31(3):57–70, 1997), thus generalizing its rational ver-
sion of Frassek and Tsymbaliuk (Commun. Math. Phys. 392:545–619, 2022) and the
type A construction of Finkelberg and Tsymbaliuk (Arnold Math. J. 5(2–3):197–283,
2019). As an application, this allows us to construct large families of commuting and
q-commuting difference operators, in particular, providing a convenient approach to
the Q-systems where it proves a conjecture of Di Francesco and Kedem (Commun.
Math. Phys. 369(3):867–928, 2019).

Keywords Shuffle algebras · GKLO-type homomorphisms · Quantum Q-systems ·
Generalized Macdonald operators · Quantum loop algebras

Mathematics Subject Classification 17B37 · 81R10

1 Introduction

1.1 Summary

The key result of this note is the shuffle realization of theGKLO-type homomorphisms
from various shifted quantum “loop” algebras to the algebras of (localized) difference
operators. We use this to reinterpret the recent results of [4, 5] on the quantum Q-
systems of type A. In the upcoming work, this will be also used as the main technical
ingredient to:
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• prove the regularity of certain trigonometric BCD-type Lax matrices
(generalizing the rational counterpart of [13]),

• develop the integral forms of K -theoretic Coulomb branches
(generalizing the A-type case of [12]),

• study difference operators arising from large families of q-commuting elements in
quantum affine algebras (generalizing [4] with sl2 been replaced by any simple g).

The GKLO-type homomorphisms for the quantum loop algebras Uq(Lg) were first
introduced in [14] (hence, their acronym). Their analogues for the “shifted” versions
(the shift refers to the fact that Cartan currents ψ±

i (z) start not necessarily from z0

modes, while the defining relations are kept unchanged) arise naturally in the recent
study of the quantized Coulomb branches, see [1, 2] and [11], providing algebraic
models for the geometric objects.

On the other hand, the shuffle approach provides a convenient combinatorial model for
the positive and negative subalgebras of such quantum algebras. An essential benefit
of this approach is that it allows to work with various elements of quantum algebras
that are provided by complicated formulas in the original loop generators, making
it hard to work with them directly. In the present note, we focus on the following
cases: quantum affine of any simple g, quantum toroidal of gl1 and sln (n ≥ 3) with
two parameters, and quantum quiver algebras, for which the shuffle realizations were
established in [19], [15, 16], and [18], respectively.

LetU>
L denote the corresponding positive subalgebra, generated by the loop gener-

ators {ei,r }r∈Zi∈I (here, I denotes a labeling set, while the subscript “L” is merely used
to remind of the loop realization, in spirit of [3]) subject to the corresponding defining
relations. Then, one considers an N

I -graded vector space S = ⊕
k∈NI Sk , with Sk

consisting of multisymmetric rational functions in the variables {xi,r }1≤r≤ki
i∈I subject

to rather simple “pole” conditions, equipped with an algebra structure via the shuffle
product � : Sk × S� → Sk+� given by

F(. . . , xi,1, . . . , xi,ki , . . .)�G(. . . , xi,1, . . . , xi,�i , . . .) := 1
∏

i∈I ki ! · �i !

×Sym

⎛

⎝F
(
{xi,r }1≤r≤ki

i∈I
)
G
(
{xi ′,r ′ }ki ′<r ′≤ki ′+�i ′

i ′∈I
)

·
i ′∈I∏

i∈I

r ′>ki ′∏

r≤ki

ζi i ′
(

xi,r
xi ′,r ′

)
⎞

⎠ .

The rational ζ -factors are specifically chosen to allow for an algebra embedding

ϒ : U>
L ↪→ S given by ei,r �→ xri,1 for all i ∈ I , r ∈ Z. (1)

On the other hand, (the restriction of) the aforementioned GKLO-type homomor-
phism

�̃ : U>
L −→ Ãa (2)
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to the algebra Ãa of localized difference operators, generated by {w±1
i,r , D

±1
i,r }1≤r≤ai

i∈I
as well as {(wi,r − qmi wi,s)

−1}m∈Z
r �=s subject to

[wi,r ,w j,s] = 0 = [Di,r , Dj,s] and Di,rw j,s = q
δi j δrs
i w j,s Di,r for some qi ,

is explicitly given by specifying �̃(ei,r ), reminiscent of the Gelfand–Tsetlin formulas
in type A.

Thus, our main construction is the algebra homomorphism

�̂ : S −→ Ã′
a, (3)

where Ã′
a denotes a localization of Ãa at some other elementswi,r − γw j,s , given by

Sk 	 E
�̂�→

∑

m(i)
1 +...+m(i)

ai =ki

m(i)
r ∈N ∀ i∈I

E

(
{
wi,rq

−(p−1)
i

}1≤p≤m(i)
r

i∈I ,r≤ai

)

· (rational prefactor) ·
r≤ai∏

i∈I
D−m(i)

r
i,r (4)

and such that its composition with ϒ of (1) recovers �̃ of (2):

�̃ = �̂ ◦ ϒ : U>
L −→ Ãa . (5)

In particular, the image ofU>
L under the composition (5) is in the subalgebra Ãa of Ã′

a .

This �̂ can be perceived as a trigonometric counterpart of a much older construction
from [9].

Wewant to emphasize that this construction of �̂ is a general phenomenon that applies
in a much wider setup. However, if one wishes to remain in the realm of quantum
algebras, then one needs to restrict �̂ to the image of the embedding ϒ of (1). The
latter is often described by certain “wheel” conditions, see (16, 42, 63, 89) for the cases
treated in the present note, which actually constitutes the core of the aforementioned
shuffle algebra isomorphisms.

In the simplest case of quantum affine sl2, some of the resulting difference operators
can be patched nicely to form a q-commuting family satisfying the quantum Q-system
relations of type A. On the other hand, for the case of quantum toroidal gl1, we
obtain the famousMacdonald difference operators aswell as their generalizations from
[5]. Finally, for the case of quantum toroidal sln , the images of natural commutative
subalgebras of the quantum toroidal U>

L give rise to compelling large families of
pairwise commuting difference operators (it is interesting to understand their relation
to the recent construction of [20], if any).
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22 Page 4 of 43 A. Tsymbaliuk

1.2 Outline of the paper

The structure of the present paper is the following:

• In Sect. 2, we recall the notion of shifted quantum affine algebras and the GKLO-
type homomorphisms �̃

λ,z
μ of (9), following [11]. The main result of this section is

Theorem 2.8, which provides a shuffle realization of �̃
λ,z
μ restricted to the positive

and negative subalgebras (actually, extending it to larger algebras S(g) and S
(g),op,

whose elements are rational functions of (13) that do not necessarily satisfy the wheel
conditions (16)). As an application, we construct a natural family of elements in the
shifted quantum affine algebraswhose �̃

λ,z
μ -images are given by simple and interesting

formulas of Lemma 2.12. In Remark 2.10, we explain the resemblance between our
Theorem 2.8 and a much older result [9, Proposition 2].

• In Sect. 3, we generalize the results of Sect. 2 to the context of shifted quan-
tum toroidal algebras of gl1 (depending on two parameters). The main result of this
section is Theorem 3.10, providing shuffle realization of the restrictions of the homo-
morphisms �̃

z
a from Proposition 3.4 to the positive and negative subalgebras (again

extended to the larger algebras S and S
op). In Lemma 3.12, we derive interesting

difference operators as the images of (52, 53).

• In Sect. 4, we generalize the results of Sect. 2 to the context of shifted quantum
toroidal algebras of sln (depending on two parameters). The main result of this section
is Theorem 4.8, providing shuffle realization of the restrictions of the homomorphisms
�̃

a,z
b from Proposition 4.3 to the positive and negative subalgebras (extended to the

larger algebrasS[n] andS[n],op). In Lemma4.10,we get interesting difference operators
as the images of (72, 73). In Example 4.11, we use the shuffle descriptions [10, 21, 22]
of the Bethe and horizontal Heisenberg subalgebras to construct large commutative
families of difference operators.

• In Sect. 5, we generalize the results of Sect. 2 to the context of (shifted)
quantum quiver algebras as recently introduced in [18]. The main result of this
section is Theorem 5.7, providing shuffle realization of the restrictions of the new
GKLO-type homomorphisms from Proposition 5.3 to the positive and negative
subalgebras (extended to the larger algebras S

Q and S
Q,op), in analogy with The-

orems 2.8, 3.10, 4.8.

• In Sect. 6, we present a shuffle interpretation of the quantum Q-system of type A,
thus simplifying proofs of [4, Theorems 2.10, 2.11], see Propositions 6.3, 6.7, 6.8. We
also match the difference operators of [4, §6] with those from Sect. 2 in the simplest
case of g = sl2, see Lemma 6.12 and Proposition 6.13. Finally, in Lemma 6.15, we
explain how the images of the Cartan and negative subalgebras can be expressed via
the images of finitely many elements in the positive subalgebra, after a localization at
two elements.

• In Sect. 7, we provide a shuffle interpretation of the (t, q)-deformed Q-system of
type A as recently investigated in [5]. In particular, we identify the generalized Mac-
donald operators (124) of [5] with the elements of Lemma 3.12, see Proposition 7.13.
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This clarifies a shuffle approach in [5] and also establishes [5, Conjecture 1.17], see
Theorem 7.14.

2 Shuffle realization of GKLO-type homomorphisms for Usc
�+,�−

2.1 Shifted quantum affine algebra

Let g be a simple Lie algebra, and {α∨
i }i∈I (resp. {αi }i∈I ) be the simple roots (resp.

simple coroots) of g. Let (·, ·) denote the corresponding pairing on the root lattice,

and set di := (α∨
i ,α∨

i )

2 ∈ {1, 2, 3}. Let (ci j )i, j∈I be the Cartan matrix of g, so that
di ci j = (α∨

i , α∨
j ) = d j c ji . Let 
 be the coweight lattice of g, and 
+ ⊂ 
 be the

submonoid of dominant integral weights.

Given coweights μ± ∈ 
, set b± = {b±
i }i∈I ∈ Z

I with b±
i := α∨

i (μ±). Following
[11, §5(i)], we define the simply connected version of shifted quantum affine alge-
bra, denoted by U sc

μ+,μ− or U sc
b+,b− , as the associative C(q)-algebra generated by

{ei,r , fi,r , ψ
±
i,±s±i

, (ψ±
i,∓b±

i
)−1}r∈Z,s±i ≥−b±

i
i∈I with the following defining relations (for

all i, j ∈ I and ε, ε′ ∈ {±}):

[ψε
i (z), ψε′

j (w)] = 0, ψ±
i,∓b±

i
· (ψ±

i,∓b±
i
)−1 = (ψ±

i,∓b±
i
)−1 · ψ±

i,∓b±
i

= 1, (U1)

(z − q
ci j
i w)ei (z)e j (w) = (q

ci j
i z − w)e j (w)ei (z), (U2)

(q
ci j
i z − w) fi (z) f j (w) = (z − q

ci j
i w) f j (w) fi (z), (U3)

(z − q
ci j
i w)ψε

i (z)e j (w) = (q
ci j
i z − w)e j (w)ψε

i (z), (U4)

(q
ci j
i z − w)ψε

i (z) f j (w) = (z − q
ci j
i w) f j (w)ψε

i (z), (U5)

[ei (z), f j (w)] = δi j

qi − q−1
i

δ
( z

w

) (
ψ+
i (z) − ψ−

i (z)
)
, (U6)

Sym
z1,...,z1−ci j

1−ci j∑

r=0

(−1)r
[
1 − ci j

r

]

qi

ei (z1) · · · ei (zr )e j (w)ei (zr+1) · · · ei (z1−ci j ) = 0,

(U7)

Sym
z1,...,z1−ci j

1−ci j∑

r=0

(−1)r
[
1 − ci j

r

]

qi

fi (z1) · · · fi (zr ) f j (w) fi (zr+1) · · · fi (z1−ci j ) = 0,

(U8)

where qi := qdi , [a, b]x := ab − x · ba, [m]q := qm−q−m

q−q−1 ,
[m
r

]
q := [m−r+1]q ···[m]q

[1]q ···[r ]q ,
Sym
z1,...,zs

stands for the symmetrization in z1, . . . , zs , and the generating series are defined
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22 Page 6 of 43 A. Tsymbaliuk

as follows:

ei (z) :=
∑

r∈Z
ei,r z

−r , fi (z) :=
∑

r∈Z
fi,r z

−r ,

ψ±
i (z) :=

∑

r≥−b±
i

ψ±
i,±r z

∓r , δ(z) :=
∑

r∈Z
zr . (6)

Let U sc,<
μ+,μ− , U sc,>

μ+,μ− , U sc,0
μ+,μ− be the C(q)-subalgebras of U sc

μ+,μ− generated by

{ fi,r }r∈Zi∈I , {ei,r }r∈Zi∈I , {ψ±
i,±s±i

, (ψ±
i,∓b±

i
)−1}s

±
i ≥−b±

i
i∈I , respectively. The following result

is standard:

Proposition 2.2 [11] (a) (Triangular decomposition of U sc
μ+,μ− ) The multiplication

map

m : U sc,<
μ+,μ− ⊗U sc,0

μ+,μ− ⊗U sc,>
μ+,μ− −→ U sc

μ+,μ−

is an isomorphism of C(q)-vector spaces.

(b) The algebras U sc,<
μ+,μ− , U

sc,>
μ+,μ− , and U

sc,0
μ+,μ− are isomorphic to the C(q)-algebras

generated by { fi,r }r∈Zi∈I , {ei,r }r∈Zi∈I , and {ψ±
i,±s±i

, (ψ±
i,∓b±

i
)−1}s

±
i ≥−b±

i
i∈I with the defining

relations (U3, U8), (U2, U7), and (U1), respectively. In particular, U sc,<
μ+,μ− , U sc,>

μ+,μ−
are independent of μ± ∈ 
.

The algebras U sc
μ+,μ− and U sc

0,μ++μ− are naturally isomorphic for any μ± ∈ 
,

see [11, p. 162]. Therefore, we do not lose generality by considering only U
(b)
q =

Uμ
q := U sc

0,μ in the rest of this note. The quantum loop algebra Uq(Lg) is isomorphic

to U sc
0,0/(ψ

+
i,0ψ

−
i,0 − 1)i∈I .

2.3 GKLO-type homomorphisms

Fix an orientation of the graph Dyn(g) obtained from the Dynkin diagram of g by
replacing all multiple edges by simple ones. The notation j − i (resp. j → i or
j ← i) is to indicate an edge (resp. oriented edge pointing towards i or j) between
the vertices i, j ∈ Dyn(g). We fix a dominant coweight λ ∈ 
+ and a coweight
μ ∈ 
, such that λ − μ = ∑

i∈I aiαi with ai ∈ N. We also fix a sequence
λ = (ωi1, . . . , ωiN ) of fundamental coweights, such that

∑N
k=1 ωik = λ, as well

as a sequence z = (z1, . . . , zN ) ∈ (C×)N .
Consider the associativeC(q)-algebra Âq

frac generated by {D±1
i,r ,w±1/2

i,r }1≤r≤ai
i∈I sub-

ject to

[Di,r , Dj,s] =
[
w1/2
i,r ,w1/2

j,s

]
= 0, D±1

i,r D
∓1
i,r = w±1/2

i,r w∓1/2
i,r = 1,

Di,rw
1/2
j,s = q

δi j δrs
i w1/2

j,s Di,r (7)

123



Difference operators via GKLO-type homomorphisms: shuffle… Page 7 of 43 22

for all i, j ∈ I , 1 ≤ r ≤ ai , 1 ≤ s ≤ a j . Let Ãq
frac be the localization of Âq

frac by the

multiplicative set generated by {wi,r −qmi wi,s}1≤r �=s≤ai
i∈I ,m∈Z , which obviously satisfies the

Ore conditions. We also define:

Zi (z) :=
is=i∏

1≤s≤N

(

1 − qi zs
z

)

, Wi (z) :=
ai∏

r=1

(

1 − wi,r

z

)

, Wi,r (z) :=
s �=r∏

1≤s≤ai

(

1 − wi,s

z

)

.

(8)

The following result has been established in [11, Theorem 7.1] (in the unshifted case
μ+ = μ− = 0, more precisely for Uq(Lg), this result appeared without a proof
in [14]):

Proposition 2.4 [11] There exists a unique C(q)-algebra homomorphism

�̃
λ,z
μ : Uμ

q −→ Ãq
frac (9)

such that

ei (z) �→ −qi
1 − q2i

ai∏

t=1

wi,t

∏

j→i

a j∏

t=1

w
c ji /2
j,t ·

ai∑

r=1

δ

(
wi,r

z

)
Zi (wi,r )

Wi,r (wi,r )

∏

j→i

−c ji∏

p=1

Wj (q
−c ji−2p
j z)D−1

i,r ,

fi (z) �→ 1

1 − q2i

∏

j←i

a j∏

t=1

w
c ji /2
j,t ·

ai∑

r=1

δ

(
q2i wi,r

z

)
1

Wi,r (wi,r )

∏

j←i

−c ji∏

p=1

Wj (q
−c ji−2p
j z)Di,r ,

ψ±
i (z) �→

ai∏

t=1

wi,t

∏

j−i

a j∏

t=1

w
c ji /2
j,t ·

⎛

⎝ Zi (z)

Wi (z)Wi (q
−2
i z)

∏

j−i

−c ji∏

p=1

Wj (q
−c ji−2p
j z)

⎞

⎠

±
.

(10)

We write γ (z)± for the expansion of a rational function γ (z) in z∓1, respectively.

2.5 Shuffle algebra realization of the positive and negative subalgebras

According to Proposition 2.2(b), we have algebra isomorphisms for anyμ+, μ− ∈ 
:

Uμ,>
q

∼−→U>
q (Lg) given by ei,r �→ ei,r for i ∈ I , r ∈ Z,

Uμ,<
q

∼−→U<
q (Lg) given by fi,r �→ fi,r for i ∈ I , r ∈ Z.

(11)

We also note the algebra isomorphism

U<
q (Lg)

∼−→U>
q (Lg)op given by fi,r �→ ei,r for i ∈ I , r ∈ Z, (12)

where for any algebra A we use Aop to denote the algebra with the opposite multipli-
cation.
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Consider anNI -gradedC(q)-vector space S(g) =⊕k=(ki )i∈I∈NI S
(g)
k , with the graded

components

S
(g)
k =

⎧
⎨

⎩
F = f ({xi,r }1≤r≤ki

i∈I )
∏unordered

i− j
∏s≤k j

r≤ki
(xi,r − x j,s)

∣
∣
∣ f ∈ C

[
{x±1

i,r }1≤r≤ki
i∈I

]Sk

⎫
⎬

⎭
, (13)

where Sk := ∏
i∈I S(ki ) is the product of symmetric groups. We also fix rational

functions:

ζi j

( z

w

)
= z − q

−ci j
i w

z − w
∀ i, j ∈ I . (14)

Let us now introduce the bilinear shuffle product � on S
(g) as follows:

F(. . . , xi,1, . . . , xi,ki , . . .)�G(. . . , xi,1, . . . , xi,�i , . . .) := 1

k! · �!

×Sym

⎛

⎝F
(
{xi,r }1≤r≤ki

i∈I
)
G
(
{xi ′,r ′ }ki ′<r ′≤ki ′+�i ′

i ′∈I
)

·
i ′∈I∏

i∈I

r ′>ki ′∏

r≤ki

ζi i ′
(

xi,r
xi ′,r ′

)
⎞

⎠ .

(15)

Here, k! = ∏
i∈I ki !, while the symmetrization of f ∈ C({xi,1, . . . , xi,mi }i∈I ) is

defined via:

Sym ( f )
(
{xi,1, . . . , xi,mi }i∈I

)
=

∑

σi∈S(mi ) ∀ i∈I
f
(
{xi,σi (1), . . . , xi,σi (mi )}i∈I

)
.

This endows S
(g) with a structure of an associative C(q)-algebra with the unit

1 ∈ S
(g)

(0,...,0).

We are interested in an NI -graded C(q)-subspace of S(g) defined by the wheel condi-
tions:

F
(
{xi,r }

)∣
∣
∣
(xi,1,xi,2,xi,3,...,xi,1−ci j ) �→(w,wq2i ,wq4i ,...,wq

−2ci j
i ), x j,1 �→wq

−ci j
i

= 0 (16)

for any connected vertices i − j in Dyn(g). Let S(g) ⊂ S
(g) denote the subspace

of all such elements F . It is straightforward to check that S(g) ⊂ S
(g) is �-closed.

The resulting algebra
(
S(g), �

)
is called the (trigonometric Feigin–Odesskii) shuffle

algebra of type g.
The following result has been recently established in [19, Theorem 1.7]:

Proposition 2.6 [19] The assignments ei,r �→ xri,1 and fi,r �→ xri,1 for i ∈ I , r ∈ Z

give rise to C(q)-algebra isomorphisms:

ϒ : U>
q (Lg)

∼−→ S(g) and ϒ : U<
q (Lg)

∼−→ S(g),op. (17)
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2.7 Shuffle algebra realization of the GKLO-type homomorphisms

Themain new result of this section is the shuffle algebra interpretation of the homomor-
phisms �̃

λ,z
μ . We note that the type A case of this result is due to [12, Theorem 4.11],

while its rational counterpart is due to [13, Theorem B.17], where they played crucial
roles.

To this end, for any i ∈ I and 1 ≤ r ≤ ai , we define:

Yi,r (z) := 1

qi − q−1
i

ai∏

t=1

wi,t

∏

j→i

a j∏

t=1

w
c ji /2
j,t · Zi (z)

∏
j→i

∏−c ji
p=1 Wj (zq

−c ji−2p
j )

Wi,r (z)
,

Y ′
i,r (z) := 1

1 − q2i

∏

j←i

a j∏

t=1

w
c ji /2
j,t ·

∏
j←i

∏−c ji
p=1 Wj (zq

−c ji−2p
j )

Wi,r (zq
−2
i )

. (18)

Define theC(q)-algebra Ãq,′
frac as the further localization of Ãq

frac by the multiplicative

set generated by {wi,r − qmw j,s}r≤ai ,s≤a j

i− j,m∈Z . We note that Ãq
frac is naturally embedded

into Ãq,′
frac. Then, we have the following result:

Theorem 2.8 (a) The assignment

S
(g)
k 	 E �→

∏

i∈I
q
ki−k2i
i

×
∑

m(i)
1 +...+m(i)

ai =ki

m(i)
r ∈N ∀ i∈I

⎧
⎨

⎩

∏

i∈I

ai∏

r=1

m(i)
r∏

p=1

Yi,r
(
wi,r q

−2(p−1)
i

)
· E
(
{
wi,r q

−2(p−1)
i

}1≤p≤m(i)
r

i∈I ,1≤r≤ai

)

×
∏

i∈I

∏

1≤r≤ai

∏

1≤p1<p2≤m(i)
r

ζ−1
i i

(
wi,r q

−2(p1−1)
i

/
wi,r q

−2(p2−1)
i

)

×
∏

i∈I

∏

1≤r1 �=r2≤ai

1≤p2≤m(i)
r2∏

1≤p1≤m(i)
r1

ζ−1
i i

(
wi,r1q

−2(p1−1)
i

/
wi,r2q

−2(p2−1)
i

)

×
∏

j→i

1≤r2≤a j∏

1≤r1≤ai

1≤p2≤m( j)
r2∏

1≤p1≤m(i)
r1

ζ−1
i j

(
wi,r1q

−2(p1−1)
i

/
w j,r2q

−2(p2−1)
j

)
·
∏

i∈I

ai∏

r=1

D−m(i)
r

i,r

⎫
⎪⎬

⎪⎭

(19)

gives rise to the algebra homomorphism

�̂
λ,z
μ : S(g) −→ Ãq,′

frac. (20)
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22 Page 10 of 43 A. Tsymbaliuk

Moreover, the composition

Uμ,>
q

(11)∼−→U>
q (Lg)

ϒ∼−→ S(g)
�̂

λ,z
μ−→ Ãq,′

frac (21)

coincides with the restriction of the homomorphism �̃
λ,z
μ of (9) to the subalgebra

Uμ,>
q of Uμ

q . In particular, the image of Uμ,>
q under the composition (21) is in the

subalgebra Ãq
frac of Ãq,′

frac.

(b) The assignment

S
(g),op
k 	 F �→

∑

m(i)
1 +...+m(i)

ai =ki

m(i)
r ∈N ∀ i∈I

⎧
⎨

⎩

∏

i∈I

ai∏

r=1

m(i)
r∏

p=1

Y ′
i,r

(
wi,r q

2p
i

)
· F
(
{
wi,r q

2p
i

}1≤p≤m(i)
r

i∈I ,1≤r≤ai

)

×
∏

i∈I

∏

1≤r≤ai

∏

1≤p1<p2≤m(i)
r

ζ−1
i i

(
wi,r q

2p2
i

/
wi,r q

2p1
i

)

×
∏

i∈I

∏

1≤r1 �=r2≤ai

1≤p2≤m(i)
r2∏

1≤p1≤m(i)
r1

q−1
i ζ−1

i i

(
wi,r2q

2p2
i

/
wi,r1q

2p1
i

)

×
∏

j←i

1≤r2≤a j∏

1≤r1≤ai

1≤p2≤m( j)
r2∏

1≤p1≤m(i)
r1

ζ−1
j i

(
w j,r2q

2p2
j

/
wi,r1q

2p1
i

)
·
∏

i∈I

ai∏

r=1

Dm(i)
r

i,r

⎫
⎪⎬

⎪⎭

(22)

gives rise to the algebra homomorphism

�̂
λ,z
μ : S(g),op −→ Ãq,′

frac. (23)

Moreover, the composition

Uμ,<
q

(11)∼−→U<
q (Lg)

ϒ∼−→ S(g),op �̂
λ,z
μ−→ Ãq,′

frac (24)

coincides with the restriction of the homomorphism �̃
λ,z
μ of (9) to the subalgebra

Uμ,<
q of Uμ

q . In particular, the image of Uμ,<
q under the composition (24) is in the

subalgebra Ãq
frac of Ãq,′

frac.

Proof (a) Let us denote the right-hand side of (19) by �̂
λ,z
μ (E). A tedious straightfor-

ward verification proves �̂
λ,z
μ (E�E ′) = �̂

λ,z
μ (E)�̂

λ,z
μ (E ′) for any E ∈ S

(g)
k , E ′ ∈ S

(g)
�
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with arbitrary k, � ∈ N
I . Thus, �̂λ,z

μ : S(g) → Ãq,′
frac is aC(q)-algebra homomorphism,

and clearly the images of {ei,r }r∈Zi∈I under (21) and �̃
λ,z
μ do coincide. This completes

our proof of Theorem 2.8(a).
(b) The proof of Theorem 2.8(b) is completely analogous. ��

Remark 2.9 We note that Theorem 2.8 can actually be used to simplify our proof
of Proposition 2.4. Indeed, it immediately implies the compatibility of the assign-
ment �̃

λ,z
μ with the defining relations (U2, U3, U7, U8), while the compatibility

with (U1, U4, U5) is easily checked. Thus, it remains only to prove the compatibility
with (U6), which is verified by expressing γ (z)+ − γ (z)− as a sum of delta-functions
in a standard way, see [11, Lemma C.1, §C(vi)].

Remark 2.10 The construction (19) is reminiscent of that from [9, Proposition 2]
in the elliptic setting. To this end, we consider the C(q)-algebra B̃(a),q

frac generated

by {w±1
i,r , Ei,r }1≤r≤ai

i∈I , being further localized by the multiplicative set generated by

{wi,r − qmci jw j,s}ci j �=0,m∈Z
(i,r) �=( j,s) , with:

wi,rw j,s = w j,swi,r , Ei,rw j,s = q
−2δi j δrs
i w j,sEi,r ,

Ei,rE j,s = q
ci j
i wi,r − w j,s

wi,r − q
ci j
i w j,s

E j,sEi,r . (25)

This algebra is equipped with the following homomorphism to the algebra Ãq,′
frac:

ς : B̃(a),q
frac −→ Ãq,′

frac given by wi,r �→ wi,r , Ei,r �→ Yi,r (wi,r )D
−1
i,r . (26)

Then:
(a) The restriction of the algebra homomorphism �̃

λ,z
μ to the positive subalgebra

Uμ,>
q , identified with U>

q (Lg) via (11), can be interpreted as a composition of ς

from (26) and

�a : U>
q (Lg) −→ B̃(a),q

frac given by ei (z) �→
ai∑

r=1

δ

(
wi,r

z

)

· Ei,r . (27)

(b) The homomorphisms �a of (27) can be obtained from their simplest coun-
terparts with a = (0, . . . , 0, 1, . . . , 0) via the “twisted tensor product”. To this
end, for a(1), a(2) ∈ N

I set a(12) := a(1) + a(2), and consider the correspond-
ing algebras B̃(1),q

frac , B̃(2),q
frac , B̃(12),q

frac . Let U≥
q (Lg) be the subalgebra generated by

{ei,r , ψ−
i,−k}r∈Z,k∈N

i∈I . It is endowed with the formal coproduct:

� : ei (z) �→ ei (z) ⊗ 1 + ψ−
i (z) ⊗ ei (z), ψ−

i (z) �→ ψ−
i (z) ⊗ ψ−

i (z). (28)
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22 Page 12 of 43 A. Tsymbaliuk

Following (10), let us extend the algebra homomorphism (27) to�a : U≥
q (Lg)→B̃(a),q

frac .

We also consider the algebra embedding ı : B̃(12),q
frac ↪→ B̃(1),q

frac ⊗ B̃(2),q
frac determined by

wi,r �→
⎧
⎨

⎩

w(1)
i,r if r ≤ a(1)

i

w(2)

i,r−a(1)
i

if r > a(1)
i

, Ei,r �→
⎧
⎨

⎩

E(1)
i,r if r ≤ a(1)

i

�a(1) (ψ
−
i (w(2)

i,r−a(1)
i

))E(2)

i,r−a(1)
i

if r > a(1)
i

.

(29)

Then,�a(1)+a(2):U≥
q (Lg)→ B̃(12),q

frac factors through the composition(�a(1)⊗�a(2) )◦�,
that is:

ı ◦ �a(1)+a(2) = (�a(1) ⊗ �a(2) ) ◦ �.

2.11 Special difference operators

For any k ∈ N
I and anymultisymmetricLaurent polynomial g∈C(q)

[
{x±1

i,r }1≤r≤ki
i∈I

]Sk
,

consider the following shuffle element Ẽk(g) ∈ S(g)
k :

Ẽk(g) :=
∏

i∈I

{

q
k2i −ki
i (qi − q−1

i )ki
} ∏

i∈I
∏

1≤r �=s≤ki (xi,r − q−2
i xi,s) · g

(
{xi,r }1≤r≤ki

i∈I
)

∏
i→ j

∏s≤k j
r≤ki

(x j,s − xi,r )
.

(30)

These elements obviously satisfy the wheel conditions (16), due to the presence of the
factor

∏
i∈I
∏

1≤r �=s≤ki (xi,r − q−2
i xi,s) and thus can be written as Ẽk(g) = ϒ(̃ek(g))

for unique ẽk(g) ∈ Uμ,>
q � U>

q (Lg) by Proposition 2.6, so that �̂
λ,z
μ (Ẽk(g)) =

�̃
λ,z
μ (̃ek(g)) by Theorem 2.8(a). We also consider F̃k(g) ∈ S(g),op

k defined via:

F̃k(g) :=
∏

i∈I

{

q
ki−k2i
i (1 − q2i )ki

} ∏
i∈I
∏

1≤r �=s≤ki (xi,r − q−2
i xi,s) · g

(
{xi,r }1≤r≤ki

i∈I
)

∏
i→ j

∏s≤k j
r≤ki

(xi,r − x j,s)
.

(31)

The following result generalizes its type A case established in [12, Proposition 4.12]:

Lemma 2.12 (a) For Ẽk(g) ∈ S(g)
k given by (30), we have:

�̂
λ,z
μ (Ẽk(g)) =

∏

i∈I

( ai∏

t=1

wi,t

)ki+∑ j←i
ci j
2 k j
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×
∑

Ji⊂{1,...,ai }|Ji |=ki ∀ i∈I

⎛

⎜
⎜
⎜
⎜
⎝

∏
j→i

∏1≤s≤a j
r∈Ji

∏−c ji−δs∈J j
p=1

(

1 − q
c ji+2p

j w j,s

wi,r

)

∏
i∈I
∏s /∈Ji

r∈Ji

(
1 − wi,s

wi,r

) · g
(
{wi,r }r∈Ji

i∈I
)

×
∏

i∈I

∏

r∈Ji

Zi (wi,r ) ·
∏

i∈I

( ∏

r∈Ji

wi,r

)ki−1−∑ j→i k j ·
∏

i∈I

∏

r∈Ji

D−1
i,r

⎞

⎠ . (32)

(b) For F̃k(g) ∈ S(g),op
k given by (31), we have:

�̂
λ,z
μ (F̃k(g)) =

∏

i∈I

( ai∏

t=1

wi,t

)∑
j→i

ci j
2 k j

×
∑

Ji⊂{1,...,ai }|Ji |=ki ∀ i∈I

⎛

⎜
⎜
⎜
⎜
⎝

∏
j←i

∏1≤s≤a j
r∈Ji

∏−c ji
p=1+δs∈J j

(

1 − q
c ji+2p

j q−2
i w j,s

wi,r

)

∏
i∈I
∏s /∈Ji

r∈Ji

(
1 − wi,s

wi,r

) · g
(
{q2i wi,r }r∈Ji

i∈I
)

×
∏

i∈I

( ∏

r∈Ji

wi,r

)ki−1−∑ j←i k j ·
∏

i∈I
q
∑

j←i (ci j−2)ki k j
i ·

∏

i∈I

∏

r∈Ji

Di,r

⎞

⎠ . (33)

Proof The proof is straightforward and is based on (19, 22). Due to the presence of the
factors

∏
i∈I
∏

1≤r �=s≤ki (xi,r − q−2
i xi,s), the summands of (19, 22) with at least one

m(i)
r > 1 do vanish. This explains why the summations over all partitions of ki into ai

nonnegative terms in (19, 22) are replaced by the summations over all cardinality ki
subsets of {1, . . . , ai } in (32, 33). ��

Corollary 2.13 If ki > ai for some i ∈ I , then �̂
λ,z
μ (Ẽk(g)) = 0 = �̂

λ,z
μ (F̃k(g)) for

all g.

3 Generalization to the quantum toroidal gl1
The above constructions admit natural generalizations to the case of shifted version of
the quantum toroidal algebra Üq1,q2,q3(gl1), related (e.g. via [2]) to the Jordan quiver.
We shall state the key results, skipping the proofs when they are similar to those from
Sect. 2.

3.1 Shifted quantum toroidal gl1

Fix q1, q2, q3 ∈ C
× that are not roots of unity and satisfy q1q2q3 = 1. For b+, b− ∈ Z,

we define the shifted quantum toroidal algebra of gl1, denoted by Ü
(b+,b−)
q1,q2,q3 , to be the

associativeC-algebra generated by {er , fr , ψ
±
±s± , (ψ±

∓b±)−1}s±≥−b±
r∈Z with the follow-

ing defining relations:
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22 Page 14 of 43 A. Tsymbaliuk

[ψε(z), ψε′
(w)] = 0, ψ±

∓b± · (ψ±
∓b± )−1 = (ψ±

∓b± )−1 · ψ±
∓b± = 1, (t1)

(z − q1w)(z − q2w)(z − q3w)e(z)e(w) = (q1z − w)(q2z − w)(q3z − w)e(w)e(z), (t2)
(q1z − w)(q2z − w)(q3z − w) f (z) f (w) = (z − q1w)(z − q2w)(z − q3w) f (w) f (z), (t3)
(z − q1w)(z − q2w)(z − q3w)ψε(z)e(w) = (q1z − w)(q2z − w)(q3z − w)e(w)ψε(z), (t4)
(q1z − w)(q2z − w)(q3z − w)ψε(z) f (w) = (z − q1w)(z − q2w)(z − q3w) f (w)ψε(z),

(t5)

[e(z), f (w)] = 1

β1
δ
( z

w

) (
ψ+(z) − ψ−(z)

)
, (t6)

Sym
z1,z2,z3

z2
z3

[e(z1), [e(z2), e(z3)]] = 0, (t7)

Sym
z1,z2,z3

z2
z3

[ f (z1), [ f (z2), f (z3)]] = 0, (t8)

where ε, ε′ ∈ {±}, β1 = (1 − q1)(1 − q2)(1 − q3), and the generating series are
defined via:

e(z) :=
∑

r∈Z
er z

−r , f (z) :=
∑

r∈Z
fr z

−r , ψ±(z) :=
∑

r≥−b±
ψ±±r z

∓r .

Remark 3.2 (a) The original quantum toroidal algebra of gl1, denoted by Üq1,q2,q3(gl1),

is isomorphic to Ü (0,0)
q1,q2,q3/(ψ

+
0 ψ−

0 − 1).

(b) We note the S(3)-symmetry of Ü (b+,b−)
q1,q2,q3 with respect to the permutations of

q1, q2, q3.

The algebras Ü (b+,b−)
q1,q2,q3 and Ü

(0,b++b−)
q1,q2,q3 are naturally isomorphic for any b±. Hence,

we do not lose generality by considering only Ü (0,b)
q1,q2,q3 , which will be denoted by

Ü (b)
q1,q2,q3 for simplicity.

3.3 GKLO-type homomorphisms

Fix a pair of integers: a ≥ 1 and N ≥ 0 (following [2, §A(iii)], one can interpret them
as a = dim(V ) and N = dim(W ) in the Jordan quiver). Let Âq1 be the associative C-
algebra generated by {D±1

r ,w±1
r }1≤r≤a with the only nontrivial commutator Drws =

qδrs
1 ws Dr , and let Ãq1 be the localization of Âq1 by the multiplicative set generated
by {wr − qm1 ws}m∈Z

1≤r �=s≤a . We also choose a sequence z = (z1, . . . , zN ) ∈ (C×)N and

define Z(z) :=∏N
k=1

(
1 − zk

z

)
.

Then, we have the following analogue of Proposition 2.4:

Proposition 3.4 There exists a unique C-algebra homomorphism

�̃
z
a : Ü (N )

q1,q2,q3 −→ Ãq1 (34)

such that
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e(z) �→ −1
1−q−1

1

∑a
r=1 δ

(
wr
z

)
Z(wr )

∏s �=r
1≤s≤a

wr−q−1
2 ws

wr−ws
D−1
r ,

f (z) �→ 1
1−q1

∑a
r=1 δ

(
q1wr
z

)∏s �=r
1≤s≤a

wr−q2ws
wr−ws

Dr ,

ψ±(z) �→
(

Z(z) ·∏a
r=1

(z−q−1
2 wr )(z−q−1

3 wr )

(z−wr )(z−q1wr )

)±
. (35)

As before, γ (z)± denotes the expansion of a rational function γ (z) in z∓1, respectively.

Remark 3.5 Due to the S(3)-symmetry of Ü (N )
q1,q2,q3 (Remark 3.2(b)), we can replace

q2 by q3 in (35). Overall, we have six similar homomorphisms: two Ü (N )
q1,q2,q3 → Ãqi

for each i = 1, 2, 3.

Remark 3.6 In the unshifted case N = 0, (34) factors through
�̃a: Üq1,q2,q3(gl1) →Ãq1 (see Remark 3.2(a)) that maps:

�̃a : e0 �→ −1
1−q−1

1

∑a
r=1
∏s �=r

1≤s≤a
wr−q−1

2 ws
wr−ws

D−1
r , f0 �→ 1

1−q1

∑a
r=1
∏s �=r

1≤s≤a
wr−q2ws
wr−ws

Dr ,

ψ+
1 �→ (1 − q−1

2 )(1 − q−1
3 )

∑a
r=1 wr , ψ−

−1 �→ (1 − q2)(1 − q3)
∑a

r=1 w
−1
r , ψ±

0 �→ 1.

(36)

Let us compare this with [7, Proposition 5.1], where a natural Üq1,q2,q3(gl1)-
representation of [7, Lemma 3.7] is interpreted as an algebra homomorphism
�̄a : Üq1,q2,q3(gl1) → Ãq1 given by (we swap q2 ↔ q3 in the formulas of [7]):

�̄a : e0 �→ 1
1−q1

∑a
r=1wr , f0 �→ −1

1−q−1
1

∑a
r=1w

−1
r , ψ±

0 �→ 1,

ψ+
1 �→ (1 − q2)(1 − q3)

∑a
r=1
∏

s �=r
wr−q2ws
wr−ws

Dr ,

ψ−
−1 �→ (1 − q−1

2 )(1 − q−1
3 )

∑a
r=1
∏

s �=r
wr−q−1

2 ws
wr−ws

D−1
r . (37)

Both �̃a and �̄a factor through the central quotient Üq1,q2,q3(gl1)/(ψ
±
0 − 1) and

the resulting homomorphisms �̃a, �̄a : Üq1,q2,q3(gl1)/(ψ
±
0 − 1) → Ãq1 are related

via �̄a = �̃a ◦ � , where � is an automorphism (a version of the Burban–
Schiffmann/Miki’s automorphism) of Üq1,q2,q3(gl1)/(ψ

±
0 − 1) determined by:

� : ψ+
1 �→ β1 f0, ψ−

−1 �→ β1e0, e0 �→ q−1
1 β−1

1 ψ+
1 , f0 �→ q1β

−1
1 ψ−

−1.

(38)

3.7 Shuffle algebra realization of the positive and negative subalgebras

Similar to (11, 12), we have the following algebra isomorphisms:

Ü (N ),>
q1,q2,q3

∼−→ Ü>
q1,q2,q3(gl1), Ü (N ),<

q1,q2,q3
∼−→ Ü<

q1,q2,q3(gl1),

Ü<
q1,q2,q3(gl1)

∼−→ Ü>
q1,q2,q3(gl1)

op, (39)
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with subalgebras Ü (N ),>
q1,q2,q3, Ü

>
q1,q2,q3(gl1), Ü

(N ),<
q1,q2,q3 , Ü

<
q1,q2,q3(gl1) defined in a self-

explaining way.

Consider an N-graded C-vector space S =⊕k∈NSk , with the graded components

Sk =
{

F = f (x1, . . . , xk)
∏

1≤r �=s≤k(xr − xs)

∣
∣
∣ f ∈ C

[
x±1
1 , . . . , x±1

k

]S(k)
}

. (40)

We also fix a rational function

ζ
( z

w

)
= (z − q−1

1 w)(z − q−1
2 w)(z − q−1

3 w)

(z − w)3
. (41)

The bilinear shuffle product � on S is defined completely analogously to (15), thus
endowing S with a structure of an associative unital C-algebra. As before, we are
interested in an N-graded subspace of S defined by the following wheel conditions:

F(x1, . . . , xk) = 0 once

{
x1
x2

,
x2
x3

,
x3
x1

}

= {q1, q2, q3}. (42)

Let S ⊂ S denote the subspace of all such elements F , which is easily seen to be
�-closed. The resulting shuffle algebra (S, �) is related to Üq1,q2,q3(gl1) via the fol-
lowing result of [15]:

Proposition 3.8 [15] The assignments er �→ xr1 and fr �→ xr1 for r ∈ Z give rise to
C-algebra isomorphisms

ϒ : Ü>
q1,q2,q3(gl1)

∼−→ S and ϒ : Ü<
q1,q2,q3(gl1)

∼−→ Sop. (43)

3.9 Shuffle algebra realization of the GKLO-type homomorphisms

For 1 ≤ r ≤ a, we define:

Yr (z) := −1

1 − q−1
1

Z(z)
s �=r∏

1≤s≤a

z − wsq
−1
2

z − ws
, Y ′

r (z) := 1

1 − q1

s �=r∏

1≤s≤a

zq−1
1 − wsq2

zq−1
1 − ws

.

(44)

We also define

ϕ
( z

w

)
:=
(
q1/21 z − q−1/2

1 w
) (

q1/22 z − q−1/2
2 w

)

(z − w)2
. (45)

Let Ãq1,′ be the localization of Ãq1 by the multiplicative set generated by
{wr − qm1 q2ws}m∈Z

r �=s . The following is our key result and is proved completely analo-
gously to Theorem 2.8:
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Theorem 3.10 (a) The assignment

Sk 	 E �→
∑

m1+...+ma=k

⎧
⎨

⎩

a∏

r=1

mr∏

p=1

Yr
(
wr q

−(p−1)
1

)
· E
({

wr q
−(p−1)
1

}1≤p≤mr

1≤r≤a

)

×
∏

1≤r≤a

∏

1≤p1<p2≤mr

ζ−1
(
wr q

−(p1−1)
1

/
wr q

−(p2−1)
1

)

×
∏

1≤r1 �=r2≤a

1≤p2≤mr2∏

1≤p1≤mr1

ϕ−1
(
wr1q

−(p1−1)
1

/
wr2q

−(p2−1)
1

)
·

a∏

r=1

D−mr
r

⎫
⎬

⎭
(46)

gives rise to the algebra homomorphism

�̂
z
a : S −→ Ãq1,′ . (47)

Moreover, the composition

Ü (N ),>
q1,q2,q3

(39)∼−→ Ü>
q1,q2,q3(gl1)

ϒ∼−→ S
�̂

z
a−→ Ãq1,′ (48)

coincides with the restriction of the homomorphism �̃
z
a of (34) to the subalgebra

Ü (N ),>
q1,q2,q3 .

(b) The assignment

S
op
k 	 F �→

∑

m1+...+ma=k

⎧
⎨

⎩

a∏

r=1

mr∏

p=1

Y ′
r

(
wr q

p
1

)
· F
({

wr q
p
1

}1≤p≤mr

1≤r≤a

)

×
∏

1≤r≤a

∏

1≤p1<p2≤mr

ζ−1
(
wr q

p2
1

/
wr q

p1
1

)

×
∏

1≤r1 �=r2≤a

1≤p2≤mr2∏

1≤p1≤mr1

ϕ−1
(
wr2q

p2
1

/
wr1q

p1
1

)
·

a∏

r=1

Dmr
r

⎫
⎬

⎭
(49)

gives rise to the algebra homomorphism

�̂
z
a : Sop −→ Ãq1,′ . (50)

Moreover, the composition

Ü (N ),<
q1,q2,q3

(39)∼−→ Ü<
q1,q2,q3(gl1)

ϒ∼−→ Sop
�̂

z
a−→ Ãq1,′ (51)

coincides with the restriction of the homomorphism �̃
z
a of (34) to the subalgebra

Ü (N ),<
q1,q2,q3 .
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3.11 Special difference operators

For any g ∈ C[x±1
1 , . . . , x±1

k ]S(k), consider the following shuffle elements Ẽk(g)∈ Sk :

Ẽk(g) := q
k−k2
2

3 (q−1
1 − 1)k ·

∏
1≤r �=s≤k(xr − q−1

1 xs) · g(x1, . . . , xk)
∏

1≤r �=s≤k(xr − xs)
, (52)

which obviously satisfy the wheel conditions (42). Due to Proposition 3.8,
Ẽk(g) = ϒ(̃ek(g)) for unique elements ẽk(g) ∈ Ü (N ),>

q1,q2,q3 � Ü>
q1,q2,q3(gl1), so that

�̂
z
a(Ẽk(g)) = �̃

z
a (̃ek(g)) by Theorem 3.10(a). We also consider F̃k(g) ∈ Sopk defined

via:

F̃k(g) := (q2/q1)
k−k2
2 (1 − q1)

k ·
∏

1≤r �=s≤k(xr − q−1
1 xs) · g(x1, . . . , xk)

∏
1≤r �=s≤k(xr − xs)

. (53)

The following result is established completely analogously to Lemma 2.12:

Lemma 3.12 (a) For Ẽk(g) ∈ Sk given by (52), we have:

�̂
z
a(Ẽk(g)) =

|J |=k∑

J⊂{1,...,a}

{
s /∈J∏

r∈J

wr − q−1
2 ws

wr − ws
·
∏

r∈J

Z(wr ) · g
(
{wr }r∈J

)
·
∏

r∈J

D−1
r

}

.

(54)

(b) For F̃k(g) ∈ Sopk given by (53), we have:

�̂
z
a(F̃k(g)) =

|J |=k∑

J⊂{1,...,a}

{
s /∈J∏

r∈J

wr − q2ws

wr − ws
· g
(
{q1wr }r∈J

)
·
∏

r∈J

Dr

}

. (55)

Example 3.13 For N = 0 and g = 1, we recover the famous Macdonald difference
operators:

�̂
z
a(Ẽk(1)) =

|J |=k∑

J⊂{1,...,a}

s /∈J∏

r∈J

wr − q−1
2 ws

wr − ws
·
∏

r∈J

D−1
r =: Dk

a(q1, q2),

�̂
z
a(F̃k(1)) =

|J |=k∑

J⊂{1,...,a}

s /∈J∏

r∈J

wr − q2ws

wr − ws
·
∏

r∈J

Dr =: Dk
a(q

−1
1 , q−1

2 ). (56)

Remark 3.14 We note that the crucial and rather nontrivial commutativity

[
Dk

a(q1, q2), Dk′
a (q1, q2)

]
= 0 for all 1 ≤ k, k′ ≤ a
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thus arises as an immediate consequence of a simple equality [Ẽk(1), Ẽk′(1)] = 0 in
the shuffle algebra S, see [8, Proposition 2.21].

4 Generalization to the quantum toroidal sln (n ≥ 3)

The above constructions admit natural generalizations to the case of shifted version
of the quantum toroidal algebra Üq,d(sln), related (e.g. via [2]) to the cyclic n-vertex
quiver. We shall state the key results, skipping the proofs when they are similar to
those from Sect. 2.

4.1 Shifted quantum toroidal sln

For n ≥ 3, consider an index set [n] := {0, 1, . . . , n − 1} (also viewed as a set of
residues modulo n). We define two matrices (ci j )i, j∈[n] (the Cartan matrix of ŝln) and
(mi j )i, j∈[n] via:

cii = 2, ci,i±1 = −1, mi,i±1 = ∓1, and ci j = 0 = mi j otherwise. (57)

Fix q, d ∈ C
× such that q, qd±1 are not roots of unity. Given b± = {b±

i }i∈[n] ∈ Z
[n],

we define the shifted quantum toroidal algebra of sln , denoted by Ü
(b+,b−)

q,d , to be the

associative C-algebra generated by {ei,r , fi,r , ψ
±
i,±s±i

, (ψ±
i,∓b±

i
)−1}r∈Z,s±i ≥−b±

i
i∈[n] with

the following defining relations (for all i, j ∈ [n] and ε, ε′ ∈ {±}):

[ψε
i (z), ψε′

j (w)] = 0, ψ±
i,∓b±

i
· (ψ±

i,∓b±
i
)−1 = (ψ±

i,∓b±
i
)−1 · ψ±

i,∓b±
i

= 1, (T1)

(dmi j z − qci j w)ei (z)e j (w) = (qci j dmi j z − w)e j (w)ei (z), (T2)
(qci j dmi j z − w) fi (z) f j (w) = (dmi j z − qci j w) f j (w) fi (z), (T3)
(dmi j z − qci j w)ψε

i (z)e j (w) = (qci j dmi j z − w)e j (w)ψε
i (z), (T4)

(qci j dmi j z − w)ψε
i (z) f j (w) = (dmi j z − qci j w) f j (w)ψε

i (z), (T5)

[ei (z), f j (w)] = δi j

q − q−1 δ
( z

w

) (
ψ+
i (z) − ψ−

i (z)
)
, (T6)

Sym
z1,z2

(
ei (z1)ei (z2)ei±1(w) − (q + q−1)ei (z1)ei±1(w)ei (z2) + ei±1(w)ei (z1)ei (z2)

)
= 0, (T7)

Sym
z1,z2

(
fi (z1) fi (z2) fi±1(w) − (q + q−1) fi (z1) fi±1(w) fi (z2) + fi±1(w) fi (z1) fi (z2)

)
= 0, (T8)

where the generating series {ei (z), fi (z), ψ
±
i (z)}i∈[n] are defined as in (6).

The algebras Ü (b+,b−)

q,d and Ü (0,b++b−)

q,d are naturally isomorphic for any b± ∈ Z
[n].

Thus, we do not lose generality by considering only Ü
(0,b)
q,d , which will be denoted

by Ü (b)
q,d for simplicity. The original quantum toroidal algebra Üq,d(sln) is isomorphic

to Ü (0,0)
q,d /(ψ+

i,0ψ
−
i,0 − 1)i∈[n].
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4.2 GKLO-type homomorphisms

Fix b ∈ Z
[n] and let a ∈ N

[n] be such that Ni := bi + 2ai − ai−1 − ai+1 ≥ 0
for all i ∈ [n] (in particular, existence of such a forces

∑
i∈[n] bi ≥ 0). We pick

z = ({zi,r }1≤r≤Ni
i∈[n] ) with zi,r ∈ C

×, as well as an orientation of the cyclic quiver

Dyn(ŝln) with the vertex set [n] and the vertex i connected to the vertices i + 1, i − 1.
We define the C-algebra Ãq as in Sect. 2.3 (note that we omit the subscript “frac” as
it is now a C-algebra) and follow the notations (8).

Then, we have the following analogue of Proposition 2.4:

Proposition 4.3 There exists a unique C-algebra homomorphism

�̃
a,z
b : Ü (b)

q,d −→ Ãq (58)

such that

ei (z) �→ −q

1 − q2

ai∏

t=1

wi,t

∏

j→i

a j∏

t=1

w−1/2
j,t ·

ai∑

r=1

δ

(
wi,r

z

)
Zi (wi,r )

Wi,r (wi,r )

∏

j→i

W j (q
−1dmi j z)D−1

i,r ,

fi (z) �→ 1

1 − q2
∏

j←i

a j∏

t=1

w−1/2
j,t ·

ai∑

r=1

δ

(
q2wi,r

z

)
1

Wi,r (wi,r )

∏

j←i

W j (q
−1dmi j z)Di,r ,

ψ±
i (z) �→

ai∏

t=1

wi,t

∏

j−i

a j∏

t=1

w−1/2
j,t ·

⎛

⎝ Zi (z)

Wi (z)Wi (q−2z)

∏

j−i

W j (q
−1dmi j z)

⎞

⎠

±
. (59)

As before, γ (z)± denotes the expansion of a rational function γ (z) in z∓1, respectively.

Remark 4.4 We note that the unshifted case b=0 corresponds to a0=a1= . . .=an−1.

4.5 Shuffle algebra realization of the positive and negative subalgebras

Similar to (11, 12, 39), we have the following algebra isomorphisms:

Ü
(b),>
q,d

∼−→ Ü>
q,d(sln), Ü

(b),<
q,d

∼−→ Ü<
q,d(sln), Ü<

q,d(sln)
∼−→ Ü>

q,d(sln)
op,

(60)

with the subalgebras Ü
(b),>
q,d , Ü>

q,d(sln), Ü
(b),<
q,d (sln), Ü<

q,d(sln) defined in a self-
explaining way.

Consider anN[n]-graded C-vector space S[n] =⊕k=(ki )i∈[n]∈N[n]S[n]
k , with the graded

components

S
[n]
k =

⎧
⎨

⎩
F = f ({xi,r }1≤r≤ki

i∈[n] )
∏

i∈[n]
∏s≤ki+1

r≤ki
(xi,r − xi+1,s)

∣
∣
∣ f ∈ C

[
{x±1

i,r }1≤r≤ki
i∈[n]

]Sk

⎫
⎬

⎭
, (61)
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where Sk :=∏i∈[n] S(ki ). We also fix rational functions {ζi j (z)}i, j∈[n] via:

ζi,i+1

( z

w

)
= d−1z − qw

z − w
, ζi,i−1

( z

w

)
= z − qd−1w

z − w
,

ζi i

( z

w

)
= z − q−2w

z − w
, ζi j

( z

w

)
= 1 if j �= i, i ± 1. (62)

The bilinear shuffle product � on S
[n] is defined completely analogously to (15), thus

endowing S
[n] with a structure of an associative unital C-algebra. As before, we are

interested in an N
[n]-graded subspace of S[n] defined by the following wheel condi-

tions:

F
({xi,r }

) = 0 once xi,2 = q2xi,1 and xi+ε,1 = qd−εxi,1 for i ∈ [n], ε = ±1.

(63)

Let S[n] ⊂ S
[n] denote the subspace of all such elements F , which is easily seen

to be �-closed. The resulting shuffle algebra
(
S[n], �

)
is related to Üq,d(sln) via the

following result of [16]:

Proposition 4.6 [16] The assignments ei,r �→ xri,1 and fi,r �→ xri,1 for i ∈ [n], r ∈ Z

give rise to C-algebra isomorphisms

ϒ : Ü>
q,d(sln)

∼−→ S[n] and ϒ : Ü<
q,d(sln)

∼−→ S[n],op. (64)

4.7 Shuffle algebra realization of the GKLO-type homomorphisms

For any i ∈ [n] and 1 ≤ r ≤ ai , we define:

Yi,r (z) := 1

q − q−1

ai∏

t=1

wi,t

∏

j→i

a j∏

t=1

w−1/2
j,t · Zi (z)

∏
j→i W j (zq−1dmi j )

Wi,r (z)
,

Y ′
i,r (z) := 1

1 − q2
∏

j←i

a j∏

t=1

w−1/2
j,t ·

∏
j←i W j (zq−1dmi j )

Wi,r (zq−2)
. (65)

Define the C-algebra Ãq,′ as the further localization of Ãq by the multiplicative set
generated by {dmi j qci jwi,r −q2mw j,s}r≤ai ,s≤a j

j=i±1,m∈Z.We note that Ãq is naturally embed-

ded into Ãq,′ .
The following is our key result and is proved completely analogously to Theo-

rem 2.8:

Theorem 4.8 (a) The assignment

S
[n]
k 	 E �→ q

∑
i∈[n](ki−k2i )
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×
∑

m(i)
1 +...+m(i)

ai =ki

m(i)
r ∈N ∀ i∈[n]

⎧
⎨

⎩

∏

i∈[n]

ai∏

r=1

m(i)
r∏

p=1

Yi,r
(
wi,r q

−2(p−1)
)

· E
(
{
wi,r q

−2(p−1)
}1≤p≤m(i)

r

i∈[n],1≤r≤ai

)

×
∏

i∈[n]

∏

1≤r≤ai

∏

1≤p1<p2≤m(i)
r

ζ−1
i i

(
wi,r q

−2(p1−1)
/
wi,r q

−2(p2−1)
)

×
∏

i∈[n]

∏

1≤r1 �=r2≤ai

1≤p2≤m(i)
r2∏

1≤p1≤m(i)
r1

ζ−1
i i

(
wi,r1q

−2(p1−1)
/
wi,r2q

−2(p2−1)
)

×
∏

j→i

1≤r2≤a j∏

1≤r1≤ai

1≤p2≤m( j)
r2∏

1≤p1≤m(i)
r1

ζ−1
i j

(
wi,r1q

−2(p1−1)
/
w j,r2q

−2(p2−1)
)

·
∏

i∈[n]

ai∏

r=1

D−m(i)
r

i,r

⎫
⎪⎬

⎪⎭
(66)

gives rise to the algebra homomorphism

�̂
a,z
b : S[n] −→ Ãq,′ . (67)

Moreover, the composition

Ü
(b),>
q,d

(60)∼−→ Ü>
q,d(sln)

ϒ∼−→ S[n] �̂
a,z
b−→ Ãq,′ (68)

coincides with the restriction of the homomorphism �̃
a,z
b of (58) to the subalgebra

Ü
(b),>
q,d . In particular, the image of Ü

(b),>
q,d under the composition (68) is in the subal-

gebra Ãq of Ãq,′ .

(b) The assignment

S
[n],op
k 	 F �→
∑

m(i)
1 +...+m(i)

ai =ki

m(i)
r ∈N ∀ i∈[n]

⎧
⎨

⎩

∏

i∈[n]

ai∏

r=1

m(i)
r∏

p=1

Y ′
i,r

(
wi,r q

2p
)

· F
(
{
wi,r q

2p
}1≤p≤m(i)

r

i∈[n],1≤r≤ai

)

×
∏

i∈[n]

∏

1≤r≤ai

∏

1≤p1<p2≤m(i)
r

ζ−1
i i

(
wi,r q

2p2
/
wi,r q

2p1
)

×
∏

i∈[n]

∏

1≤r1 �=r2≤ai

1≤p2≤m(i)
r2∏

1≤p1≤m(i)
r1

q−1ζ−1
i i

(
wi,r2q

2p2
/
wi,r1q

2p1
)

×
∏

j←i

1≤r2≤a j∏

1≤r1≤ai

1≤p2≤m( j)
r2∏

1≤p1≤m(i)
r1

ζ−1
j i

(
w j,r2q

2p2
/
wi,r1q

2p1
)

·
∏

i∈[n]

ai∏

r=1

Dm(i)
r

i,r

⎫
⎪⎬

⎪⎭
(69)
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gives rise to the algebra homomorphism

�̂
a,z
b : S[n],op −→ Ãq,′ . (70)

Moreover, the composition

Ü
(b),<
q,d

(60)∼−→ Ü<
q,d(sln)

ϒ∼−→ S[n],op �̂
a,z
b−→ Ãq,′ (71)

coincides with the restriction of the homomorphism �̃
a,z
b of (58) to the subalgebra

Ü
(b),<
q,d . In particular, the image of Ü

(b),<
q,d under the composition (71) is in the subal-

gebra Ãq of Ãq,′ .

4.9 Special difference operators

For any k ∈ N
[n] and anymultisymmetricLaurent polynomial g ∈ C(q)

[
{x±1

i,r }r≤ki
i∈[n]

]Sk
,

consider the following shuffle elements Ẽk(g) ∈ S[n]
k :

Ẽk(g) :=
∏

i∈[n]

{
qk

2
i −ki (q − q−1)ki

}
·
∏

i∈[n]
∏

1≤r �=s≤ki (xi,r − q−2xi,s) · g
(
{xi,r }1≤r≤ki

i∈[n]
)

∏
i→ j

∏s≤k j
r≤ki

(x j,s − xi,r )
,

(72)

which obviously satisfy the wheel conditions (63). Due to Proposition 4.6, Ẽk(g) =
ϒ(̃ek(g)) for unique elements ẽk(g) ∈ Ü

(b),>
q,d � Ü>

q,d(sln), so that �̂
a,z
b (Ẽk(g)) =

�̃
a,z
b (̃ek(g)) by Theorem 4.8(a). We also consider F̃k(g) ∈ S[n],op

k defined via:

F̃k(g) :=
∏

i∈[n]

{
qki−k2i (1 − q2)ki

}
·
∏

i∈[n]
∏

1≤r �=s≤ki (xi,r − q−2xi,s) · g
(
{xi,r }1≤r≤ki

i∈[n]
)

∏
i→ j

∏s≤k j
r≤ki

(xi,r − x j,s)
.

(73)

The following result is established completely analogously to Lemma 2.12:

Lemma 4.10 (a) For Ẽk(g) ∈ S[n]
k given by (72), we have:

�̂
a,z
b (Ẽk(g)) = d

∑
i∈[n] ki ki+1δi+1→i

∏

i∈[n]

( ai∏

t=1

wi,t

)ki− 1
2

∑
j←i k j

×
∑

Ji⊂{1,...,ai }|Ji |=ki ∀ i∈[n]

⎛

⎜
⎝

∏
j→i

∏s /∈J j
r∈Ji

(
1 − qdm jiw j,s

wi,r

)

∏
i∈[n]

∏s /∈Ji
r∈Ji

(
1 − wi,s

wi,r

) · g
(
{wi,r }r∈Ji

i∈[n]
)

123



22 Page 24 of 43 A. Tsymbaliuk

×
∏

i∈[n]

∏

r∈Ji

Zi (wi,r ) ·
∏

i∈[n]

⎛

⎝
∏

r∈Ji

wi,r

⎞

⎠

ki−1−∑ j→i k j

·
∏

i∈[n]

∏

r∈Ji

D−1
i,r

⎞

⎟
⎠ . (74)

(b) For F̃k(g) ∈ S[n],op
k given by (73), we have:

�̂
a,z
b (F̃k(g)) = d

∑
i∈[n] ki ki+1δi+1←i q−3

∑
i∈[n] ki ki+1

∏

i∈[n]

( ai∏

t=1

wi,t

)− 1
2

∑
j→i k j

×
∑

Ji⊂{1,...,ai }|Ji |=ki ∀ i∈[n]

⎛

⎜
⎝

∏
j←i

∏s /∈J j
r∈Ji

(
1 − q−1dm jiw j,s

wi,r

)

∏
i∈[n]

∏s /∈Ji
r∈Ji

(
1 − wi,s

wi,r

) · g
(
{q2wi,r }r∈Ji

i∈[n]
)

×
∏

i∈[n]

⎛

⎝
∏

r∈Ji

wi,r

⎞

⎠

ki−1−∑ j←i k j

·
∏

i∈[n]

∏

r∈Ji

Di,r

⎞

⎟
⎠ . (75)

Example 4.11 Consider the orientationof the cyclic quiverwith arrows i→i+1(i∈[n]).
(a) For p ∈ [n] and k ≥ 1, consider the degree k = (k, k, . . . , k) ∈ N

[n] elements

�0
p;k := Ẽk

⎛

⎝
∏

i∈[n]
(xi,1 · · · xi,k)1+δi0−δi p

⎞

⎠

= qn(k2−k)(q − q−1)nk ·
∏

i∈[n]
∏

1≤r �=s≤k(xi,r − q−2xi,s) ·∏i∈[n]
∏k

r=1 xi,r
∏

i∈[n]
∏

1≤r ,s≤k(xi,r − xi−1,s)
·

k∏

r=1

x0,r
x p,r

.

(76)

Their images under �̂
a,z
b of (20) vanish if k > min{ai } and otherwise are given by:

�̂
a,z
b (�0

p;k) =
∏

i∈[n]

( ai∏

t=1

wi,t

)ki− 1
2 ki+1

×
∑

Ji⊂{1,...,ai }|Ji |=k ∀ i∈[n]

⎛

⎜
⎝

∏s /∈Ji−1
r∈Ji

(
1 − qd−1wi−1,s

wi,r

)

∏
i∈[n]

∏s /∈Ji
r∈Ji

(
1 − wi,s

wi,r

)

×
∏

i∈[n]

∏

r∈Ji

Zi (wi,r ) ·
∏

i∈[n]

⎛

⎝
∏

r∈Ji

wi,r

⎞

⎠

ki−ki−1+δi0−δi p

·
∏

i∈[n]

∏

r∈Ji

D−1
i,r

⎞

⎟
⎠ . (77)

Similar to Remark 3.14, the difference operators (77) pairwise commute, due to
the equality [�0

p;k, �
0
p′;k′ ] = 0 in the shuffle algebra S[n] established in [10,

Remark 4.11(a)] (the limit case of [10, Theorem 3.3], see part (b) below). According to
[21, 22], the elements {ϒ−1(�0

p;k)}k≥1
p∈[n] generate the “positive half of the horizontal”

Heisenberg subalgebra of Üq,d(sln).
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(b) Forμ ∈ C, k ≥ 1, and s = (s0, s1, . . . , sn−1) ∈ (C×)n satisfying s0s1 · · · sn−1=1,
consider:

Fμ
k (s) := Ẽk

⎛

⎝
∏

i∈[n]

⎛

⎝s0 · · · si
k∏

r=1

xi,r − μ

k∏

r=1

xi+1,r

⎞

⎠

⎞

⎠ = qn(k2−k)(q − q−1)nk

×
∏

i∈[n]
∏

1≤r �=s≤k(xi,r − q−2xi,s) ·∏i∈[n](s0 · · · si
∏k

r=1 xi,r − μ
∏k

r=1 xi+1,r )
∏

i∈[n]
∏

1≤r ,s≤k(xi,r − xi−1,s)
.

(78)

Their images under �̂
a,z
b of (67) vanish if k > min{ai } and otherwise are given by:

�̂
a,z
b (Fμ

k (s)) =
∏

i∈[n]

( ai∏

t=1

wi,t

)ki− 1
2 ki+1

×
∑

Ji⊂{1,...,ai }|Ji |=k ∀ i∈[n]

⎛

⎜
⎝

∏s /∈Ji−1
r∈Ji

(
1 − qd−1wi−1,s

wi,r

)

∏
i∈[n]

∏s /∈Ji
r∈Ji

(
1 − wi,s

wi,r

) ·
∏

i∈[n]

(

s0 · · · si − μ

∏
r∈Ji+1

wi+1,r
∏

r∈Ji wi,r

)

×
∏

i∈[n]

∏

r∈Ji

Zi (wi,r ) ·
∏

i∈[n]

⎛

⎝
∏

r∈Ji

wi,r

⎞

⎠

ki−ki−1

·
∏

i∈[n]

∏

r∈Ji

D−1
i,r

⎞

⎟
⎠ .

(79)

Similar to part (a), the difference operators (79) pairwise commute, due to the equal-

ity [Fμ
k (s), Fμ′

k′ (s)] = 0 in the shuffle algebra S[n] established in [10, Theorem 3.3].
According to [10, Theorem 4.10], we note that the elements {ϒ−1(Fμ

k (s))} in fact gen-
erate the Bethe commutative subalgebra of the “horizontal” quantum affine subalgebra
Uq(ĝln) of Üq,d(sln).

5 Generalization to the quantum quiver algebras

The above constructions admit natural generalizations to the case of quantum algebras
associated with quivers as recently introduced in [18] following [17]. We shall state
the key results, skipping the proofs when they are similar to those from Sect. 2.

5.1 Shifted quantum algebras associated with quivers

Let E be a finite quiver, with a vertex set I and an edge set E (here, multiple edges and
edge loops are allowed). Any edge e of E from a vertex i ∈ I to a vertex j ∈ I shall
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be written as e = �i j ∈ E . We fix q ∈ C
× and equip every edge e ∈ E with a weight

te ∈ C
×. Furthermore, following [17, 18], we shall make the following assumption

(cf. [18, Definition 5.2]):

|q| < |te| < 1 for all e ∈ E . (†)

We define rational functions {ζi j (z)}i, j∈I via:

ζi j

( z

w

)
=
(
zq−1 − w

z − w

)δi j ∏

e= �i j∈E

(
1

te
− z

w

) ∏

e= �j i∈E

(

1 − wte
zq

)

. (80)

Let E be the “double” of the edge set E , i.e. there are two edges e = �i j, e∗ = �j i ∈ E
for every e = �i j ∈ E . Note the canonical involution e ↔ e∗ on E and extend the
notation te to E via:

te∗ := q/te. (81)

For any b± = {b±
i }i∈I ∈ Z

I , we define the shifted quantum quiver algebra,

denoted by U
(b+,b−)

Q , to be the associative C-algebra generated by

{ei,r , fi,r , ψ
±
i,±s±i

, (ψ±
i,∓b±

i
)−1}r∈Z,s±i ≥−b±

i
i∈I with the following defining relations (for

all i, j ∈ I and ε, ε′ ∈ {±}):

[ψε
i (z), ψε′

j (w)] = 0, ψ±
i,∓b±

i
· (ψ±

i,∓b±
i
)−1 = (ψ±

i,∓b±
i
)−1 · ψ±

i,∓b±
i

= 1,

(Q1)

ζ j i

(
w

z

)

ei (z)e j (w) = ζi j

( z

w

)
e j (w)ei (z), (Q2)

ζi j

( z

w

)
fi (z) f j (w) = ζ j i

(
w

z

)

f j (w) fi (z), (Q3)

ζ j i

(
w

z

)

ψε
i (z)e j (w) = ζi j

( z

w

)
e j (w)ψε

i (z), (Q4)

ζi j

( z

w

)
ψε
i (z) f j (w) = ζ j i

(
w

z

)

f j (w)ψε
i (z), (Q5)

[ei (z), f j (w)] = δi jδ
( z

w

) (
ψ+
i (z) − ψ−

i (z)
)
, (Q6)

and more complicated cubic Serre relations of [18, §5.4] that shall be omitted for
brevity. Here, the generating series {ei (z), fi (z), ψ

±
i (z)}i∈I are defined as in (6). The

original quantum quiver algebraUQ of [18] is isomorphic toU (0,0)
Q /(ψ+

i,0ψ
−
i,0−1)i∈I .
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5.2 GKLO-type homomorphisms

Fix a = (ai )i∈I ∈ N
I , N = (Ni )i∈I ∈ N

I , and a collection z = {zi,r }1≤r≤Ni
i∈I with

zi,r ∈ C
×. We define Zi (z) := ∏Ni

r=1

(
1 − zi,r

z

)
. Finally, we consider the following

particular b± ∈ Z
I :

b+
i =

∑

j∈I
a j · #

{
e = �i j ∈ E

}
− ai , b−

i = −Ni −
∑

j∈I
a j · #

{
e = �j i ∈ E

}
+ ai .

(82)

For any i, j ∈ I , we also define constants γ +
i j , γ

−
i j , γ

0
i j via:

γ +
i j =

∑

e= �i j∈E
logq(te), γ −

i j = −
∑

e= �j i∈E
logq(te), γ 0

i j = γ +
i j + γ −

i j . (83)

Let Âq be the associative C-algebra generated by {w±1
i,r , D

±1
i,r }1≤r≤ai

i∈I satisfying

the relations [wi,r ,w j,s] = 0 = [Di,r , Dj,s] and Di,rwi,r = q−δi j δrswi,r Di,r .

Let Aq be obtained from Âq by formally adjoining {(∏ai
r=1wi,r

)γ ±
j i }i, j∈I satisfying

the relations wι,s
(∏ai

r=1wi,r
)γ ±

j i = (∏ai
r=1wi,r

)γ ±
j i wι,s and Dι,s

(∏ai
r=1wi,r

)γ ±
j i =

q−διiγ
±
j i
(∏ai

r=1wi,r
)γ ±

j i Dι,s , for all i, j, ι, s. We define Ãq as the localization of Aq

by the multiplicative set generated by {wi,r − qmwi,s}m∈Z
i∈I ,r �=s .

Then, we have the following analogue of Proposition 2.4:

Proposition 5.3 There exists a unique C-algebra homomorphism

�̃
z
a : U (b+,b−)

Q −→ Ãq (84)

for any a and z as above, with b± ∈ Z
I defined via (82), such that

ei (z) �→
∏

j �=i

( a j∏

s=1

w j,s

)γ +
i j

·

ai∑

r=1

δ

(
wi,r

z

) Zi (wi,r )
∏s≤a j

j �=i

∏
e= �i j (

1
te

− z
w j,s

)
∏s �=r

e=�i i (
1
te

− z
wi,s

)
∏

s �=r (1 − z
wi,s

)
D−1
i,r ,

fi (z) �→
∏

j �=i

( a j∏

s=1

w j,s

)γ −
i j

·
ai∑

r=1

δ

(
wi,r

qz

) ∏s≤a j
j �=i

∏
e= �j i (1 − w j,s te

zq )
∏s �=r

e=�i i (1 − wi,s te
zq )

∏
s �=r (1 − wi,s

zq )
Di,r ,

ψ±
i (z) �→ q−1 − 1

∏
e=�i i

{
( 1
te

− 1)(1 − te
q )
} ·
∏

j �=i

( a j∏

s=1

w j,s

)γ 0
i j

×
⎛

⎝Zi (z) ·
∏

j∈I
∏a j

s=1

{∏
e= �i j (

1
te

− z
w j,s

) ·∏e= �j i (1 − w j,s te
zq )

}

∏ai
r=1

{
(1 − z

wi,r
)(1 − wi,r

zq )
}

⎞

⎠

±

.
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Here, e ∈ E and γ (z)± denotes the expansion of a rational function γ (z) in z∓1,
respectively.

5.4 Shuffle algebra realization of the positive and negative subalgebras

Similar to (11, 12, 39, 60), we have the following algebra isomorphisms:

U
(b+,b−),>

Q
∼−→U>

Q , U
(b+,b−),<

Q
∼−→U<

Q , U<
Q

∼−→U>,op
Q , (85)

with the subalgebras U
(b+,b−),>

Q ,U>
Q ,U

(b+,b−),<

Q ,U<
Q defined in a self-explaining

way.

Consider an N
I -graded C-vector space S

Q = ⊕
k=(ki )i∈I∈NI S

Q
k , with the graded

components

S
Q
k =

{

F ∈ C

[
{x±1

i,r }1≤r≤ki
i∈I

]Sk
}

. (86)

Evoking the rational functions of (80), we equip SQ with the bilinear shuffle product �
completely analogously to (15), thus making SQ into an associative unital C-algebra.
As before, we are interested in anNI -graded subspace of SQ defined by the following
wheel conditions:

F |xi,2=qxi,1 is divisible by (x j,1 − γ xi,1)
�i j (γ ) (87)

for any γ ∈ C
× and j ∈ I , where

�i j (γ ) = #
{
e = �i j ∈ E

∣
∣
∣ te = γ

}
. (88)

In particular, as pointed out in [17, 18], if for any i, j ∈ I all the weights
{te|e = �i j ∈ E} are pairwise distinct, then (87) may be written in a more famil-
iar form, cf. (16, 42, 63), as:

F
({xi,r }

) = 0 once xi,a = qt−1
e x j,b = qxi,c

for any edge E 	 e = �i j and a �= c, where a �= b �= c if i = j . (89)

Let SQ ⊂ S
Q denote the subspace of all such elements F , which is easily seen to be

�-closed. The resulting shuffle algebra
(
SQ, �

)
is related toUQ via [18, Theorem 5.8]:

Proposition 5.5 [18] The assignments ei,r �→ xri,1 and fi,r �→ xri,1 for i ∈ I , r ∈ Z

give rise to C-algebra isomorphisms

ϒ : U>
Q

∼−→ SQ and ϒ : U<
Q

∼−→ SQ,op. (90)
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5.6 Shuffle algebra realization of the GKLO-type homomorphisms

For any i ∈ I an 1 ≤ r ≤ ai , we define:

Yi,r (z) :=
∏

j �=i

⎛

⎝
a j∏

j=1

w j,s

⎞

⎠

γ +
i j

·
Zi (z)

∏s≤a j
j �=i

∏
e= �i j∈E

(
1
te

− z
w j,s

)∏s �=r

e=�i i∈E
(

1
te

− z
wi,s

)

∏
s �=r

(
1 − z

wi,s

) ,

Y ′
i,r (z) :=

∏

j �=i

⎛

⎝
a j∏

j=1

w j,s

⎞

⎠

γ −
i j

·
∏s≤a j

j �=i

∏
e= �j i∈E

(
1 − w j,s te

zq

)∏s �=r

e=�i i∈E
(
1 − wi,s te

zq

)

∏
s �=r

(
1 − wi,s

zq

) .

(91)

We also define

ϕi j

( z

w

)
=
(

z − w

zq−1 − w

)δi j ∏

e= �i j∈E

(
1

te
− z

w

)−1

. (92)

Define the C-algebra Ãq,′ as the further localization of Ãq by the multiplicative set
generated by {wi,r − t−1

e qmw j,s}r≤ai ,s≤a j

e= �i j∈E,m∈Z. We note that Ãq is naturally embedded

into Ãq,′ .
The following result is proved completely analogously to Theorem 2.8:

Theorem 5.7 (a) The assignment

S
Q
k 	 E �→

∏

i∈I

∏

e=�i i∈E
t
ki−k2i

2
e

×
∑

m(i)
1 +...+m(i)

ai =ki

m(i)
r ∈N ∀ i∈I

⎧
⎨

⎩

∏

i∈I

ai∏

r=1

m(i)
r∏

p=1

Yi,r
(
wi,r q

p−1
)

· E
(
{
wi,r q

p−1
}1≤p≤m(i)

r

i∈I ,1≤r≤ai

)

×
∏

i∈I

∏

1≤r≤ai

∏

1≤p1<p2≤m(i)
r

⎛

⎝ζ−1
i i

(
wi,r q

p1−1
/
wi,r q

p2−1
)

·
∏

e=�i i∈E
te

⎞

⎠

×
∏

i, j∈I

(i,r1) �=( j,r2)∏

1≤r1≤ai
1≤r2≤a j

1≤p2≤m( j)
r2∏

1≤p1≤m(i)
r1

ϕi j

(
wi,r1q

p1−1
/
w j,r2q

p2−1
)

·
∏

i∈I

ai∏

r=1

D−m(i)
r

i,r

⎫
⎪⎪⎬

⎪⎪⎭

(93)

gives rise to the algebra homomorphism

�̂
z
a : SQ −→ Ãq,′ . (94)
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Moreover, for b± ∈ Z
I defined via (82), the composition

U
(b+,b−),>

Q

(85)∼−→U>
Q

ϒ∼−→ SQ
�̂

z
a−→ Ãq,′ (95)

coincides with the restriction of the homomorphism �̃
z
a of (84) to the subalgebra

U
(b+,b−),>

Q . In particular, the image of U
(b+,b−),>

Q under (95) is in the subalgebra Ãq

of Ãq,′ .

(b) The assignment

S
Q,op
k 	 F �→

∏

i∈I

∏

e=�i i∈E
t
ki−k2i

2
e

×
∑

m(i)
1 +...+m(i)

ai =ki

m(i)
r ∈N ∀ i∈I

⎧
⎨

⎩

∏

i∈I

ai∏

r=1

m(i)
r∏

p=1

Y ′
i,r

(
wi,r q

−p
)

· F
(
{
wi,r q

−p
}1≤p≤m(i)

r

i∈I ,1≤r≤ai

)

×
∏

i∈I

∏

1≤r≤ai

∏

1≤p1<p2≤m(i)
r

⎛

⎝ζ−1
i i

(
wi,r q

−p2
/
wi,r q

−p1
)

·
∏

e=�i i∈E
te

⎞

⎠

×
∏

i, j∈I

(i,r1) �=( j,r2)∏

1≤r1≤ai
1≤r2≤a j

1≤p2≤m( j)
r2∏

1≤p1≤m(i)
r1

ϕ j i

(
w j,r2q

−p2
/
wi,r1q

−p1
)

·
∏

i∈I

ai∏

r=1

Dm(i)
r

i,r

⎫
⎪⎪⎬

⎪⎪⎭

(96)

gives rise to the algebra homomorphism

�̂
z
a : SQ,op −→ Ãq,′ . (97)

Moreover, for b± ∈ Z
I defined via (82), the composition

U
(b+,b−),<

Q

(85)∼−→U<
Q

ϒ∼−→ SQ,op �̂
z
a−→ Ãq,′ (98)

coincides with the restriction of the homomorphism �̃
z
a of (84) to the subalgebra

U
(b+,b−),<

Q . In particular, the image of U
(b+,b−),<

Q under (98) is in the subalgebra Ãq

of Ãq,′ .

Remark 5.8 This theorem immediately implies that the assignment of Proposition 5.3
is indeed compatible with the cubic Serre relations of [18, §5.4] which we omitted,
cf. Remark 2.9.
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6 Relation to quantumQ-systems of type A

In this section, we explain how the shuffle approach from Sect. 2 in the simplest case
of g = sl2 simplifies some of the tedious arguments of [4] in their study of A-type
Q-systems. We also match their difference operators representing the M-system with
those of Sect. 2.

6.1 Elements Ek,n andMk,n for g = sl2

For any k ≥ 1 and n ∈ Z, consider the elements Ek,n ∈ Sk = S(sl2)
k defined via:

Ek,n(x1, . . . , xk) :=
∏

1≤r≤k

xnr
∏

1≤r �=s≤k

(xr − q−2xs). (99)

The following result identifies these elements with those featuring in [11, (9.2)]:

Lemma 6.2 The elements Ek,n correspond to explicit q-commutators in U>
q (Lsl2):

Ek,n = (−1)
k(k−1)

2

(1 − q−2)k−1 · ϒ
(
[en, [en+2, · · · , [en+2(k−2), en+2(k−1)]q−4 · · · ]q−2(k−1) ]q−2k

)
,

(100)

where [x, y]qr = xy − qr · yx as before.

Proof It suffices to prove (100) for n = 0. The proof is by induction on k ≥ 1, the
base case k = 1 being obvious. For a step of induction, deducing the k = � + 1
case of (100) from its validity for k ≤ �, we first note (by direct computations) that
[x0, E�,2]q−2(�+1) = x0�E�,2 − q−2(�+1)E�,2�x0 ∈ S�+1 vanishes under the special-
ization x�+1 = q2x�; hence, it is divisible by the product

∏
1≤r �=s≤�+1(xr − q−2xs).

As [x0, E�,2]q−2(�+1) is a polynomial in x1, . . . , x�+1 of the total degree �(� + 1), we
get:

ϒ
(
[e0, [e2, · · · , [e2(�−1), e2�]q−4 · · · ]q−2�]q−2(�+1)

)
= c�+1 · E�+1,0 (101)

for some constant c�+1. To determine this constant, we plug x�+1 = t into (101),
divide both sides by t2�, and consider the t → ∞ limit to obtain:

(−q−2)�c�+1E�,0 = (−1)�−1q−2�c�[x0, E�−1,2]q−2�

= (−1)�−1q−2� c�

c�−1
ϒ
([e0, [e2, · · · , [e2(�−2), e2�−2]q−4 · · · ]q−2�+2 ]q−2�

)

= (−1)�−1q−2� c2�
c�−1

E�,0,
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where we used the induction assumption for k = � − 1 and k = �. Combining the

resulting equality c�+1 = − c2�
c�−1

with c1 = 1 and c2 = q−2 − 1, we get c�+1 =
(−1)

�(�+1)
2 (1 − q−2)�. ��

Let us now compare this with [4]. To this end, we define Mk,n via [4, (2.23)]:1

Mk,n := (−1)
k(k−1)

2

(1 − q)k−1 · [· · · [[M1,n−k+1, M1,n−k+3]q2 , M1,n−k+5]q3 , · · · , M1,n+k−1]qk ,
(102)

where we identify M1,n with our e−n and their parameter qwith our q2, in accordance
with [4, (2.20)]. Due to (100), we get:

ϒ(Mk,n) = (−1)
k(k−1)

2 (1 − q−2)1−kqk(k−1) · ϒ
([e−n−k+1, · · · , [en+k−3, en+k−1]q−4 · · · ]q−2k

)

= qk(k−1) · Ek,1−k−n(x1, . . . , xk) = qk(k−1) ·
∏

1≤r≤k

x1−k−n
r

∏

1≤r �=s≤k

(xr − q−2xs).

(103)

Thus, the generating series mk(z) :=∑n∈Z Mk,nzn of [4, (2.13)] is identified with:

ϒ(mk(z)) = qk(k−1) ·
∏

1≤r≤k

x1−k
r

∏

1≤r �=s≤k

(xr − q−2xs) · δ

(
x1 · · · xk

z

)

,

(104)

where δ(z) is the delta-function of (6). This immediately implies [4, Theorem 2.10]
(expressing Mk,n as a noncommutative polynomial in M1,m’s with coefficients in
Z[q, q−1]):
Proposition 6.3 Let �q(u1, . . . , uk) =∏1≤r<s≤k(1 − q us

ur
). Then, we have:

mk(z) = CTu1,...,uk

(

�q(u1, . . . , uk)m1(u1) · · ·m1(uk)δ
(u1 · · · uk

z

))

, (105)

where CTu1,...,uk denotes the “constant term” (i.e. u01 · · · u0k-coefficient) of any series
in ur ’s.

Proof Combining the key property f (u)δ(u/z) = f (z)δ(u/z) of the delta-
functions (6) with ϒ(m1(z)) = δ(x1/z) and evoking the definition of the shuffle
product (15), we obtain:

ϒ

(

�q(u1, . . . , uk)m1(u1) · · ·m1(uk)δ
(u1 · · · uk

z

))

= (−q2)
k(k−1)

2

1 There seems to be a sign typo in [4, (2.23)] making it actually incompatible with [4, (2.25)].
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×
∏

1≤r �=s≤k

(xr − q−2xs)δ
( x1 · · · xk

z

)
Sym
x1,...,xk

⎛

⎝δ

(
x1
u1

)

· · · δ
(
xk
uk

) ∏

1≤r<s≤k

1

xr (xr − xs)

⎞

⎠ .

Comparing the constant terms of both sides in the above equality, we get:

CTu1,...,uk

{

ϒ

(

�q(u1, . . . , uk)m1(u1) · · ·m1(uk)δ
(u1 · · · uk

z

))}

= (−1)
k(k−1)

2 qk(k−1) ·
∏

1≤r �=s≤k

(xr − q−2xs) · δ
( x1 · · · xk

z

)
· Sym
x1,...,xk

⎛

⎝
∏

1≤r<s≤k

1

xr (xr − xs)

⎞

⎠ .

Combining this equality with the simple identity

Sym
x1,...,xk

⎧
⎨

⎩

∏

1≤r<s≤k

1

xr (xr − xs)

⎫
⎬

⎭
= (−1)

k(k−1)
2

∏

1≤r≤k

x1−k
r , (106)

we obtain (105) as a direct consequence of the shuffle realization (104) of mk(z). ��
Remark 6.4 The equality (106) is equivalent to Sym

x1,...,xk

{∏
1≤r<s≤k

xs
xs−xr

}
= 1, which

is nothing but the standard Vandermonde determinant formula.

6.5 Verifying theM-system relations through the shuffle algebra

Let us now explain how the shuffle approach also allows to establish the key relations
of [4, (2.1, 2.2)] satisfied by Mk,n of (102), thus providing a simple proof of [4,
Theorem 2.11].

We start with the following q-commutativity property:

Lemma 6.6 (a) For any k ≥ 1 and m, n ∈ Z such that −1 ≤ m − n ≤ 2k − 1, we
have:

[xm, Ek,n]q2(m−n−k+1) = 0. (107)

(b) For any k ≥ � ≥ 1 and a, b ∈ Z such that −1 ≤ a − b ≤ 2k − 2� + 1, we have:

[E�,a, Ek,b]q2�(a−b+�−k) = 0. (108)

(c) For any k ≥ 1, n ∈ Z, and a collection ε1, . . . , εk−1 ∈ {0, 1, 2}, the following 2k
elements:

Ek,n, Ek,n+1, Ek−1,n+ε1 , Ek−1,n+ε1+1, . . . , E1,n+ε1+...+εk−1, E1,n+ε1+...+εk−1+1

(109)

pairwise q-commute and are in the ϒ-image of the subalgebra generated by
{er }n+2k−1

r=n .
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Proof (a) It suffices to prove (107) for n = 0. We note that [xm, Ek,0]q2(m−k+1)∈ Sk+1

vanishes under the specialization xk+1 = q2xk , and thus, it is divisible by∏
1≤r �=s≤k+1(xr − q−2xs). If 0 ≤ m ≤ 2k − 1, then [xm, Ek,0]q2(m−k+1) is a poly-

nomial in x1, . . . , xk+1 of the total degree m + k(k − 1). This implies (107) as
deg(

∏
1≤r �=s≤k+1(xr − q−2xs)) = k(k + 1) > m + k(k − 1). If m = −1, then

similarly x1 · · · xk+1 · [x−1, Ek,0]q−2k ∈ Sk+1 is a polynomial in x1, . . . , xk+1 of the
total degree k2 which is divisible by the product

∏
1≤r �=s≤k+1(xr −q−2xs) of the total

degree k(k + 1) > k2. Therefore, [x−1, Ek,0]q−2k = 0 as well.

(b) As −1 ≤ a − b, a + 2 − b, . . . , a + 2(� − 1) − b ≤ 2k − 1, (108) is in fact an
immediate corollary of (107), due to (100) that can be written as:

E�,a = (−1)
�(�−1)

2 (1 − q−2)1−�

×[xa, [xa+2, · · · , [xa+2(�−2), xa+2(�−1)]q−4 · · · ]q−2(�−1)]q−2� . (110)

(c) The q-commutativity part follows from (b), while the second part is a consequence
of (110). ��

As particular cases of (108), we obtain the following equalities:

[Ek,1, Ek,0]q2k = 0 and

[E�,k−�+ε, Ek,0]q2�ε = 0 for 1 ≤ � ≤ k, ε ∈ {−1, 0, 1}.

Sinceϒ(Mα,n) ∈ Sα is amultiple of Eα,1−α−n , due to (103), we thus recover [4, (2.2)]:

Proposition 6.7 For any α, β ∈ N, n ∈ Z, ε ∈ {0, 1}, the elements Mk,n of (102)
satisfy:

Mα,nMβ,n+ε = qmin(α,β)εMβ,n+εMα,n . (111)

We also have the following result (which together with Proposition 6.7 constitute
the content of [4, Theorem 4.18], thus providing a simple proof of [4, Theorem 2.11]):

Proposition 6.8 The elements (102) satisfy the following M-system relation [4, (2.1)]:

M2
α,n − qαMα,n+1Mα,n−1 = Mα+1,nMα−1,n for any α ≥ 1, n ∈ Z. (112)

Due to (103), this is a direct consequence of the corresponding relation for Ek,n

of (99):

Lemma 6.9 For any k ≥ 1 and n ∈ Z, the following quadratic relation holds in
S = S(sl2):

E2
k,n − q2k Ek,n−1�Ek,n+1 = q2Ek+1,n−1�Ek−1,n+1. (113)
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Proof It suffices to prove (113) for n = 0, that is, to show that the shuffle element

E ′
k := Ek,0�Ek,0 − q2k Ek,−1�Ek,1 − q2Ek+1,−1�Ek−1,1 ∈ S2k (114)

vanishes. We prove (114) by induction on k ≥ 1, the base case k = 1 following
immediately from Proposition 6.3 (applied to k = 2).

For the step of induction (assuming that (114) holds for all k < �), it suffices to
prove

E ′
�(x1, . . . , x2�−2, y, q

2y) = 0. (115)

Indeed, (115) implies that x1 · · · x2� · E ′
�(x1, . . . , x2�) is a polynomial in x1, . . . , x2�

of the total degree 2�2 which is divisible by the product
∏

1≤r �=s≤2�(xr − q−2xs) of

degree 2�(2�− 1). As 4�2 − 2� > 2�2 for � > 1, we thus obtain E ′
�(x1, . . . , x2�) = 0

which establishes the step of induction. Finally, the equality (115) follows from the
following straightforward computation:

E ′
�(x1, . . . , x2�−2, y, q

2y) = (1 + q−2)q−6(�−1)

×
2�−2∏

r=1

(xr − q−2y)(xr − q4y) · E ′
�−1(x1, . . . , x2�−2) = 0

with the latter equality due to the induction hypothesis. ��

Remark 6.10 We note that similar shuffle interpretations of the relations (111, 112)
were suggested (without a proof) in [5, Lemma 8.5].

6.11 Comparison of the difference operators I

Let us now compare the realization of the M-system by difference operators as pre-
sented in [4, §6] with the construction of Sect. 2. To this end, we fix r ∈ N and letBq

frac
denote the C(q±1/2)-algebra generated by {x±1

i , �±1
i }r+1

i=1 , being further localized by
the multiplicative set generated by {xi − qmx j }m∈Z

i �= j , with all elements pairwise com-
muting except for �i xi = qxi�i . Following [4, §6], consider the following series in z
with coefficients in Bq

frac:

e(z)DFK =
r+1∑

i=1

δ
(
q1/2xi z

)
j �=i∏

1≤ j≤r+1

xi
xi − x j

�i ,

f(z)DFK =
r+1∑

i=1

δ
(
q−1/2xi z

)
j �=i∏

1≤ j≤r+1

x j
x j − xi

�−1
i ,

ψ+(z)DFK = (−q−1/2z)r+1 ·
r+1∏

i=1

xi ·
r+1∏

i=1

(
1 − q1/2xi z

)−1 (
1 − q−1/2xi z

)−1
,
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ψ−(z)DFK = (−q1/2z)−r−1 ·
r+1∏

i=1

x−1
i ·

r+1∏

i=1

(
1 − q1/2x−1

i z−1
)−1 (

1 − q−1/2x−1
i z−1

)−1
.

(116)

We shall now identify these currents and those in the construction from Sect. 2 in
the special case of g = sl2, μ = −(2r + 2)ω with ω being the fundamental coweight
of sl2, λ = 0, so that a = r + 1. To this end, we identify ι : Ãq

frac
∼−→Bq

frac via

ι : q �→ q1/2, w±1
i �→ x∓1

i q∓1/2, D±1
i �→ �∓1

i , 1 ≤ i ≤ r + 1, (117)

and the corresponding shifted quantum affine algebras j : U sc−r−1,−r−1
∼−→U sc

0,−2r−2
via

j : e(z) �→ z−r−1e(z), f (z) �→ f (z), ψ±(z) �→ z−r−1ψ±(z).

Define the composition:

�̄r+1 : U sc−r−1,−r−1

j
∼−→U sc

0,−2r−2

�̃0−2r−2−→ Ãq
frac

ι∼−→Bq
frac. (118)

The following is straightforward:

Lemma 6.12 The currents (116) can be expressed as:

e(z)DFK = (−1)r (q1/2 − q−1/2)�̄r+1(e(z)),

f(z)DFK = (1 − q)�̄r+1( f (z)),

ψ+(z)DFK = (−1)r+1�̄r+1(ψ
−(z)),

ψ−(z)DFK = (−1)r+1�̄r+1(ψ
+(z)).

In particular, this immediately shows that the currents (116) indeed satisfy the
relations of [4, (5.7)–(5.11)]. Furthermore, we also immediately obtain [4, (6.1)]:

Proposition 6.13 Under the assignment
∑

n∈Z M1,nzn = m1(z) �→ e(q−1/2z)DFK,
the elements {Mk,n}n∈Z

k≥1 of (102) are mapped to:

Mk,n �→
|J |=k∑

J⊂{1,...,r+1}

∏

i∈J

xni ·
j /∈J∏

i∈J

xi
xi − x j

·
∏

i∈J

�i . (119)

Proof Formula (119) immediately follows by combining Lemma 6.12 with the shuffle
realization (103) of the elements Mk,n and the shuffle realization of �̃0−2r−2 from
Theorem 2.8(a). ��
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6.14 Finite set of generators

We shall follow the setup of the previous subsection, that is, g = sl2, λ = 0, μ =
−(2r + 2)ω. The last result of this section explains why it essentially suffices to
consider only �̃0−2r−2(Ek,n):

Lemma 6.15 For any n ∈ Z, the C(q)-subalgebra of Ãq
frac generated by

{�̃0−2r−2(ep)}n+2r+1
p=n and further localized at {�̃0−2r−2(ϒ

−1(Er+1,p))}n+1
p=n coincides

with all image �̃0−2r−2(U
(−2r−2)
q ).

Proof Let Cn denote the C(q)-subalgebra of Ãq
frac generated by the above 2r + 4

elements. Since the �̃0−2r−2-images of ψ±
s are symmetric Laurent polynomi-

als in {wk}r+1
k=1, to prove the inclusions �̃0−2r−2(ψ

±
s ) ∈ Cn , it suffices to show

that the elementary symmetric polynomials {ek(w1, . . . ,wr+1)}r+1
k=1 as well as

{ek(w−1
1 , . . . ,w−1

r+1)}r+1
k=1 belong to Cn . To this end, we define

X (k),±
r+1,n :=

s0+...+sr=k∑

s0,...,sr∈{0,1}
[en±s0 , [en+2±s1 , · · · , [en+2r−2±sr−1 , en+2r±sr ]q−4 · · · ]q−2r ]q−2r−2 .

(120)

We note that X (k),+
r+1,n, X

(k),−
r+1,n+1 are generated by {ep}n+2r+1

p=n . It is also clear that

ϒ(X (k),±
r+1,n) = ϒ([en, [en+2, · · · , [en+2r−2, en+2r ]q−4 · · · ]q−2r ]q−2r−2 ) · ek(x±1

1 , . . . , x±1
r+1)

= (−1)
r(r+1)

2 (1 − q−2)r · Er+1,n(x1, . . . , xr+1) · ek(x±1
1 , . . . , x±1

r+1),

with the latter equality due to Lemma 6.2. Applying Lemma 2.12(a), we find:

ek(w1, . . . ,wr+1) = (−1)
r(r+1)

2 (1 − q−2)r q−2k

×�̃0−2r−2(ϒ
−1(Er+1,n))

−1 · �̃0−2r−2(X
(k),+
r+1,n)

and similarly:

ek(w
−1
1 , . . . ,w−1

r+1) = (−1)
r(r+1)

2 (1 − q−2)r q2k

×�̃0−2r−2(ϒ
−1(Er+1,n+1))

−1 · �̃0−2r−2(X
(k),−
r+1,n+1).

This proves ek(w
±1
1 , . . . ,w±1

r+1) ∈ Cn for k ≤ r + 1, hence, �̃0−2r−2(ψ
±
s ) ∈ Cn for

all possible s.
The inclusions �̃0−2r−2(ep) ∈ Cn , for all p ∈ Z, follow now by induction from the

equalities:

�̃0−2r−2(ep±1) = (1 − q∓2)−1 ·
[
e1(w

±1
1 , . . . ,w±1

r+1), �̃
0−2r−2(ep)

]
.
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Finally, the inclusions �̃0−2r−2( f p) ∈ Cn , for all p ∈ Z, follow from the equality:

�̃0−2r−2( f p) = (−1)r+1q−2r−1(q − q−1)−2

×�̂0−2r−2(Er+1,−2r−1−p)
−1 · �̂0−2r−2(Er ,−2r−p),

whose right-hand side belongs to Cn , due to Theorem 2.8(a) and Lemma 6.2. ��

7 Relation to (t,q)-deformedQ-systems of type A

In this section, we discuss the (t, q)-deformation of the construction and results of
Sect. 6.11. In particular, we use the results of Sect. 3 to establish [5, Conjecture 1.17].

7.1 Comparison of the difference operators II

We start by recalling the setup of [5, §3]. To this end, choose two generic complex
parameters q and t = θ2, as well as N ≥ 1. Define the C-algebra Bq as in Sect. 6.11
with r + 1 = N (the subscript “frac” is omitted as it is now a C-algebra). Following
[5, (3.6, 3.10)], consider the following series in z with coefficients in Bq:

e1(z)
DFK = q1/2

1 − q

N∑

i=1

δ
(
q1/2xi z

) j �=i∏

1≤ j≤N

θxi − θ−1x j
xi − x j

�i ,

f1(z)
DFK = q−1/2

1 − q−1

N∑

i=1

δ
(
q−1/2xi z

) j �=i∏

1≤ j≤N

θ−1xi − θx j
xi − x j

�−1
i ,

ψ±(z)DFK =
(

N∏

i=1

(1 − q−1/2txi z)(1 − q1/2t−1xi z)

(1 − q−1/2xi z)(1 − q1/2xi z)

)∓
.

(121)

Let us now match these currents to those arising for the quantum toroidal algebra of
gl1 in Sect. 3. To this end, let us first relate our former parameters to the above ones
via:

q1 = q, q2 = 1/t, q3 = 1/q1q2 = t/q as well as N = 0, a = N.

(122)

We identify ι : Ãq1 ∼−→Bq via w±1
i �→ x∓1

i q∓1/2, D±1
i �→ �∓1

i , cf. (117). Define the
composition:

�̄N : Üq1,q2,q3(gl1)
�̃N−→ Ãq1

ι∼−→Bq. (123)

The following is straightforward:
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Lemma 7.2 The currents (121) can be expressed as (recall that θ = t1/2):

e1(z)
DFK = q− 1

2 t
1−N
2 �̄N(e(z)),

f1(z)
DFK = −q

1
2 t

N−1
2 �̄N( f (z)),

ψ+(z)DFK = �̄N(ψ−(z)),

ψ−(z)DFK = �̄N(ψ+(z)).

In particular, this immediately shows that the currents (121) indeed satisfy the
defining relations (t1–t8) with the parameters q1, q2, q3 as in (122), thus implying
[5, Theorem 3.5].

7.3 GeneralizedMacdonald operators

Following [5, Definition 1.13], for any 1 ≤ α ≤ N and any symmetric Laurent
polynomial P ∈ C[x±1

1 , . . . , x±1
α ]S(α), define the generalized Macdonald operator

Aα(P) ∈ Bq via:

Aα(P) := 1

α! · (N − α)! · Sym
x1,...,xN

⎛

⎝P(x1, . . . , xα)
∏

1≤i≤α< j≤N

θxi − θ−1x j
xi − x j

· �1 · · · �α

⎞

⎠ .

(124)

In particular, ι−1(Aα(1)) ∈ Ãq1 is a multiple of the Macdonald operator Dα
N(q1, q2)

from (56).

Remark 7.4 We note that the definition (124) is made in [5] for any symmetric rational
function P ∈ C(x1, . . . , xα)S(α). However, some of the key results below seem to fail
in this generality, see Remarks 7.6, 7.15.

Following [5, Definition 1.15], we also define the difference operator Bα(P) ∈ Bq

via:

Bα(P) := 1

α!CTu1,...,uα

⎛

⎝P(u−1
1 , . . . , u−1

α )
∏

1≤i< j≤α

(ui − u j )(ui − qu j )

(ui − tu j )(ui − qt−1u j )
d(u1) · · · d(uα)

⎞

⎠ ,

(125)

where the constant term CTu1,...,uα is defined as in Proposition 6.3, and d(z) is defined
via:

d(z) =
∑

n∈Z
D1;nzn := (q−1/2 − q1/2)e1(q

−1/2z)DFK. (126)

The above two constructions (124) and (125) are related via [5, Theorem 1.16]:
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Proposition 7.5 [5] For any 1 ≤ α ≤ N and P ∈ C[x±1
1 , . . . , x±1

α ]S(α), we have:

Aα(P) = Bα(P). (127)

Remark 7.6 We note that this result is stated in [5] for any P ∈ C(x1, . . . , xα)S(α).
However, this does not look true in that generality as Bα(P) will involve terms with
some powers �>1

i , unlike Aα(P). For one thing, the constant term CTu1,...,uα (· · · )
should be treated carefully for rational functions by specifying the region in which
they are expanded as series.

7.7 Comparing the shuffle algebras

In order to relate the above construction to our Sect. 3, we shall first clarify the shuffle
algebra considered in [5, §7] and its relation to the one from Sect. 3.7. To this end,
consider anN-gradedC-vector space SDFK = ⊕

k∈N
S
DFK
k , with the graded components

S
DFK
k =

{

F = f (x1, . . . , xk)
∏

1≤r �=s≤k(xr − q−1xs)

∣
∣
∣ f ∈ C

[
x±1
1 , . . . , x±1

k

]S(k)
}

. (128)

We also choose a rational function of [5, §7.1]:

ζDFK (x) = (1 − tx)(1 − qt−1x)

(1 − x)(1 − qx)
. (129)

The bilinear shuffle product � on SDFK is defined completely analogously to (15), thus
making S

DFK into an associative unital C-algebra. As before, consider an N-graded
subspace of SDFK defined by the same wheel conditions (but now on the numerators
appearing in (128)):

f (x1, . . . , xk) = 0 once

{
x1
x2

,
x2
x3

,
x3
x1

}

=
{

q,
1

t
,
t

q

}

. (130)

Let SDFK ⊂ S
DFK denote the subspace of all such elements F , which is easily seen

to be �-closed. This construction is related to that of Sect. 3.7 via:

Lemma 7.8 For q1 = q, q2 = 1/t, q3 = t/q as in (122), the assignment

P(x1, . . . , xk) �→ q− k(k−1)
2 ·

∏

1≤r �=s≤k

xr − xs
xr − q−1xs

· P(x−1
1 , . . . , x−1

k ) (131)

gives rise to the algebra isomorphism

η : S ∼−→S
DFK, (132)
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which further restricts to the shuffle algebra isomorphism

η : S ∼−→ SDFK. (133)

Proof Straightforward. ��
Combining this with Proposition 3.8, we obtain:

Corollary 7.9 The assignments er �→ x−r
1 and fr �→ x−r

1 give rise to C-algebra
isomorphisms

ϒ̄ : Ü>
q,1/t,t/q(gl1)

∼−→ SDFK and ϒ̄ : Ü<
q,1/t,t/q(gl1)

∼−→ SDFK,op.

(134)

Remark 7.10 In [5], neither pole (128) nor wheel (130) conditions were imposed.

7.11 GeneralizedMacdonald operators via GKLO-type homomorphisms

Nowwe are finally ready to relate the aforementioned constructions to those of Sect. 3.
To this end, for any 1 ≤ α ≤ N and g ∈ C[x±1

1 , . . . , x±1
α ]S(α), recall Ẽα(g) ∈ Sα

defined in (52) with the parameters q1 = q, q2 = 1/t, q3 = t/q as in (122). The
following is straightforward:

Lemma 7.12 η(Ẽα(g)) = t
α−α2

2 (q−1 − 1)α · g(x−1
1 , . . . , x−1

α ) ∈ SDFKα .

Therefore, the span of Ẽα(g) ∈ S is matched under (132) with the subspace of all
symmetric Laurent polynomials in S

DFK, for which the constructions and results of
Sect. 7.3 apply. In particular, comparing our Lemma 3.12 with the definition (124),
we immediately obtain:

Proposition 7.13 For any 1 ≤ α ≤ N and g ∈ C[x±1
1 , . . . , x±1

α ]S(α), we have:

ι(�̂N(Ẽα(g))) = θα(N−α) · Aα(P) with

P(x1, . . . , xα) = g(q−1/2x−1
1 , . . . , q−1/2x−1

α ) (135)

and the identification ι : Ãq1 ∼−→Bq being defined right after (122).

As an immediate corollary, we obtain the following result:

Theorem 7.14 All generalized Macdonald operators Aα(P) ∈ Bq of (124) can be
expressed as polynomials in D1;n’s of (126).

This establishes [5, Conjecture 1.17] by choosing P to be a generalized Schur
function:

P(x1, . . . , xα) = sa1,...,aα (x1, . . . , xα) = det(x
a j+α− j
i )1≤i, j≤α

det(xα− j
i )1≤i, j≤α

, a1, . . . , aα ∈ Z.

(136)
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Proof (Proof of Theorem 7.14) Due to (135) and the equality D1;n = A1(xn), it
suffices to show that Ẽα(g) ∈ Sα can be expressed as a polynomial in xn ∈ S1. This
immediately follows from Proposition 3.8 identifying S with Ü>

q,1/t,t/q(gl1), the latter

generated by er = ϒ−1(xr ). ��

Remark 7.15 Interpreting the restriction of GKLO-homomorphism
�̃N : Üq,1/t,t/q(gl1) → Ãq as �̂N : SDFK → Bq, we thus see that the images of sym-
metric Laurent polynomials recover the generalized Macdonald operators of (124),
while the image of any nonpolynomial F ∈ SDFK will necessarily contain terms with
at least one �>1

i , due to our explicit formula (46).
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19. Neguţ, A., Tsymbaliuk, A.: Quantum loop groups and shuffle algebras via Lyndon words.

arXiv:2102.11269
20. Orr, D., Shimozono, M.: Difference operators for wreath Macdonald polynomials. arXiv:2110.08808
21. Tsymbaliuk,A.: Several realizations ofFockmodules for toroidal Üq,d (sln).Algebr.Represent. Theory
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