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1. Introduction

That there is a notion of modular forms on the quaternionic exceptional groups
goes back to Gross-Wallach and Gan-Gross-Savin. This theory is based on the so-
called quaternionic discrete series, whose study was initiated by Gross-Wallach [GW94],
[GW96]. Here, by a “modular form”, we mean loosely a special automorphic form that
possesses some sort of robust Fourier expansion, similar to the (holomorphic) Siegel
modular forms on Sps,,,. The modular forms on the quaternionic exceptional groups have
been the subject of the papers [GGS02,Wei06,Pol20a,Pol20b,Pol19].

It turns out that there is a completely analogous but much simpler theory of “modular
forms” on the classical groups SO(3,n + 1). (Note that when n is even, these groups do
not have discrete series.) The purpose of this paper is to write down this notion of
modular forms, and prove a few of the basic theorems. In particular, we

(1) find the explicit form of the Fourier expansion of such modular forms, in complete
analogy with the results of [Pol20a;

(2) prove that certain absolutely convergent degenerate Eisenstein series that are mod-
ular forms have algebraic Fourier coefficients, in a precise sense.

While the result (1) is analogous to the results of [Pol20a], the result (2)—which is the
main result of the paper—goes beyond what is known for exceptional groups.

One source of examples of these special automorphic forms comes from certain con-
stant terms of modular forms on the quaternionic exceptional groups. More precisely,
suppose G'; is' a quaternionic exceptional group as in [Pol20a] with rational root type
Fy, so that G has absolute Dynkin type Fy, Fg, E7 or Eg. Then GG; possesses a max-
imal parabolic @y = L;V; with L; having rational root type Bs. Up to anisotropic
factors, Ly is isogenous to a group SO(3,n + 1) where n = 3,4,6,10 if G; has type
Fy, Eg, Er, Eg, respectively. One can take the constant term of a modular form of weight
f on Gy down to L, and we prove in section 5 that these constant terms are modular
forms of weight £ on L ;. Combining the above facts with a p-adic result of Savin (Theo-
rem B.1.1 proved in Appendix B) and an analysis of certain degenerate Eisenstein series
on Eg,4, we prove that the so-called “next-to-minimal” modular form on quaternionic
FEg has rational Fourier expansion.

The result (2) on the Fourier coefficients of Eisenstein series is the analogue of the
fact that on SO(2,n) or another hermitian tube domain, the absolutely convergent holo-
morphic Eisenstein series have algebraic Fourier expansions. As this paper shows, the
notion of modular forms on SO(3,n + 1) is very similar to that of modular forms on
the quaternionic exceptional groups, such as Eg 4. However, because SO(3,n + 1) is a
classical group, and more importantly because the natural Fourier expansion of modular

L The subscript “J” comes from the fact that these groups are associated to certain cubic Jordan alge-
bras J.
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forms on SO(3,n + 1) takes place along an abelian unipotent group, the notion of these
modular forms is substantially simpler than that on the exceptional groups. Thus we
hope that SO(3,n+ 1) can be used as a test case for developing analogous results on the
quaternionic exceptional groups. In particular, the algebraicity of the Fourier coefficients
of the degenerate Eisenstein series from [Pol20b] appears difficult. Part of the motivation
for writing this paper was to get closer to proving that the Fourier coefficients of these
Eisenstein series on exceptional groups are algebraic. It follows from the proof of Theo-
rem 1.1.2 that the absolutely convergent degenerate Eisenstein series on quaternionic Fg
studied in [Pol20b] have algebraic rank 0,1, and 2 Fourier coefficients; the algebraicity
of the rank 3 and 4 Fourier coefficients remains open.

1.1. Statement of theorems

The definition of the modular forms on SO(3,n + 1) is very similar to that of the
modular forms on the exceptional groups from [Pol20a]. In particular, if V' is a ratio-
nal quadratic space of signature (3,n 4 1), then the maximal compact subgroup K of
SO(V)(R) is S(O(3) x O(n+1)). This group maps to O(3) = (SU(2)/usz) x (£1). Denote
by V, = Sym?‘(C?) the (2¢ + 1)-dimensional representation of K that factors through
0O(3). Modular forms on SO(V') of weight ¢ are then Vj-valued automorphic functions ¢
on SO(V)(A) that

(1) satisfy ¢(gk) =k~ p(g) for all g € SO(V)(A) and k € K
(2) and are annihilated by a special linear differential operator D;.

The precise definition of modular forms, and in particular of the operator Dy, is given
in section 3 below. Throughout the paper, (V,q) is rational quadratic space of Witt
rank three and signature (3,n + 1) over R. Denote by (z,y) = q(z + y) — q(z) — q(y)
the associated bilinear form. We write V = Qe & V' & Qf with V'’ a non-degenerate
quadratic space of signature (2,n) and e, f isotropic vectors in (V')* with (e, f) = 1.

The first result is the Fourier expansion of modular forms on G = SO(V), in complete
analogy to Theorem 1.2.1 of [Pol20a]. Denote by P = MN the parabolic subgroup of
SO(V) that stabilizes the isotropic line Qe, so that M ~ GL; x SO(V’) and N ~ V' is
abelian. Let n : V/ — N denote this identification, which is specified in section 2 below.
If ¢ is an automorphic form on G, then one has

elg)= > el (1)

nevV(Q)

where

onlg) = / 41 (,2))p(n()g) de
VI(Q\V'(A)
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and ¢ : Q\A — C* is our fixed standard additive character.

The first result Theorem 1.1.1 is a refinement of the expansion (1) when ¢ is a
modular form of weight ¢ on G. See Definition 3.2.2 below for the precise definition
of the functions W, : G — V, that appear in Theorem 1.1.1. They are defined in
terms of K-Bessel functions, exactly as in the Fourier expansion of the modular forms
on the quaternionic exceptional groups in [Pol20a]. In section 2 we specify a basis

{gcze7 22ty P y%} of V,.

Theorem 1.1.1. Suppose ¢ is a modular form of weight £ > 1 on G. Then forn € V'(Q)
with q(n) > 0, there are locally constant functions a,(n) : G(Ay) — C so that

©(9) = ¢olg) + > (1) (97)Warn (9o0) (2)
0#n€V’(Q),q(n)>0

for every g = g5go in G(Ay) x G(R). Moreover, for m € M, the constant term g is
of the form

po(m) = 't ((m)a® + B(my)zy" + @' (m)y*)

where ® is an automorphic function associated to a holomorphic modular form of weight
Con M, 3 is a locally constant function on M(Ay), and ® is a certain (K N M)-right
translate of ®.

The second theorem concerns the Fourier expansion of degenerate Eisenstein series
on G. More precisely, if £ > n + 1 is even and n is even then there is (a family of)
absolutely convergent Eisenstein series Ey(g), which are modular forms of weight ¢ on

(6g+1)/(n+2)). See

G. These Eisenstein series are associated to the induction space Ind$%
section 4 for the precise definition. These degenerate Eisenstein series are the analogues
of the degenerate Heisenberg Eisenstein series considered in [Pol20b] or the classical
degenerate holomorphic Siegel Eisenstein series on Sps,,. Theorem 1.1.2 below states
that the Fourier coefficients of Fy(g) are algebraic numbers.

To set up the result, suppose that £ > 0 is even, and ¢ a modular form on G of weight
£. Let the Fourier expansion of ¢ be as in (2). We say that ¢ has Fourier coefficients in

a field F if

(1) The locally constant functions a,(n), when restricted to M(Ay), are valued in E;
(2) The holomorphic modular form associated to ® has Fourier coefficients in F;

(3) The locally constant function 3, when restricted to M(Ay), is valued in E - Cg:)ﬁ).

The perhaps unusual-looking normalization of the constant 3 is dictated, similar to the
results of [Pol20b], by the fact that the modular forms one constructs in practice have
Fourier coefficients valued in some fixed field E as in the above definition.
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Theorem 1.1.2. Suppose that dim(V') = n 4+ 2 is a multiple of 4 and that £ > n+ 1 is
even. Then the Eisenstein series Fy(g) has Q-valued Fourier coefficients.

Note that under the assumptions of Theorem 1.1.2, the group G(R) = SO(3,n +
1) does not possess discrete series. Nevertheless, the modular forms exist and one can
prove that the most basic modular forms—the degenerate Eisenstein series—have algebraic
Fourier coefficients. See Theorem 4.5.10 for the precise statement. The key step in the
proof of Theorem 1.1.2 is the evaluation of a certain Archimedean Jacquet integral, which
is Theorem 4.5.9 below and might be of independent interest.

1.2. Applications

The main application of the above results is to the rationality of the Fourier expansion
of the next-to-minimal modular form 6,;, on quaternionic Fg, which is realized as a
special value of a degenerate Heisenberg Eisenstein series. Recall from [Pol20a] or [Pol20b]
that modular forms on quaternionic Fg have Fourier coefficients of various ranks, between
0 and 4 inclusive, with rank four Fourier coefficients being non-degenerate and rank 0
and rank 1 Fourier coefficients the most degenerate ones. We prove directly that 6,4, has
rational rank 0, rank 1, and rank 2 Fourier coefficients. The p-adic result Theorem B.1.1
of Savin implies that the rank 3 and rank 4 Fourier coefficients of 6,,;,, vanish, giving
the full rationality.

Here is the precise result. In the statement of the theorem, the group G is the Q-
group of type Fg from, e.g., [Pol20a] or [Pol20b], that has rational root system of type
F4.

Theorem 1.2.1. Let E;(g, s;8) denote the degenerate Heisenberg Eisenstein series on G j
that is spherical at every finite place and “weight 8” at infinity. Then E;(g, s;8) is reqular
at s =9 and defines a square integrable modular form of weight 8 at this point. Moreover,
the modular form 0,1,(9) = Ej(g,s = 9;8) has rational Fourier expansion.

See Theorem 6.0.2 below for the precise statement. The Eisenstein series E;(g, s; £) are
the subject of [Pol20b]. The modular form E;(g,s = 9;8) is expected to be the next-to-
minimal modular form on G ;. In the case of split Fg, the next-to-minimal automorphic
representation has been considered in [GMV15] and more recently in [GGK™19].

The minimal modular form Og,, on quaternionic Fg was considered in [Gan00a,
Gan00b,Pol20b]; it is of weight 4. The first part of Theorem 1.2.1 on the regularity of
E;(g,s;8) at s = 9 is analogous to some results of Gan from [Gan00a]. The weight
four modular form 6g,, is the Eg-analogue of Kim’s weight 4 exceptional modular form
[Kim93] on GE7 3, and in fact Kim’s weight 4 modular form appears in the constant term
of Ogan along the unipotent radical of the Heisenberg parabolic. The next-to-minimal
modular form 6,4, that is the subject of Theorem 1.2.1 is weight 8 and is the analogue of
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Kim’s weight 8 singular modular form on GEr7 3 from [Kim93]. Moreover, Kim’s singular
modular form shows up in the constant term of 6,,+,, along the same Heisenberg parabolic.

The final result we give is to the minimal modular form on the groups SO(3, 8k + 3)
and to a so-called distinguished modular form on SO(3, 8% +2). This is done in section 7,
and is the analogue of the results in [Pol20b] to the classical groups of type Dgk3.
Specifically, we prove the following theorem; see Theorem 7.0.1 below.

Theorem 1.2.2. Let k > 1 be an integer, and let G be the Q-group of type Dyx13 that is
split at every finite place and SO(3,8k + 3) at infinity. The Eisenstein series Ey(g, )
is reqular at s = 4k + 1. The value 0(g) = Esr(g,s = 4k + 1) is a modular form on G of
weight 4k, having rational Fourier expansion with all non-degenerate Fourier coefficients
equal to 0. Its restriction 6" to groups G' = SO(3,8k + 2) C G is a modular form of
weight 4k that is distinguished.
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2. Notation

In this section we define the notation that we will use throughout the paper.
Let (V5,q2) denote a two-dimensional rational quadratic space with positive defi-
nite quadratic form. Similarly, let (V,,¢,) denote an n-dimensional rational quadratic
space with positive definite quadratic form. Set V' = V5 @ V,, with quadratic form
q(z,y) = g2(x) — qn(y), so that V' has signature (2,n). We set V= Qe ® V' @ Qf with
quadratic form g(ae + v + 8f) = af + ¢’ (v'). Thus V has signature (3,n + 1). For some
of the results below, we will assume V’ has Witt rank two, although this is not necessary
everywhere.

Let ¢ be the involution on V' given by t(ae + & +y + ff) = Be + © — y + af, where
x € Vo, y € V,,. Then (v,1(v)) > 0, and conjugation by ¢ is a Cartan involution 6, on
SO(V)(R). We set uy =e+ f and u_ = e — f so that g(uy) = 1 and g(u_) = —1. We
let vy, v2 be an orthonormal basis of Va(R) so that (vi,v;) = d;5, and {ui, us, ..., u,} be
a basis of V,.

We set V3 = Vo ® Ruy and V,, 41 = V;, ® Ru_. The induced Cartan involution on the
Lie algebra go = s0(V) produces the decomposition go = ¢y ® po with ¢y = gngl and
po = go='. Under the isomorphism gy ~ A%V, one has pg = V3 ® V,,;1 C A2V and
to=A2V3 D A2V, CA2V. Weset p=po®C and £t = £ @ C.
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The Lie algebra A?V3 ® C C ¢ is isomorphic to slz(C). For an sly-triple (E, H, F) in
A2V ® C, one can take E = (iv] —vo) Auy /2, H = —2ivy Ava, F = (ivg +v2) Aug /V/2.
Then [E,F] = H, [H,E] = 2FE and [H,F] = —2F, so that indeed (E,H,F) is an
slo-triple.

Denote by P = M N the parabolic subgroup of G that fixes the line Qe. We are letting
G act on the left of V. Denote by v : P — GL; the character so that pe = v(p)e. We let
M be the Levi subgroup that also fixes the line Qf. Denote by N the unipotent radical
of P. Then N ~ V' is abelian, and for € V', we set n(x) = exp(eAx). Thusn: V' — N
is an isomorphism. One has n(z) = exp(e A x) takes e — e, v — v + (z,v)e if v € V',

1tz —(x,2)/2
and f — f—x — 4(x,z)e. The matrix corresponding to n(z) is 1 —x
1

As mentioned in the introduction, we let V, denote the (2¢ + 1)-dimensional repre-
sentation of K C SO(3,n + 1) that factors through O(3). Let x,y be a fixed weight
basis of the two-dimensional representation Y5 ~ C? of A?V3 @ C =~ sl3(C). We may
identify V3 ® C with the symmetric square representation S?(Y3) of this two-dimensional
representation, which has basis {22, 2y,y*}. We choose this weight basis x,y and the
identification S?(Y5) ~ V3 ® C so that x? corresponds to iv; — vy, xy corresponds to
uy /v/2, and y? corresponds to vy + vs.

Throughout the paper, the letter H denotes a hyperbolic plane. Moreover, we fre-
quently use the subscript 0 to denote an integral lattice inside a rational quadratic
space. Thus, for example Hy = Z ® Z.

3. Modular forms and their Fourier expansion

In this section we define the modular forms on G = SO(V'), and give the explicit form
of their Fourier expansion. That is, we prove Theorem 1.1.1 of the introduction.

3.1. Definition of modular forms

We now define modular forms on G = SO(V). As mentioned in the introduction, a
modular form on G of weight ¢ is an automorphic function ¢ : G(Q)\G(A) — V; of
moderate growth satisfying

(1) o(gk) =k=-p(g) for all g € G(A) and k € K
(2) Dy =0 for a certain linear differential operator Dy defined below.

To define the differential operator Dy, let X, be a basis of p and X“Y be the dual basis
of p¥. Suppose ¢ : G(A) — V, satisfies p(gk) = k~1¢(g). Define 13/530 =2, Xy0® XY,
which is valued in V, @ p¥. Here X, denotes the right-regular action of p on ¢. Note
that
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Ve@pY = (8%(Y2) ® §%(Y2)) B Vi1 = (S272(Y2) @ $%(Y2) @ $*72(¥2)) B V.

Denote by pr the K-equivariant projection V, @p"¥ — (S%(Y2) © S*~2(Y3))® V,,11. We
define Dy = proD.
Note that S?(Y2) C S(Y2) ® S'(Ya), and thus pr is also the composition

Ve@pY C (S*(Y2) ® S (Ya) ® SH(Y2)) B Vi
= (S (Y2) @ S* 71 (Y2)) © S (Y2) W Vips
— S (Ya) @ (SM(Y2) B Vig ).

This last line makes clear the analogy between modular forms on SO(3,n + 1) and
modular forms in the sense of [Pol20a].

3.2. The Fourier expansion of modular forms

In this subsection we give the precise Fourier expansion of modular forms on G. More
precisely, suppose ¢ > 1, n € V/(R). We say that a function F : G(R) — V; is a
generalized Whittaker function of type n if F' is of moderate growth and satisfies

F(n(x)g) = ') F(g)
(2) F(gk)=Fk""-F(g)
(3) DeF(g) =0

for all g € G(R), k € K and z € V/(R). In this subsection, we completely characterize
the generalized Whittaker functions of type ), for all n € V'(R). In particular, we prove
that if g(n) < 0, the only such function is the 0 function, while if 7 # 0 and ¢(n) > 0 then
all such functions are scalar multiples of the function W, mentioned in the introduction.

In order to understand these generalized Whittaker functions, we make relatively
explicit the differential equation DyF' = 0 in coordinates. To do this, we begin by making
an explicit Iwasawa decomposition of some elements of the Lie algebra of G. In more
detail, let n,m denote the complexified Lie algebras of N, M; one has a decomposition
g=n+m+ ¢t We have

p=Rut ®@V)A(Ru_dV,) =Ruy Au_ ups AV, @VaAu_ @ Vo AV,.

In n+ m + £ coordinates, a basis of p decomposes as follows:

e up ANu_=(e+ f)A(e—f)=—-2eA fem.

o up Auj = (e+ f)Au; = (2e —u_) Auj =2eAu; —u_ Au; € n+ £ (Recall that the
u; are a basis of V,,.)

o v; Au; € m. (Recall that vy, vs is a basis of V5.)

e v Au_ =v;AN(le—f)=uv; AN(2e —uq) = —2eAv; +uyp Av; En+t
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For ease of notation, let [27] = 4 and similarly [y/] = 4 Let F, denote the compo-
J: J!

nents of the Vy-valued function F'; that is

Z F, [CL‘H_UHye_U].

—L<v<t

Let {u\{, ..., u,. } be the basis dual to the basis {u1,...,u,} and v¥ dual to u_. Denote by
DM
right- regular) action of (ivq+ve) Au; on F. For future reference, note that (ivy —va, iv1 +
vg) = —2.

Suppose t € R*, m € SO(2,n) and = € V'(R) so that n(z)diag(t,m,t™!) €
N(R)M(R) = P(R). Restricting the function F to P, we write F(z,t,m) :=
F(n(z) diag(t,m,t~')). For w € V', denote

ior+vs,u, the differential operator on functions on M corresponding to the (differential

DY P, t,m) = 5 Fla -+ X t,m) o

the partial derivative in the w-direction. Also, note that (e A f)F = tO,F

Suppose F' : G(R) — V, is a function satisfying F(gk) = k=1F(g) for all g € G(R)
and k € K. The following proposition computes DyF'(z,t,m) explicitly in coordinates,
in terms of the differential operators D™, DV and t8,. To state the result, note that
the operator Dy is valued in S*71(Y3) ® (Yo ¥ V,41), which has a basis consisting
of elements [x€+v71][y€7v] QY® u\i’ [xéﬂfl][yzfv] Rr® U,\i, [forvfl][nyv] QY ® u}/,
[xi—&-v—l“y@—v] Rr® ’U,;/

Proposition 3.2.1. Suppose F : G(R) — V, is a function satisfying F(gk) = k='F(g) for

all g € G(R) and k € K. The coefficients of linear independent terms in 2DyF are as
follows:

(1) [Iﬁ“rv*l][ylfv] QYR u\_/ -
2D, (s oy Fo — V2(C+ 0)Fyy + V20, F,
@) Ty e @ul:
—V20,Fy — 2D} 01 oy Fo1 + V2(0 — v+ 1)F,
3) Ty ey ou:
-D}! ., . F.—V2D},, F,

@) Y ez eu:

\/_DtmuF +Dw1+v27uJF—1'
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Proof. As the computation is straightforward, we relegate the details to the appendix.
See subsection A.1. O

As a corollary of the above proposition, we obtain the complete description of the
generalized Whittaker functions of type 1. Thus suppose € V/(R) and F is a generalized
Whittaker function of type 1. That is, assume F is of moderate growth and F(x,t, m)
satisfies F(z 4+ w,t,m) = ') F(x,¢,m) for all w € V', so that DY F = i(n,w)F.

To state the theorem, we first define the function W, that plays a crucial role in this
paper.

Definition 3.2.2. Suppose n € V/(R), n # 0, and (n,n) > 0. For t € GL;(R), m €
SO(V")(R) set

w,(t,m) = V2ti(n, m(ivy — vg)).

Define

Wltsm) = ] (M) Ky (Ju ) ) 2] ).

—<v<e u”(t’ m)

Here recall the K-Bessel function K, (y) is defined as

[oe] d
- t
Ky (y) = / eTUtHT/2y
0

N =

t

It satisfies the differential equation (y9,)2K,(y) = (v?+y?)K,(y), diverges at y — 0 and
is of rapid decay as y — co. As K, (y) diverges for y — 0, Definition 3.2.2 only makes
sense because of the following lemma.

Lemma 3.2.3. Suppose n € V'(R) is such that (n,m(ivy — ve)) # 0 for all m €
SO(V')(R). Then (n,n) > 0. Conversely, if n # 0 and (n,n) > 0 then (n, m(ivy—v2)) # 0
for every m € SO(V')(R).

Proof. The hypothesis (n, m(iv; —vs)) # 0 for every m € SO(V')(R)) is equivalent to the
statement that the projection of 7 to every positive definite 2-subspace of V' is nonzero.
Suppose first that (1,1) > 0. Set ' = m~'n. Then (n’,n') > 0. Thus the projection of n’
to Vo = Span{v;,vs} is not 0, because otherwise 7’ would lie in V;, = (V2)* which would
imply (n',n) <O0.

Conversely, suppose that (1,7) < 0. Then (Rn)’ contains a positive definite 2-plane
Vy = mV; for some m € SO(V')(R). Then (n, m(ivy — v2)) = 0, as desired. O

With the above notation, we have the following result.
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Theorem 3.2.4. Suppose that F is a generalized Whittaker function of type n as above.
Assume n # 0. If (n,n) < 0, then F is identically 0. Conversely, if (n,n) > 0, then
F(t,m) = CW,(t,m) for a constant C € C.

Proof. We explain here that the function W, has the correct (K N M)-equivariance
property. See section A.1 for the rest of the proof.

We have K N M = ps x S(O(2) x O(n)). Consider the element € = diag(—1,1, —1) in
MNK. Then euy = —u4 while € acts as the identity on Vo = Rv; @ Rvs. Thus € acts on
Vi =~ S2(Ys) as ex? = 22, exy = —wy and ey? = y. It follows that on V, = S*(Y3) one
has ex‘tvyf=v = (—1)"*v2*vy* = Thus F,(z, —t,m) = (=1)*TF,(x,t,m), from which
the formula t¢|¢| follows.

Let us consider the equivariance for the SO(2) part. Normalize the isomorphism z :
SO(Va) ~ St by k(vy + iva) = z(k)(vy + ive). Then k(vy — ive) = 2(k) " (vy — ivy) and
we have k(x/Fy"=v) = 2(k)'a"Vy V. As F,(t,mk) = 2(k)""F,(t,m), the (K N M)-
equivariance follows for k € SO(2) x SO(n). For the nontrivial element of m(S(0O(2) x
O(n))), set € to be any element of S(O(2) x O(n)) with ¢’v; = v; and €’vy = —vs. Then,
on the one hand, ¢ (2?) = y?, €' (y?) = 2? and € (xy) = zy, from which it follows that
€ (2™ Ty V) = 2"y Y. On the other hand,

lu, (t,m)|\° w () — m
a0} Kt m)]) = P,

from which the (K N M)-equivariance follows for this element. 0O

F,(t,me") = t'|t| (

We now spell out what the generalized Whittaker functions of type n look like when
n = 0. For k € SO(2) x SO(n), recall that z(k) € S' C C* is defined by the equality
k(v1 + ive) = z(k)(v1 + iv2). Additionally, denote by € an element of S(O(2) x O(n)) C
K N M with €v; = vy and €'vy = —vs.

Corollary 3.2.5. Suppose F is a generalized Whittaker function of type n = 0. Then
F,(t,m) = 0 if v ¢ {—£,0,£}. On M(R), one has Fy(t,m) = Bt'|t|, Fyi(t,m) =
[t|F" ,(m) for some constant f € C and functions F',,(m) that are independent of
t. The functions F',(m) satisfy D} _, F/(m) = 0 and D} .  F',(m) =0 for
all w € V,. Moreover, F,(mk) = z(k)T¢F|,(m) for all k € SO(2) x SO(n) and
F_y(t,m) = Fy(t,me).

Conversely, suppose F,(m) satisfies Fj(mk) = z(k)™*Fj(m) for all k € SO(2) x
SO(n) and D%1+U27uFé(m) = 0 for all w € V,. Define Fp(t,m) = |t|F,(m),
F_4(t,m) = F(t,me), and Fy(t,m) = Btt|t| for any constant 3 € C. Then F(t,m) =
3 cves Folt,m)[zt][y* 0] is (K N M)-equivariant and satisfies the differential equa-
tionsiofPropositz'on 3.2.1.

Proof. First suppose that (t,m) € M(R)°, the connected component of the identity. If
—l+1<wv<{—1, then we have (t0; — ({+v+1))F, =0 and (—td;+ ({ —v+1))F, = 0.
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Adding the equations gives —2vF, = 0, so F,, = 0 unless v = —£,0, or £. Because = 0,
we obtain D%ﬁvz,uj Fy = 0. As in the proof of Theorem 3.2.4, the (K N M )-equivariance
now implies Fy(t,m) = t‘T' on M(R)°. The formulas for Fi,(t,m) on M(R) follow
easily. Additionally, the absolute values [t| and the relationship between Fy(¢,m) and
F_y(t,m) follow from the (K N M)-equivariance as in the proof of Theorem 3.2.4.

The converse follows easily, using the formulas for the (K N M)-action on V, from the

proof of Theorem 3.2.4. O

Below, we will require the following lemma. Denote by f} (g,s) the Vyp-valued, K-
equivariant inducing section in [ ndgggmuﬁ), whose restriction to M(R) is
FH(tm, 1), s) = [t)°[2]]y").

Lemma 3.2.6. Denote by f2(g,s) the Vy-valued, K-equivariant inducing section in
IndgEE;(W\s), whose restriction to M(R) is [t|* ([#°][y* @y — =y ] @) @ ul.
Then

V2Dyfi(g,5) = (s — = 1) f7(g.5).
Proof. From Proposition 3.2.1, on M(R)? one has

V2D f ((t,m,t7h),8) = (t0, — (C+ 1)) (][ @y — [y ] @ 2) @ u?
=(s—(-1t* (Y oy -] o) @u

using that D%limuj fi((t,m,t71),s) = 0 because f} is independent of the variable
m € SO(V’')(R). The lemma follows from the (K N M)-equivariance. 0O

4. The Fourier expansion of Eisenstein series

There is a Vj-valued degenerate Eisenstein series on G, E;(g,s) associated to the
(non-normalized) induction Ind(|v|*). If £ is even, then at s = £+ 1 and for appropriate
inducing data, this Eisenstein series is a modular form in sense of subsection 3.1. The
purpose of this section is to prove that indeed we get a modular form as above, and
to compute the Fourier expansion of this Eisenstein series Fy(g,s = £ + 1) along the
unipotent radical N, at least when dim(V”) is a multiple of four and the Eisenstein
series is absolutely convergent.

The Eisenstein series Fy(g,s) is defined using the inducing section fr.oo(g,s) =
f} (g,s) of Lemma 3.2.6 at the archimedean place. The computation of its Fourier ex-
pansion consists of various parts, which we break into subsections. Let us describe these
parts now, before getting into the computation.

To define some terminology, note that the non-constant Fourier coeflicients of a mod-
ular form ¢ of weight ¢ are parametrized by € V/(R), which can be either isotropic
or anisotropic. We call the Fourier coefficients corresponding to the nonzero isotropic



A. Pollack, G. Savin / Journal of Number Theory 238 (2022) 611-675 623

1 rank one Fourier coefficients, while those corresponding to the anisotropic n the rank

two Fourier coefficients.

(1) By applying Lemma 3.2.6, it is immediate to see that if the Eisenstein series is

absolutely convergent at s = £+ 1 (which occurs if £+ 1 > dim(V’) = n 4 2), then
Ei(g,s =€+ 1) is a modular form of weight ¢ for G.

(2) If the Eisenstein series is not absolutely convergent, then it is not clear-and not

necessarily true-that Fy(g,s) is a modular form at s = ¢ 4+ 1. To see when it is,
we make various archimedean intertwiner computations in subsection 4.1. Although
this is not needed for the Fourier expansion of the absolutely convergent Eisenstein
series, it is useful for other applications.

(3) We then compute the constant term of the absolutely convergent Eisenstein se-

ries E¢(g,s = £ + 1) in subsection 4.2. Similar to what occurs with the degenerate
Heisenberg Eisenstein series considered in [Pol20b], this constant term is a sum of a
holomorphic weight ¢ degenerate Eisenstein series on SO(V’) and a constant func-
tion.

The rank one Fourier coefficients of the Eisenstein series Fy(g,s = £ + 1) are com-
puted exactly as are the rank one Fourier coefficients of the degenerate Heisenberg
Eisenstein series of [Pol20b]. We state the results in subsection 4.3.

The computation of the rank two Fourier coefficients of Fy(g,s = ¢+ 1) splits into
two parts, a finite part and an archimedean part. The finite part can be extracted
from the literature (e.g. [Shu95]). For the convenience of the reader, we give this
computation in subsection 4.4.

The archimedean part of the computation of the rank two Fourier coefficients of the
Eisenstein series Ey(g, s = £+ 1) is the main theorem of the paper. This computation
is done in subsection 4.5. Denote by w the Weyl group element of G that exchanges
the parabolic P with its opposite. Then one has a function on V'(R) given by

= folwn(z);s =L+ 1).
What is computed in subsection 4.5 is the Fourier transform of this function.

We now define the Eisenstein series E(g, @y, s) that is the object of what follows.

Specifically, suppose ®; is a Schwartz-Bruhat function on V(Ay). For g € SO(V)(Ay),

define
frelap ) = [ @ty e) dn
GL1(Ay)
Now for g = 9f9 € G(Af) X G(R), let f((ga (I)f,S) = ffte(gqu)fas)ff;oo(gooas) and

set

E(g,®5,5) = X ep@nc) f(79, Py, s) the Eisenstein series. Here recall that

Jt:00(goos 8) = f}(goo, s) and this latter function was defined before Lemma 3.2.6. When
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the Schwartz-Bruhat function ®; is Q-valued (or Q-valued), these are the Eisenstein se-
ries that are the subject of Theorem 1.1.1 and we will prove that the Fourier coefficients
of (21)~*E(g,®s,s = £ + 1) are Q-valued.

4.1. Archimedean intertwiners

In this subsection we compute some archimedean intertwining operators. Specifically
we compute the intertwining operator

Moo (w,5) frn0(9:5) = / Fenolwn(z)g, s) de.
V/(R)

This is the content of Proposition 4.1.2 below.
We begin with the following well-known lemma, which computes a spherical
Archimedean intertwiner on the groups SO(N, 1).

Lemma 4.1.1. Suppose U is a positive definite quadratic space, and Vi = H U =
Rei U SR is the orthogonal direct sum of U and a hyperbolic plane H = Re; @R f;.
Denote by 11 the involution on Vy defined as 11(ae; +v+ Bf1) = Ber + v+ afi, and Ky
the maximal compact subgroup of G1 = SO(V1) that commutes with t1. Set Py = My Ny
the parabolic subgroup of SO(V1) that fizes the line Rfy via a right-action of SO(V7)
on Vi and define v : P, — GLy as fip = v(p) ' f1. Let fa(g,s) € Ind%ﬂu\s) be the
K -spherical inducing section and ny : U ~ N the identification of U with the unipotent
radical of Py. Then the intertwiner

/ faltini(x)g, s)dx = c(s) fa(g,dimU — s)
U(R)

T'(s—dim(U)/2)

where ¢(s) is a nonzero constant times (s) .

Proof. Although, as mentioned, this lemma is surely well-known, we sketch a proof
for the convenience of the reader. Let (-,-); denote the quadratic form on Vj. Define
[[v]]2 = (v, 21(v))1 for v € V4, and set ®o.(v) = e~IIVII* a Schwartz function on V;. Now,

falg) = [ IPea(0.0.1)g)
GL1(R)
defines a K7j-spherical section in Indgll((g))(\uﬁ) with fa(1,s) = T'(s/2). Thus we can
compute the c-function using this section fa(g, s).
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We obtain
/ faluini ()1, s)dx = / / |t|56*t2|\(1@’*llm\\2/2)H2 dt da
U(R) GL1(R) U(R)
dx

=T(s/2) / —_—
(L4 |[z[|?/2)*

U(R)

Thus

1+ IIJJII /2)*
U(R)

/udlmU/Z 1+’LL) sd_u
u
0

where the = means up to a nonzero constant. This last integral is easily computed to be
I'(s—dim(U)/2)

a nonzero constant times 1) O
Applying Lemma 4.1.1, we can now compute M (w, s) fr,0o- For z € C and k > 0 an
integer, let (2)r = (2)(z+1)--- (2 + k — 1) denote the Pochhammer symbol.

Proposition 4.1.2. Suppose
V=Re; ®Re; dRes UGRS3 ORHLODRf 1 =Res @V @ Rf;

with U negative definite of dimension m and e;, f; isotropic with (e;, f;) = d;;. Denote
by P = MN the parabolic stabilizing Rey for the left action of SO(V) on V and v :
P — GLj the character defined by pey = v(p)er. Suppose w € SO(V) is defined by
we; = f1, wfi = e1 and w is the identity of V'. Denote by K the mazimal compact
subgroup of G = SO(V') that commutes with the involution ¢ that exchanges e; with f;
and zs the identity on U. Suppose fo.0(g,$) is the K-equivariant, Ve-valued section in
IndP(R (|v]%) with fooo((t,m,t71),s) = [t|*zy". Then

fooo(wng, s)dn = ¢ (s) fo.oo(g,4 +m — s)

N(R)
where
B (s) — (H%)z/z T (s—2—-1) ' (%)2/2
‘ (%)5/2“ ['(s—2) (HT_m)e/ul

up to exponential factors and nonzero constants. Consequently, when £ > 2+ m, 053 (s)
is finite and 0 at s = £+ 1.
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Proof. Let wys denote the element of SO(V) that exchanges e; with e, f1 with fo and
is the identity on Span(ey, s, f1, f2)*. Similarly define ws3, and let w3 denote the Weyl
element that exchanges ez with f3 is the identity on Span(es, f3)*. With this notation,
the element w factorizes as wiawazwswWazwia.

Denote by 71,72, 73 the absolute values of the characters of the split torus, so that

rj(diag(ty, ta, ts, 1,t5 ", 151, 671)) = [451].

With Py the upper-triangular minimal parabolic, we have 0p, = (m+4)r; + (m+2)rs +
mr3, so that fr(g,s) € Indc(dl/Q)\ ) with Ay = (s—2—m/2)r;1 —(14+m/2)roa—(m/2)rs.

The intertwining operator M(w) = M (w12)M (was)M (ws)M (wa3)M (wi2) moves
around the induction spaces as follows:

S

e As=(s=2—m/2)r1 — (L 4+m/2)rs — (m/2)r3

o B —((24m)/2)r1+ (s = (4+m)/2)r2 + —(m/2)rs

. :3 —((2+m)/2)r1 = (m/2)ry + (s — (44 m)/2)r3

o« (((2+m)/2)7"1—((m/2)rg+((4+m)/2—s)) 3
)

o B —((24+m)/2)r1 + ((44+m)/2 — s)ry — (m/2
o W ((4+m)/2—s)r1—((2+m)/2)rs — (m/2)rs
d :)\4+m—s-

S

Now applying M (w, s) to the section fr (g, s) one obtains

M(w, s) fo,00(9,8) = M(wi2wa3) o M(ws3) o M (w23w12) fe,00(g: 5)-

Proposition 4.1.4 below computes the two outer intertwining operators M (wi2was) and
M (we3wi2). Lemma 4.1.1 computes the inner intertwining operator M (ws). Putting
these results together gives that, up to exponential factors and nonzero constants,

Ba(s) = (87571)4/2 T(s-2-1%) (%M)em.
()2 T2 (=5™) /21

The proposition follows. 0O

Remark 4.1.3. In section 6 below, we will apply Proposition 4.1.2 in the following special
case: £ = 8 and m = 8. We note now that for these values, c(s) is finite and nonzero at
=9

. 2t
(82 )5 I'(s=2) (S 2 )5

As used in the proof of the above proposition, we require the computation of a certain

length two intertwiner of an archimedean inducing section on SLs. This computation is
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done in Proposition 4.1.4 below. To set up the proposition, let by, b2, bg be the standard
basis of R?, thought of as column vectors. Let z,y be the standard basis of the two-
dimensional representation of SLy(C), so that 2, xy, y? are a basis of the 3-dimensional
representation of K/ = SO(3). We identify by + ibs = 22, iby = xy and by — ibg = y°.
Set fi = x +y and fo = x — y; this abuse of notation should not cause the reader any
confusion.

Now suppose £ > 0 is even and f;(g, s) : SL3(R) — V; is the section satisfying

(1) fi(gk,s) =k~ f)(g,s) for all k € K’ = SO(3), g € SL3(R);
(2) fi(pg.s) = xs(p)f/(g,s), where p= ("' » ) € P15 in (1,2) block form and

0 mao
Xs(p) = [ma* = | det(ms)|~* = |m?/ det(ma)|*'*;
(3) fi(l,s) =a'y".

Let s12 and sg3 in SLg be the Weyl group elements corresponding to the two simple
roots, in obvious notation. We compute the intertwiner M (s23) o M (s12) f;(g, s).

Proposition 4.1.4. Denote by f;(g,s) the inducing section satisfying the first two enu-
merated properties above, but with Pio replaced with Py and f]'(1,s) = fifs. Then

M (s93) 0 M(s12) fy(g,5) = Ce(s) f/ (9,5 — 3) (3)

with

(=512 _T(5)T(5-1)
24

Co(s) = (5/2— D2t T (57571) T (s;r )

up to exponential factors and nonzero constants.

Proof. We begin by constructing the inducing section f;(g, s) explicitly. Throughout, we
compute up to nonzero scalars.

Let ®, : R?® = V, be given by Dy(v) = vee*HUHZ, where we consider v € V; and ¢! in
the quotient V, of the /-th symmetric power of V;. Then

fé(ga s) = m / |t‘sq)z(tgilb1)dt.

GL1(R)

One checks easily that M(sa3) o M(s12)f;(g,s) is K’-equivariant and lands in the
induction space as specified in the statement of the proposition. Thus it suffices to
compute this intertwiner when g = 1. This, then, is computed by

T((s+€)/2)M(s23) 0 M(s12) fi(1, 8) = / |15 (uby + vby + bs) e DS Gt gy dy.

R* xR2
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Under the change of variables indicated above,

1
uby + vby + bg = 3 ((v —4)2® + 2iuzy + (v +14)y?)
=zff =2ififa+ 2 f5

where z = v + iu. One obtains that

(12— 2iffo 4 = 13"
o) = [ e o

Because of the S' C C* symmetry of the domain of integration, only the coefficient
of f{f% contributes. This coefficient is immediately seen to be

4 k(. x\k NC—2k
2 R — gy © R
0<k<t/2

Now

|Z|2k‘ ,,,.QkJrl
/kp2+uwﬂvﬂ”:2”/@2+UWMEdr
C 0

LT+ D)T((L+8)/2—k—1)
T((¢+5)/2)

where the implied constant in the = is independent of k.
Summing up, we have proved (3) with

- B 0 T+ DD+ s)/2—k—1)
Gy = 3 27D (0 + 5)/2)

0<k<t/2

2!

1
— Z 2472]6(_1)]6
_ l+s

0<k<e/2 k!(é Qk)! (T —k— 1)

:; Z (—4) o

(8/2 = 1)¢ja11 o<i=e/2

k+1

@tz 2

making the substitution j = ¢/2 — k. The proposition thus follows from the following
lemma. 0O

Lemma 4.1.5. One has

o s—(-1
Dy(s) := Z (—4)JW(5/2 —1); =2 (T)E/Q.

0<5<¢e/2 '
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Proof. First,

. !
> (—4)]W(S/Q - 1),

0<j<t/2
l 1 )
— (_a)¢/2 - _1\¢/2—j _ .
o X (0)(5) curz-,
0<j<0/2 /2=
Now
(e> _ <z/2> ()02
2j J (%)] (3 0)2—j
Moreover
(3) o (D277 (1—5)
(3); 2 Jujay
Thus

Dis) =2 Y (% (52— 1),((1 — 0)/2)g/a_.

0<j<t/2

By the binomial property (a+b), = > o<, (%) (@)k (b)n—r of the Pochhammer symbol,
the lemma follows. O

4.2. Constant term

As mentioned above, we begin with the computation of the constant term of
E¢(g,®s,s) along N. For general s, there are three terms: fo(g, ®y,s), an Eisenstein
series Eéw (9,Pf,s) on the Levi subgroup M, and an intertwined inducing section
M(w, s) fe(g, @y, s).

We will see that at s = £+ 1 (in the range of absolute convergence) the intertwined
inducing section M (w, s) f; vanishes and that the Eisenstein series EM (g, @, s = £+1) is
the automorphic function associated to a holomorphic weight £ modular form on SO(V”).

Let us first handle the intertwining operator. Denote by w the element of SO(V') that
exchanges e with f and is the identity on V’. The intertwining operator is

M(w, 3) fulg. 5) = / fe(wn(z)g, s) dz.
VI(A)

Lemma 4.2.1. Suppose € is even and £ > n+1. Then M (w, s) f¢(g, s) vanishes at s = £+1.
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Proof. The integral is absolutely convergent, so it suffices to see that the archimedean
intertwiner

Moo (w0, 8) foe (9, 5) = / feoo(wn(z)g, 5) da:
)

V(R
vanishes at s = £ + 1. This follows from Proposition 4.1.2. O

The other nontrivial piece of the constant term is an Eisenstein series on the Levi
subgroup M, EM (g, ®,s = £+ 1) associated to a new inducing section f},(g, ®s,s) on
M. This inducing section is defined as follows. Let by be an isotropic vector in V’. The
section f},(g, @y, s) is given by an integral

Fir(g.®y,s) = / Fo(won(z)g, s) dz
((bo)+\V7")(A)

where fwy = by using the right action of G on V. Write fI/\/I,oo(g7 s) for the corresponding
archimedean inducing section, so that

Fianolg,s) = / fe.0o (won(z)g, 5) d.
((bo)*\V")(R)

Denote by P’ the parabolic subgroup of M that fixes Qby via this right action. With

frr(g, @y, 5) defined as above, E (9, Py, 5) = 3. c prqpar(q) fru (79, @7, 5)-
Regarding this Eisenstein series, one has the following proposition. For m €
SO(V")(R), set

(bom, V1 + i’l)g)e

fhol,@(mvs) = ||b0m||s+€

Note that at s = £, fro,¢ is the inducing section for the automorphic function associated
to a holomorphic weight ¢ Eisenstein series on SO(V”).

Proposition 4.2.2. Let the notation be as above.
(1) One has

Firoo(diag(t,m, t71), s = £+ 1) = [t| (frove(m, s = )z + frore(me’, s = 0)y*") .
(2) Suppose that ®; is Q-valued. The automorphic function 7=*EM (g, &, s = £ + 1)

corresponds to a holomorphic modular form on SO(V') of weight ¢ with algebraic
Fourier coefficients.
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Proof. The proof of the first part follows exactly as the proof of Proposition 3.3.2 of
[Pol20b]. Note that the equality here is only true at the special values of s indicated; it
is not true for general s.

Keeping track of the constants, the second part follows from the first, using the fact the
absolutely convergent holomorphic Eisenstein series associated to a Q-valued inducing
section has algebraic Fourier coefficients. See, e.g., [Shi82] or [Shu95]. O

4.8. Rank one Fourier coefficients

In this subsection, we prove that the rank one Fourier coefficients of 7 ¢E,(g, ® fi8=
¢+ 1) are algebraic numbers. We also prove that certain of these Eisenstein series have
rational Fourier coefficients. As the argument and computation is identical to the calcu-
lation of the rank one Fourier coefficients of the degenerate Heisenberg Eisenstein series
of [Pol20b], we are very brief.

We require the following definition. Recall the M-invariant decomposition V' = Qe &
V' @ Qf. We say a Schwartz-Bruhat function ®; on V(Ay) is block-tensorial if the
following conditions are satisfied:

(1) There exists Schwartz-Bruhat functions ®¢,®/ on A; and ® on V/(Ay;) so that
O r(ae+0v' + Bf) = 2¢(a)®' (v')P/(B), where v/ € V/(Ay) and «, 8 €Ay
(2) The functions ®° with ? € {e, f,' } satisfy ®"(uz) = ®*(x) for all u € Z*.

Note that the condition is invariant under translation by M (Ay).
Here is the result.

Proposition 4.3.1. Suppose £ > n+1 so that the Eisenstein series E¢(g, ®¢, s) is absolutely
convergent at s = £+ 1 and that the Schwartz-Bruhat function @y is Q-valued. Then the
rank one Fourier coefficients of m—*Ey(g, s, s =1L+1) are Q-valued. If moreover ®; is
Q-valued and block-tensorial, then the rank one Fourier coefficients of m=*Ey(g, Of, 5=
L+ 1) are Q-valued.

Proof. The first step of the proof is the fact that these rank one Fourier coefficients of
E¢(g,®s,s = £+ 1) are Euler products, given by an integral

Y((n,2))Ee(g, ®f,8 =L+ 1)dx
VI(Q\V'(A)

= [ s it =+ Do )
(M+(ANV'(A)

if n # 0 is isotropic. Here v, € G(Q) satisfies fy, =n € V'(Q).
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To prove (4), one computes that in the range of absolute convergence, the left-hand
side is equal to a sum of two terms: the term appearing on the right of (4) and an integral

/ $((n,2)) f(wn(x)g, By, 5) d. (5)

VI(A)

The content of (4) is that (5) vanishes at s = £ + 1 if 7 is isotropic. To see this, note
that the integral is absolutely convergent, so it suffices to see that the archimedean
integral vanishes at s = ¢ + 1 for such an 7. This vanishing could be obtained by the
arguments used to prove Theorem 3.2.5 in [Pol20b]. However, it also follows immediately
from Corollary 4.5.8 below, so we omit this argument.

The archimedean and unramified local integrals that arise from the right-hand side of
(4) are computed just as in section 3.4 of [Pol20b]. In this case, the unramified finite adelic
integral gives a rational number, equal to 1 almost everywhere, and the archimedean
integral using fs.oo(g,¢; s) gives the 7*. Finally, the finitely many “bad” local integrals
at the finite places give algebraic numbers.

We now sketch how to prove these facts about the local integrals

¥((n,2))f(mn(@)g, Pp, s =L + 1) da. (6)
(MH(Q)\V'(Qp)

Plugging in the definition of f(g, ®,,s), we obtain that (6) is equal to

D((n, @) [t @y (t + (1, ) f) da it (7)
Q? (M (Qp\V'(Qp)

We can identify (7)+(Q,)\V'(Q,) with Q,, via the map = + (n,z). Thus (7) is equal to

/ / Blu/t)By(tn + y )t dt dy. (8)

Q; W

The function (t,y) — ®,(tn + yf) is a Schwartz-Bruhat function @/ (t,y) on Q2, so
the evaluation of (8) is the same calculation that one does to compute of the Fourier
coefficients of Eisenstein series on GLs. For the reader’s convenience, we now explain
how to analyze (8). First, without loss of generality, we can assume @} (t,y) is a pure
tensor, so that ®},(¢,y) = ®1(t)P2(y), with @1, P Q-valued if ®,, is Q-valued. Then (8)
becomes

/ ], (1) B5(1/1) dt, (9)

Qr
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where &3\2 denotes the Fourier transform of ®9; note that it is valued in Q if ®5 is Q-
valued, and valued in the cyclotomic extension of Q if ®5 is Q-valued. Because 5\2 is a
Schwartz-Bruhat function, the integral (9) is actually a finite sum, and equal to 1 almost
everywhere. This proves the desired facts about the local integral (6).

For the rationality statement, note that we know from above that the local integrals
(6) are equal to 1 almost everywhere are valued in the cyclotomic extension of Q at
finitely many places, using that ®, is Q-valued. We claim that these local integrals are
in fact valued in Q. To see this, one applies an element o of the Galois group Gal(Q/Q)

0 (6). One obtains an integral

Y(u(n, ) f(mn(z)g, @p,s = £+ 1) dx (10)
(M (Q)\V'(Qp)

where p is the value of the p-adic cyclotomic character of o. Now, making a change
of variables z — p~'z in (10), one arrives at (6) because ®¢ is block-tensorial. This
completes the proof. O

4.4. Rank two Fourier coefficients: finite part

In this subsection we do the finite part of the calculation of the rank two Fourier
coefficients of our Eisenstein series. The result of this calculation is well-known; it can be
extracted from [Shu95]. We briefly give the computation for the convenience of the reader.
Throughout this subsection, F' is a local non-archimedean field with ring of integers O,
uniformizer p, and |O/p| = q.

The local section for the Eisenstein series is

/ 1415, (4(0, 0, 1)g) dt.

GL1(F)

Here ®, is a Schwartz-Bruhat function on V(F) and V(F) = Fe @ V' & Ff. For the
rank two Fourier coefficients, the integral that must be calculated is

oty = [ [ o) B0~ @) deda.
GL1(F) V/(F)
Here 7 is a rank two element of V', i.e. (n,n) # 0.
Assume that ®, is unramified, i.e., that ®, is the characteristic function of the lattice

OedV'(0)® Of, where V'(0) is such that V'(O/p) is a non-degenerate split quadratic
space over O/p. Breaking into pieces as determined by the valuation of ¢, one obtains

J(s,m,®,) = Z Ip|"® / ¥((n, x)) char(p"q'(z) € O) dx

r=0 prVI(O)
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In this unramified case, we will check that the terms with » > 2 vanish and will calculate
the r = 1 term explicitly.

The vanishing of the terms with 7 > 2 follows from the following lemma. If n € V' (F),
we say that 7 is unramified if n € V/(O) and ¢'(n) € O*.

Lemma 4.4.1. Suppose r > 2, V'(O/p) is a non-degenerate quadratic space and n is
unramified. Then

SR

z€V/(O/p7),q' (x)=0 (mod p")

Proof. The idea is to consider together all the x with fixed reduction in V/(O/p"~1).
Specifically, suppose = € V'(O/p"), ¢'(z) = 0 (mod p"). Consider = + p"~le for some
e € V'(O). Then I%q'(x—i—p’”_le) = p%(q'(a:)—i—p"_l(:v, )+p?"2¢ (). Asr >2,2r—2 > r
so this is in O if and only if (z,¢) € pO. The point is that for © € V/(O/p) fixed with
¢ (z) = 0, there is € with (z,¢) € pO and (n,¢) € O*. Indeed, if (n,€) = 0 whenever
(z,e) = 0, then z and 7 would be O* proportional in V'(O/p). But ¢'(n) # 0 while
¢ () = 0 by assumption, so such an € can be found. Perturbing the sum of those terms

with reduction = by €, one gets 0, as desired. O

For the r = 1 term, we begin with the following lemma. Let U,, be the split quadratic
space over O, i.e., U, = O* with quadratic form q,(21,...,Zn, Y1, Yn) = T1Y1 +

Lemma 4.4.2. Denote by C(n) the number of elements u of U,(O)/p with gn(u) = 0.
Then C(1) =2q—1 and C(n+1) = qC(n) + (¢ — 1)¢*".

Proof. The formula for C(1) is clear. As for the recurrence relation, note that the ele-
ments in U,4+1(O/p) with g,+1 = 0 are either of the form (0, w,,*) with g, (u,) =0 or
(, Uup,y1) with y; determined. The recurrence follows. O

We can now calculate the r = 1 term in case V' is split, even dimensional by induction
on n. Define

Sy = > &((n,v)/p)-

veUL(O/p),q(v)=0 (mod p)

Lemma 4.4.3. Suppose n = (1,0,...,0,1). Then Sp41 = —q".

Proof. First we claim that

Sei=— 5 w(ca)/p). (11)
veU, (O/p)
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To see this, note that if v € Up,41(O/p) with ¢(v) = 0, then either v = (0,v’, *) with
¢(v') =0orv= (21,0, 27 q(v')) with ; € O*. Summing over the first set of v’s
gives 0, because Zyle(f)/p ¥(y1/p) = 0. Summing over the second set of v’s gives

> D((z1 —zyq(0"))/p)-
£ €(0/p)* €U,

But note that

> v /)= Y. vlag)/p)

v €U, (O /p) v/ €U, (O/p)

for any a € O*, because the split quadratic form ¢ takes all values. Thus

Swri= D a1/ > w(=q(v)/p)

z1€(0/p)* v €U, (O/p)

which gives (11).
From (11), one can calculate S, in terms of C(n), by breaking the sum up into
those v with ¢(v) = 0 and those v with ¢(v) Z 0. One obtains

But now by Lemma 4.4.2 one obtains

C(n + 1) _ q2n+1 7 C(n) _ q2n71
q—1 —1 q—1

so that S,,+1 = ¢S,. The lemma follows. 0O

Putting everything together, we arrive at the following proposition.

Proposition 4.4.4. Suppose dim(V) is even, n is unramified, V'(O/p) is a non-degenerate
quadratic space, and ®, is unramified. Then

4 s_dim2V/+1 _ 1

Consequently, if £ is even and 4 divides dim(V”) then the product of the unramified

(t+2—dim(V')/2)

factors at s = ¢ + 1 gives n~ times a rational number.

We also must understand what happens at the bad finite places:
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Lemma 4.4.5. Suppose that @, is Q-valued, and f(g,Pp, s) :fGLl(Qp)|t|S<I>p(t(0, 0,1)g) dt.
Then

f(wen(z)g, Dy, s)P((n, ) dx
V'(Qp)

is finite and valued in Q(v,) at s = n a positive integer. If moreover ®,, is block-tensorial,
then the integral is valued in Q.

Proof. First, changing @, to ®J, ®f(v) = ®,(vg), one can assume that g = 1. Now, from
[Kar79, Theorem 3.6], one obtains that there is a compact set U of V'(Q,) so that

/ Fwpn(), By, sy (5, 2)) de = / fwn(a), @y, )0 2)) do. (12)
V’(Q;D) U

But now, because ®, is Schwartz, f(-,®,,s) is right invariant under a compact open,
so that the right-hand side of (12) is a finite sum. The lemma follows because ®, being
R-valued (for some ring R) implies f(g,®,,s) is equal to P(q=*)(1 — ¢~*)~! for some
R-valued polynomial P(X).

The rationality claim of the lemma follows just as in the proof of Proposition 4.3.1. O

4.5. Rank two Fourier coefficients: archimedean part

In this subsection, we calculate the archimedean contribution to the rank two Fourier
coefficients of the Eisenstein series Ey(g, Py, s). More precisely, let fi(g,s) denote the
Ve-valued section of the Eisenstein series on G. The main result of this subsection is the
computation of the Fourier transform

I(w, 0) = / @0 £, (wn(z), s = £+ 1) da. (13)
V/(R)

For the involution ¢ on V that gives rise to the Cartan involution, write ||v||* :=
(v, t(v)) for the associated positive-definite norm. Before beginning this computation, let
us note that fy(wn(z),s) is the function

(pv, (1, 2, —q(x)))"

T +— .
(L, 2, —q(@)[|*+*

Following [KO03, (2.8.1)] define

Znll? = [|22|[? 2
T(xn,w2)2:<1+—| I 4” 2|> —|-||:E2||2.
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One has the following simple lemma. Denote by py, : V = V3&®V,,;1 — V3 the orthogonal
projection.

Lemma 4.5.1. Suppose w € V'(R) and w = wy + w, is the decomposition of w into
Vo®V,, and v = (1,w,—¢ (w)) so that v is isotropic. Then

1 . .
pvs(v) = Vi ((\@w%wl +v2)a® + ([Jwa|]? = |Jwal]> — 2)zy + (V2w2, vy — Uz)yQ)

and
0] = 7(V2wn, V2w,)*.

Proof. With notation as above, we have

o= (b 50 = d@ie+n) + (wat 50+ d@)e-n).

Thus

pra() = w + (1= g (@))(e + 1)
1

=3 ((wg,ivl +vg)z? + \/5((]2(11)2) — qn(wy) — Dy + (wa,ivy — vg)yQ)

1 ) .
57 ((VBuwa, i1 + v3)a® + ([[wal® = [wnl* = 2)ay + (V2ws, vy - va)y?)
as claimed.

One computes

101w, =gy (w)II? = (1, w, —qv+ (w)), (=qv+ (), e(w), 1))
=1+ (qv' (w))* + [Jwa] | + [Jwn]*

wa||? — ||w,|? 2
:1+(|| 2” 2” || ) +‘|w2|‘2+||wn”2

wa||? = |Jwy,||? 2
:<| 2|| 2” H _1> +2||w2”2

= 7(V 2wy, V2ws)?.
This gives the lemma. 0O

To compute (13), we start with the answer, and compute the inverse Fourier transform.
This strategy is only possible because the unipotent group N is abelian, and this is why
modular forms on G are much easier than modular forms on the quaternionic exceptional

groups.
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Thus we wish to compute

[(w,v1 + iv9)|

R = [ e durele) > 0t (— )

V'(R)

) Kv(\/i\(wml +ivg)|) dw.

(14)
Eventually, we will substitute A = ¢ — n/2. The computations are inspired by, and use
results from [KOO03] and [KM11]. Compare also [Shi82].
Let us first explain that the integral I,,(z; £) is absolutely convergent if A = {—n/2 >0
and n > 1.

Lemma 4.5.2. Suppose A ={¢—n/2 >0 andn > 1. Then the integral I,(x; £) is absolutely
convergent.

Proof. Taking absolute values, one obtains

/ char(g(w) > 0)g(w) A Ky (v (w, v1 + ivs)]) dew
V/(R)

=C / char(ty > t,)(t2 — t2) K, (V2t2)tot" L dty dt,,

—C / / 24T — AR, (V2t)w" ™t dw dty
t2=00<w<1

=’ / ALK (V2ts) dts
0

for positive constants C,C’. Here we have made the variable change t, = wts, and
because A > 0 and n > 1 the integral over w is finite. Because A = ¢ —n /2, 2A+n+1 =
20 + 1. Thus because |v| < 2/, t2F1 K, (v/2t3) is 0 at ty = 0 so the integral over ty in the
final line above is finite. O

As the integral defining I, (z;¥) is absolutely convergent, we may apply the Fourier
inversion theorem, as mentioned above.

The computation of I, (x; ¢) is given in the following proposition. We will assume v > 0
in this proposition. Because K_,(y) = K,(y), we can obtain the case I,(x;¢) for v < 0
by the case of v > 0 by exchanging ve with its negative. Recall the Gauss hypergeometric
function o F}(a,b;c; z) and Appell’s hypergeometric function Fy(a, b; ¢; d; ;).

Proposition 4.5.3. Suppose v > 0. One has

l4+v+1) Il —n/2+1)
Iv+1)

T
I,(x;0) = (27r)(”+2)/22e*("+“+2)/2(—x2, vy + v2)’ (
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X Fy(C+ 1,04+ 1400+ Lo+ 15 —[[an|*/2; —||22]*/2).

Proof. From [KMI11, (3.3.4) page 55| (which cites [Hel84, Lemma 3.6, Introduction]),
one has

/ MM (w) dw = 2m)" 2SN T 2146 (M) (15)
Sm—1

if ¢ is Harmonic of degree £, A > 0, and 7 is in the sphere S™~!. Here J, is the J-Bessel
function.

Let S(V,,) = {z € Vi, : ||z||* = 1} be the sphere of radius one in V,,, and similarly let
S(V4) be the sphere of radius one in V5. We write w = toos + t,0,, with ta,t, € Rxy,
o9 € S(V) and o, € S(V,,). Let

bo(ws) = (—%) Ko(V3)(w, 01 + i0s)|)-

Define x5 € V5 and z,, € V,, so that x = x2 + z,,. Then we compute

L,(z;0) = char(ty > t,)(t3 — t%)Aeitz("2"’”2)6“"("""'”")

to,tn,02,0n

X ¢(t20’2)t2tz_1 dtg dtn dUQ dUn

= (2m)"/? / char(ty > t,)(t5 — ;)4 €222 g(t200) (t |2 ||) /2

to,tn,02

X Jpjo—1 (tn||zn )ty ! dta dty, dos.

Now by (15) we have

it3(0272) ¢ (1,09) dory = (2 [ 1F2 0L~ 2l ' t2) K, (V2Ls).
[ e ta dos = 2 (V222 o) K, (V)
U2ES(V2)

Thus

1 (a:0) = (om0 (M2t 2 o)
(3327“11 112)

X /char(t2>tn)(tg—ti)Atgtz/sz(\/itQ)qu|x2|\t2)Jn/2_1(||xn|\tn)dtndtg.
to,tn

We now compute the integral over t,. One has

to 1
J 88 = ol = 1240 [ (0= 0t) 8021, ol )
0 0
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= 2T(A + )|z |~ AT (82) 20, jo (|| |t2)

where the last line is by [GR07, 6.567.1].
Combining, we obtain

I (g 0) = (2 (422 [ 1(@2 001 — va)| ~(A+n/2)9AT( 4 4 1
(25 €) = (2m) aivi ) ||| (A+1)

o0

X /t§4+n/2+lJn/2+A(||xn||t2)Jv(\|$2||t2)Kv(\/§t2)dtz-
0

This last integral over t5 is worked out in [KO03, page 586]. Following [KO03], by e.g.,
[GRO7, 6.578.2], one obtains

o0

/ Tl E2) Tu (2l [b2) Ko (/3t2) d
0

(14w n JT(A+n/24+14v)
= 270 | " =

XFy(A+n/24+1,A4+n/2+14+v;A+n/2+ 10+ 1;—||z,|?/2, —||z2][?/2).

Set ¢ = A+ n/2, and note that

2] (M) I — (16)

($2,ivl - Uz)

Taking (16) into account, the proposition follows. O
Corollary 4.5.4. Suppose v > 0 and ||z2|| + ||zn]| < V2. Then

T(V2, V222) T, (25 0)
(+o+1)(C=—n/2+1)

T
— (27r)(n+2)/22€—(n+v+2)/2(_x27ivl + v2)v (

F'(v+1)
_ v—f v+l+1 2||z2||?
x 7(V 2, V2 Z”F( , v+ 1; .
(V2w V2u2) " 2B { =5 2 T(V20, V212)?

Proof. By [KO03, page 586, Lemma 5.7], if ||z,|| + ||22]| < V2,

Fyl+1,041+ 00+ 04 1; — ||za]|?/2, —||22|?/2) = 7(V 220, V21,,) VY

. <v€ (+v+1 v4+1 2||z2|)? )
211 5 B) T 17_(\/53:2’\/51:”)2 ’

The corollary follows. O
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We now restate Corollary 4.5.4 in a slightly different form. Define

I,(x;0)

o I(e+1) —(n+2)/2 2041
To(@:0) = i (V2. Var)) €+ )l — o)

(—n/2+1)

Corollary 4.5.5. For v > 0 and ||z,|| + ||z2|| < V2, one has J,(x; ()

14
= 2ZU< )(—\/51‘2, vy 4 v2) T (V 22, V212) TV o Fy

v

(v—ﬁ v+L+1 2||x2]| |2 )
X —— v+ .
2 2 (V220 V222)?

For v <0, one has

*

Jo(z:0) = <—%) . Ty (:.6),

where a = \/2(x2, vy + vg).

Proof. The first part of the corollary has already been proved. The second follows imme-

diately from the first by replacing v, with —vs and noting that v/2(xs,iv; — v2) = —a
if a = V2(zg,ivy +v2). O

We now use the following lemma. We will apply it with

2||zn[* — 2||z2||?
4

a= —\/§(x2,iv1 +wg), b= ’1 +

Lemma 4.5.6. For £ > 0 even, a € C* and b > 0 with |a| < b, one has

l
(cwc2+2bxy—a*y2)€ _ Z <U>2@—1)511)’/02(xy)é—v$2vav(|a|2+b2)(€—v)/2
0<v<t

v—f v+0+1 |a|?
F ; 1;
X 9 1< ) ) ) ,’U+ ’|a|2+b2

g —v —v v *\ UV —v
£ 3 ({)2 e o 2y

v—L0 v+l+4+1 |a|?
; 1; .
( O ol

Here (511}7/02 is equal to 1/2 if v = 0 and equal to 1 otherwise.
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Proof. Denote by Si the first sum on the right-hand side of the displayed equation in the
statement of the lemma and Sg* the second sum on the right-hand side this equation.
One has the well-known identity

DB (dbids2) = (1—2)"" o1y (a/’c/ e p—— 1) '
.

This follows from the integral representation

1
F(Cl) ’_ I g 7
Fo(ad.b:c: _ b —1 1 — )¢ b -1 1— a
2 1(& 7b e 7Z) F(b/)F(C/ _ b/) /t ( t) ( Zt) dtv
0

valid for Re(c¢’) > Re(V') > 0, by making the substitution ¢ — 1 — ¢. Thus

(laf? + 82) (72, Fy (

_ 3 l—v v—t vt 1 -_w
=b 2F1( 5 3 +2,U+1, )

v—L v+l+1 |a|?
. 1.
2 2 TNy

We thus must evaluate the sum

14 I—vo vel/2 2 v—C v—L 1 af?
Z (U)(2bxy) 'a’6,/g o7 o Iy 5 g +§,’U+1,—b—2

0<v<e

Now, note that if § > 0 is an integer then (fg)m (fg + %)m = (i)m [CETE Thus,
plugging in the definition of 5 F}, we obtain

St= 2 (f)<2bxy>‘f—“av5;(§m2v(_me (%)m

0<v<£,0<m (v+1),m!
12 o U2 s
= Z (*1)m(26xy)z v 2mav|a|2m(xy)2m§v 0 v
0<v<t,0<m (£ —v—2m)!(v+m)lm!
Similarly,
* £
St= 2 (~1)™ (2bay) 2 (=) o™ ()78 Gy

— v — | Im)!
ogvge,ogmw v —2m)!(v+ m)!m!

The lemma now follows easily. O

The condition |a| < b in Lemma 4.5.6 can now be removed:

Corollary 4.5.7. The statement of Lemma /.5.6 holds under the condition b > 0, and not
Just b > |al.
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Proof. Suppose b > 0 and set t = a/b, so that ¢ € C. Dividing both sides of the statement
of Lemma 4.5.6 by b, one obtains

Y4
(tx2+2xy—t*y2)£= Z (U>28—1)611])/02(l,y)E—vavtv(lﬂQ+1)(€—v)/2
0<v<?
v—~C v+{0+4+1 |t|?
F ; 1;
X 2 1< 2 ) 2 ,’U+ "t|2+1
Z —v —v v *\ UV —v
£ 3 ()2a e e 4 e
0<v</t
v—L v+Ll+1 |t|?
F ; 1; .
X 2 1< 2 1) 2 1U+ "t|2+1

From Lemma 4.5.6, the above equality holds for ¢t € C with |¢t| < 1. However, both sides
are real analytic functions of ¢, so their equality for |¢| < 1 implies their equality for all
t € C. The corollary follows. O

Combining Corollary 4.5.7 with Corollary 4.5.5, we obtain:

Corollary 4.5.8. Set a; = v/2(w2,ivy + v2) and by = (||x2]]? — ||za|[? — 2)/2. Then

L(l—n/2+1) ey L+ —0) (V22 V2m9) 2]

r(+1) o (n+2)/2 Z I(2:0) glvgyt—v (a122 + 2byzy — a’{yZ)e

(17)

Proof. First suppose ||z2|| + ||zn|| < V2. Note that the assumption ||zo|| + ||z, < v2
implies that by is negative, and thus b = |by| = —b;. Therefore, from Corollaries 4.5.7 and
4.5.5 the equality above holds so long as ||z2|| # 0, ||z,|| # 0, and b = |1+M| #
0. The conditions ||z2|| # 0 and ||z,|| # 0 are used in the manipulations used to prove
Proposition 4.5.3. But now the absolute convergence computations for I,(x;¢) prove
that I, (z;¢) is a continuous function of x. As both sides of (17) are continuous in z, the
corollary follows in this case.

For the general case, it follows from Proposition 4.5.3 that I,(z;¢) is an analytic
function of x5 and ||z,||?. Therefore, the equality (17) for ||za|| + ||z,|| < v/2 implies
the equality for all xo,x,. O

We arrive at the main archimedean theorem of this subsection.

Theorem 4.5.9. The Fourier transform

eiQ”i(“”z)fg(wn(x), s=0+ 1) dr = C«em(27.‘.)2Z+2fdim(v’)/2q(w)£7n/2W2mU(1)

V/(R)
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for a nonzero rational number Cy .

Proof. Making the change of variable w — 27w in the integral I,,(x;{) of (14), one gets

_ o _ 271w, v1 + ivg)|\ "
9 (2€+2)Iv ) = / 27 (w,x) —n/2 [ |( 1
R B

V'(R)

x K, (V2|(21w,v1 + ivs)|) dw. (18)

From Corollary 4.5.8, one obtains

l+v, f—v 2 *, 2\
o (26+2) Z I,(2;0) r Yy ~ p(n+2)/2—(20+2) (a12° + 2b1zy — ajy?) (19)

—<u<t m T(\/an’ \/5332)2“1

in the notation of that corollary, where the = means that the two sides are equal up
to a nonzero rational number. By applying Lemma 4.5.1, the right-hand side of (19) is
q(n+2)/2=2642) £, (wn(x),s = £+ 1). Thus from (18), one gets

7T2€—&-2—dim(V/)/2 / eQwi(w,x)q(w)é—n/2W2ﬂw(1) dw = fg(wn(a:), s=40+ 1)_

V/(R)
The theorem follows by Fourier inversion. 0O

Combining Theorem 4.5.9 with Proposition 4.2.2 and Proposition 4.3.1 proves the
first main theorem of this paper:

Theorem 4.5.10. Suppose £ > n+ 1 is even, dim(V") is a multiple of 4 and @y is valued
in Q. Then the Fourier coefficients of the Eisenstein series 1= *E(g, Oy, l;s) ats=L0+1
are algebraic numbers. If moreover ®¢ is Q-valued and block-tensorial, then the Fourier
coefficients of the Eisenstein series 7~ *E(g, Q.0 s) at s =L+ 1 are rational numbers.

5. Constant terms

In this section, we show that the constant terms of modular forms on SO(4,n + 2)
(in the sense of [Pol20a]) to SO(3,n + 1) are modular forms in the sense of section 3.1.
Moreover, the quaternionic exceptional groups of type Fy, Fg, E7, Es have Levi subgroups
L of type B3 3, D4 ,3,SU(2) x D5 3 and D7 3 respectively. We also check that the constant
terms of modular forms on these exceptional groups to the above L are modular forms
on L. More precisely, in section 3 we defined modular forms on groups SO(V'), but the
definition extends immediately to groups L isogenous to these SO(V'), which is what
occurs for the above exceptional groups.
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5.1. Orthogonal groups of rank four

Let Vi nt2 = H @V be the rational quadratic space that is the orthogonal direct sum
of V and a hyperbolic plane. The signature of V' is (4, n+2). Denote by ey, fo a standard
basis of the hyperbolic plane, so that the pairing (eg, fo) = 1. Denote by Py = MyNy the
parabolic subgroup of SO(Vy n42) that stabilizes the line spanned by e for the left action
of SO(Vi nt2) on Vi pto. The Levi subgroup My is defined to be the one that stabilizes
both Span(eg) and Span(fy). Extend the involution ¢ on V' to Vj 42 by defining it to
exchange eg and fy. We take as a Cartan involution on SO(Vy,,,42)(R) conjugation by ¢.
Let K4 n+2 be the maximal compact subgroup that is the fixed points of this involution.

In [Pol20a] we defined and considered modular forms on the group SO(Vypt2). If ¢
is a modular form of weight £ > 1 on SO(Vj ;,4+2), one can take the constant term of ¢
along Ny to obtain an automorphic function ¢y, on My. The purpose of this subsection
is to prove that this constant term is a modular form on Mj of weight ¢, in the sense of
section 3. This fact follows immediately from the following proposition.

To set up the proposition precisely and to prove it, we make a few notations. Let
{X,}, be a basis of p = pg i1 = V3 @ Vg1, {wr,...,Un, uns1} be a basis of V41,
and w1, wsy, w3 a basis of V5. Write y1 = eg + fo and y_ = eg — fo. Recall the operator
ﬁg from subsection 3.1, and the analogous operator from [Pol20a, subsection 7.1]. To
distinguish these two operators, we write 547%_2 for the one that acts on Vjp-valued
automorphic functions on SO(Vj ,42) and similarly 537n+1 for the one that acts on
Ve-valued automorphic functions on SO(V'). Analogously, we write Dy 42, respectively
D3 41, for the so-called Schmid operators, which by definition are the Ds followed by
an appropriate SU(2)-contraction pr_ : Yo ® Sym?!(Ya) — Sym?'~1(Ys).

Proposition 5.1.1. Let the notation be as above. Suppose ¢’ : SO(Vy pt2)(R) — Vg is left
No(R)-invariant, ¢'(gk) = k=1 - ¢'(g) for all k € Kyni2 and g € SO(Vypni2)(R), and
Dy pt2¢'(g) = 0. Denote by o, the restriction of ¢’ to SO(V)(R) C My(R). Then
D3 1001, = 0.

Proof. The proof follows without much difficulty, directly from the definitions.
With the above notation, we have

Dynia = YNX XY+ > (g Auye' @ (yy Auy)Y

il 1<j<n+1

s Ay )P @ (e Ay )+ Y (e Ay )¢’ @ (wp Ay-)Y.
1<k<3

Note that restricting to M, and applying pr_ to the first term gives D3 119, -
Moreover, restricting the second term to My gives 0 because y Au; = 2egAu; —y_ Au; €
no @ Lie(SO(n + 2)), and ¢’ is invariant on the left under Ny and on the right under
SO(n 4 2). Thus we obtain
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Dy nt20omy = D3 nt19m, + Pre Z (hj Ny-)¢' @ (hy Ny-)Y
1<;<4

Mo

where {hy,ha, h3, ha} = {y4, w1, wa, w3} is a basis of the four-dimensional space V;71,.
Note that the pr_-term is linearly independent from the Ds ;11 term, because it contains
a 9. This proves that D3 py19Mm, =0, as desired. O

5.2. Ezceptional groups

Suppose C' is a rational composition algebra, with C' ® R positive definite. Set J =
Hs3(C) the Hermitian 3 x 3 matrices with coefficients in C' and G; the quaternionic
exceptional group associated to J as in [Pol20a]. Thus Gy has rational root type Fy and
is of Dynkin type Fy, Eg, E7 or Eg depending on if dimC is 1,2,4 or 8. Let Q; = L;V};
be the standard maximal parabolic subgroup of G ; with Levi subgroup L; of rational
type Bs. In this subsection, we prove that the constant term ¢y, of a modular form ¢
of weight ¢ on G; is a modular form of weight ¢ on L ;. Moreover, we prove that the
rank one and rank two Fourier coefficients of ¢y, are the rank one and rank two Fourier
coefficients of .

To state precisely these results and prove them, we now make some definitions. Let
the simple roots of F; be a; with 1 < j < 4. We label the simple roots so that a; is
connected to a;11 in the Dynkin diagram, for j = 1,2, 3, and with a1, o the long roots:

0—— — —0==>==0— — — —0;

the roots are labeled 1,2,3,4 from left to right. Write a positive root as a four-tuple
[n1, M2, 3, 4], which corresponds to > ULTE The rational root spaces corresponding
to long roots of Fj are one-dimensional while the rational root spaces corresponding to
short roots spaces of F can be identified with the composition algebra C.

The Heisenberg parabolic of G; that is central to [Pol20a] is the maximal parabolic
with simple root «; in its unipotent radical. We define Q; = L;V; to be the standard
maximal parabolic subgroup of G; with simple root a4 in its unipotent radical V. Thus
L; has rational root type Bs. The parabolic subgroup @ ; of G; defines a 5-step Z-
grading on the Lie algebra g(J) = Lie(G ;). Specifically, for j = —2,—1,1, 2, set Vj the
subspace of g(J) consisting of those rational roots spaces [ny, ng, n3, n4] where ny = j.
Then VJj[2 are each a direct sum of 6 long root spaces and one short root space, while
VJil is a direct sum of 8 short root spaces. One has a direct sum decomposition

V2oV e Lie(Ly) @ Vo Vi

See also [SW11, section 2] for more on this Lie algebra decomposition.
As mentioned, the group L is, up to anisotropic factors, isogenous to SO(H3 & C) =
SO(V?). We now write down an explicit map L; — GSO(V?). More specifically, L; acts
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on VJ2 by the adjoint action, and we write down the non-degenerate rational quadratic
form on V7 that L; preserves up to scalar. To be completely concrete, any element v of
V? is of the form

0 0 0
v=01Ei3tvi® diag(bg, 0, 0) +603® | 0 by by +b 9Fo3+1vs® diag(b,h 0, 0)
0 b5 b_s

in the notation of [Pol20a, section 4.2]. In this notation, the quadratic form on VJ2 is
given by

1
5(71, v)g = bib_1 —bab_o + bsb_5 — nc(bo),
where n¢ is the norm on the composition algebra C.

Proposition 5.2.1. This quadratic form is fixed up to scalar multiple by the Levi subgroup
Ly.

Proof. Because L; is connected, by virtue of being a reductive quotient of a parabolic
subgroup of a connected group, to prove the proposition, it suffices to check it on the Lie
algebra level. To prove it on the Lie algebra level, we check the semi-invariance of the
quadratic form on VJ2 for certain group and Lie algebra elements, and piece together the
results. Because L is defined to be the parabolic subgroup of type Bs in the Fj root
system, we work in this root system.

First, consider the diagonal torus T' = diag(t1, t2,t3) € SLz C G ;. The Lie algebra of
this torus is in Lie(L ;). This torus acts on v above to give

t
v = t_1b1E13 +Hhn ® diag(b27 070)
3

0 0 0
t
+t3'30 [ 0 b3 by +t—2572E23+t202®diag(b71>0,0)-
0 b b_s 8

Using that t1tot3 = 1, one sees that the quadratic form is scaled by % = t3—2.

Next, consider the subgroup P;; of M} C G that fixes the line spanned by ey :=
diag(1,0,0) € J. The group M} acts on the E;; as the identity. Suppose Pi; satisfies
0 0 O
pe1; = aeqr. Then, in its action on JV, P;; stabilizes the subspace | 0 % * | of JVY,
0 = =
because this subspace is e11; x J. Moreover, because
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0 O 0 #
0 b3 b = (bsb_3 — n(bo))ei1,
0 b b

one has the p € Py; scales the quantity b3b_3 — n(bg) by a. It follows that p scales the
quadratic form by a.

The rest of Lie(L ) is made up of nilpotent elements, and it is easy to check that they
preserve the quadratic form on V]2 We give one such computation, and leave the rest to

0 0 O
the reader. Consider n = vo ® X with X = | 0 c¢o 1 |. We check that n preserves
0 27 c3
0 0 0
the quadratic form. To see this, we compute (v, [n,v]);. Set Y = | 0 b3 by |. Then
0 bf b_s

[v2 ® X, v] = =03 ® (diag(b2,0,0) x X) — (X,Y)Ea3.

Consequently, —(v, [va ® X,v]); = (e11 x Y,diag(b2,0,0) x X) + (=b2)(X,Y) = 0, as
desired. O

That the constant term ¢y, is a modular form of weight ¢ on L ; follows immediately
from the following proposition. Similar to subsection 5.1, let 5J7 Dy =pr_ OEJ denote
the differential operators used to define modular forms on Gy and 5, D =pr_ oD denote
the differential operators used to define modular forms on L ;.

Proposition 5.2.2. Let the notation be as above. Suppose ¢’ : G;(R) — V; is left V;(R)-
invariant, ¢'(gk) = k=¢'(g) for allk € K; and g € G;(R), and D ¢'(g) = 0. Denote
by L, the restriction of ¢' to Ly(R). Then Dyr,, = 0.

Proof. Set L’ to be a subgroup of G;(R) that contains L;(R) and has Lie algebra
VfQ @ Lie(Ly)® V3. Denote by Q' = L' NQ;(R); @' is a parabolic subgroup of L' with
Levi subgroup L;(R). Then L’ has real root type By; in particular, it is isogenous to
SO(4,4 + dim(C)).

The idea of the proof is simple. We check that ¢ restricted to L’ satisfies the as-
sumptions of the ¢’ of Proposition 5.1.1. That is, denoting ¢” := ¢’|1, we check that
Dy atdim(cy®” = 0. The other assumptions on the ¢" of Proposition 5.1.1 are immedi-
ately verified. Then, applying Proposition 5.1.1 to ¢”, one concludes that

"L, = ') L, = eL,

is annihilated by D.
So, it remains to check that Dy 4idim(c)®” = 0. We use the notation of [Pol20a,
section 6.3]. For an element r in the composition algebra C, and an integer j € {1, 2,3}
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let x;(r) be the corresponding element of H3(C') = J. Note that if v € Span{vi, v, v3},
so that v ® z;(r) € g(J), then

5 0 5(r) +1(0) © () = o (5(r)
is in the compact Lie algebra’ Lie(L%(J)). Again, see [Pol20a, section 6.3].

The vector space V} of g(J) is spanned by elements of the form v®z;(r) and d®@z;(r).
Suppose X € V] so that X — 0(X) € p;. We have X — 0(X) = 2X — (X + 6(X)), with
X +0(X) € Lie(L°(J)). Consequently, if g € Q’, then ((X — 6(X))¢’) (g) = 0 because ¢’
is left V;(R)-invariant and right LY-invariant. It follows formally that one has an equality
D¢’ (9) = Dy araim(c)@’'(9)- As Dy’ = 0 by assumption, the proposition follows. O

In the above results, we checked that the constant term ¢y, of a modular form ¢ on
G ; satisfies a particular differential equation. In order to incorporate results about the
Fourier expansion of ¢y, we will-for convenience-make an additional assumption on
these constant terms. Namely, we will assume that these constant terms are pullbacks
from GSO(V?) of modular forms on this latter group. It is clear from the definition of
the Eisenstein series EBL 7(g, s) after the statement of Theorem 6.0.2 that this assumption

holds in our case of interest, namely, for ¢ = 6,4,,. Here is the definition of modular
forms on GSO(V3).

Definition 5.2.3. We say an automorphic form £ : GSO(V?)(Q)\GSO(V?)(A) = V, is a
modular form of weight ¢ if the pullbacks (g - £)|SO(V}) are modular forms of weight ¢
for gy € GSO(V?)(A ). The Fourier coefficients of such a modular form are the Fourier
coefficients of the restriction (my - §)[so(v2) for all finite-adelic points my in the rational
Bs-type Levi subgroup of GSO(V3).

We end this subsection by comparing the Fourier coefficients of a modular form of
weight £ on G ; to those of its constant term along V;, in the case when G5 is of type Eg.
For J = H3(©) with © the non-split octonions, recall the maximal compact subgroup
Ky of Gj(Ay) specified in [Gan00b, section 6].

Proposition 5.2.4. Set J = H3(0) with © the non-split octonions, so that Gy is of type
Eg. Suppose ¢ is a modular form of weight £ on G with constant term ¢y, to Lj.
Suppose that all for all Ky-translates ky - ¢ with ky € Ky, the constant term (ks - @)y,
is the pullback from GSO(V?) of a modular form of weight ¢ on GSO(V?) with Fourier
coefficients in some field E C C. Then all Ky-translates of ¢ have rank one and rank
two Fourier coefficients in E.

2 The author apologizes for the similar-looking notations L; and LO(J). The group L is the Levi of a
maximal parabolic subgroup of G s, while L°(J) C G;(R) is compact. In case J = H3(©) so that G is of
type Eg, Ly is a rational reductive group of type D7, while L(J)O is a compact form of E7.
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Before giving the proof of Proposition 5.2.4, let us note that it is not a statement that
has an analogue for general automorphic functions; although, the analogous statement
is true for holomorphic Siegel modular forms. Rather, the truth of Proposition 5.2.4
crucially uses the robust Fourier expansion ([Pol20a, Corollary 1.2.3]) of modular forms
on GGy and the Fourier expansion of modular forms on L; (Theorem 1.1.1). Specifically,
the crux of the matter is that the generalized Whittaker functions W, (g) of [Pol20a,
Theorem 1.2.1] have the following extra invariance property:

we Wy (R),m e HyR), and m - w = w implies W, (mg) = W.,(g). (20)

Here the notation is from [Pol20a] so that HY is the similitude-equal-one part of the Levi
of the Heisenberg parabolic Py = H;Ny of Gy and W; = N;/[Ny, Nj] is the defining
representation of H ;.

Proof of Proposition 5.2.4. Identify W; with the degree 1 part of the 5-step Z-grading
on g(J) determined by the Heisenberg parabolic Py of G ;. Now, set W, = W ;N Lie(L )
and W} = W;NVZ. Then W/ and W} are paired nontrivially under the symplectic form
(-,-) on W; and both can be identified with H? & C for a hyperbolic plane H.

Now, suppose w € W;(Q) has rank at most two, and we wish to compute the Fourier
coefficient

vu(g) = / Y (w, 7)) p(ng) dn.
N;(Q)\Ns(A)

Here m denotes the image of n in W;. Because w has rank at most two, there is m &
H(Q) so that mw € WJ). Consequently, by automorphy of ¢, we can assume w € Wj.

The w € W determines an 1 € Wy so that the Fourier coefficient v, ,, of v, defined
by 1 can be written as an integral of . Specifically, one has formally an equality

vy mlg) = / pu(ng) dn. (21)
(VaNnH ) (Q)\(VsNH )(A)

But the elements of V; N H; have similitude equal to 1 and act as the identity on W3.
Consequently, applying approximation for the unipotent group (V; N H;)(Ay) and the
invariance property (20), the integral in (21) becomes ¢, (g). We therefore obtain

v, () = vu(9) (22)

for all g € G;(A).

Our assumption on the constant term ¢y, implies that we can make precise sense
out of its Fourier coefficients. To compare these Fourier coefficients with those of ¢,
it suffices to consider g = gygoo in (22) with g € Hj(Ay) and g in the intersection
L’;(R)NH;(R); here L', is the derived group of L ;. Comparing the generalized Whittaker
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functions of Definition 3.2.2 with those of [Pol20a, Theorem 1.2.1], and taking note of
the rational quadratic form (, ); on V7 defined above Proposition 5.2.2, one sees that
these two sets of generalized Whittaker functions agree for g, in L’;(R) N H;(R). One
now obtains the proposition using the Iwasawa decomposition on gr. O

6. The next-to-minimal modular form

In this section, we give an application of all of the above results, and prove that the
so-called next-to-minimal modular form on Eg 4 has rational Fourier coefficients. On the
split form of Fg, next-to-minimal representations and some results about their Fourier
coefficients have appeared in [KS15], [GGK™19].

More precisely, we prove the following result. Let © be the positive definite octo-
nions, J = H3(©), and E;(g,s;n) = > cp (Qna, Q) [7(79,5,n) the Eisenstein series
of [Pol20b] with spherical inducing data at every finite place, normalized so that the
inducing section f;(g,s,n) takes the value C((;:;,lz)x"y" ats=n+1,¢g=1.

Theorem 6.0.2 states that O,:m(9) := Ej(g,s = 9;8) is a modular form on G; of

weight 8. The following result of Savin proved in Appendix B implies that 6,4, has
vanishing rank 3 and rank 4 Fourier coefficients.

Theorem 6.0.1 (Savin, Theorem B.1.1). Suppose p is odd and denote by II the spherical

constituent of the induced representation Indgj((g”)) (05), for sy = % = % + %, Then
p

the twisted Jacquet module Ily,  is 0 for every unitary character x of Ny that is rank

three or rank four.
Applying Theorem 6.0.1, the purpose of this section is to prove

Theorem 6.0.2. The Eisenstein series Ej(g,s;8) is reqular at s =9 and defines a square
integrable modular form of weight 8 at this point. Its rank zero, rank one, and rank two
Fourier coefficients are all rational numbers. Consequently, 0,1m(g) := Ej(g,s = 9;8)
has rational Fourier expansion.

The value E;(g,s = 9;8) is expected to be the “next-to-minimal” modular form
on Eg,. Theorem 6.0.2 is the analogue for the “next-to-minimal” modular form on
quaternionic Eg of results proved about the minimal modular form in [Gan00a] and
[Pol20b]. The proof of Theorem 6.0.2 consists of a few steps, which we now outline.

(1) First, we analyze a certain spherical Eisenstein series Ey-g(g,s) on the group
SO(H? @ ©), which has signature (2,10). With our normalizations, the point s = 8
is outside the range of absolute convergence for this Eisenstein series, but we check
that at s = 8 Ey/ g(g, s) is regular and defines a holomorphic modular form. More-
over, this Eisenstein series has rational Fourier coefficients. These facts are likely
well-known, but we briefly prove them because the author is unaware of a suitable
reference.
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(2) Second, we analyze the spherical Eisenstein series Eg(g, s = 9) on the group SO(H?®
0). The point s = 9 is outside the range of absolute convergence, but by doing
the appropriate intertwining operator calculations and using the first step, one can
show that Eg(g,s) is regular at s = 9 and defines a modular form of weight 8 at
this point. Moreover, via calculations as above, we know that 7=8Eg(g,s = 9) has
rational Fourier coefficients.

(3) Thirdly, we show that the Eisenstein series E (g, s;8) is regular at s = 9 and defines
a modular form of weight 8 at this point. The proof proceeds similarly to the proof
of Corollary 4.1.2 of [Pol20b]. In particular, by doing many intertwining operator
calculations, we compute the constant term of E (g, s;8) at s = 9 along the minimal
parabolic Py of G ;. From this calculation, we deduce that the differential operator
Dg annihilates the constant term of E;(g, s = 9;8) and then consequently the entire
Eisenstein series: DgE(g;s = 9;8) = 0.

(4) Fourthly, we prove that the constant term EY(g;s = 9;8) of E;(g;s = 9;9) to
the D73 Levi subgroup L; is essentially the Eisenstein series Eg(g,s = 9). More
specifically, we prove that the constant term Ey(g; s =9;8) is equal to the value at
5 = 9 of the Eisenstein series Fx” (g, s) := 2 (L,nP)Q\Ly () f7(79,5:8). To do this,
one considers the difference EY (g;s = 9;8) — EgL"(g,s = 9), and shows using the
third step that this difference has constant term 0 to the minimal parabolic PyN Ly
of L. Tt follows easily from this fact that EY (g;5 = 9,8) = Ex”/(g,5 = 9).

(5) The constant term of E;(g,s = 9;8) along the unipotent radical of the Heisenberg
parabolic yields Kim’s weight 8 singular modular form on GE7 3, which has ratio-
nal Fourier coefficients [Kim93]. By applying Proposition 5.2.4, one obtains that
E;(g,s =9;8) has rational rank one and rank two Fourier coefficients as well. Thus,
E;(g,s = 9;8) has rational rank zero, rank one, and rank two Fourier coefficients.

Before proceeding, we explain why Theorem 6.0.1 of Savin implies that the rank three
and rank four Fourier coefficients of 6,,;,, are 0:

Lemma 6.0.3. The rank three and rank four Fourier coefficients of Oy, are 0.

Proof. Let II' denote the representation of G;(Q,) generated by 6y, in the space of
automorphic forms on G;(A), and let IT be as in Theorem 6.0.1. Note that it is not clear
that the Eisenstein series map is G;(Q,)-equivariant, so one does not know a priori
that II’ is a quotient of IT; we must make an argument. However, one does know that the
spherical vector in IT has the same Hecke eigenvalues as that of 0,,4,,,, and we will leverage
this fact to prove the lemma. Indeed, to see this fact about the Hecke eigenvalues, one
notes that they can be computed by analytic continuation in s from the eigenvalues when
Re(s) >> 0, and when Re(s) >> 0 the Eisenstein series map is indeed intertwining.

In more detail, let n = char(K,gK,) be in the Hecke algebra at p. We can write
Ky9K, = Up,K, with p; € P;(Qp). Let f(g,s) be the flat spherical section in

Indgj((g:))ﬂyf) with f(1,s) = 1. We have n x f(g,s) = A(s)f(g,s), where A(s) =
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> lv(pi)|? is an entire function of s. The Hecke eigenvalue of 7 on the spherical vector
in II is thus A(9). On the other hand, let E;(g,s;8) be the spherical Eisenstein series
that we use to define 0,,;,,,. We have

= gg%ZEJ(gpi, 58) = lim nx E(g, 5 8).

When Re(s) >> 0, the Eisenstein series map is intertwining, so n * E;(g,s;8) =
A(s)E (g, s;8). Because A(s) is entire, we deduce 1 * Opem (g) = A(9)0nm(g), as desired.

Now, consider again the representation II'. Because 6,,,, is square integrable, II' is
semisimple. By virtue of being semisimple and generated by a single eigenvector for the
bi- K p-invariant Hecke algebra, II" is irreducible. Indeed, write II' = 7, @- - - @, with each
m; irreducible, and correspondingly 6,4, = v1+- - -+v,.. Because IT’ is generated by 6,4,
each v; # 0. Because 0,4, is Kp-invariant, so is each v;. Thus all 7; are spherical. Because
Onim is an eigenvector for the bi-K-invariant Hecke algebra, the Hecke eigenvalues of
each v; are equal. Consequently, the 7; are all isomorphic. Because II' is generated by a
single vector, we now must have r = 1 as desired.

Let IT” denote a nonzero irreducible quotient of II. Because II is (by definition) gen-
erated by a single spherical vector, so is II”. Moreover, the Hecke eigenvalues on the
spherical vector of II” are the same as on I’, i.e., on 0,4,,. Consequently, IT’ is abstractly
isomorphic to II"”. In other words, Il is a quotient of II.

Because II' is a quotient of II, the Fourier coefficient map on II' factors through the
corresponding twisted Jacquet module of II. The lemma follows. O

We now split up the various pieces of the outline above into subsections. Throughout
this section, set (o(s) = ((s)¢(s — 3) [Gan00a].

6.1. The holomorphic Eisenstein series

Set V! = H? ® ©, a quadratic space of signature (2,10) that comes equipped with
an integral lattice Vj = HZ @ ©Og. In this subsection we construct and analyze a certain
holomorphic spherical Eisenstein series on SO(V”). Let the bases of the two copies of H
be e1, f1 and es, fs.

To define this Eisenstein series, we proceed as follows. First, denote by wvi,v2 an
orthonormal basis of Vo = V/(R)". For an even positive integer ¢, define the Schwartz
function @ ¢ on V(R) as Poo ¢ (v) = (01 +ivg, v) e~ IMI% . Let ® ¢ be the characteristic
function of V{(Z) and set ® = Ps ® P ¢, a Scwhartz-Bruhat function on V'(A).

We now set

forelg, @,s) = / [t fag) dt.
GL1(A)
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Denote by Py the parabolic subgroup of SO(V”) that stabilizes the line spanned by fo.
The Eisenstein series Ev- ¢(g, s) is defined as

Evi(g,s) = > fvii(vg, @, 5).

YEP(Q\SO(V')(Q)

The sum converges absolutely when Re(s) > 10. The purpose of this subsection is to
prove the following proposition.

Proposition 6.1.1. The Eisenstein series Ev g(g,s) is reqular at s = 8, and is the au-
tomorphic function associated to a holomorphic weight 8 modular form on SO(V') with
rational Fourier coefficients.

As mentioned above, Proposition 6.1.1 is likely well-known; as we do not know of a
precise reference, we give a brief sketch of the proof.

Proof. Denote by Py v+ the minimal parabolic of SO(V”) that stabilizes the flag

V' 2 Span(e, ©, f2, f1) 2 Span(®, fa, f1) 2 Span(f2, f1) 2 Span(f1) 2 0

We begin by computing the constant term of Ev g(g,s) to Py vs. Denote by ri,79
characters of the diagonal split torus of SO(V”), so that the positive roots associated to
Py v+ are {ry1—ra,r1,72,r1+72}. Denote the simple reflections associated to these positive
roots by w12 and wo, in obvious notation. The constant term of Ey (g, s) along Py v is
the sum of four terms of the form M (w, s) fy+ s(g, @, ), for w = 1, w12, wWawi2, W12WaW12.

Define Ay = (s — 5)r1 + (—4)r2. Then the inducing section fy ¢(g, ®,s) defines an
SOV’ )(5113{) 2V As) that is spherical at every finite place, but not spherical
at infinity. Applymg the Weyl group elements w, the character Ay is moved as follows:

element of Ind,

e A= (s—5)r + (—4)r
o 5 ((s—1) Tr(s—1) ( )e/z
(—=4)ry + (s — 5)ra, ) Tr()  (5),,

w ¢ 5) (s=5) _ 5)¢(s—8) I'(s—5
. = (_4)71 +(5— )7”2» &i 1) rgi 1) — Ei 1)¢ (2 4) réq%

w 2 . ( l )
o = (5—s)r1 + (—4)re, CEs Zg EEES gg (= Z )Z//j

. = A10—s-

We have also included above the c(w, s)-factors introduced by the intertwining operators.
Plugging in ¢ = 8, one finds that the above c(w, s)-functions are 0 at s = 8, using that
¢(0) is finite and nonzero.

It follows that the constant term of Ey-g(g,s = 8) to Py consists only of
fvr.s(g, ®,s = 8). Moreover, for g = goo € SO(V')(R), one has
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— Q) — 18 (f2g,v1 +iv2)® Cs
Frosla @5 =8 = OO p g~ Gagoon — o

for a nonzero rational number Cy.
From the above facts one can deduce that Ey g(g, ®,s = 8) corresponds to a holo-
morphic modular form on SO(V”) of weight 8 with rational Fourier coeficients. O

6.2. The Eisenstein series on SO(H? @ ©)

Set V =H?>®0 = H®V', with H spanned by e, fi and V' = Span{es, 3,0, f3, f2}.
The fixed integral lattice in V is Vy = H @ ©g. Denote by @ the characteristic func-
tion of the lattice Vo(Z) in V(Aj). In this subsection, we analyze the Eisenstein series
Es(g,®y,s) on SO(V) at s = 9, which is outside the range of absolute convergence. In
particular, we prove the following proposition.

Proposition 6.2.1. The Eisenstein series Es(g, ®f,s) is reqular at s = 9 and defines a
modular form of weight 8 on SO(V) at this point. Moreover, 1= 8Eg(g,®,s = 9) has
rational Fourier expansion.

Proof. We consider the constant term of Es(g, ®¢, s) to the Levi subgroup GL; x SO(V”).
There are three terms: The inducing section (supported on z8y®), the Eisenstein series
Ev: s(g,s —1;8) (supported on 26 + y16; see [Pol20b, Proposition 3.3.2]), and an inter-
twining operator M (wp, s) applied to the inducing section.

As the inducing section is spherical at every finite place, the finite part of the inter-
twining operator M (wy, ) is computed easily. For the finite places, one obtains for the
function ¢(wo, )

(s = 1) ¢(s = 2) Co(s — 6) ¢(s — 10) (s — 11)
((s) Cls—1)Cels —2) ((s—9) ¢(s—10)
(s = 6)¢(s —11)

((s)C(s=5)

Consequently, c(wp, s) vanishes at s = 9. Moreover, by Remark 4.1.3, the archimedean

c(wo, s) =

intertwiner is finite and nonzero at s = 9. Therefore, the intertwined inducing section
vanishes at s = 9.

Applying Proposition 6.1.1, one obtains that Fg(g, s = 9;8) has constant term a sum
of the inducing section f(g, @, s = 9) and the holomorphic Eisenstein series Ey g(g, s =
8;8). It now follows from Corollary 3.2.5 that Dg annihilates this constant term. From
Lemma 3.2.6 one then concludes that DgFs(g, s = 9;8) = 0, proving that this Eisenstein
series is a modular form of weight 8 on SO(V).

To prove that the Fourier expansion of Fg(g,s = 9;8) is rational, we use Corol-
lary 4.5.8. In particular, in Corollary 4.5.8, one only needs the inequality ¢ > n/2, not
£ > n+ 1. In our case of interest, / = 8 and n = 10, so we may apply this result. We
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claim that the rank one Fourier coefficients of Eg(g,s = 9;8) consists only of a single
term, as in (4); the integral in (5) again vanishes.

To see that the integral (5) vanishes, one proceeds as follows. First, because 7 is
isotropic, we assume without loss of generality that n = rf;. Because our inducing
section is spherical, we can assume r is an integer. Now by Corollary 4.5.8—which we
may apply as remarked above-the archimedean part of (5) vanishes at s = 9. Thus, we
must show that the finite adelic part does not give rise to a pole at this value of s. To see
this, for this particular 1 = rfo, one can compute the integral (5) directly, by factoring
it as a spherical intertwining operator and then a one-dimensional character integral.
The spherical intertwining operator is M (w, s) = M (wa3we,wa3w12, S), in the notation
of Proposition 4.1.2. This intertwining operator gives a function c(w, s) as

¢(s = 1) ¢(s = 2) Cols — 6) (s — 10)
(B C5—1)Cols—2) C(s—9)
(s —6)(s—9)
(()¢(s— 5)

c(w, s) =

which is finite and nonzero at s = 9. The one-dimensional character integral produces a
os—11(n)
¢ (51—110) ’
the integral (5) vanishes at s = 9, as desired.

factor of

which again is finite and non-zero at s = 9. Altogether, one sees that

Because of this vanishing, and again because Corollary 4.5.8 applies in the case ¢ = 8,
n = 10, the calculation of the Fourier coefficients of Eg(g,s = 9) now proceeds exactly
as in Theorem 4.5.10, using Proposition 6.1.1 to treat the constant term. Because the
inducing section is spherical at every finite place, the Fourier coefficients are valued in
Q C Q. This completes the proof of the proposition. O

6.3. Intertwining operators and the modular form of weight 8 on Gy

In this subsection we analyze the Eisenstein E;(g, s;8) that is spherical at every finite
place. See [Pol20b, section 2.2] for this Eisenstein series. Let Py denote the minimal
parabolic of G ;. The purpose of this subsection is to prove the following proposition.

Proposition 6.3.1. The Eisenstein series E;(g,s;8) is reqular at s = 9 and defines a
square integrable modular form of weight 8 at this point. Moreover, its constant term
along Py is a sum of two terms.

Our proof of Proposition 6.3.1 rests on the computation of several intertwining op-

erators. The rational root system of G is of type Fjy; let oy, s, as, ay be the simple
roots:

00— — — —0==>==0—— — —0;
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the roots are labeled 1,2, 3,4 from left to right. Let ®, denote the positive roots for this
root system and ®¢, the roots inside the Levi of type C5. As is standard, let

[WF4/W03] = {w € WF4 : w(<I>C3 N cI)Jr) - ©+}

be the set of minimal length coset representatives. Here Wg, is the Weyl group of the
Fy root system, and W¢, is the subgroup of Wg, generated by the simple reflections
corresponding to the roots e, as, ay. The set [Wg, /We,] has 24 elements.

As in [Gan00a], we single out two special elements of [Wg, /We,]:

wo = [123214323412321]
w_1 = [23214323412321],

of length 15 and 14 respectively. Here the indices indicate how wy, w; are expressed as a
product of simple reflections. All other elements of [Wg, /W¢,] have length less than 14.

Denote by f(g,s;8) the inducing section used to define the Eisenstein series
E;(g,s;8) that is spherical at every finite place. For w € [Wg, /We,], we consider the
intertwining operator

M(w,s)f(g,s;8) = / f(w™tng, s;8) dn

Here U, is the unipotent group defined as

Uy = H U,

a>0:w 1 (a)<0

and U, is the unipotent group associated to the rational root a. Note that if « is a long
root, then dim U,, = 1, whereas if « is a short root then dim U, = 8.

With notation as above, the content of this subsection is to prove the following propo-
sition, which will be the main step in proving Proposition 6.3.1.

Proposition 6.3.2. Suppose w € [Wg, /We,]. Then

(1) If w # wo,w # w_q, then M(w, s)f(g,s;8) is finite at s = 20.
(2) If w=w_q, then M(w,s)f(g,s;8) has a simple pole at s = 20.
(3) If w = wy, then M(w,s)f(g,s;8) has a simple pole at s = 20 and vanishes at s = 9.

Proof. Let us first write down the long intertwiner M (wp, s). At the finite places, one
obtains [GRS97]

C(25 —29)C(s — 28)((s — 23)¢(s — 19)
C(2s = 28)¢(s)C(s —5)C(s —9)

c(wp, 8) =
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The function ¢(wo, s) is finite nonzero at s = 20 and 0 at s = 9.

At the archimedean place, one can compute co(wy, s) by factorizing wy = [12321] o
[43234] 0 [12321], and then using Proposition 4.1.2 to compute the [12321] factors. From
now on, all archimedean intertwining operators are calculated up to exponential factors
and nonzero constants. The middle [43234] intertwiner turns out to be spherical. One
obtains

Coo(wo, 8) = €5 (s = 1T)c i 4(s)eg ™ (5)

I(s —10) (s — 14) Tr(2s — 29) T(s — 15) [(s — 19)  T'(s — 2)T'(s — 19)

mid($) = I'(s—6) I'(s —10) I'r(2s — 28) I'(s — 11) I'(s — 15) ~ T'(s — EQS)I‘(S —11)

and cf‘*(s) is from Proposition 4.1.2. In this case,

CSBS(S)_ (E )4 F(8_6) . (

(822)5 I'(s—=2) ( 211)5.

w
ol
AN
[o]
SN—"
N

»

Simplifying,

I'(s —6)I'(s —23) ) (% — 9)4 (5317 - 9)4
2619 (1), (50) (59, (3 1)

Coo(Wp, §) =

This function is immediately checked to be finite and nonzero at s = 9 and has a pole
at s = 20. Combining with properties of ¢(wq, s), this gives part (3) of the proposition.

Most of the w € [Wg,/We,] give absolutely convergent adelic integrals at s = 20.
There are 7 that do not, and these 7 have the following factorizations:

. [4323412321]

. [3214323412321]

o w_y = [23214323412321]
. [214323412321]

. [21323412321]

o [14323412321]

« wp = [123214323412321]

We will explain in a bit of detail the computation of M (w_1, s). The computation of the
other intertwining operators is completely analogous or simpler.

To record the computations, we use the standard Euclidean model of the Fj-root
system. Specifically, consider Z*, with inner product = -y = z1y1 + 2y + T3y3 + T4Y4,
where © = (x1,22,23,24)r and y = (y1,Y2,Ys3,y4)g. We write the subscript ‘E’ to
indicate the implicit Euclidean inner product. Now, set
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° a1:(0,1,—1,0)E

* (g = (O,O,l7 _1>E

e (3 = (0,0,07 I)E

o as=3(1,-1,-1,-1)p.

With the «; as the simple roots, this gives a model of the Fy-root system.

Let As = (s — 23,5 — 6,—5,—4), which we think of as an unramified character of
Py. For this A, one has f(g,s;8) € IndG]()\ 51/2) Although it is a bit more than is
necessary to compute M(w_1,s), we record how the long element wy moves around A;:

e A=(s—23,5—6, 5,f4)E

o [1];(s—23,-5,s—6,—4)g;s—1

o [2];(s—23,-5, 45 6)p;s—2
e [3]; (s — 23, -5, 46—5)E, —6

.« [2:(s—23,-5.6—5,—4)p;s — 10
o [1];(s—23,6 —s, 577 JEe;s — 11
o [4];(—-13,—-4,5s— 15,8 — 14)g;s — 10
o [3;(—13,-4,5s— 15,14 — s)g;s — 14
. [2;(~13,-4,14 — 5,5 — 15)p; 25 — 19
o [3;(—13,-4,14 — 5,15 — s);5s — 15
o [4];(6 — s, 5723 —5,—4)g;s — 19
.« [1];(6 — — 23, —d)p;s — 18
o [2];(6 —s, 5 45—23)E;s—19
o [3;(6—s,—5,—4,23 —s)g; s — 23
o [2;(6—s,-5,23—s,—4)p;s — 27
o [1];(6 — 5,23 —s,—5,—4)g; s — 28
® — A29—s-

In each line, the [j] indicates that a simple reflection corresponding to the root j has
been performed, to get from the previous line to the current line. The final parameter
s —k is the parameter needed to calculate a rational-rank-one intertwining operator, and
is given as follows: If one has [j]u’ = p, then the final parameter is the Euclidean inner
product «; - p/. For example, in the line

.[2]7 (8 - 237 =5, 4,5 — G)Eas - 27
one has j =2, u=(s—23,-5,—4,5s—6)g, &' = (s —23,-5,s— 6,—4)g, and
as i = (0,0,1,—1)g - (5 — 23, 5,5 — 6, —4)p = (1)(s — 6) + (—1)(—4) = s — 2.

With the above data, and combining Proposition 4.1.4, Proposition 4.1.2, and the tech-
nique of [Pol20b, page 26|, one can compute the intertwining operators M (w, s) without
too much difficulty. As mentioned, we will now detail the computation of M (w_q, s).
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First, the finite, spherical part of M (w_1, s) is computed immediately from the terms
s — k of the above itemized data. One gets

€(2s —29)¢(s — 27)C(s — 23)¢(s — 19)
(25 = 28)C(s)C(s = B)¢(s —9)

c(w-1,8) =

The function ¢(w_1, s) has a simple pole at s = 20.

The archimedean calculation is, of course, more involved. First, applying the first 10
elements in the factorization of w_; gives an archimedean factor of <2 (s)cE? (s), in the
notation above. This product is

I(s =) -19) ()5%), T'(s-6) (*F°),

(s —6)I(s—11) (52), T(s—2) (5H).]

cia(s)es™ (s) =

mid

which is finite and nonzero at s = 20.

Set fi =x+vy, fo = x —y, as before Proposition 4.1.4. The archimedean intertwiner
Mo ([21], s) that comes after the [4323412321] can now be computed by Proposition 4.1.4.
One obtains a factor of Cg(s— 17), in the notation of that proposition, and the resulting
inducing section is supported on f{f§ at go, = 1. The function Cg(s — 17) is®

(5—26)

Cs(s—17) = 5717274.

( 2 1)5
The next intertwining operator, an application of M([3],s), is spherical, and gives a
factor of ;E;:fg;, which has a simple pole at s = 20. Thus, the archimedean intertwiner

M+ ([3214323412321], s) is finite and nonzero at s = 20.
To do the final application of an intertwining operator, the M., ([2], s), we use the
technique of [Pol20b, page 26]. Expressing £ f8 in the z,y basis, one gets

f18f28 — 04(1,16 + y16) + 03(1,14y2 4 x2y14) + 02($12y4 4 x4y12) 4 C’l(xloyG + xGylo)
+ 00(95898)

for nonzero constants Cy, 0 < k < 4. For 0 < k < 4, on the term multiplying C} the
operator M ([2], s) now produces factors of the form

Tr(s —27) (¥7°),
FR(s — 26) (3—226)k'

For 0 < k < 3 this is zero, while for k = 4 this is finite and nonzero. This completes our
analysis of M (w_1,s), and with it, the proposition. O

3 Although this function vanishes to first order s = 20, the function ¢([214323412321], s) has a simple pole
at s = 20, so there is no contradiction to the statement of the proposition.
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We now complete the proof of Proposition 6.3.1.

Proof of Proposition 6.3.1. Using Proposition 6.3.2, the proof of Proposition 6.3.1 pro-
ceeds exactly as the proof of Corollary 4.1.2 of [Pol20b]. The only thing left to remark
upon is the square integrability of E;(g,s = 9;8). For this, we apply Jacquet’s criterion
[MgW95, 1.4.11 Lemma]. Writing in terms of the simple rational roots, one has

As =(8—23,s—6,—5,—4)g = (25 — 29)a; + (3s — 57) g + (4s — 84)ag + (25 — 46) g
and
[1]As = (s—23,-5,s—6,—4)g = (s — 28)a1 + (35 — 57)cva + (4s — 84) a3 + (25 — 46) 4.

Plugging in s = 9, one sees that all the exponents are negative in these characters, and
thus E;(g,s = 9;8) is square integrable. O

6.4. Proof of Theorem 6.0.2

The proof of this theorem, in its entirety, was outlined at the beginning of section 6.
The only thing left to prove is step (4) of this outline and to discuss the constant
term EJJVJ (g, = 9;8) of E;(g,s = 9;8) along the unipotent radical of the Heisenberg
parabolic.

For step (4), note that the constant term EY (g, s;8) for g in the Levi subgroup L;(A)
is a sum of Eisenstein series on L ;, one for each element of the double coset

PJ(Q)\G](Q)/QJ(Q) = WCs\WF4/WBs'

The Eisenstein series associated to the double coset P;(Q)1Qs(Q) is EX7 (g, s).

At s =9, we have computed the constant term of each of these Eisenstein series down
to Py, and it is clear that they are identified, because the two terms contributing to the
constant term of E;(g, s = 9;8) along Py are those that come from the elements of length
0 and 1 of [Wg, \Wg,]. Consequently, at s = 9, the difference EY (g, s;8) — Ex” (g, s) has
vanishing constant term along Ppy. Because the difference EY (g, 5;8) — E£” (g, s) is a sum
of Eisenstein series on L;, we conclude EY (g,s = 9;8) = Eé:J(g,s = 9). This proves
step (4) of the outline above.

The constant term Ey" (9,8 = 9;8) is analyzed in [Pol20b, Corollary 3.5.1]. The
holomorphic weight 8 Siegel Eisenstein on H; = GEy 3 appears, along with the constant
%. As mentioned previously, this weight 8 Eisenstein series is analyzed in [Kim93], who
proves that it has rational Fourier coefficients. This completes the proof of Theorem 6.0.2.
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7. The minimal modular form

In this final section, we discuss the minimal modular form on G = SO(3,8k + 3) in
certain special cases, and an application to the construction of a distinguished modular
form on G’ = SO(3, 8k + 2). The results of this section are, in a sense, the analogues of
the results in [Pol20b] with quaternionic Eg replaced by the classical group Dag43,3.

In more detail, the group G supports a minimal modular form 6, that is spherical at
all finite places. The purpose of this section is to recognize € as the value of an Eisenstein
series on G, to compute its Fourier expansion, and to show that the restriction ¢ = 0|g
of 6 to G’ is a distinguished modular form on G’. The fact that 6’ is distinguished is
an example of the simplest “lifting law” from [Pol18], the one in section 2.2 of [Pol1§],
whereas the distinguished and singular modular forms constructed in [Pol20b] use the
(more complicated) lifting laws considered in section 7 and section 8 of [Poll8§].

Let ©¢ denote the ring of Coxeter’s octonions, so that Oy is the even unimodular
quadratic lattice of dimension 8. For an integer k > 1, let Vo = HJ & OF be the fixed
lattice inside V = H? @ ©F. Set V' = H? @ ©F and set G = SO(V). Fix a vector w € V'
with ¢/(w) < 0. Denote by V,, = (Qw)* the orthogonal complement of Qw, so that
V=QuaV,. Set G =S0O(V,,) ~SO(3,8k + 2) and define V/ =V, NnV".

Let ®; be the characteristic function of Vp ® Z CV® Ay and E(g,s) =
7 4% By (g,®p,s) the Eisenstein series which was studied in detail in section 4. The
purpose of this section is to prove the following theorem.

Theorem 7.0.1. The Eisenstein series E(g, s) is reqular at s = 4k+1 and 6(g) := E(g,s =
4k+1) is a modular form of weight ¢ = 4k at this point. The modular form 6 has rational
Fourier expansion with all rank two Fourier coefficients equal to 0. The restriction 0’ =
¢ is a modular form on G’ of weight £. It is distinguished in the sense that if n € V!
has q'(n) # 0, then the Fourier coefficient ag:(n) # 0 implies ¢'(n) € (Q*)*(—q(w)).

Proof. Most of the work is to check the relevant intertwining operators, which show that
E(g, s) is regular at s = £+ 1 and defines a modular form of weight ¢ at this point. To
do this, we proceed as in section 6 and consider first the case of the Eisenstein series
Evi4(g,s) on SO(V') evaluated at s = £ = 4k.

The constant term of the Eisenstein series Ey- ¢(g,s) along the minimal rational
parabolic consists of four terms: the inducing section, and intertwining operators M (w, )
applied to the inducing section, where w = wia, wowig, wiawowi2 in the notation of
Proposition 6.1.1. For ease of notation, set mg = 4k and (un(s) = ((s)¢(s — mg + 1).
These intertwining operators produce functions c(w, s) as follows:

_ ¢(s—1) Tr(s) (2%5)2/2
(1) C(w1275)_ ¢(s) FE(S) (%)4/2

(2) c(wowrz, ) = c(wiz, s) <°'72§::101;1) F(Srz:zol;l)
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(s—2 1) Tr(s—2 1) (%)
(3) clwizwawsz,s) = C(w2w1278)ccs(;f;ﬁqg) ?RS(;T;%;) (S’i’”o) ez
/2

One checks easily that these functions c(wia, s), c(wawia, s) and c(wizwawia, s) vanish
at s = ¢ = my. Consequently, as in Proposition 6.1.1, Ey ¢(g, s) is regular at s = ¢ and
is the automorphic function associated to a holomorphic modular form of weight ¢ on
SO(V’) with rational Fourier coefficients.

Next, to see that E¢(g, @y, s) is regular at s = £+ 1 = 4k + 1, we consider its constant
term along the parabolic P = M N, just as in Proposition 6.2.1. Just as in the proof of
this proposition, to see that E(g, ®¢,s) is regular at s = £ + 1 and defines a modular
form of weight ¢ at this point, it suffices to check that the c-function associated to the
long intertwiner M (wq, s) vanishes at s = ¢ 4 1. The finite part of this intertwiner gives

C(s —1)C(s —2)Can(s —2 —mp)C(s —2 — 2mp)¢(s — 3 — 2my)
C(8)C(s = 1)Can(s — 2)C(s — 1 = 2mg)C(s — 2 — 2my)
C(s—2—mg)((s —3—2my)
C(s)¢(s =1 —my) '

cr(wo, s) =

This function vanishes at s = £+ 1 = mg + 1 = 4k + 1. The archimedean part of this
intertwining operator was computed in Proposition 4.1.2. One obtains

(57[71

Coo (W0, 8) = (

2 )4/2 I'(s—2—myg) (% —1=mg _£/2)£/2
s—2 :

3 )e/2+1 [(s-2) (55 - m0)5/2+1

This function is finite and nonzero at s = mg + 1 = ¢ + 1. Consequently, c(wp,s) =
cf(wo, 8)coo (W, §) vanishes at s = £+ 1, so that Ey(g, y, s) is regular at s = ¢+ 1 and
defines a modular form of weight ¢ at this point.

The function 6(g) is defined to be the value 7*E(g, ®f,s = (+ 1) = 7= * Ey,(g, Dy,
s = 4k+1). By [MS97, Theorem 1.1] and [Sav94, Proposition 4.1, Corollary 4.2], the min-
imal representation of split p-adic Dyj43 occurs as the spherical sub in Ind§(|v|[**1) =
Indg(éllp/QM_l). By these cited results, it follows that the modular form 6(g) has van-
ishing rank two Fourier coefficients.

The rationality of the rank one Fourier coefficients of 6(g) is treated similarly to the
rationality of the rank one Fourier coefficients of the Eisenstein series considered in 6.2.1,
but with a little more work. Specifically, the rationality follows from the vanishing of the
integral (5). As in the proof of Proposition 6.2.1, to see that this integral vanishes, we
factorize it into an intertwining operator and a one-dimensional character integral. The
intertwining operator is associated to the element w’ = wazwswsezwio of the Weyl group,
in the notation of Proposition 4.1.2. The finite part My(w’, s) produces a c-function

(s = 1)¢(s = 2)Can(s — 2 — mo)¢(s — 2 — 2mo)
C(5)¢(s = D)Can(s —2)C(s — 1 — 2my)

cr(w',s) =
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((s =2 —mg)((s —2—2myg)
¢(s)¢(s —1—myg) ’

which is finite and nonzero at s = mg + 1. Similar to the evaluation of M(w_1, s) in the
proof of Proposition 6.3.2, the archimedean part of the intertwiner M (w’,s) produces
c-functions

B (s—é—l
) = =

for integers j with 0 < j < ¢/2 = my/2. All of these functions c¢;(w’, s) vanish at

)4/2 I'(s—2—mg) 'r(s—2—2my) (LTSO_S)Q

[(s—2) Tr(s—1-2mg) (&=152m0)

ci(w'ys

)z/2+1 j

s =mg+1 = £+1. Finally, the one-dimensional character integrals produce holomorphic
functions of s divided by ((s — 2 — 2mg)I'r(s — 2 — 2mg). This latter function is finite
at s = mg + 1. Combining this with the calculation of the functions c¢(w’, s), one sees
that the integral (5) vanishes at s = mg + 1, as desired. The rationality of the Fourier
expansion of 0(g) follows.

The fact that 6’ is a modular form of weight ¢ follows by a simple analysis of the
differential operators Dy, on G and on G’ as in Proposition 5.1.1. Finally, that 6’ is
distinguished follows from the discussion in [Pol18, section 2.2]. This completes the proof
of the theorem. 0O

Appendix A. Proofs of selected results

This appendix contains the proofs of some of the results stated in the main body of
the text but not proved there.

A.1. Proofs from section 3

Proof of Proposition 3.2.1. We first write out 5@ in coordinates. We obtain

DF = ZD%I e, FO(-1/2)y @y @ u)

+(U+AuJ>F®((\/§/4)(x®y+y® z) ® uy)
+le+v2,u]F®(( 1/2)z @z @ u))

+ ((ivy —v2) Au)F @ ((-1/2)y @y @ uY)
+(up ANu_F) @ (V2/D)(z@y+y@z)@u)
+ ((fv1 +v2) Au_F)((=1/2)z @ x @ u).

To compute the operator D; in coordinates, we must apply the contraction pr :
Ve @pY — (S%(Ys) @ S?7%(Y3)) X V,, 1. With our coordinates x,y this contraction
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is [y @y — [Ty ) and [z [y Y] @ @ = —[2FY][yf 1), For Dy we
therefore obtain

2D F =) uf @ | Y DN (- T @ y)
j=1 —<v<s

Y L AR 90 - b o)
—(<v<t

+ Z D1v1+'u2,uJ ([ €+U] [ye_v_l] ® .'L')
—L<v<t

+u @ [ Y (v —v2) Au_F)y (2 @ y)
—<v<t

> gm A E ([ @ 2 — [y @ y)
— <<

+ Y (o) AusF) (] @ ).

—<v</t

From the fact that E - ([zF°][y*7"]) = (¢ + v + D[y v~ and F -
(21l ]) = (€ — v+ D[] we get

(1 —v2) Au_)F =" (2D}, i oy Fo + V2(£ + 0) Fy 1) [ T][y" ]
—e<v<t

and

(o1 +v2) Au)F =3 (22D} ios sy Fo + V2(0 = 0) Fy1) [ [y).
—<o<e

The proposition follows. 0O

Conclusion of proof of Theorem 3.2.4. In subsection 3.2 we proved that the functions
W, of Definition 3.2.2 satisfied the correct (K N M)-equivariance property. We now
complete the rest of the proof of Theorem 3.2.4.

We begin by considering the differential equations of Proposition 3.2.1. Assume for
now that ¢ > 0. From Proposition 3.2.1, we obtain that the F, satisfy the following
differential-difference equations:

(1) (t0y — (U +v))Fy—1 = —uy(t,m)F,
(2) (t0y —( —v+1))F, = —uy(t,m)*F,_q
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(3) DY _ u; Fo = —iv/2t(n, mu;)Fy_q
(4) Dlj\T/Jll—H)Q u]F’U—l - —Z\/_t(n,muj)F .

Define F? by the equality F, = t**1F?. Then we obtain

((t0y)? — v*)F) = (t0; — v)(td; + v)F,)
= (tdy — v) (—uy(t,m)* Fy_y)
= —u,(t,m)*(t0; —v + 1)F_,
= Jug(t.m) Y.
Because F,(t,m) is of moderate growth at ¢t — oo, we deduce that FC(t,m) =
Cy(m) Ky (Juy,(t,m)|) for some function C,(m) of m.

Now, because (y0y +v)Ku(y) = —yKo-1(y), (t0; +v) Ko (tul) = —|ptKo—1(ult) if n
is independent of t. Set u = v/2i(n, m(ivy — va)). Thus

—(|lt)Co(m) Ky—1(|plt) = (t0; + v) F,
- _uﬁ(mm)*FSfl
— () Co s (m) K1 (fiy (£, ) ).

Thus

cytm) = (280 €,y = (2820 6,

|y (t, m)] up(t,m)

We conclude that C,(m) = Co(m) (M) for some function Cp(m) that does not

Uy (t,m)
depend on t.
To see that Cy(m) = C'is a constant, independent of m, we use the final two differential

equations involving DM . One verifies immediately from the definitions that

vy £vg,u;
lezl:vg,uJ {m = (773 m(ivl - vQ))} = 7(7:7)1 + V2, ivl - 1)2)(7% muj)' (23)
This is 0 for DJYf, u, and 2(n, mu;) for Dl 1o, u, - 1t follows that
|un(t,m)| s,
Djy o, ([ (8,m)]) = mﬂtl(?’],muj) (24)

and

w e = (TGN s
Dy () = (P50 ) i, ). (25)

n

From (24) and (25) and the third and fourth enumerated equations applied to the case

v =0, resp. v = 1, one obtains that D}}f ., u;Co(m) = 0. By the (K N M)-equivariance
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proved above, we know that Co(mk) = Co(m) for all k € K N M. Combined with the

differential equations D}y ., - w;Co(m) = 0 for all j, this gives that Co(m) = C' is a
constant, as desired.
L+v, L—v

Let us now check that F'(t,m) =}, , Fv(t’m)WM with

Fult,m) = ¢+ (W”n)')vmuun(t,mn

Uy (t,m)

satisfies the above differential equations on the connected component of the identity. To
see this, first note that the identity (ydy + v)K,(y) = —yK,_1(y) implies that the F,
satisfy the second difference-differential equation. Similarly, the identity (yo,—v)K,(y) =
—yK,11(y) implies that the F, satisfy the first difference-differential equation. To see
that this F'(¢,m) satisfies the third and fourth difference-differential equations, first note
that

|wy, (t,m) [y, (€, m)] )
wl+v2 uj ( . =T 2\/§tz(n,muj).

Uy (t,m)

Moreover, from 0y K, (y) = 7 Ku(y) — Ku41(y), one obtains

dld

DY, oy Koy (8,m)])

~ (g Kol = Ko (.m0 ) (2280 Bt )

(1) wn(tm)

Combining these two equations gives

DY ((%—:Zi')”Kv<un<t,m>|>)

v+1
= Vi, muy) ((M) Kv+1<|un<t,m>|>>

Uy (t,m)

which shows that the F(t,m) satisfies the fourth enumerated differential equation. The
case of the third equation is similar.

Finally, we consider the condition (n,7) > 0. By Lemma 3.2.3, we must check that
F(t,m) = 0 if there exists m € SO(V’)(R) so that (n, m(iv; — v2)) = 0. This follows by
the argument of [Pol20a, Proposition 8.2.4]. O

Appendix B. “Next to minimal representation” by Gordan Savin
Abstract. Let F' be a p-adic field. We show that the spherical representation of the

exceptional Fg whose Satake parameter corresponds to the sub-sub regular unipotent
orbit has its wave-front set contained in the closure of the orbit 24;.
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B.1. Notation and statement

Let G be the group of F-points of the exceptional group of type Fgs, and g its Lie
algebra. Let s C g be a rank 2 split Cartan subalgebra spanned by two adjacent co-roots.
Then s-grading of g gives a restricted root system ® of type G2, and we can write

0=00D (Paco Ja)

where gg is the centralizer of s in g. Then gy = [go, go] @ s, and [go, go] is a simple Lie
algebra of type Fg. The dimension of g, is 1 for long roots and 27 for short roots. As a
helpful convention, we shall denote elements in long root spaces with lower case letters,
and elements in short root spaces with upper case letters. Short root spaces have a cubic
form defined as follows. Let 8 be a short root. Then there exists a unique long root «
so that IT = {a, §} is a set of simple roots. In particular, v = a + 35 is a long root. Fix
non-zero clements x € g, and z € g,. For every Y € gg define det(Y') € F by

[V [, Y, 2] = det(Y) - =

The root system ®, and the choice of simple roots IT = {«a, 5} defines a pair maximal
parabolic subgroups P = M N and @ = LU of G with Levi factors of type E7 and Fgx A1,
respectively. The unipotent radical N is a Heisenberg group with one dimensional center
Ni. We have

Lie(N1) = goa+383

and

Lie(N/N1) = ga © ga+8 © at28 D Gat3s-

Let ¢ : F — C* be a non-zero character. Any character of N is of the form

¥n(n) = ¢P((logn, n)),

for some
NEFG_aDI-apDI-a-238Dd-—a-33 = Lie(N/Ny)*

where (logn,n) is the Killing form pairing on g. Open M-orbits on Lie(N/N;p)* are
parameterized by F*/(F*)2. To see this, the stabilizer C' of (1,0,0,1) in M is a semi-
direct product of a simply connected Fg and Ss. Since the Galois cohomology of p-adic
simply connected groups is trivial, it follows that the Galois cohomology of C' is equal to
HY(F,S3) = F*/(F*)?%. More precisely, there is a quartic homogeneous polynomial ¢ on
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Lie(N/N1)* and a character v of M, such that ¢(m(n)) = v(m)?q(n), for all n. Thus an
open orbit consists of all € Lie(N/N;)* such that ¢(n) is in a fixed class of squares in
F*. The reader can find a general formula for ¢ in Section 4.3 [Po]. We shall only need
the case n = (a,0, A,0) when ¢(n) is a multiple of a - det(A). In particular, every open
orbit has an element n of this form.

Let I(s), s € R be the degenerate principal series representation of G obtained by
inducing unramified, R*-valued, characters of P. The induction is normalized, and the
parameter s is chosen so that the trivial representation is a quotient of I(29/2) and a
submodule of I(—29/2). More generally, we have I(s)Y & I(—s).

Theorem B.1.1. Let Vi C I(—11/2) be a submodule generated by a spherical vector. Then
Vo is small, i.e.

(Vo) N,y =0

for all n = (a,0, A,0) with det(A) # 0. In particular, its Wave-Front set [JLS] is con-
tained in the closure of the nilpotent orbit whose Bala-Carter notation is 2A;.

We observe that, since Vj is a submodule of I(—11/2), its Wave-Front set is not larger
than the closure of the nilpotent orbit whose Bala-Carter notation is Ay. The vanishing
given by Theorem B.1.1 guarantees that the Wave-Front is small as stated.

B.2. Fourier Jacobi functor

Now we turn our attention to the other maximal parabolic subgroup @@ = LU. The
unipotent subgroup U has a filtration U D Uy D Uy where Uy = [U,U] and Us is the
center of U. We have

Lie(Ug) = Ja+38 ©® 920438,
Lie(U1/U2) = Ja+28

and
Lie(U/Uy) = g5 & gars.

Any A € g_n_25 = Lie(U; /U2)* defines a character ¢4 of Uy by

Ya(u) = Y((logu, A)).

Assume that det A # 0. (We note that the Levi factor L acts transitively on the set of
A such that det(A) # 0 [SW].) The character 14 is trivial on Us, and there exists a
unique irreducible (Heisenberg) representation p4 of U/Us such that Uy /Us acts on it
as 1 4. This representation can be realized as follows: Let U’ = U N N. Let ¢/, be the
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restriction of ¢5 to U’, where n = (a,0, A,0). The notation reflects the fact that ',
depends only on A. The subgroup U’ is a polarization of U needed to write down the
Heisenberg representation:

PA = IndU/ (¥a)-

Let SLy be the factor of [L, L] corresponding to the long root «. Since « is perpendic-
ular to «a 4+ 23, SLy acts trivially by conjugation on U /Us and hence on the character
Pa. By the general theory of Weil representation, ps extends to a representatlon of a
two-fold cover SLQ (pa is essentially a tensor product of 27 Weil representations of SLQ)
Thus p4 is a representation of (a two-fold cover) of the Jacobi group

J = SLy xU.

Let (m,V) be a smooth J-module. Then SLy naturally acts on the quotient Vi, 4, -
Let

FJA(V) = HomU(pA, VUl,wA).
On FJ4(V) we define an action of SL, by
T m(g)oTopalg™),

for g € SLy. By Proposition 3.1 in [We], the functor V +— FJ4(V) is exact and, by
Corollary 2.4 in [We], we have a natural isomorphism of J-modules

FJA(V) @ pa = Vu, ga-

Let Uy = SLaN N, so that Lie(Up) = go. Recall that n = (a,0, A,0) and let ¢, : Uy —
C* be the restriction of 5 to Uy C N.

Lemma B.2.1. Let V' be a smooth J-module. We have an isomorphism
Vs = FJA(V)vo .-

Proof. Recall that U’ = U N N and v, is the restriction of ¥ to U’. Since N = U'Uy,

we can write

VN = (Vs )00 0 -

Since Uy C U’ and the restriction of 9/, to Uy is ¢4, we can redundantly write

Vur ) = Vs pa)ur -
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Substituting Vi, g, =2 FJa(V) ® pa,

Using pa = Indg, () it is well known that

(pa)ur g, =C

and this isomorphism is given by f ~ f(1), evaluating f € IndY}, (¢’y) at 1. The normal-
izer By of Uy in SLy acts naturally on this line, hence Uy must act trivially on this line.
Now completing the proof is trivial. O

Theorem B.2.2. We have an isomorphism of SAI/Jg-modules
FIa(I(s)) 2i(s) = ndS ,
0

where Xs a Weil index twisted by | - |°. The induction is normalized so it is irreducible
for s # £1/2.

Proof. We have an isomorphism of J-modules
(I8 %) © pa = Ind3 (p4 @ X.)
B() BO
given by f® v — F,

F(g) = f(9) - palg)(v), g € SLa.

T he Heisenberg representation p 4, when restricted to EOU , is induced from the character
of BoU’ obtained by action of this group on the line (pa)ur g, - Using transitivity of
induction, it follows that the J-module i(s) ® p4 is induced from a character of BoU’.
Call us that character.

Let W be the Weyl group of G, and wy € W the longest element. Since N C J, PwgJ
is an open subset of G. Let Iy(s) C I(s) be the J-submodule consisting of functions in
I(s) supported on PwgJ. It is fairly straightforward to check that (Io(s))u, 4, is induced
from the character ps of BoU’ (see Theorem 4.3.1 in [We] for a similar computation).
Thus

(To(8))vy,pa Zi(s) ® pa

and i(s) C FJa(I(s)). It remains to show that F'J4(I(s)) is not larger. So assume that
FJa(I(s))/i(s) # 0. Since any genuine representation of SL, is Whittaker generic (i.e.
(Uop, 14 )-coinvariants are non-trivial for some a € F*) and i(s) is Whittaker generic for
every a € F'*, it follows that the dimension of F.J4(I(s))u,,¢, is at least 2 for some
a # 0. Hence, by Lemma B.2.1,
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dim(1(s)n,p,) > 2.
This is a contradiction since this space is one-dimensional. O

Observe that, if the statement of Theorem B.1.1 fails for V, then FJ4(V) # 0.
Thus, exactness of the FJ functor, combined with Theorem B.2.2; implies that I(s),
for s # +1/2 contains only one big irreducible subquotient. Thus, in order to prove
Theorem B.1.1, it suffices to show that the quotient I(—11/2)/V; is not small. We shall
execute this strategy in the next section.

B.3. Finishing the proof

We have the standard intertwining operator Ay : I(s) — I(—s). This intertwining
operator is non-zero for every s, although it can have poles: for every constant section
fs € I(s), As(fs) is a rational function in ¢°. In particular, it has finitely many poles on
R. Let f° be a non-zero, constant, spherical, section. Then A;(f°) = ¢(s)f°, where

((2s)¢(s —27/2)¢(s — 17/2)((s — 9/2)
C(2s + 1)C(s +29/2)C(s + 19/2)C(s + 11/2)

e(s) =

and ¢(s) =1/(1 — ¢~*). Note that c¢(s) vanishes for s = —29/2,-19,2,—11/2 and —1/2.
In particular, the intertwining operator kills Vy C I(—11/2) and hence maps a proper
quotient of I(—11/2)/Vy into I(11/2). Thus it suffices to prove that any non-trivial
submodule of 1(11/2) is not small.

Let B C G be a Borel subgroup. Let 7' C B be a maximal split. This gives a root
system with a choice of simple roots, and we use the standard realization of the Eg root
system in E = R®. For convenience we write down simple roots:

1

al:5(61_62_63_64_65_66_e7+68)

Qg =€y —e], 3 =€e3 — €z, Qg = €] + €3, A5 = €4 — €3, Qg = €5 — €4, Q7 = € — €5,

Qg = €7 — €6

Any unramified character x of the maximal torus 7' with values in R™ (hence forth
a real character) can be identified with an element in E, denoted by the same symbol
such that

xoa¥(t) = [t

for all t € F* where @V : F'* — T is the co-root of a and (x, ) is the usual dot product
in F.

Let V be a smooth G-module. Let (V) denote the normalized Jacquet functor with
respect to B. Any irreducible character of T' that appears as a quotient of V' is called an
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exponent of V. If V C Indg (x) then x is an exponent of V' by the Frobenius reciprocity.
Assume that x is real, and (x, @) # +1. Then Ind%(x) = Ind$ (x*), where s is the simple
reflection given by «. This is a simple consequence of induction in stages, to the parabolic
BUBsB, and using the knowledge of real principal series of SLy(F'), that is, (), a) # £1
guarantees that we are staying away from reducibility points. Thus, if (x, a) # £1, then
x? is also an exponent of V. We shall use this observation to write down some exponents
of V C I(s), where s € R. We observe that I(s) C Ind%(x) where

17 17

=(0,—-1,-2,-3,—4,—5,s + — .
X (’ b b ? ) 7S+2)8 2)

For example, if s = —29/2, then xy = —p, the exponent of the trivial representation, and
indeed the trivial representation is a submodule of I(—29/2). Consider the case s = 11/2,
where we have a proper spherical quotient and a non-spherical submodule V. Then

x =(0,—-1,-2,-3,—4,—5,14,-3).
Using simple reflections we can move 14 all the way to the left, to obtain another exponent
(14,-1,-2,-3,—-4,-5,-3)
of V. Using the reflection s; we get
1
5(15, 13,11,9,7,5,3,—19)
and then followed by sy,
1
5(713, —15,11,9,7,5,3, —19).
Now we move —15 and —13 to the right to arrive at
, 1
X = 5(11,9,—137 7,—15,5,3,—-19).

Let R D B be the parabolic group, whose Levi is of the type A3, and the simple factors
correspond to simple roots ay, a5 and ay. Observe that

(X' aa) = (X a5) = (X, a7) = 10.

Since (x/,a;) # £1, for i = 4,5,7, X’ is an exponent of an irreducible principal series
representation of R. It follows that rg(V) is a Whittaker generic representation of the
Levi factor of R. This implies that V has a non-zero degenerate Whittaker model cor-
responding to the orbit 34;. By Theorem A in [GGS] non-vanishing of any degenerate
Whittaker model corresponding to the orbit 3A4; implies non-vanishing of the generalized
model corresponding to 3A4;. In the language of this paper this means that FJ(V) # 0.
Hence V is not small, and this completes the proof of Theorem B.1.1.
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