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1. Introduction

That there is a notion of modular forms on the quaternionic exceptional groups 
goes back to Gross-Wallach and Gan-Gross-Savin. This theory is based on the so-
called quaternionic discrete series, whose study was initiated by Gross-Wallach [GW94], 
[GW96]. Here, by a “modular form”, we mean loosely a special automorphic form that 
possesses some sort of robust Fourier expansion, similar to the (holomorphic) Siegel 
modular forms on Sp2n. The modular forms on the quaternionic exceptional groups have 
been the subject of the papers [GGS02,Wei06,Pol20a,Pol20b,Pol19].

It turns out that there is a completely analogous but much simpler theory of “modular 
forms” on the classical groups SO(3, n + 1). (Note that when n is even, these groups do 
not have discrete series.) The purpose of this paper is to write down this notion of 
modular forms, and prove a few of the basic theorems. In particular, we

(1) find the explicit form of the Fourier expansion of such modular forms, in complete 
analogy with the results of [Pol20a];

(2) prove that certain absolutely convergent degenerate Eisenstein series that are mod-
ular forms have algebraic Fourier coefficients, in a precise sense.

While the result (1) is analogous to the results of [Pol20a], the result (2)–which is the 
main result of the paper–goes beyond what is known for exceptional groups.

One source of examples of these special automorphic forms comes from certain con-
stant terms of modular forms on the quaternionic exceptional groups. More precisely, 
suppose GJ is1 a quaternionic exceptional group as in [Pol20a] with rational root type 
F4, so that GJ has absolute Dynkin type F4, E6, E7 or E8. Then GJ possesses a max-
imal parabolic QJ = LJVJ with LJ having rational root type B3. Up to anisotropic 
factors, LJ is isogenous to a group SO(3, n + 1) where n = 3, 4, 6, 10 if GJ has type 
F4, E6, E7, E8, respectively. One can take the constant term of a modular form of weight 
� on GJ down to LJ , and we prove in section 5 that these constant terms are modular 
forms of weight � on LJ . Combining the above facts with a p-adic result of Savin (Theo-
rem B.1.1 proved in Appendix B) and an analysis of certain degenerate Eisenstein series 
on E8,4, we prove that the so-called “next-to-minimal” modular form on quaternionic 
E8 has rational Fourier expansion.

The result (2) on the Fourier coefficients of Eisenstein series is the analogue of the 
fact that on SO(2, n) or another hermitian tube domain, the absolutely convergent holo-
morphic Eisenstein series have algebraic Fourier expansions. As this paper shows, the 
notion of modular forms on SO(3, n + 1) is very similar to that of modular forms on 
the quaternionic exceptional groups, such as E8,4. However, because SO(3, n + 1) is a 
classical group, and more importantly because the natural Fourier expansion of modular 

1 The subscript “J” comes from the fact that these groups are associated to certain cubic Jordan alge-
bras J.
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forms on SO(3, n + 1) takes place along an abelian unipotent group, the notion of these 
modular forms is substantially simpler than that on the exceptional groups. Thus we 
hope that SO(3, n + 1) can be used as a test case for developing analogous results on the 
quaternionic exceptional groups. In particular, the algebraicity of the Fourier coefficients 
of the degenerate Eisenstein series from [Pol20b] appears difficult. Part of the motivation 
for writing this paper was to get closer to proving that the Fourier coefficients of these 
Eisenstein series on exceptional groups are algebraic. It follows from the proof of Theo-
rem 1.1.2 that the absolutely convergent degenerate Eisenstein series on quaternionic E8
studied in [Pol20b] have algebraic rank 0, 1, and 2 Fourier coefficients; the algebraicity 
of the rank 3 and 4 Fourier coefficients remains open.

1.1. Statement of theorems

The definition of the modular forms on SO(3, n + 1) is very similar to that of the 
modular forms on the exceptional groups from [Pol20a]. In particular, if V is a ratio-
nal quadratic space of signature (3, n + 1), then the maximal compact subgroup K of 
SO(V )(R) is S(O(3) ×O(n +1)). This group maps to O(3) = (SU(2)/μ2) �〈±1〉. Denote 
by V� = Sym2�(C2) the (2� + 1)-dimensional representation of K that factors through 
O(3). Modular forms on SO(V ) of weight � are then V�-valued automorphic functions ϕ
on SO(V )(A) that

(1) satisfy ϕ(gk) = k−1ϕ(g) for all g ∈ SO(V )(A) and k ∈ K

(2) and are annihilated by a special linear differential operator D�.

The precise definition of modular forms, and in particular of the operator D�, is given 
in section 3 below. Throughout the paper, (V, q) is rational quadratic space of Witt 
rank three and signature (3, n + 1) over R. Denote by (x, y) = q(x + y) − q(x) − q(y)
the associated bilinear form. We write V = Qe ⊕ V ′ ⊕ Qf with V ′ a non-degenerate 
quadratic space of signature (2, n) and e, f isotropic vectors in (V ′)⊥ with (e, f) = 1.

The first result is the Fourier expansion of modular forms on G = SO(V ), in complete 
analogy to Theorem 1.2.1 of [Pol20a]. Denote by P = MN the parabolic subgroup of 
SO(V ) that stabilizes the isotropic line Qe, so that M � GL1 × SO(V ′) and N � V ′ is 
abelian. Let n : V ′ → N denote this identification, which is specified in section 2 below. 
If ϕ is an automorphic form on G, then one has

ϕ(g) =
∑

η∈V ′(Q)

ϕη(g) (1)

where

ϕη(g) =
∫

′ ′

ψ−1((η, x))ϕ(n(x)g) dx
V (Q)\V (A)
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and ψ : Q\A → C× is our fixed standard additive character.
The first result Theorem 1.1.1 is a refinement of the expansion (1) when ϕ is a 

modular form of weight � on G. See Definition 3.2.2 below for the precise definition 
of the functions Wη : G → V� that appear in Theorem 1.1.1. They are defined in 
terms of K-Bessel functions, exactly as in the Fourier expansion of the modular forms 
on the quaternionic exceptional groups in [Pol20a]. In section 2 we specify a basis 
{x2�, x2�−1y, . . . , xy2�−1, y2�} of V�.

Theorem 1.1.1. Suppose ϕ is a modular form of weight � ≥ 1 on G. Then for η ∈ V ′(Q)
with q(η) ≥ 0, there are locally constant functions aϕ(η) : G(Af ) → C so that

ϕ(g) = ϕ0(g) +
∑

0�=η∈V ′(Q),q(η)≥0

aϕ(η)(gf )W2πη(g∞) (2)

for every g = gf g∞ in G(Af ) × G(R). Moreover, for m ∈ M , the constant term ϕ0 is 
of the form

ϕ0(m) = t�|t|
(
Φ(m)x2� + β(mf )x�y� + Φ′(m)y2�

)
where Φ is an automorphic function associated to a holomorphic modular form of weight 
� on M , β is a locally constant function on M(Af ), and Φ′ is a certain (K ∩ M)-right 
translate of Φ.

The second theorem concerns the Fourier expansion of degenerate Eisenstein series 
on G. More precisely, if � > n + 1 is even and n is even then there is (a family of) 
absolutely convergent Eisenstein series E�(g), which are modular forms of weight � on 
G. These Eisenstein series are associated to the induction space IndG

P (δ(�+1)/(n+2)
P ). See 

section 4 for the precise definition. These degenerate Eisenstein series are the analogues 
of the degenerate Heisenberg Eisenstein series considered in [Pol20b] or the classical 
degenerate holomorphic Siegel Eisenstein series on Sp2n. Theorem 1.1.2 below states 
that the Fourier coefficients of E�(g) are algebraic numbers.

To set up the result, suppose that � > 0 is even, and ϕ a modular form on G of weight 
�. Let the Fourier expansion of ϕ be as in (2). We say that ϕ has Fourier coefficients in 
a field E if

(1) The locally constant functions aϕ(η), when restricted to M(Af ), are valued in E;
(2) The holomorphic modular form associated to Φ has Fourier coefficients in E;
(3) The locally constant function β, when restricted to M(Af ), is valued in E · ζ(�+1)

(2π)� .

The perhaps unusual-looking normalization of the constant β is dictated, similar to the 
results of [Pol20b], by the fact that the modular forms one constructs in practice have 
Fourier coefficients valued in some fixed field E as in the above definition.



A. Pollack, G. Savin / Journal of Number Theory 238 (2022) 611–675 615
Theorem 1.1.2. Suppose that dim(V ′) = n + 2 is a multiple of 4 and that � > n + 1 is 
even. Then the Eisenstein series E�(g) has Q-valued Fourier coefficients.

Note that under the assumptions of Theorem 1.1.2, the group G(R) = SO(3, n +
1) does not possess discrete series. Nevertheless, the modular forms exist and one can 
prove that the most basic modular forms–the degenerate Eisenstein series–have algebraic 
Fourier coefficients. See Theorem 4.5.10 for the precise statement. The key step in the 
proof of Theorem 1.1.2 is the evaluation of a certain Archimedean Jacquet integral, which 
is Theorem 4.5.9 below and might be of independent interest.

1.2. Applications

The main application of the above results is to the rationality of the Fourier expansion 
of the next-to-minimal modular form θntm on quaternionic E8, which is realized as a 
special value of a degenerate Heisenberg Eisenstein series. Recall from [Pol20a] or [Pol20b]
that modular forms on quaternionic E8 have Fourier coefficients of various ranks, between 
0 and 4 inclusive, with rank four Fourier coefficients being non-degenerate and rank 0 
and rank 1 Fourier coefficients the most degenerate ones. We prove directly that θntm has 
rational rank 0, rank 1, and rank 2 Fourier coefficients. The p-adic result Theorem B.1.1
of Savin implies that the rank 3 and rank 4 Fourier coefficients of θntm vanish, giving 
the full rationality.

Here is the precise result. In the statement of the theorem, the group GJ is the Q-
group of type E8 from, e.g., [Pol20a] or [Pol20b], that has rational root system of type 
F4.

Theorem 1.2.1. Let EJ(g, s; 8) denote the degenerate Heisenberg Eisenstein series on GJ

that is spherical at every finite place and “weight 8” at infinity. Then EJ(g, s; 8) is regular 
at s = 9 and defines a square integrable modular form of weight 8 at this point. Moreover, 
the modular form θntm(g) = EJ (g, s = 9; 8) has rational Fourier expansion.

See Theorem 6.0.2 below for the precise statement. The Eisenstein series EJ(g, s; �) are 
the subject of [Pol20b]. The modular form EJ(g, s = 9; 8) is expected to be the next-to-
minimal modular form on GJ . In the case of split E8, the next-to-minimal automorphic 
representation has been considered in [GMV15] and more recently in [GGK+19].

The minimal modular form θGan on quaternionic E8 was considered in [Gan00a,
Gan00b,Pol20b]; it is of weight 4. The first part of Theorem 1.2.1 on the regularity of 
EJ(g, s; 8) at s = 9 is analogous to some results of Gan from [Gan00a]. The weight 
four modular form θGan is the E8-analogue of Kim’s weight 4 exceptional modular form 
[Kim93] on GE7,3, and in fact Kim’s weight 4 modular form appears in the constant term 
of θGan along the unipotent radical of the Heisenberg parabolic. The next-to-minimal
modular form θntm that is the subject of Theorem 1.2.1 is weight 8 and is the analogue of 
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Kim’s weight 8 singular modular form on GE7,3 from [Kim93]. Moreover, Kim’s singular 
modular form shows up in the constant term of θntm along the same Heisenberg parabolic.

The final result we give is to the minimal modular form on the groups SO(3, 8k + 3)
and to a so-called distinguished modular form on SO(3, 8k +2). This is done in section 7, 
and is the analogue of the results in [Pol20b] to the classical groups of type D4k+3. 
Specifically, we prove the following theorem; see Theorem 7.0.1 below.

Theorem 1.2.2. Let k ≥ 1 be an integer, and let G be the Q-group of type D4k+3 that is 
split at every finite place and SO(3, 8k + 3) at infinity. The Eisenstein series E4k(g, s)
is regular at s = 4k + 1. The value θ(g) = E4k(g, s = 4k + 1) is a modular form on G of 
weight 4k, having rational Fourier expansion with all non-degenerate Fourier coefficients 
equal to 0. Its restriction θ′ to groups G′ = SO(3, 8k + 2) ⊆ G is a modular form of 
weight 4k that is distinguished.
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2. Notation

In this section we define the notation that we will use throughout the paper. 
Let (V2, q2) denote a two-dimensional rational quadratic space with positive defi-
nite quadratic form. Similarly, let (Vn, qn) denote an n-dimensional rational quadratic 
space with positive definite quadratic form. Set V ′ = V2 ⊕ Vn with quadratic form 
q(x, y) = q2(x) − qn(y), so that V ′ has signature (2, n). We set V = Qe ⊕ V ′ ⊕ Qf with 
quadratic form q(αe + v′ + βf) = αβ + q′(v′). Thus V has signature (3, n + 1). For some 
of the results below, we will assume V ′ has Witt rank two, although this is not necessary 
everywhere.

Let ι be the involution on V given by ι(αe + x + y + βf) = βe + x − y + αf , where 
x ∈ V2, y ∈ Vn. Then (v, ι(v)) ≥ 0, and conjugation by ι is a Cartan involution θι on 
SO(V )(R). We set u+ = e + f and u− = e − f so that q(u+) = 1 and q(u−) = −1. We 
let v1, v2 be an orthonormal basis of V2(R) so that (vi, vj) = δij , and {u1, u2, . . . , un} be 
a basis of Vn.

We set V3 = V2 ⊕ Ru+ and Vn+1 = Vn ⊕ Ru−. The induced Cartan involution on the 
Lie algebra g0 = so(V ) produces the decomposition g0 = k0 ⊕ p0 with k0 = g

θι=1
0 and 

p0 = g
θι=−1
0 . Under the isomorphism g0 � ∧2V , one has p0 = V3 ⊗ Vn+1 ⊆ ∧2V and 

k0 = ∧2V3 ⊕ ∧2Vn+1 ⊆ ∧2V . We set p = p0 ⊗ C and k = k0 ⊗ C.
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The Lie algebra ∧2V3 ⊗ C ⊆ k is isomorphic to sl2(C). For an sl2-triple (E, H, F ) in 
∧2V ⊗C, one can take E = (iv1 −v2) ∧u+/

√
2, H = −2iv1 ∧v2, F = (iv1 +v2) ∧u+/

√
2. 

Then [E, F ] = H, [H, E] = 2E and [H, F ] = −2F , so that indeed (E, H, F ) is an 
sl2-triple.

Denote by P = MN the parabolic subgroup of G that fixes the line Qe. We are letting 
G act on the left of V . Denote by ν : P → GL1 the character so that pe = ν(p)e. We let 
M be the Levi subgroup that also fixes the line Qf . Denote by N the unipotent radical 
of P . Then N � V ′ is abelian, and for x ∈ V ′, we set n(x) = exp(e ∧x). Thus n : V ′ → N

is an isomorphism. One has n(x) = exp(e ∧ x) takes e �→ e, v �→ v + (x, v)e if v ∈ V ′, 

and f �→ f − x − 1
2 (x, x)e. The matrix corresponding to n(x) is 

⎛⎜⎝ 1 tx −(x, x)/2
1 −x

1

⎞⎟⎠.

As mentioned in the introduction, we let V� denote the (2� + 1)-dimensional repre-
sentation of K ⊆ SO(3, n + 1) that factors through O(3). Let x, y be a fixed weight 
basis of the two-dimensional representation Y2 � C2 of ∧2V3 ⊗ C � sl2(C). We may 
identify V3 ⊗C with the symmetric square representation S2(Y2) of this two-dimensional 
representation, which has basis {x2, xy, y2}. We choose this weight basis x, y and the 
identification S2(Y2) � V3 ⊗ C so that x2 corresponds to iv1 − v2, xy corresponds to 
u+/

√
2, and y2 corresponds to iv1 + v2.

Throughout the paper, the letter H denotes a hyperbolic plane. Moreover, we fre-
quently use the subscript 0 to denote an integral lattice inside a rational quadratic 
space. Thus, for example H0 ∼= Z ⊕ Z.

3. Modular forms and their Fourier expansion

In this section we define the modular forms on G = SO(V ), and give the explicit form 
of their Fourier expansion. That is, we prove Theorem 1.1.1 of the introduction.

3.1. Definition of modular forms

We now define modular forms on G = SO(V ). As mentioned in the introduction, a 
modular form on G of weight � is an automorphic function ϕ : G(Q)\G(A) → V� of 
moderate growth satisfying

(1) ϕ(gk) = k−1 · ϕ(g) for all g ∈ G(A) and k ∈ K

(2) D�ϕ ≡ 0 for a certain linear differential operator D� defined below.

To define the differential operator D�, let Xγ be a basis of p and X∨
γ be the dual basis 

of p∨. Suppose ϕ : G(A) → V� satisfies ϕ(gk) = k−1ϕ(g). Define D̃�ϕ =
∑

γ Xγφ ⊗ X∨
γ , 

which is valued in V� ⊗ p∨. Here Xγϕ denotes the right-regular action of p on ϕ. Note 
that
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V� ⊗ p∨ = (S2�(Y2) ⊗ S2(Y2)) � Vn+1 = (S2�+2(Y2) ⊕ S2�(Y2) ⊕ S2�−2(Y2)) � Vn+1.

Denote by pr the K-equivariant projection V� ⊗ p∨ → (S2�(Y2) ⊕ S2�−2(Y2)) �Vn+1. We 
define D� = pr ◦D̃.

Note that S2(Y2) ⊆ S1(Y2) ⊗ S1(Y2), and thus pr is also the composition

V� ⊗ p∨ ⊆ (S2�(Y2) ⊗ S1(Y2) ⊗ S1(Y2)) � Vn+1

= (S2�+1(Y2) ⊕ S2�−1(Y2)) ⊗ S1(Y2) � Vn+1

→ S2�−1(Y2) ⊗ (S1(Y2) � Vn+1).

This last line makes clear the analogy between modular forms on SO(3, n + 1) and 
modular forms in the sense of [Pol20a].

3.2. The Fourier expansion of modular forms

In this subsection we give the precise Fourier expansion of modular forms on G. More 
precisely, suppose � ≥ 1, η ∈ V ′(R). We say that a function F : G(R) → V� is a 
generalized Whittaker function of type η if F is of moderate growth and satisfies

(1) F (n(x)g) = ei(η,x)F (g)
(2) F (gk) = k−1 · F (g)
(3) D�F (g) = 0

for all g ∈ G(R), k ∈ K and x ∈ V ′(R). In this subsection, we completely characterize 
the generalized Whittaker functions of type η, for all η ∈ V ′(R). In particular, we prove 
that if q(η) < 0, the only such function is the 0 function, while if η �= 0 and q(η) ≥ 0 then 
all such functions are scalar multiples of the function Wη mentioned in the introduction.

In order to understand these generalized Whittaker functions, we make relatively 
explicit the differential equation D�F = 0 in coordinates. To do this, we begin by making 
an explicit Iwasawa decomposition of some elements of the Lie algebra of G. In more 
detail, let n, m denote the complexified Lie algebras of N , M ; one has a decomposition 
g = n + m + k. We have

p = (Ru+ ⊕ V2) ∧ (Ru− ⊕ Vn) = Ru+ ∧ u− ⊕ u+ ∧ Vn ⊕ V2 ∧ u− ⊕ V2 ∧ Vn.

In n + m + k coordinates, a basis of p decomposes as follows:

• u+ ∧ u− = (e + f) ∧ (e − f) = −2e ∧ f ∈ m.
• u+ ∧ uj = (e + f) ∧ uj = (2e − u−) ∧ uj = 2e ∧ uj − u− ∧ uj ∈ n + k. (Recall that the 

uj are a basis of Vn.)
• vi ∧ uj ∈ m. (Recall that v1, v2 is a basis of V2.)
• vi ∧ u− = vi ∧ (e − f) = vi ∧ (2e − u+) = −2e ∧ vi + u+ ∧ vi ∈ n + k.
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For ease of notation, let [xj] = xj

j! and similarly [yj ] = yj

j! . Let Fv denote the compo-
nents of the V�-valued function F ; that is

F =
∑

−�≤v≤�

Fv[x�+v][y�−v].

Let {u∨
1 , . . . , u∨

n} be the basis dual to the basis {u1, . . . , un} and u∨
− dual to u−. Denote by 

DM
iv1±v2,uj

the differential operator on functions on M corresponding to the (differential 
right-regular) action of (iv1 ±v2) ∧uj on F . For future reference, note that (iv1 −v2, iv1 +
v2) = −2.

Suppose t ∈ R×, m ∈ SO(2, n) and x ∈ V ′(R) so that n(x) diag(t, m, t−1) ∈
N(R)M(R) = P (R). Restricting the function F to P , we write F (x, t, m) :=
F (n(x) diag(t, m, t−1)). For w ∈ V ′, denote

DV ′

w F (x, t, m) = d

dλ
F (x + λw, t, m)|λ=0

the partial derivative in the w-direction. Also, note that (e ∧ f)F = t∂tF .
Suppose F : G(R) → V� is a function satisfying F (gk) = k−1F (g) for all g ∈ G(R)

and k ∈ K. The following proposition computes D�F (x, t, m) explicitly in coordinates, 
in terms of the differential operators DM , DV ′ and t∂t. To state the result, note that 
the operator D� is valued in S2�−1(Y2) ⊗ (Y2 � Vn+1), which has a basis consisting 
of elements [x�+v−1][y�−v] ⊗ y ⊗ u∨

−, [x�+v−1][y�−v] ⊗ x ⊗ u∨
−, [x�+v−1][y�−v] ⊗ y ⊗ u∨

j , 
[x�+v−1][y�−v] ⊗ x ⊗ u∨

j .

Proposition 3.2.1. Suppose F : G(R) → V� is a function satisfying F (gk) = k−1F (g) for 
all g ∈ G(R) and k ∈ K. The coefficients of linear independent terms in 2D�F are as 
follows:

(1) [x�+v−1][y�−v] ⊗ y ⊗ u∨
−:

2DV ′

tm(iv1−v2)Fv −
√

2(� + v)Fv−1 +
√

2t∂tFv−1

(2) [x�+v−1][y�−v] ⊗ x ⊗ u∨
−:

−
√

2t∂tFv − 2DV ′

tm(iv1+v2)Fv−1 +
√

2(� − v + 1)Fv

(3) [x�+v−1][y�−v] ⊗ y ⊗ u∨
j :

−DM
iv1−v2,uj

Fv −
√

2DV ′

tmuj
Fv−1

(4) [x�+v−1][y�−v] ⊗ x ⊗ u∨
j :

√
2DV ′

tmu Fv + DM
iv +v ,u Fv−1.
j 1 2 j
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Proof. As the computation is straightforward, we relegate the details to the appendix. 
See subsection A.1. �

As a corollary of the above proposition, we obtain the complete description of the 
generalized Whittaker functions of type η. Thus suppose η ∈ V ′(R) and F is a generalized 
Whittaker function of type η. That is, assume F is of moderate growth and F (x, t, m)
satisfies F (x + w, t, m) = ei(η,w)F (x, t, m) for all w ∈ V ′, so that DV ′

w F = i(η, w)F .
To state the theorem, we first define the function Wη that plays a crucial role in this 

paper.

Definition 3.2.2. Suppose η ∈ V ′(R), η �= 0, and (η, η) ≥ 0. For t ∈ GL1(R), m ∈
SO(V ′)(R) set

uη(t, m) =
√

2ti(η, m(iv1 − v2)).

Define

Wη(t, m) = t�|t|
∑

−�≤v≤�

(
|uη(t, m)|
uη(t, m)

)v

Kv(|uη(t, m)|)[x�+v][y�−v].

Here recall the K-Bessel function Kv(y) is defined as

Kv(y) = 1
2

∞∫
0

e−y(t+t−1)/2tv dt

t
.

It satisfies the differential equation (y∂y)2Kv(y) = (v2 +y2)Kv(y), diverges at y → 0 and 
is of rapid decay as y → ∞. As Kv(y) diverges for y → 0, Definition 3.2.2 only makes 
sense because of the following lemma.

Lemma 3.2.3. Suppose η ∈ V ′(R) is such that (η, m(iv1 − v2)) �= 0 for all m ∈
SO(V ′)(R). Then (η, η) ≥ 0. Conversely, if η �= 0 and (η, η) ≥ 0 then (η, m(iv1−v2)) �= 0
for every m ∈ SO(V ′)(R).

Proof. The hypothesis (η, m(iv1 −v2)) �= 0 for every m ∈ SO(V ′)(R) is equivalent to the 
statement that the projection of η to every positive definite 2-subspace of V ′ is nonzero. 
Suppose first that (η, η) ≥ 0. Set η′ = m−1η. Then (η′, η′) ≥ 0. Thus the projection of η′

to V2 = Span{v1, v2} is not 0, because otherwise η′ would lie in Vn = (V2)⊥ which would 
imply (η′, η′) < 0.

Conversely, suppose that (η, η) < 0. Then (Rη)⊥ contains a positive definite 2-plane 
V ′

2 = mV2 for some m ∈ SO(V ′)(R). Then (η, m(iv1 − v2)) = 0, as desired. �
With the above notation, we have the following result.



A. Pollack, G. Savin / Journal of Number Theory 238 (2022) 611–675 621
Theorem 3.2.4. Suppose that F is a generalized Whittaker function of type η as above. 
Assume η �= 0. If (η, η) < 0, then F is identically 0. Conversely, if (η, η) ≥ 0, then 
F (t, m) = CWη(t, m) for a constant C ∈ C.

Proof. We explain here that the function Wη has the correct (K ∩ M)-equivariance 
property. See section A.1 for the rest of the proof.

We have K ∩ M = μ2 × S(O(2) × O(n)). Consider the element ε = diag(−1, 1, −1) in 
M ∩K. Then εu+ = −u+ while ε acts as the identity on V2 = Rv1 ⊕Rv2. Thus ε acts on 
V3 � S2(Y2) as εx2 = x2, εxy = −xy and εy2 = y2. It follows that on V� = S2�(Y2) one 
has εx�+vy�−v = (−1)�+vx�+vy�−v. Thus Fv(x, −t, m) = (−1)�+vFv(x, t, m), from which 
the formula t�|t| follows.

Let us consider the equivariance for the SO(2) part. Normalize the isomorphism z :
SO(V2) � S1 by k(v1 + iv2) = z(k)(v1 + iv2). Then k(v1 − iv2) = z(k)−1(v1 − iv2) and 
we have k(x�+vy�−v) = z(k)vx�+vy�−v. As Fv(t, mk) = z(k)−vFv(t, m), the (K ∩ M)-
equivariance follows for k ∈ SO(2) × SO(n). For the nontrivial element of π0(S(O(2) ×
O(n))), set ε′ to be any element of S(O(2) ×O(n)) with ε′v1 = v1 and ε′v2 = −v2. Then, 
on the one hand, ε′(x2) = y2, ε′(y2) = x2 and ε′(xy) = xy, from which it follows that 
ε′(xn+vyn−v) = xn−vyn+v. On the other hand,

Fv(t, mε′) = t�|t|
(

|uη(t, m)|
uη(t, m)∗

)v

Kv(|uη(t, m)|) = F−v(t, m),

from which the (K ∩ M)-equivariance follows for this element. �
We now spell out what the generalized Whittaker functions of type η look like when 

η = 0. For k ∈ SO(2) × SO(n), recall that z(k) ∈ S1 ⊆ C× is defined by the equality 
k(v1 + iv2) = z(k)(v1 + iv2). Additionally, denote by ε′ an element of S(O(2) × O(n)) ⊆
K ∩ M with ε′v1 = v1 and ε′v2 = −v2.

Corollary 3.2.5. Suppose F is a generalized Whittaker function of type η = 0. Then 
Fv(t, m) = 0 if v /∈ {−�, 0, �}. On M(R), one has F0(t, m) = βt�|t|, F±�(t, m) =
|t|F ′

±�(m) for some constant β ∈ C and functions F ′
±�(m) that are independent of 

t. The functions F ′
±�(m) satisfy DM

iv1−v2,uF ′
�(m) = 0 and DM

iv1+v2,uF ′
−�(m) = 0 for 

all u ∈ Vn. Moreover, F ′
±�(mk) = z(k)∓�F ′

±�(m) for all k ∈ SO(2) × SO(n) and 
F−�(t, m) = F�(t, mε′).

Conversely, suppose F ′
�(m) satisfies F ′

�(mk) = z(k)−�F ′
�(m) for all k ∈ SO(2) ×

SO(n) and DM
iv1+v2,uF ′

�(m) = 0 for all u ∈ Vn. Define F�(t, m) = |t|F ′
�(m), 

F−�(t, m) = F (t, mε′), and F0(t, m) = βt�|t| for any constant β ∈ C. Then F (t, m) =∑
−�≤v≤� Fv(t, m)[x�+v][y�−v] is (K ∩ M)-equivariant and satisfies the differential equa-

tions of Proposition 3.2.1.

Proof. First suppose that (t, m) ∈ M(R)0, the connected component of the identity. If 
−� +1 ≤ v ≤ � −1, then we have (t∂t − (� +v +1))Fv = 0 and (−t∂t +(� −v +1))Fv = 0. 
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Adding the equations gives −2vFv = 0, so Fv = 0 unless v = −�, 0, or �. Because η = 0, 
we obtain DM

iv1±v2,uj
F0 = 0. As in the proof of Theorem 3.2.4, the (K ∩M)-equivariance 

now implies F0(t, m) = t�+1 on M(R)0. The formulas for F±�(t, m) on M(R)0 follow 
easily. Additionally, the absolute values |t| and the relationship between F�(t, m) and 
F−�(t, m) follow from the (K ∩ M)-equivariance as in the proof of Theorem 3.2.4.

The converse follows easily, using the formulas for the (K ∩ M)-action on V� from the 
proof of Theorem 3.2.4. �

Below, we will require the following lemma. Denote by f1
� (g, s) the V�-valued, K-

equivariant inducing section in Ind
G(R)
P (R)(|ν|s), whose restriction to M(R) is

f1
� ((t, m, t−1), s) = |t|s[x�][y�].

Lemma 3.2.6. Denote by f2
� (g, s) the V�-valued, K-equivariant inducing section in 

Ind
G(R)
P (R)(|ν|s), whose restriction to M(R) is |t|s

(
[x�][y�−1] ⊗ y − [x�−1][y�] ⊗ x

)
⊗ u∨

−. 
Then

√
2D�f

1
� (g, s) = (s − � − 1)f2

� (g, s).

Proof. From Proposition 3.2.1, on M(R)0 one has

√
2D�f

1
� ((t, m, t−1), s) = (t∂t − (� + 1))(ts)

(
[x�][y�−1] ⊗ y − [x�−1][y�] ⊗ x

)
⊗ u∨

−

= (s − � − 1)ts
(
[x�][y�−1] ⊗ y − [x�−1][y�] ⊗ x

)
⊗ u∨

−

using that DM
iv1±v2,uj

f1
� ((t, m, t−1), s) = 0 because f1

� is independent of the variable 
m ∈ SO(V ′)(R). The lemma follows from the (K ∩ M)-equivariance. �
4. The Fourier expansion of Eisenstein series

There is a V�-valued degenerate Eisenstein series on G, E�(g, s) associated to the 
(non-normalized) induction IndG

P (|ν|s). If � is even, then at s = � +1 and for appropriate 
inducing data, this Eisenstein series is a modular form in sense of subsection 3.1. The 
purpose of this section is to prove that indeed we get a modular form as above, and 
to compute the Fourier expansion of this Eisenstein series E�(g, s = � + 1) along the 
unipotent radical N , at least when dim(V ′) is a multiple of four and the Eisenstein 
series is absolutely convergent.

The Eisenstein series E�(g, s) is defined using the inducing section f�;∞(g, s) :=
f1

� (g, s) of Lemma 3.2.6 at the archimedean place. The computation of its Fourier ex-
pansion consists of various parts, which we break into subsections. Let us describe these 
parts now, before getting into the computation.

To define some terminology, note that the non-constant Fourier coefficients of a mod-
ular form ϕ of weight � are parametrized by η ∈ V ′(R), which can be either isotropic 
or anisotropic. We call the Fourier coefficients corresponding to the nonzero isotropic 
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η rank one Fourier coefficients, while those corresponding to the anisotropic η the rank 
two Fourier coefficients.

(1) By applying Lemma 3.2.6, it is immediate to see that if the Eisenstein series is 
absolutely convergent at s = � + 1 (which occurs if � + 1 > dim(V ′) = n + 2), then 
E�(g, s = � + 1) is a modular form of weight � for G.

(2) If the Eisenstein series is not absolutely convergent, then it is not clear–and not 
necessarily true–that E�(g, s) is a modular form at s = � + 1. To see when it is, 
we make various archimedean intertwiner computations in subsection 4.1. Although 
this is not needed for the Fourier expansion of the absolutely convergent Eisenstein 
series, it is useful for other applications.

(3) We then compute the constant term of the absolutely convergent Eisenstein se-
ries E�(g, s = � + 1) in subsection 4.2. Similar to what occurs with the degenerate 
Heisenberg Eisenstein series considered in [Pol20b], this constant term is a sum of a 
holomorphic weight � degenerate Eisenstein series on SO(V ′) and a constant func-
tion.

(4) The rank one Fourier coefficients of the Eisenstein series E�(g, s = � + 1) are com-
puted exactly as are the rank one Fourier coefficients of the degenerate Heisenberg 
Eisenstein series of [Pol20b]. We state the results in subsection 4.3.

(5) The computation of the rank two Fourier coefficients of E�(g, s = � + 1) splits into 
two parts, a finite part and an archimedean part. The finite part can be extracted 
from the literature (e.g. [Shu95]). For the convenience of the reader, we give this 
computation in subsection 4.4.

(6) The archimedean part of the computation of the rank two Fourier coefficients of the 
Eisenstein series E�(g, s = � +1) is the main theorem of the paper. This computation 
is done in subsection 4.5. Denote by w the Weyl group element of G that exchanges 
the parabolic P with its opposite. Then one has a function on V ′(R) given by

x �→ f�(wn(x); s = � + 1).

What is computed in subsection 4.5 is the Fourier transform of this function.

We now define the Eisenstein series E�(g, Φf , s) that is the object of what follows. 
Specifically, suppose Φf is a Schwartz-Bruhat function on V (Af ). For gf ∈ SO(V )(Af ), 
define

ffte(gf , Φf , s) =
∫

GL1(Af )

|t|sΦf (tg−1
f e) dt.

Now for g = gf g∞ ∈ G(Af ) × G(R), let f�(g, Φf , s) = ffte(gf , Φf , s)f�;∞(g∞, s) and 
set E�(g, Φf , s) =

∑
γ∈P (Q)\G(Q) f(γg, Φf , s) the Eisenstein series. Here recall that 

f�;∞(g∞, s) := f1
� (g∞, s) and this latter function was defined before Lemma 3.2.6. When 
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the Schwartz-Bruhat function Φf is Q-valued (or Q-valued), these are the Eisenstein se-
ries that are the subject of Theorem 1.1.1 and we will prove that the Fourier coefficients 
of (2π)−�E�(g, Φf , s = � + 1) are Q-valued.

4.1. Archimedean intertwiners

In this subsection we compute some archimedean intertwining operators. Specifically 
we compute the intertwining operator

M∞(w, s)f�,∞(g, s) =
∫

V ′(R)

f�,∞(wn(x)g, s) dx.

This is the content of Proposition 4.1.2 below.
We begin with the following well-known lemma, which computes a spherical 

Archimedean intertwiner on the groups SO(N, 1).

Lemma 4.1.1. Suppose U is a positive definite quadratic space, and V1 = H ⊕ U =
Re1 ⊕U ⊕Rf1 is the orthogonal direct sum of U and a hyperbolic plane H = Re1 ⊕Rf1. 
Denote by ι1 the involution on V1 defined as ι1(αe1 + v + βf1) = βe1 + v + αf1, and K1

the maximal compact subgroup of G1 = SO(V1) that commutes with ι1. Set P1 = M1N1

the parabolic subgroup of SO(V1) that fixes the line Rf1 via a right-action of SO(V1)
on V1 and define ν : P1 → GL1 as f1p = ν(p)−1f1. Let fA(g, s) ∈ IndG1

P1
(|ν|s) be the 

K1-spherical inducing section and n1 : U � N1 the identification of U with the unipotent 
radical of P1. Then the intertwiner

∫
U(R)

fA(ι1n1(x)g, s) dx = c(s)fA(g, dim U − s)

where c(s) is a nonzero constant times Γ(s−dim(U)/2)
Γ(s) .

Proof. Although, as mentioned, this lemma is surely well-known, we sketch a proof 
for the convenience of the reader. Let (·, ·)1 denote the quadratic form on V1. Define 
||v||2 = (v, ι1(v))1 for v ∈ V1, and set Φ∞(v) = e−||v||2 a Schwartz function on V1. Now,

fA(g, s) =
∫

GL1(R)

|t|sΦ∞(t(0, 0, 1)g) dt

defines a K1-spherical section in Ind
G1(R)
P1(R) (|ν|s) with fA(1, s) = Γ(s/2). Thus we can 

compute the c-function using this section fA(g, s).
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We obtain∫
U(R)

fA(ι1n1(x)1, s) dx =
∫

GL1(R)

∫
U(R)

|t|se−t2||(1,x,−||x||2/2)||2
dt dx

= Γ(s/2)
∫

U(R)

dx

(1 + ||x||2/2)s
.

Thus

c(s) =
∫

U(R)

dx

(1 + ||x||2/2)s

·=
∞∫

0

udim U/2(1 + u)−s du

u

where the 
·= means up to a nonzero constant. This last integral is easily computed to be 

a nonzero constant times Γ(s−dim(U)/2)
Γ(s) . �

Applying Lemma 4.1.1, we can now compute M(w, s)f�,∞. For z ∈ C and k ≥ 0 an 
integer, let (z)k = (z)(z + 1) · · · (z + k − 1) denote the Pochhammer symbol.

Proposition 4.1.2. Suppose

V = Re1 ⊕ Re2 ⊕ Re3 ⊕ U ⊕ Rf3 ⊕ Rf2 ⊕ Rf1 = Re1 ⊕ V ′ ⊕ Rf1

with U negative definite of dimension m and ei, fj isotropic with (ei, fj) = δij. Denote 
by P = MN the parabolic stabilizing Re1 for the left action of SO(V ) on V and ν :
P → GL1 the character defined by pe1 = ν(p)e1. Suppose w ∈ SO(V ) is defined by 
we1 = f1, wf1 = e1 and w is the identity of V ′. Denote by K the maximal compact 
subgroup of G = SO(V ) that commutes with the involution ι that exchanges ei with fi

and is the identity on U . Suppose f�,∞(g, s) is the K-equivariant, V�-valued section in 
Ind

G(R)
P (R)(|ν|s) with f�,∞((t, m, t−1), s) = |t|sx�y�. Then∫

N(R)

f�,∞(wng, s) dn = cB3
� (s)f�,∞(g, 4 + m − s)

where

cB3
� (s) =

(
s−�−1

2
)

�/2(
s−2

2
)

�/2+1
·

Γ
(
s − 2 − m

2
)

Γ (s − 2) ·
(

s−2−m−�
2

)
�/2(

s−3−m
2

)
�/2+1

up to exponential factors and nonzero constants. Consequently, when � > 2 + m, cB3
� (s)

is finite and 0 at s = � + 1.
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Proof. Let w12 denote the element of SO(V ) that exchanges e1 with e2, f1 with f2 and 
is the identity on Span(e1, e2, f1, f2)⊥. Similarly define w23, and let w3 denote the Weyl 
element that exchanges e3 with f3 is the identity on Span(e3, f3)⊥. With this notation, 
the element w factorizes as w12w23w3w23w12.

Denote by r1, r2, r3 the absolute values of the characters of the split torus, so that

rj(diag(t1, t2, t3, 1, t−1
3 , t−1

2 , t−1
1 )) = |tj |.

With P0 the upper-triangular minimal parabolic, we have δP0 = (m + 4)r1 + (m + 2)r2 +
mr3, so that f�,∞(g, s) ∈ IndG

P (δ1/2
P0

λs) with λs = (s −2 −m/2)r1−(1 +m/2)r2−(m/2)r3.
The intertwining operator M(w) = M(w12)M(w23)M(w3)M(w23)M(w12) moves 

around the induction spaces as follows:

• λs = (s − 2 − m/2)r1 − (1 + m/2)r2 − (m/2)r3
• w12�→ −((2 + m)/2)r1 + (s − (4 + m)/2)r2 + −(m/2)r3
• w23�→ −((2 + m)/2)r1 − (m/2)r2 + (s − (4 + m)/2)r3

•
we3�→ −((2 + m)/2)r1 − (m/2)r2 + ((4 + m)/2 − s)r3

• w23�→ −((2 + m)/2)r1 + ((4 + m)/2 − s)r2 − (m/2)r3
• w12�→ ((4 + m)/2 − s)r1 − ((2 + m)/2)r2 − (m/2)r3
• = λ4+m−s.

Now applying M(w, s) to the section f�,∞(g, s) one obtains

M(w, s)f�,∞(g, s) = M(w12w23) ◦ M(w3) ◦ M(w23w12)f�,∞(g, s).

Proposition 4.1.4 below computes the two outer intertwining operators M(w12w23) and 
M(w23w12). Lemma 4.1.1 computes the inner intertwining operator M(w3). Putting 
these results together gives that, up to exponential factors and nonzero constants,

cB3
� (s) =

(
s−�−1

2
)

�/2(
s−2

2
)

�/2+1
·

Γ
(
s − 2 − m

2
)

Γ (s − 2) ·
(

s−2−m−�
2

)
�/2(

s−3−m
2

)
�/2+1

.

The proposition follows. �
Remark 4.1.3. In section 6 below, we will apply Proposition 4.1.2 in the following special 
case: � = 8 and m = 8. We note now that for these values, c(s) is finite and nonzero at 
s = 9:

cB3
� (s) �=8,m=8=

(
s−9

2
)

4(
s−2

2
)

5
· Γ (s − 6)

Γ (s − 2) ·
(

s−18
2

)
4(

s−11
2

)
5

.

As used in the proof of the above proposition, we require the computation of a certain 
length two intertwiner of an archimedean inducing section on SL3. This computation is 
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done in Proposition 4.1.4 below. To set up the proposition, let b1, b2, b3 be the standard 
basis of R3, thought of as column vectors. Let x, y be the standard basis of the two-
dimensional representation of SL2(C), so that x2, xy, y2 are a basis of the 3-dimensional 
representation of K ′ = SO(3). We identify b2 + ib3 = x2, ib1 = xy and b2 − ib3 = y2. 
Set f1 = x + y and f2 = x − y; this abuse of notation should not cause the reader any 
confusion.

Now suppose � ≥ 0 is even and f ′
�(g, s) : SL3(R) → V� is the section satisfying

(1) f ′
�(gk, s) = k−1 · f ′

�(g, s) for all k ∈ K ′ = SO(3), g ∈ SL3(R);
(2) f ′

�(pg, s) = χs(p)f ′
�(g, s), where p =

( m1 ∗
0 m2

)
∈ P1,2 in (1, 2) block form and

χs(p) = |m1|s = | det(m2)|−s = |m2
1/ det(m2)|s/3;

(3) f ′
�(1, s) = x�y�.

Let s12 and s23 in SL3 be the Weyl group elements corresponding to the two simple 
roots, in obvious notation. We compute the intertwiner M(s23) ◦ M(s12)f ′

�(g, s).

Proposition 4.1.4. Denote by f ′′
� (g, s) the inducing section satisfying the first two enu-

merated properties above, but with P12 replaced with P21 and f ′′
� (1, s) = f �

1f �
2 . Then

M(s23) ◦ M(s12)f ′
�(g, s) = C�(s)f ′′

� (g, s − 3) (3)

with

C�(s) =
( s−�−1

2 )�/2

(s/2 − 1)�/2+1
=

Γ
(

s−1
2

)
Γ

(
s
2 − 1

)
Γ

(
s−�−1

2
)

Γ
(

s+�
2

)
up to exponential factors and nonzero constants.

Proof. We begin by constructing the inducing section f ′
�(g, s) explicitly. Throughout, we 

compute up to nonzero scalars.
Let Φ� : R3 → V� be given by Φ�(v) = v�e−||v||2 , where we consider v ∈ V1 and v� in 

the quotient V� of the �-th symmetric power of V1. Then

f ′
�(g, s) = 1

Γ((s + �)/2)

∫
GL1(R)

|t|sΦ�(tg−1b1) dt.

One checks easily that M(s23) ◦ M(s12)f ′
�(g, s) is K ′-equivariant and lands in the 

induction space as specified in the statement of the proposition. Thus it suffices to 
compute this intertwiner when g = 1. This, then, is computed by

Γ((s+ �)/2)M(s23)◦M(s12)f ′
�(1, s) =

∫
× 2

|t|s+�(ub1 + vb2 + b3)�e−(u2+v2+1)t2
dt du dv.
R ×R
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Under the change of variables indicated above,

ub1 + vb2 + b3 = 1
2

(
(v − i)x2 + 2iuxy + (v + i)y2)

= zf2
1 − 2if1f2 + z∗f2

2

where z = v + iu. One obtains that

C�(s) =
∫
C

(zf2
1 − 2if1f2 + z∗f2

2 )�

(|z|2 + 1)(�+s)/2 dz.

Because of the S1 ⊆ C× symmetry of the domain of integration, only the coefficient 
of f �

1f �
2 contributes. This coefficient is immediately seen to be

∑
0≤k≤�/2

�!
k!k!(� − 2k)!z

k(z∗)k(−2i)�−2k.

Now

∫
C

|z|2k

(|z|2 + 1)(�+s)/2 dz = 2π

∞∫
0

r2k+1

(r2 + 1)(�+s)/2 dr

·= Γ(k + 1)Γ((� + s)/2 − k − 1)
Γ((� + s)/2)

where the implied constant in the 
·= is independent of k.

Summing up, we have proved (3) with

C�(s) =
∑

0≤k≤�/2

2�−2k(−1)k �!
k!k!(� − 2k)!

Γ(k + 1)Γ((� + s)/2 − k − 1)
Γ((� + s)/2)

=
∑

0≤k≤�/2

2�−2k(−1)k �!
k!(� − 2k)!

1(
�+s

2 − k − 1
)

k+1

= 1
(s/2 − 1)�/2+1

∑
0≤j≤�/2

(−4)j �!
(2j)!(�/2 − j)! (s/2 − 1)j

making the substitution j = �/2 − k. The proposition thus follows from the following 
lemma. �
Lemma 4.1.5. One has

D�(s) :=
∑

(−4)j �!
(2j)!(�/2 − j)! (s/2 − 1)j = 2�

(
s − � − 1

2

)
�/2

.

0≤j≤�/2
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Proof. First,

∑
0≤j≤�/2

(−4)j �!
(2j)!(�/2 − j)! (s/2 − 1)j

= (−4)�/2
∑

0≤j≤�/2

(
�

2j

) (
1
2

)
�/2−j

(−1)�/2−j(s/2 − 1)j .

Now

(
�

2j

)
=

(
�/2
j

) ( 1
2
)

�/2( 1
2
)

j

( 1
2
)

�/2−j

.

Moreover ( 1
2
)

�/2 (−1)�/2−j( 1
2
)

j

=
(

1 − �

2

)
�/2−j

.

Thus

D�(s) = 2�
∑

0≤j≤�/2

(
�/2
j

)
(s/2 − 1)j((1 − �)/2)�/2−j .

By the binomial property (a + b)n =
∑

0≤k≤n

(
n
k

)
(a)k(b)n−k of the Pochhammer symbol, 

the lemma follows. �
4.2. Constant term

As mentioned above, we begin with the computation of the constant term of 
E�(g, Φf , s) along N . For general s, there are three terms: f�(g, Φf , s), an Eisenstein 
series EM

� (g, Φf , s) on the Levi subgroup M , and an intertwined inducing section 
M(w, s)f�(g, Φf , s).

We will see that at s = � + 1 (in the range of absolute convergence) the intertwined 
inducing section M(w, s)f� vanishes and that the Eisenstein series EM

� (g, Φf , s = � +1) is 
the automorphic function associated to a holomorphic weight � modular form on SO(V ′).

Let us first handle the intertwining operator. Denote by w the element of SO(V ) that 
exchanges e with f and is the identity on V ′. The intertwining operator is

M(w, s)f�(g, s) =
∫

V ′(A)

f�(wn(x)g, s) dx.

Lemma 4.2.1. Suppose � is even and � > n +1. Then M(w, s)f�(g, s) vanishes at s = � +1.
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Proof. The integral is absolutely convergent, so it suffices to see that the archimedean 
intertwiner

M∞(w, s)f�,∞(g, s) =
∫

V ′(R)

f�,∞(wn(x)g, s) dx

vanishes at s = � + 1. This follows from Proposition 4.1.2. �
The other nontrivial piece of the constant term is an Eisenstein series on the Levi 

subgroup M , EM
� (g, Φf , s = � + 1) associated to a new inducing section f ′

M (g, Φf , s) on 
M . This inducing section is defined as follows. Let b0 be an isotropic vector in V ′. The 
section f ′

M (g, Φf , s) is given by an integral

f ′
M (g, Φf , s) =

∫
((b0)⊥\V ′)(A)

f�(w0n(x)g, s) dx

where fw0 = b0 using the right action of G on V . Write f ′
M,∞(g, s) for the corresponding 

archimedean inducing section, so that

f ′
M,∞(g, s) =

∫
((b0)⊥\V ′)(R)

f�,∞(w0n(x)g, s) dx.

Denote by P ′ the parabolic subgroup of M that fixes Qb0 via this right action. With 
f ′

M (g, Φf , s) defined as above, EM
� (g, Φf , s) =

∑
γ∈P ′(Q)\M(Q) f ′

M (γg, Φf , s).
Regarding this Eisenstein series, one has the following proposition. For m ∈

SO(V ′)(R), set

fhol,�(m, s) = (b0m, v1 + iv2)�

||b0m||s+�
.

Note that at s = �, fhol,� is the inducing section for the automorphic function associated 
to a holomorphic weight � Eisenstein series on SO(V ′).

Proposition 4.2.2. Let the notation be as above.

(1) One has

f ′
M,∞(diag(t, m, t−1), s = � + 1) ·= |t|

(
fhol,�(m, s = �)x2� + fhol,�(mε′, s = �)y2�

)
.

(2) Suppose that Φf is Q-valued. The automorphic function π−�EM
� (g, Φf , s = � + 1)

corresponds to a holomorphic modular form on SO(V ′) of weight � with algebraic 
Fourier coefficients.
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Proof. The proof of the first part follows exactly as the proof of Proposition 3.3.2 of 
[Pol20b]. Note that the equality here is only true at the special values of s indicated; it 
is not true for general s.

Keeping track of the constants, the second part follows from the first, using the fact the 
absolutely convergent holomorphic Eisenstein series associated to a Q-valued inducing 
section has algebraic Fourier coefficients. See, e.g., [Shi82] or [Shu95]. �
4.3. Rank one Fourier coefficients

In this subsection, we prove that the rank one Fourier coefficients of π−�E�(g, Φf , s =
� + 1) are algebraic numbers. We also prove that certain of these Eisenstein series have 
rational Fourier coefficients. As the argument and computation is identical to the calcu-
lation of the rank one Fourier coefficients of the degenerate Heisenberg Eisenstein series 
of [Pol20b], we are very brief.

We require the following definition. Recall the M -invariant decomposition V = Qe ⊕
V ′ ⊕ Qf . We say a Schwartz-Bruhat function Φf on V (Af ) is block-tensorial if the 
following conditions are satisfied:

(1) There exists Schwartz-Bruhat functions Φe, Φf on Af and Φ′ on V ′(Af ) so that 
Φf (αe + v′ + βf) = Φe(α)Φ′(v′)Φf (β), where v′ ∈ V ′(Af ) and α, β ∈ Af .

(2) The functions Φ? with ? ∈ {e, f,′ } satisfy Φ?(μx) = Φ?(x) for all μ ∈ Ẑ×.

Note that the condition is invariant under translation by M(Af ).
Here is the result.

Proposition 4.3.1. Suppose � > n +1 so that the Eisenstein series E�(g, Φf , s) is absolutely 
convergent at s = � + 1 and that the Schwartz-Bruhat function Φf is Q-valued. Then the 
rank one Fourier coefficients of π−�E�(g, Φf , s = � + 1) are Q-valued. If moreover Φf is 
Q-valued and block-tensorial, then the rank one Fourier coefficients of π−�E�(g, Φf , s =
� + 1) are Q-valued.

Proof. The first step of the proof is the fact that these rank one Fourier coefficients of 
E�(g, Φf , s = � + 1) are Euler products, given by an integral

∫
V ′(Q)\V ′(A)

ψ((η, x))E�(g, Φf , s = � + 1) dx

=
∫

(η)⊥(A)\V ′(A)

ψ((η, x))f(γηn(x)g, Φf , s = � + 1) dx (4)

if η �= 0 is isotropic. Here γη ∈ G(Q) satisfies fγη = η ∈ V ′(Q).
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To prove (4), one computes that in the range of absolute convergence, the left-hand 
side is equal to a sum of two terms: the term appearing on the right of (4) and an integral∫

V ′(A)

ψ((η, x))f(wn(x)g, Φf , s) dx. (5)

The content of (4) is that (5) vanishes at s = � + 1 if η is isotropic. To see this, note 
that the integral is absolutely convergent, so it suffices to see that the archimedean 
integral vanishes at s = � + 1 for such an η. This vanishing could be obtained by the 
arguments used to prove Theorem 3.2.5 in [Pol20b]. However, it also follows immediately 
from Corollary 4.5.8 below, so we omit this argument.

The archimedean and unramified local integrals that arise from the right-hand side of 
(4) are computed just as in section 3.4 of [Pol20b]. In this case, the unramified finite adelic 
integral gives a rational number, equal to 1 almost everywhere, and the archimedean 
integral using f�,∞(g, �; s) gives the π�. Finally, the finitely many “bad” local integrals 
at the finite places give algebraic numbers.

We now sketch how to prove these facts about the local integrals∫
(η)⊥(Qp)\V ′(Qp)

ψ((η, x))f(γηn(x)g, Φp, s = � + 1) dx. (6)

Plugging in the definition of f(g, Φp, s), we obtain that (6) is equal to

∫
Q×

p

∫
(η)⊥(Qp)\V ′(Qp)

ψ((η, x))|t|�+1Φp(tη + t(η, x)f) dx dt. (7)

We can identify (η)⊥(Qp)\V ′(Qp) with Qp via the map x �→ (η, x). Thus (7) is equal to

∫
Q×

p

∫
Qp

ψ(y/t)Φp(tη + yf)|t|� dt dy. (8)

The function (t, y) �→ Φp(tη + yf) is a Schwartz-Bruhat function Φ′
p(t, y) on Q2

p, so 
the evaluation of (8) is the same calculation that one does to compute of the Fourier 
coefficients of Eisenstein series on GL2. For the reader’s convenience, we now explain 
how to analyze (8). First, without loss of generality, we can assume Φ′

p(t, y) is a pure 
tensor, so that Φ′

p(t, y) = Φ1(t)Φ2(y), with Φ1, Φ2 Q-valued if Φp is Q-valued. Then (8)
becomes ∫

×

|t|�Φ1(t)Φ̂2(1/t) dt, (9)

Qp
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where Φ̂2 denotes the Fourier transform of Φ2; note that it is valued in Q if Φ2 is Q-
valued, and valued in the cyclotomic extension of Q if Φ2 is Q-valued. Because Φ̂2 is a 
Schwartz-Bruhat function, the integral (9) is actually a finite sum, and equal to 1 almost 
everywhere. This proves the desired facts about the local integral (6).

For the rationality statement, note that we know from above that the local integrals 
(6) are equal to 1 almost everywhere are valued in the cyclotomic extension of Q at 
finitely many places, using that Φp is Q-valued. We claim that these local integrals are 
in fact valued in Q. To see this, one applies an element σ of the Galois group Gal(Q/Q)
to (6). One obtains an integral∫

(η)⊥(Qp)\V ′(Qp)

ψ(μ(η, x))f(γηn(x)g, Φp, s = � + 1) dx (10)

where μ is the value of the p-adic cyclotomic character of σ. Now, making a change 
of variables x �→ μ−1x in (10), one arrives at (6) because Φf is block-tensorial. This 
completes the proof. �
4.4. Rank two Fourier coefficients: finite part

In this subsection we do the finite part of the calculation of the rank two Fourier 
coefficients of our Eisenstein series. The result of this calculation is well-known; it can be 
extracted from [Shu95]. We briefly give the computation for the convenience of the reader. 
Throughout this subsection, F is a local non-archimedean field with ring of integers O, 
uniformizer p, and |O/p| = q.

The local section for the Eisenstein series is∫
GL1(F )

|t|sΦp(t(0, 0, 1)g) dt.

Here Φp is a Schwartz-Bruhat function on V (F ) and V (F ) = Fe ⊕ V ′ ⊕ Ff . For the 
rank two Fourier coefficients, the integral that must be calculated is

J(s, η, Φp) :=
∫

GL1(F )

∫
V ′(F )

ψ((η, x))Φp(t(1, x, −q′(x))|t|s dt dx.

Here η is a rank two element of V ′, i.e. (η, η) �= 0.
Assume that Φp is unramified, i.e., that Φp is the characteristic function of the lattice 

Oe ⊕ V ′(O) ⊕ Of , where V ′(O) is such that V ′(O/p) is a non-degenerate split quadratic 
space over O/p. Breaking into pieces as determined by the valuation of t, one obtains

J(s, η, Φp) =
∑
r≥0

|p|rs

⎛⎜⎝ ∫
−r ′

ψ((η, x)) char(prq′(x) ∈ O) dx

⎞⎟⎠ .
p V (O)
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In this unramified case, we will check that the terms with r ≥ 2 vanish and will calculate 
the r = 1 term explicitly.

The vanishing of the terms with r ≥ 2 follows from the following lemma. If η ∈ V ′(F ), 
we say that η is unramified if η ∈ V ′(O) and q′(η) ∈ O×.

Lemma 4.4.1. Suppose r ≥ 2, V ′(O/p) is a non-degenerate quadratic space and η is 
unramified. Then

∑
x∈V ′(O/pr),q′(x)≡0 (mod pr)

ψ

(
(η, x)

pr

)
= 0.

Proof. The idea is to consider together all the x with fixed reduction in V ′(O/pr−1). 
Specifically, suppose x ∈ V ′(O/pr), q′(x) ≡ 0 (mod pr). Consider x + pr−1ε for some 
ε ∈ V ′(O). Then 1

pr q′(x +pr−1ε) = 1
pr (q′(x) +pr−1(x, ε) +p2r−2q′(ε)). As r ≥ 2, 2r−2 ≥ r

so this is in O if and only if (x, ε) ∈ pO. The point is that for x ∈ V ′(O/p) fixed with 
q′(x) ≡ 0, there is ε with (x, ε) ∈ pO and (η, ε) ∈ O×. Indeed, if (η, ε) ≡ 0 whenever 
(x, ε) ≡ 0, then x and η would be O× proportional in V ′(O/p). But q′(η) �≡ 0 while 
q′(x) ≡ 0 by assumption, so such an ε can be found. Perturbing the sum of those terms 
with reduction x by ε, one gets 0, as desired. �

For the r = 1 term, we begin with the following lemma. Let Un be the split quadratic 
space over O, i.e., Un = O2n with quadratic form qn(x1, . . . , xn, y1, . . . , yn) = x1y1 +
· · · + xnyn.

Lemma 4.4.2. Denote by C(n) the number of elements u of Un(O)/p with qn(u) ≡ 0. 
Then C(1) = 2q − 1 and C(n + 1) = qC(n) + (q − 1)q2n.

Proof. The formula for C(1) is clear. As for the recurrence relation, note that the ele-
ments in Un+1(O/p) with qn+1 ≡ 0 are either of the form (0, un, ∗) with qn(un) ≡ 0 or 
(∗, un, y1) with y1 determined. The recurrence follows. �

We can now calculate the r = 1 term in case V ′ is split, even dimensional by induction 
on n. Define

Sn =
∑

v∈Un(O/p),q(v)≡0 (mod p)

ψ((η, v)/p).

Lemma 4.4.3. Suppose η = (1, 0, . . . , 0, 1). Then Sn+1 = −qn.

Proof. First we claim that

Sn+1 = −
∑

ψ(−q(v)/p). (11)

v∈Un(O/p)
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To see this, note that if v ∈ Un+1(O/p) with q(v) ≡ 0, then either v = (0, v′, ∗) with 
q′(v′) ≡ 0 or v = (x1, v′, −x−1

1 q(v′)) with x1 ∈ O×. Summing over the first set of v’s 
gives 0, because 

∑
y1∈O/p ψ(y1/p) = 0. Summing over the second set of v’s gives

∑
x1∈(O/p)×,v′∈Un

ψ((x1 − x−1
1 q(v′))/p).

But note that

∑
v′∈Un(O/p)

ψ(q(v′)/p) =
∑

v′∈Un(O/p)

ψ(αq(v′)/p)

for any α ∈ O×, because the split quadratic form q takes all values. Thus

Sn+1 =

⎛⎝ ∑
x1∈(O/p)×

ψ(x1/p)

⎞⎠ ⎛⎝ ∑
v′∈Un(O/p)

ψ(−q(v′)/p)

⎞⎠
which gives (11).

From (11), one can calculate Sn+1 in terms of C(n), by breaking the sum up into 
those v with q(v) ≡ 0 and those v with q(v) �≡ 0. One obtains

Sn+1 = C(n) + (−1)
(

q2n − C(n)
q − 1

)
= − q

q − 1(C(n) − q2n−1).

But now by Lemma 4.4.2 one obtains

C(n + 1) − q2n+1

q − 1 = q

(
C(n) − q2n−1

q − 1

)
so that Sn+1 = qSn. The lemma follows. �

Putting everything together, we arrive at the following proposition.

Proposition 4.4.4. Suppose dim(V ) is even, η is unramified, V ′(O/p) is a non-degenerate 
quadratic space, and Φp is unramified. Then

J(s, η, Φp) = 1 − |p|s− dim V ′
2 +1 = 1

ζp(s − dim(V ′)/2 + 1) .

Consequently, if � is even and 4 divides dim(V ′) then the product of the unramified 
factors at s = � + 1 gives π−(�+2−dim(V ′)/2) times a rational number.

We also must understand what happens at the bad finite places:
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Lemma 4.4.5. Suppose that Φp is Q-valued, and f(g, Φp, s) =
∫

GL1(Qp)|t|sΦp(t(0, 0, 1)g) dt. 
Then ∫

V ′(Qp)

f(w�n(x)g, Φp, s)ψ((η, x)) dx

is finite and valued in Q(ψp) at s = n a positive integer. If moreover Φp is block-tensorial, 
then the integral is valued in Q.

Proof. First, changing Φp to Φg
p, Φg

p(v) = Φp(vg), one can assume that g = 1. Now, from 
[Kar79, Theorem 3.6], one obtains that there is a compact set U of V ′(Qp) so that∫

V ′(Qp)

f(w�n(x), Φp, s)ψ((η, x)) dx =
∫
U

f(w�n(x), Φp, s)ψ((η, x)) dx. (12)

But now, because Φp is Schwartz, f(·, Φp, s) is right invariant under a compact open, 
so that the right-hand side of (12) is a finite sum. The lemma follows because Φp being 
R-valued (for some ring R) implies f(g, Φp, s) is equal to P (q−s)(1 − q−s)−1 for some 
R-valued polynomial P (X).

The rationality claim of the lemma follows just as in the proof of Proposition 4.3.1. �
4.5. Rank two Fourier coefficients: archimedean part

In this subsection, we calculate the archimedean contribution to the rank two Fourier 
coefficients of the Eisenstein series E�(g, Φf , s). More precisely, let f�(g, s) denote the 
V�-valued section of the Eisenstein series on G. The main result of this subsection is the 
computation of the Fourier transform

I(ω, �) =
∫

V ′(R)

e−i(ω,x)f�(wn(x), s = � + 1) dx. (13)

For the involution ι on V that gives rise to the Cartan involution, write ||v||2 :=
(v, ι(v)) for the associated positive-definite norm. Before beginning this computation, let 
us note that f�(wn(x), s) is the function

x �→ (pV3((1, x, −q(x)))�

||(1, x, −q(x)||s+�
.

Following [KO03, (2.8.1)] define

τ(xn, x2)2 =
(

1 + ||xn||2 − ||x2||2
)2

+ ||x2||2.
4
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One has the following simple lemma. Denote by pV3 : V = V3⊕Vn+1 → V3 the orthogonal 
projection.

Lemma 4.5.1. Suppose w ∈ V ′(R) and w = w2 + wn is the decomposition of w into 
V2 ⊕ Vn, and v = (1, w, −q′(w)) so that v is isotropic. Then

pV3(v) = − 1
2
√

2

(
(
√

2w2, iv1 + v2)x2 + (||w2||2 − ||wn||2 − 2)xy + (
√

2w2, iv1 − v2)y2
)

and

||v||2 = τ(
√

2wn,
√

2w2)2.

Proof. With notation as above, we have

v =
(

w2 + 1
2(1 − q′(w))(e + f)

)
+

(
wn + 1

2(1 + q′(w))(e − f)
)

.

Thus

pV3(v) = w2 + 1
2(1 − q′(w))(e + f)

= −1
2

(
(w2, iv1 + v2)x2 +

√
2(q2(w2) − qn(wn) − 1)xy + (w2, iv1 − v2)y2

)
= − 1

2
√

2

(
(
√

2w2, iv1 + v2)x2 + (||w2||2 − ||wn||2 − 2)xy + (
√

2w2, iv1 − v2)y2
)

as claimed.
One computes

||(1, w, −qV ′(w))||2 = ((1, w, −qV ′(w)), (−qV ′(w), ι(w), 1))

= 1 + (qV ′(w))2 + ||w2||2 + ||wn||2

= 1 +
(

||w2||2 − ||wn||2
2

)2

+ ||w2||2 + ||wn||2

=
(

||w2||2 − ||wn||2
2 − 1

)2

+ 2||w2||2

= τ(
√

2wn,
√

2w2)2.

This gives the lemma. �
To compute (13), we start with the answer, and compute the inverse Fourier transform. 

This strategy is only possible because the unipotent group N is abelian, and this is why 
modular forms on G are much easier than modular forms on the quaternionic exceptional 
groups.
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Thus we wish to compute

Iv(x; �) =
∫

V ′(R)

ei(ω,x) char(q(ω) > 0)q(ω)A

(
−|(ω, v1 + iv2)|

(ω, v1 + iv2)

)v

Kv(
√

2|(ω, v1 + iv2)|) dω.

(14)
Eventually, we will substitute A = � − n/2. The computations are inspired by, and use 
results from [KO03] and [KM11]. Compare also [Shi82].

Let us first explain that the integral Iv(x; �) is absolutely convergent if A = � −n/2 ≥ 0
and n ≥ 1.

Lemma 4.5.2. Suppose A = � −n/2 ≥ 0 and n ≥ 1. Then the integral Iv(x; �) is absolutely 
convergent.

Proof. Taking absolute values, one obtains∫
V ′(R)

char(q(w) > 0)q(ω)AKv(
√

2|(ω, v1 + iv2)|) dω

= C

∫
t2,tn

char(t2 > tn)(t2
2 − t2

n)AKv(
√

2t2)t2tn−1
n dt2 dtn

= C

∞∫
t2=0

∫
0≤w≤1

t2A+n+1
2 (1 − w2)AKv(

√
2t2)wn−1 dw dt2

= C ′
∞∫

0

t2A+n+1
2 Kv(

√
2t2) dt2

for positive constants C, C ′. Here we have made the variable change tn = wt2, and 
because A ≥ 0 and n ≥ 1 the integral over w is finite. Because A = � −n/2, 2A +n +1 =
2� + 1. Thus because |v| ≤ 2�, t2�+1

2 Kv(
√

2t2) is 0 at t2 = 0 so the integral over t2 in the 
final line above is finite. �

As the integral defining Iv(x; �) is absolutely convergent, we may apply the Fourier 
inversion theorem, as mentioned above.

The computation of Iv(x; �) is given in the following proposition. We will assume v ≥ 0
in this proposition. Because K−v(y) = Kv(y), we can obtain the case Iv(x; �) for v < 0
by the case of v > 0 by exchanging v2 with its negative. Recall the Gauss hypergeometric 
function 2F1(a, b; c; z) and Appell’s hypergeometric function F4(a, b; c; d; x; y).

Proposition 4.5.3. Suppose v ≥ 0. One has

Iv(x; �) = (2π)(n+2)/22�−(n+v+2)/2(−x2, iv1 + v2)v Γ(� + v + 1)Γ(� − n/2 + 1)

Γ(v + 1)
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× F4(� + 1, � + 1 + v; � + 1; v + 1; −||xn||2/2; −||x2||2/2).

Proof. From [KM11, (3.3.4) page 55] (which cites [Hel84, Lemma 3.6, Introduction]), 
one has ∫

Sm−1

eiλ(η,ω)φ(ω) dω = (2π)m/2i�φ(η)λ1−m/2Jm/2−1+�(λ) (15)

if φ is Harmonic of degree �, λ > 0, and η is in the sphere Sm−1. Here J• is the J-Bessel 
function.

Let S(Vn) = {x ∈ Vn : ||x||2 = 1} be the sphere of radius one in Vn, and similarly let 
S(V2) be the sphere of radius one in V2. We write ω = t2σ2 + tnσn, with t2, tn ∈ R>0, 
σ2 ∈ S(V2) and σn ∈ S(Vn). Let

φv(ω2) =
(

−|(ω, v1 + iv2)|
(ω, v1 + iv2)

)v

Kv(
√

2|(ω, v1 + iv2)|).

Define x2 ∈ V2 and xn ∈ Vn so that x = x2 + xn. Then we compute

Iv(x; �) =
∫

t2,tn,σ2,σn

char(t2 > tn)(t2
2 − t2

n)Aeit2(σ2,x2)eitn(σn,xn)

× φ(t2σ2)t2tn−1
n dt2 dtn dσ2 dσn

= (2π)n/2
∫

t2,tn,σ2

char(t2 > tn)(t2
2 − t2

n)Aeit2(σ2,x2)φ(t2σ2)(tn||xn||)1−n/2

× Jn/2−1(tn||xn||)t2tn−1
n dt2 dtn dσ2.

Now by (15) we have∫
σ2∈S(V2)

eit2(σ2,x2)φv(t2σ2) dσ2 = (2π)
(

|(x2, iv1 − v2)|
(x2, iv1 − v2)

)v

Jv(||x2||t2)Kv(
√

2t2).

Thus

Iv(x; �) = (2π)(n+2)/2
(

|(x2, iv1 − v2)|
(x2, iv1 − v2)

)v

||xn||1−n/2

×
∫

t2,tn

char(t2 > tn)(t2
2 − t2

n)At2tn/2
n Kv(

√
2t2)Jv(||x2||t2)Jn/2−1(||xn||tn) dtn dt2.

We now compute the integral over tn. One has

t2∫
(t2

2 − t2
n)Atn/2

n Jn/2−1(||xn||tn) dtn = (t2)2A+n/2+1
1∫
(1 − w2)Awn/2Jn/2−1(t2||xn||w) dw
0 0
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= 2AΓ(A + 1)||xn||−(A+1)(t2)A+n/2Jn/2+A(||xn||t2)

where the last line is by [GR07, 6.567.1].
Combining, we obtain

Iv(x; �) = (2π)(n+2)/2
(

|(x2, iv1 − v2)|
(x2, iv1 − v2)

)v

||xn||−(A+n/2)2AΓ(A + 1)

×
∞∫

0

t
A+n/2+1
2 Jn/2+A(||xn||t2)Jv(||x2||t2)Kv(

√
2t2) dt2.

This last integral over t2 is worked out in [KO03, page 586]. Following [KO03], by e.g., 
[GR07, 6.578.2], one obtains

∞∫
0

t
A+n/2+1
2 Jn/2+A(||xn||t2)Jv(||x2||t2)Kv(

√
2t2) dt2

= 2−(1+v/2)||xn||(n/2+A)||x2||v Γ(A + n/2 + 1 + v)
Γ(v + 1)

× F4(A + n/2 + 1, A + n/2 + 1 + v; A + n/2 + 1; v + 1; −||xn||2/2, −||x2||2/2).

Set � = A + n/2, and note that

||x2||
(

|(x2, iv1 − v2)|
(x2, iv1 − v2)

)
= −(x2, iv1 + v2). (16)

Taking (16) into account, the proposition follows. �
Corollary 4.5.4. Suppose v ≥ 0 and ||x2|| + ||xn|| <

√
2. Then

τ(
√

2xn,
√

2x2)2�+1Iv(x; �)

= (2π)(n+2)/22�−(n+v+2)/2(−x2, iv1 + v2)v Γ(� + v + 1)Γ(� − n/2 + 1)
Γ(v + 1)

× τ(
√

2xn,
√

2x2)�−v
2F1

(
v − �

2 ,
v + � + 1

2 ; v + 1; 2||x2||2

τ(
√

2xn,
√

2x2)2

)
.

Proof. By [KO03, page 586, Lemma 5.7], if ||xn|| + ||x2|| <
√

2,

F4(� + 1, � + 1 + v; � + 1; v + 1; − ||xn||2/2, −||x2||2/2) = τ(
√

2x2,
√

2xn)−(�+v+1)

× 2F1

(
v − �

2 ,
� + v + 1

2 ; v + 1
2 ; 2||x2||2

τ(
√

2x2,
√

2xn)2

)
.

The corollary follows. �
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We now restate Corollary 4.5.4 in a slightly different form. Define

Jv(x; �) = Γ(� + 1)
Γ(� − n/2 + 1)π−(n+2)/2τ(

√
2xn,

√
2x2)2�+1 Iv(x; �)

(� + v)!(� − v)! .

Corollary 4.5.5. For v ≥ 0 and ||xn|| + ||x2|| <
√

2, one has Jv(x; �)

= 2�−v

(
�

v

)
(−

√
2x2, iv1 + v2)vτ(

√
2xn,

√
2x2)�−v

2F1

×
(

v − �

2 ,
v + � + 1

2 ; v + 1; 2||x2||2

τ(
√

2xn,
√

2x2)2

)
.

For v ≤ 0, one has

Jv(x; �) =
(

−a∗

a

)|v|
J|v|(x; �),

where a =
√

2(x2, iv1 + v2).

Proof. The first part of the corollary has already been proved. The second follows imme-
diately from the first by replacing v2 with −v2 and noting that 

√
2(x2, iv1 − v2) = −a∗

if a =
√

2(x2, iv1 + v2). �
We now use the following lemma. We will apply it with

a = −
√

2(x2, iv1 + v2), b =
∣∣∣∣1 + 2||xn||2 − 2||x2||2

4

∣∣∣∣ .

Lemma 4.5.6. For � ≥ 0 even, a ∈ C× and b > 0 with |a| < b, one has

(ax2 + 2bxy − a∗y2)� =
∑

0≤v≤�

(
�

v

)
2�−vδ

1/2
v,0 (xy)�−vx2vav(|a|2 + b2)(�−v)/2

× 2F1

(
v − �

2 ,
v + � + 1

2 ; v + 1; |a|2
|a|2 + b2

)
+

∑
0≤v≤�

(
�

v

)
2�−vδ

1/2
v,0 (xy)�−vy2v(−a∗)v(|a|2 + b2)(�−v)/2

× 2F1

(
v − �

2 ,
v + � + 1

2 ; v + 1; |a|2
|a|2 + b2

)
.

Here δ1/2
v,0 is equal to 1/2 if v = 0 and equal to 1 otherwise.
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Proof. Denote by Sa
� the first sum on the right-hand side of the displayed equation in the 

statement of the lemma and Sa∗

� the second sum on the right-hand side this equation.
One has the well-known identity

2F1(a′, b′; c′; z) = (1 − z)−a′
2F1

(
a′, c′ − b′; c′; z

z − 1

)
.

This follows from the integral representation

2F1(a′, b′; c′; z) = Γ(c′)
Γ(b′)Γ(c′ − b′)

1∫
0

tb′−1(1 − t)c′−b′−1(1 − zt)−a′
dt,

valid for Re(c′) > Re(b′) > 0, by making the substitution t �→ 1 − t. Thus

(|a|2 + b2)(�−v)/2
2F1

(
v − �

2 ,
v + � + 1

2 ; v + 1; |a|2
|a|2 + b2

)
= b�−v

2F1

(
v − �

2 ,
v − �

2 + 1
2; v + 1; −|a|2

b2

)
.

We thus must evaluate the sum

∑
0≤v≤�

(
�

v

)
(2bxy)�−vavδ

1/2
v,0 x2v

2F1

(
v − �

2 ,
v − �

2 + 1
2; v + 1; −|a|2

b2

)

Now, note that if δ ≥ 0 is an integer then 
(
− δ

2
)

m

(
− δ

2 + 1
2
)

m
=

( 1
4
)m δ!

(δ−2m)! . Thus, 
plugging in the definition of 2F1, we obtain

Sa
� =

∑
0≤v≤�,0≤m

(
�

v

)
(2bxy)�−vavδ

1/2
v,0 x2v(−1)m

(
�−v
2m

)
(2m)!

(v + 1)mm!

(
|a|
2b

)2m

=
∑

0≤v≤�,0≤m

�!
(� − v − 2m)!(v + m)!m! (−1)m(2bxy)�−v−2mav|a|2m(xy)2mδ

1/2
v,0 x2v.

Similarly,

Sa∗

� =
∑

0≤v≤�,0≤m

�!
(� − v − 2m)!(v + m)!m! (−1)m(2bxy)�−v−2m(−a∗)v|a|2m(xy)2mδ

1/2
v,0 y2v.

The lemma now follows easily. �
The condition |a| < b in Lemma 4.5.6 can now be removed:

Corollary 4.5.7. The statement of Lemma 4.5.6 holds under the condition b > 0, and not 
just b > |a|.
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Proof. Suppose b > 0 and set t = a/b, so that t ∈ C. Dividing both sides of the statement 
of Lemma 4.5.6 by b�, one obtains

(tx2 + 2xy − t∗y2)� =
∑

0≤v≤�

(
�

v

)
2�−vδ

1/2
v,0 (xy)�−vx2vtv(|t|2 + 1)(�−v)/2

× 2F1

(
v − �

2 ,
v + � + 1

2 ; v + 1; |t|2
|t|2 + 1

)
+

∑
0≤v≤�

(
�

v

)
2�−vδ

1/2
v,0 (xy)�−vy2v(−t∗)v(|t|2 + 1)(�−v)/2

× 2F1

(
v − �

2 ,
v + � + 1

2 ; v + 1; |t|2
|t|2 + 1

)
.

From Lemma 4.5.6, the above equality holds for t ∈ C with |t| < 1. However, both sides 
are real analytic functions of t, so their equality for |t| < 1 implies their equality for all 
t ∈ C. The corollary follows. �

Combining Corollary 4.5.7 with Corollary 4.5.5, we obtain:

Corollary 4.5.8. Set a1 =
√

2(x2, iv1 + v2) and b1 = (||x2||2 − ||xn||2 − 2)/2. Then

Γ(� + 1)
Γ(� − n/2 + 1)π−(n+2)/2

∑
−�≤v≤�

Iv(x; �) x�+vy�−v

(� + v)!(� − v)! = (a1x2 + 2b1xy − a∗
1y2)�

τ(
√

2xn,
√

2x2)2�+1
.

(17)

Proof. First suppose ||x2|| + ||xn|| <
√

2. Note that the assumption ||x2|| + ||xn|| <
√

2
implies that b1 is negative, and thus b = |b1| = −b1. Therefore, from Corollaries 4.5.7 and 

4.5.5 the equality above holds so long as ||x2|| �= 0, ||xn|| �= 0, and b = |1 + ||xn||2−||x2||2

2 | �=
0. The conditions ||x2|| �= 0 and ||xn|| �= 0 are used in the manipulations used to prove 
Proposition 4.5.3. But now the absolute convergence computations for Iv(x; �) prove 
that Iv(x; �) is a continuous function of x. As both sides of (17) are continuous in x, the 
corollary follows in this case.

For the general case, it follows from Proposition 4.5.3 that Iv(x; �) is an analytic 
function of x2 and ||xn||2. Therefore, the equality (17) for ||x2|| + ||xn|| <

√
2 implies 

the equality for all x2, xn. �
We arrive at the main archimedean theorem of this subsection.

Theorem 4.5.9. The Fourier transform∫
′

e−2πi(ω,x)f�(wn(x), s = � + 1) dx = C�,n(2π)2�+2−dim(V ′)/2q(ω)�−n/2W2πω(1)

V (R)
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for a nonzero rational number C�,n.

Proof. Making the change of variable ω �→ 2πω in the integral Iv(x; �) of (14), one gets

(2π)−(2�+2)Iv(x; �) =
∫

V ′(R)

e2πi(ω,x)q(ω)�−n/2
(

−|(2πω, v1 + iv2)|
(2πω, v1 + iv2)

)v

× Kv(
√

2|(2πω, v1 + iv2)|) dω. (18)

From Corollary 4.5.8, one obtains

π−(2�+2)
∑

−�≤v≤�

Iv(x; �) x�+vy�−v

(� + v)!(� − v)!
·= π(n+2)/2−(2�+2) (a1x2 + 2b1xy − a∗

1y2)�

τ(
√

2xn,
√

2x2)2�+1
(19)

in the notation of that corollary, where the 
·= means that the two sides are equal up 

to a nonzero rational number. By applying Lemma 4.5.1, the right-hand side of (19) is 
π(n+2)/2−(2�+2)f�(wn(x), s = � + 1). Thus from (18), one gets

π2�+2−dim(V ′)/2
∫

V ′(R)

e2πi(ω,x)q(ω)�−n/2W2πω(1) dω
·= f�(wn(x), s = � + 1).

The theorem follows by Fourier inversion. �
Combining Theorem 4.5.9 with Proposition 4.2.2 and Proposition 4.3.1 proves the 

first main theorem of this paper:

Theorem 4.5.10. Suppose � > n + 1 is even, dim(V ′) is a multiple of 4 and Φf is valued 
in Q. Then the Fourier coefficients of the Eisenstein series π−�E(g, Φf , �; s) at s = � + 1
are algebraic numbers. If moreover Φf is Q-valued and block-tensorial, then the Fourier 
coefficients of the Eisenstein series π−�E(g, Φf , �; s) at s = � + 1 are rational numbers.

5. Constant terms

In this section, we show that the constant terms of modular forms on SO(4, n + 2)
(in the sense of [Pol20a]) to SO(3, n + 1) are modular forms in the sense of section 3.1. 
Moreover, the quaternionic exceptional groups of type F4, E6, E7, E8 have Levi subgroups 
L of type B3,3, D4,3, SU(2) ×D5,3 and D7,3 respectively. We also check that the constant 
terms of modular forms on these exceptional groups to the above L are modular forms 
on L. More precisely, in section 3 we defined modular forms on groups SO(V ), but the 
definition extends immediately to groups L isogenous to these SO(V ), which is what 
occurs for the above exceptional groups.
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5.1. Orthogonal groups of rank four

Let V4,n+2 = H ⊕ V be the rational quadratic space that is the orthogonal direct sum 
of V and a hyperbolic plane. The signature of V is (4, n +2). Denote by e0, f0 a standard 
basis of the hyperbolic plane, so that the pairing (e0, f0) = 1. Denote by P0 = M0N0 the 
parabolic subgroup of SO(V4,n+2) that stabilizes the line spanned by e0 for the left action 
of SO(V4,n+2) on V4,n+2. The Levi subgroup M0 is defined to be the one that stabilizes 
both Span(e0) and Span(f0). Extend the involution ι on V to V4,n+2 by defining it to 
exchange e0 and f0. We take as a Cartan involution on SO(V4,n+2)(R) conjugation by ι. 
Let K4,n+2 be the maximal compact subgroup that is the fixed points of this involution.

In [Pol20a] we defined and considered modular forms on the group SO(V4,n+2). If ϕ
is a modular form of weight � ≥ 1 on SO(V4,n+2), one can take the constant term of ϕ
along N0 to obtain an automorphic function ϕN0 on M0. The purpose of this subsection 
is to prove that this constant term is a modular form on M0 of weight �, in the sense of 
section 3. This fact follows immediately from the following proposition.

To set up the proposition precisely and to prove it, we make a few notations. Let 
{Xγ}γ be a basis of p = p3,n+1 = V3 ⊗ Vn+1, {u1, . . . , un, un+1} be a basis of Vn+1, 
and w1, w2, w3 a basis of V3. Write y+ = e0 + f0 and y− = e0 − f0. Recall the operator 
D̃� from subsection 3.1, and the analogous operator from [Pol20a, subsection 7.1]. To 
distinguish these two operators, we write D̃4,n+2 for the one that acts on V�-valued 
automorphic functions on SO(V4,n+2) and similarly D̃3,n+1 for the one that acts on 
V�-valued automorphic functions on SO(V ). Analogously, we write D4,n+2, respectively 
D3,n+1, for the so-called Schmid operators, which by definition are the D̃’s followed by 
an appropriate SU(2)-contraction pr− : Y2 ⊗ Sym2�(Y2) → Sym2�−1(Y2).

Proposition 5.1.1. Let the notation be as above. Suppose ϕ′ : SO(V4,n+2)(R) → V� is left 
N0(R)-invariant, ϕ′(gk) = k−1 · ϕ′(g) for all k ∈ K4,n+2 and g ∈ SO(V4,n+2)(R), and 
D4,n+2ϕ′(g) = 0. Denote by ϕM0 the restriction of ϕ′ to SO(V )(R) ⊆ M0(R). Then 
D3,n+1ϕM0 = 0.

Proof. The proof follows without much difficulty, directly from the definitions.
With the above notation, we have

D̃4,n+2ϕ′ =
∑

γ

Xγϕ′ ⊗ X∨
γ +

∑
1≤j≤n+1

(y+ ∧ uj)ϕ′ ⊗ (y+ ∧ uj)∨

+ (y+ ∧ y−)ϕ′ ⊗ (y+ ∧ y−)∨ +
∑

1≤k≤3

(wk ∧ y−)ϕ′ ⊗ (wk ∧ y−)∨.

Note that restricting to M0 and applying pr− to the first term gives D3,n+1ϕM0 . 
Moreover, restricting the second term to M0 gives 0 because y+∧uj = 2e0∧uj −y−∧uj ∈
n0 ⊕ Lie(SO(n + 2)), and ϕ′ is invariant on the left under N0 and on the right under 
SO(n + 2). Thus we obtain
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D4,n+2ϕM0 = D3,n+1ϕM0 + pr−

⎛⎝ ∑
1≤j≤4

(hj ∧ y−)ϕ′ ⊗ (hj ∧ y−)∨

⎞⎠∣∣∣∣∣∣
M0

where {h1, h2, h3, h4} = {y+, w1, w2, w3} is a basis of the four-dimensional space V ι=1
4,n+2. 

Note that the pr−-term is linearly independent from the D3,n+1 term, because it contains 
a y∨

−. This proves that D3,n+1ϕM0 = 0, as desired. �
5.2. Exceptional groups

Suppose C is a rational composition algebra, with C ⊗ R positive definite. Set J =
H3(C) the Hermitian 3 × 3 matrices with coefficients in C and GJ the quaternionic 
exceptional group associated to J as in [Pol20a]. Thus GJ has rational root type F4 and 
is of Dynkin type F4, E6, E7 or E8 depending on if dim C is 1, 2, 4 or 8. Let QJ = LJVJ

be the standard maximal parabolic subgroup of GJ with Levi subgroup LJ of rational 
type B3. In this subsection, we prove that the constant term ϕVJ

of a modular form ϕ
of weight � on GJ is a modular form of weight � on LJ . Moreover, we prove that the 
rank one and rank two Fourier coefficients of ϕVJ

are the rank one and rank two Fourier 
coefficients of ϕ.

To state precisely these results and prove them, we now make some definitions. Let 
the simple roots of F4 be αj with 1 ≤ j ≤ 4. We label the simple roots so that αj is 
connected to αj+1 in the Dynkin diagram, for j = 1, 2, 3, and with α1, α2 the long roots:

◦ − − − −◦ ==>== ◦ − − − −◦;

the roots are labeled 1, 2, 3, 4 from left to right. Write a positive root as a four-tuple 
[n1, n2, n3, n4], which corresponds to 

∑
j njαj . The rational root spaces corresponding 

to long roots of F4 are one-dimensional while the rational root spaces corresponding to 
short roots spaces of F4 can be identified with the composition algebra C.

The Heisenberg parabolic of GJ that is central to [Pol20a] is the maximal parabolic 
with simple root α1 in its unipotent radical. We define QJ = LJVJ to be the standard 
maximal parabolic subgroup of GJ with simple root α4 in its unipotent radical VJ . Thus 
LJ has rational root type B3. The parabolic subgroup QJ of GJ defines a 5-step Z-
grading on the Lie algebra g(J) = Lie(GJ). Specifically, for j = −2, −1, 1, 2, set V j

J the 
subspace of g(J) consisting of those rational roots spaces [n1, n2, n3, n4] where n4 = j. 
Then V ±2

J are each a direct sum of 6 long root spaces and one short root space, while 
V ±1

J is a direct sum of 8 short root spaces. One has a direct sum decomposition

V −2
J ⊕ V −1

J ⊕ Lie(LJ) ⊕ V 1
J ⊕ V 2

J .

See also [SW11, section 2] for more on this Lie algebra decomposition.
As mentioned, the group LJ is, up to anisotropic factors, isogenous to SO(H3 ⊕ C) =

SO(V 2
J ). We now write down an explicit map LJ → GSO(V 2

J ). More specifically, LJ acts 
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on V 2
J by the adjoint action, and we write down the non-degenerate rational quadratic 

form on V 2
J that LJ preserves up to scalar. To be completely concrete, any element v of 

V 2
J is of the form

v = b1E13 + v1 ⊗ diag(b2, 0, 0) + δ3 ⊗

⎛⎜⎝ 0 0 0
0 b3 b0
0 b∗

0 b−3

⎞⎟⎠ + b−2E23 + v2 ⊗ diag(b−1, 0, 0)

in the notation of [Pol20a, section 4.2]. In this notation, the quadratic form on V 2
J is 

given by

1
2(v, v)J = b1b−1 − b2b−2 + b3b−3 − nC(b0),

where nC is the norm on the composition algebra C.

Proposition 5.2.1. This quadratic form is fixed up to scalar multiple by the Levi subgroup 
LJ .

Proof. Because LJ is connected, by virtue of being a reductive quotient of a parabolic 
subgroup of a connected group, to prove the proposition, it suffices to check it on the Lie 
algebra level. To prove it on the Lie algebra level, we check the semi-invariance of the 
quadratic form on V 2

J for certain group and Lie algebra elements, and piece together the 
results. Because LJ is defined to be the parabolic subgroup of type B3 in the F4 root 
system, we work in this root system.

First, consider the diagonal torus T = diag(t1, t2, t3) ∈ SL3 ⊆ GJ . The Lie algebra of 
this torus is in Lie(LJ ). This torus acts on v above to give

v′ = t1

t3
b1E13 + t1v1 ⊗ diag(b2, 0, 0)

+ t−1
3 δ3 ⊗

⎛⎜⎝ 0 0 0
0 b3 b0
0 b∗

0 b−3

⎞⎟⎠ + t2

t3
b−2E23 + t2v2 ⊗ diag(b−1, 0, 0).

Using that t1t2t3 = 1, one sees that the quadratic form is scaled by t1t2
t3

= t−2
3 .

Next, consider the subgroup P11 of M1
J ⊆ GJ that fixes the line spanned by e11 :=

diag(1, 0, 0) ∈ J . The group M1
J acts on the Eij as the identity. Suppose P11 satisfies 

pe11 = αe11. Then, in its action on J∨, P11 stabilizes the subspace 

⎛⎜⎝ 0 0 0
0 ∗ ∗
0 ∗ ∗

⎞⎟⎠ of J∨, 

because this subspace is e11 × J . Moreover, because
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⎛⎜⎝ 0 0 0
0 b3 b0
0 b∗

0 b−3

⎞⎟⎠
#

= (b3b−3 − n(b0))e11,

one has the p ∈ P11 scales the quantity b3b−3 − n(b0) by α. It follows that p scales the 
quadratic form by α.

The rest of Lie(LJ) is made up of nilpotent elements, and it is easy to check that they 
preserve the quadratic form on V 2

J . We give one such computation, and leave the rest to 

the reader. Consider n = v2 ⊗ X with X =

⎛⎜⎝ 0 0 0
0 c2 x1
0 x∗

1 c3

⎞⎟⎠. We check that n preserves 

the quadratic form. To see this, we compute (v, [n, v])J . Set Y =

⎛⎜⎝ 0 0 0
0 b3 b0
0 b∗

0 b−3

⎞⎟⎠. Then

[v2 ⊗ X, v] = −δ3 ⊗ (diag(b2, 0, 0) × X) − (X, Y )E23.

Consequently, −(v, [v2 ⊗ X, v])J = (e11 × Y, diag(b2, 0, 0) × X) + (−b2)(X, Y ) = 0, as 
desired. �

That the constant term ϕVJ
is a modular form of weight � on LJ follows immediately 

from the following proposition. Similar to subsection 5.1, let D̃J , DJ = pr− ◦D̃J denote 
the differential operators used to define modular forms on GJ and D̃, D = pr− ◦D̃ denote 
the differential operators used to define modular forms on LJ .

Proposition 5.2.2. Let the notation be as above. Suppose ϕ′ : GJ(R) → V� is left VJ(R)-
invariant, ϕ′(gk) = k−1ϕ′(g) for all k ∈ KJ and g ∈ GJ(R), and DJϕ′(g) = 0. Denote 
by ϕLJ

the restriction of ϕ′ to LJ(R). Then DϕLJ
= 0.

Proof. Set L′ to be a subgroup of GJ(R) that contains LJ(R) and has Lie algebra 
V −2

J ⊕ Lie(LJ ) ⊕ V 2
J . Denote by Q′ = L′ ∩ QJ (R); Q′ is a parabolic subgroup of L′ with 

Levi subgroup LJ(R). Then L′ has real root type B4; in particular, it is isogenous to 
SO(4, 4 + dim(C)).

The idea of the proof is simple. We check that ϕ′ restricted to L′ satisfies the as-
sumptions of the ϕ′ of Proposition 5.1.1. That is, denoting ϕ′′ := ϕ′|L′ , we check that 
D4,4+dim(C)ϕ

′′ = 0. The other assumptions on the ϕ′ of Proposition 5.1.1 are immedi-
ately verified. Then, applying Proposition 5.1.1 to ϕ′′, one concludes that

ϕ′′|LJ
= (ϕ′|L′) |LJ

= ϕLJ

is annihilated by D.
So, it remains to check that D4,4+dim(C)ϕ

′′ = 0. We use the notation of [Pol20a, 
section 6.3]. For an element r in the composition algebra C, and an integer j ∈ {1, 2, 3}
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let xj(r) be the corresponding element of H3(C) = J . Note that if v ∈ Span{v1, v2, v3}, 
so that v ⊗ xj(r) ∈ g(J), then

1
2 (v ⊗ xj(r) + ι(v) ⊗ xj(r)) = nv(xj(r))

is in the compact Lie algebra2 Lie(L0(J)). Again, see [Pol20a, section 6.3].
The vector space V 1

J of g(J) is spanned by elements of the form v⊗xj(r) and δ⊗xj(r). 
Suppose X ∈ V1 so that X − θ(X) ∈ pJ . We have X − θ(X) = 2X − (X + θ(X)), with 
X +θ(X) ∈ Lie(L0(J)). Consequently, if g ∈ Q′, then ((X − θ(X))ϕ′) (g) = 0 because ϕ′

is left VJ(R)-invariant and right L0
J -invariant. It follows formally that one has an equality 

DJϕ′(g) = D4,4+dim(C)ϕ
′(g). As DJϕ′ = 0 by assumption, the proposition follows. �

In the above results, we checked that the constant term ϕVJ
of a modular form ϕ on 

GJ satisfies a particular differential equation. In order to incorporate results about the 
Fourier expansion of ϕVJ

, we will–for convenience–make an additional assumption on 
these constant terms. Namely, we will assume that these constant terms are pullbacks 
from GSO(V 2

J ) of modular forms on this latter group. It is clear from the definition of 
the Eisenstein series ELJ

8 (g, s) after the statement of Theorem 6.0.2 that this assumption 
holds in our case of interest, namely, for ϕ = θntm. Here is the definition of modular 
forms on GSO(V 2

J ).

Definition 5.2.3. We say an automorphic form ξ : GSO(V 2
J )(Q)\GSO(V 2

J )(A) → V� is a 
modular form of weight � if the pullbacks (gf · ξ)|SO(V 2

J ) are modular forms of weight �
for gf ∈ GSO(V 2

J )(Af ). The Fourier coefficients of such a modular form are the Fourier 
coefficients of the restriction (mf · ξ)|SO(V 2

J ) for all finite-adelic points mf in the rational 
B2-type Levi subgroup of GSO(V 2

J ).

We end this subsection by comparing the Fourier coefficients of a modular form of 
weight � on GJ to those of its constant term along VJ , in the case when GJ is of type E8. 
For J = H3(Θ) with Θ the non-split octonions, recall the maximal compact subgroup 
Kf of GJ(Af ) specified in [Gan00b, section 6].

Proposition 5.2.4. Set J = H3(Θ) with Θ the non-split octonions, so that GJ is of type 
E8. Suppose ϕ is a modular form of weight � on GJ with constant term ϕVJ

to LJ . 
Suppose that all for all Kf -translates kf · ϕ with kf ∈ Kf , the constant term (kf · ϕ)VJ

is the pullback from GSO(V 2
J ) of a modular form of weight � on GSO(V 2

J ) with Fourier 
coefficients in some field E ⊆ C. Then all Kf -translates of ϕ have rank one and rank 
two Fourier coefficients in E.

2 The author apologizes for the similar-looking notations LJ and L0(J). The group LJ is the Levi of a 
maximal parabolic subgroup of GJ , while L0(J) ⊆ GJ (R) is compact. In case J = H3(Θ) so that GJ is of 
type E8, LJ is a rational reductive group of type D7, while L(J)0 is a compact form of E7.
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Before giving the proof of Proposition 5.2.4, let us note that it is not a statement that 
has an analogue for general automorphic functions; although, the analogous statement 
is true for holomorphic Siegel modular forms. Rather, the truth of Proposition 5.2.4
crucially uses the robust Fourier expansion ([Pol20a, Corollary 1.2.3]) of modular forms 
on GJ and the Fourier expansion of modular forms on LJ (Theorem 1.1.1). Specifically, 
the crux of the matter is that the generalized Whittaker functions Wω(g) of [Pol20a, 
Theorem 1.2.1] have the following extra invariance property:

ω ∈ WJ(R), m ∈ H1
J(R), and m · ω = ω implies Wω(mg) = Wω(g). (20)

Here the notation is from [Pol20a] so that H1
J is the similitude-equal-one part of the Levi 

of the Heisenberg parabolic PJ = HJNJ of GJ and WJ = NJ/[NJ , NJ ] is the defining 
representation of HJ .

Proof of Proposition 5.2.4. Identify WJ with the degree 1 part of the 5-step Z-grading 
on g(J) determined by the Heisenberg parabolic PJ of GJ . Now, set W ′

0 = WJ ∩Lie(LJ )
and W ′

2 = WJ ∩ V 2
J . Then W ′

0 and W ′
2 are paired nontrivially under the symplectic form 

〈·, ·〉 on WJ and both can be identified with H2 ⊕ C for a hyperbolic plane H.
Now, suppose ω ∈ WJ(Q) has rank at most two, and we wish to compute the Fourier 

coefficient

ϕω(g) =
∫

NJ (Q)\NJ (A)

ψ−1(〈ω, n〉)ϕ(ng) dn.

Here n denotes the image of n in WJ . Because ω has rank at most two, there is m ∈
H1

J(Q) so that mω ∈ W ′
2. Consequently, by automorphy of ϕ, we can assume ω ∈ W ′

2.
The ω ∈ W ′

2 determines an η ∈ W ′
0 so that the Fourier coefficient ϕVJ ,η of ϕVJ

defined 
by η can be written as an integral of ϕω. Specifically, one has formally an equality

ϕVJ ,η(g) =
∫

(VJ ∩HJ )(Q)\(VJ ∩HJ )(A)

ϕω(ng) dn. (21)

But the elements of VJ ∩ HJ have similitude equal to 1 and act as the identity on W ′
2. 

Consequently, applying approximation for the unipotent group (VJ ∩ HJ)(Af ) and the 
invariance property (20), the integral in (21) becomes ϕω(g). We therefore obtain

ϕVJ ,η(g) = ϕω(g) (22)

for all g ∈ GJ(A).
Our assumption on the constant term ϕVJ

implies that we can make precise sense 
out of its Fourier coefficients. To compare these Fourier coefficients with those of ϕ, 
it suffices to consider g = gf g∞ in (22) with gf ∈ HJ(Af ) and g∞ in the intersection 
L′

J (R) ∩HJ(R); here L′
J is the derived group of LJ . Comparing the generalized Whittaker 
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functions of Definition 3.2.2 with those of [Pol20a, Theorem 1.2.1], and taking note of 
the rational quadratic form ( , )J on V 2

J defined above Proposition 5.2.2, one sees that 
these two sets of generalized Whittaker functions agree for g∞ in L′

J(R) ∩ HJ(R). One 
now obtains the proposition using the Iwasawa decomposition on gf . �
6. The next-to-minimal modular form

In this section, we give an application of all of the above results, and prove that the 
so-called next-to-minimal modular form on E8,4 has rational Fourier coefficients. On the 
split form of E8, next-to-minimal representations and some results about their Fourier 
coefficients have appeared in [KS15], [GGK+19].

More precisely, we prove the following result. Let Θ be the positive definite octo-
nions, J = H3(Θ), and EJ(g, s; n) =

∑
γ∈PJ (Q)\GJ (Q) fJ(γg, s, n) the Eisenstein series 

of [Pol20b] with spherical inducing data at every finite place, normalized so that the 
inducing section fJ(g, s, n) takes the value ζ(n+1)

(2π)n xnyn at s = n + 1, g = 1.
Theorem 6.0.2 states that θntm(g) := EJ(g, s = 9; 8) is a modular form on GJ of 

weight 8. The following result of Savin proved in Appendix B implies that θntm has 
vanishing rank 3 and rank 4 Fourier coefficients.

Theorem 6.0.1 (Savin, Theorem B.1.1). Suppose p is odd and denote by Π the spherical 
constituent of the induced representation Ind

GJ (Qp)
PJ (Qp) (δs1

P ), for s1 = 20
29 = 1

2 + 11
58 . Then 

the twisted Jacquet module ΠNJ ,χ is 0 for every unitary character χ of NJ that is rank 
three or rank four.

Applying Theorem 6.0.1, the purpose of this section is to prove

Theorem 6.0.2. The Eisenstein series EJ(g, s; 8) is regular at s = 9 and defines a square 
integrable modular form of weight 8 at this point. Its rank zero, rank one, and rank two 
Fourier coefficients are all rational numbers. Consequently, θntm(g) := EJ(g, s = 9; 8)
has rational Fourier expansion.

The value EJ(g, s = 9; 8) is expected to be the “next-to-minimal” modular form 
on E8,4. Theorem 6.0.2 is the analogue for the “next-to-minimal” modular form on 
quaternionic E8 of results proved about the minimal modular form in [Gan00a] and 
[Pol20b]. The proof of Theorem 6.0.2 consists of a few steps, which we now outline.

(1) First, we analyze a certain spherical Eisenstein series EV ′,8(g, s) on the group 
SO(H2 ⊕ Θ), which has signature (2, 10). With our normalizations, the point s = 8
is outside the range of absolute convergence for this Eisenstein series, but we check 
that at s = 8 EV ′,8(g, s) is regular and defines a holomorphic modular form. More-
over, this Eisenstein series has rational Fourier coefficients. These facts are likely 
well-known, but we briefly prove them because the author is unaware of a suitable 
reference.
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(2) Second, we analyze the spherical Eisenstein series E8(g, s = 9) on the group SO(H3⊕
Θ). The point s = 9 is outside the range of absolute convergence, but by doing 
the appropriate intertwining operator calculations and using the first step, one can 
show that E8(g, s) is regular at s = 9 and defines a modular form of weight 8 at 
this point. Moreover, via calculations as above, we know that π−8E8(g, s = 9) has 
rational Fourier coefficients.

(3) Thirdly, we show that the Eisenstein series EJ(g, s; 8) is regular at s = 9 and defines 
a modular form of weight 8 at this point. The proof proceeds similarly to the proof 
of Corollary 4.1.2 of [Pol20b]. In particular, by doing many intertwining operator 
calculations, we compute the constant term of EJ(g, s; 8) at s = 9 along the minimal 
parabolic P0 of GJ . From this calculation, we deduce that the differential operator 
D8 annihilates the constant term of EJ(g, s = 9; 8) and then consequently the entire 
Eisenstein series: D8EJ(g; s = 9; 8) = 0.

(4) Fourthly, we prove that the constant term EV
J (g; s = 9; 8) of EJ(g; s = 9; 9) to 

the D7,3 Levi subgroup LJ is essentially the Eisenstein series E8(g, s = 9). More 
specifically, we prove that the constant term EV

J (g; s = 9; 8) is equal to the value at 
s = 9 of the Eisenstein series ELJ

8 (g, s) :=
∑

(LJ ∩P )(Q)\LJ (Q) fJ(γg, s; 8). To do this, 
one considers the difference EV

J (g; s = 9; 8) − ELJ
8 (g, s = 9), and shows using the 

third step that this difference has constant term 0 to the minimal parabolic P0 ∩ LJ

of LJ . It follows easily from this fact that EV
J (g; s = 9, 8) = ELJ

8 (g, s = 9).
(5) The constant term of EJ(g, s = 9; 8) along the unipotent radical of the Heisenberg 

parabolic yields Kim’s weight 8 singular modular form on GE7,3, which has ratio-
nal Fourier coefficients [Kim93]. By applying Proposition 5.2.4, one obtains that 
EJ(g, s = 9; 8) has rational rank one and rank two Fourier coefficients as well. Thus, 
EJ(g, s = 9; 8) has rational rank zero, rank one, and rank two Fourier coefficients.

Before proceeding, we explain why Theorem 6.0.1 of Savin implies that the rank three 
and rank four Fourier coefficients of θntm are 0:

Lemma 6.0.3. The rank three and rank four Fourier coefficients of θntm are 0.

Proof. Let Π′ denote the representation of GJ(Qp) generated by θntm in the space of 
automorphic forms on GJ(A), and let Π be as in Theorem 6.0.1. Note that it is not clear 
that the Eisenstein series map is GJ(Qp)-equivariant, so one does not know a priori
that Π′ is a quotient of Π; we must make an argument. However, one does know that the 
spherical vector in Π has the same Hecke eigenvalues as that of θntm, and we will leverage 
this fact to prove the lemma. Indeed, to see this fact about the Hecke eigenvalues, one 
notes that they can be computed by analytic continuation in s from the eigenvalues when 
Re(s) >> 0, and when Re(s) >> 0 the Eisenstein series map is indeed intertwining.

In more detail, let η = char(KpgKp) be in the Hecke algebra at p. We can write 
KpgKp = �ipiKp with pi ∈ PJ(Qp). Let f(g, s) be the flat spherical section in 

Ind
GJ (Qp)(|ν|s) with f(1, s) = 1. We have η ∗ f(g, s) = λ(s)f(g, s), where λ(s) =
PJ (Qp)
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∑
i |ν(pi)|s is an entire function of s. The Hecke eigenvalue of η on the spherical vector 

in Π is thus λ(9). On the other hand, let EJ(g, s; 8) be the spherical Eisenstein series 
that we use to define θntm. We have

η ∗ θntm(g) =
∑

i

θntm(gpi) =
∑

i

EJ(gpi, s = 9; 8)

= lim
s→9

∑
i

EJ(gpi, s; 8) = lim
s→9

η ∗ EJ (g, s; 8).

When Re(s) >> 0, the Eisenstein series map is intertwining, so η ∗ EJ(g, s; 8) =
λ(s)EJ (g, s; 8). Because λ(s) is entire, we deduce η ∗ θntm(g) = λ(9)θntm(g), as desired.

Now, consider again the representation Π′. Because θntm is square integrable, Π′ is 
semisimple. By virtue of being semisimple and generated by a single eigenvector for the 
bi-Kp-invariant Hecke algebra, Π′ is irreducible. Indeed, write Π′ = π1⊕· · ·⊕πr with each 
πi irreducible, and correspondingly θntm = v1 +· · ·+vr. Because Π′ is generated by θntm, 
each vj �= 0. Because θntm is Kp-invariant, so is each vj . Thus all πj are spherical. Because 
θntm is an eigenvector for the bi-Kp-invariant Hecke algebra, the Hecke eigenvalues of 
each vj are equal. Consequently, the πj are all isomorphic. Because Π′ is generated by a 
single vector, we now must have r = 1 as desired.

Let Π′′ denote a nonzero irreducible quotient of Π. Because Π is (by definition) gen-
erated by a single spherical vector, so is Π′′. Moreover, the Hecke eigenvalues on the 
spherical vector of Π′′ are the same as on Π′, i.e., on θntm. Consequently, Π′ is abstractly 
isomorphic to Π′′. In other words, Π′ is a quotient of Π.

Because Π′ is a quotient of Π, the Fourier coefficient map on Π′ factors through the 
corresponding twisted Jacquet module of Π. The lemma follows. �

We now split up the various pieces of the outline above into subsections. Throughout 
this section, set ζΘ(s) = ζ(s)ζ(s − 3) [Gan00a].

6.1. The holomorphic Eisenstein series

Set V ′ = H2 ⊕ Θ, a quadratic space of signature (2, 10) that comes equipped with 
an integral lattice V ′

0 = H2
0 ⊕ Θ0. In this subsection we construct and analyze a certain 

holomorphic spherical Eisenstein series on SO(V ′). Let the bases of the two copies of H
be e1, f1 and e2, f2.

To define this Eisenstein series, we proceed as follows. First, denote by v1, v2 an 
orthonormal basis of V2 = V ′(R)+. For an even positive integer �, define the Schwartz 
function Φ∞,� on V ′(R) as Φ∞,�(v) = (v1 + iv2, v)�e−π||v||2 . Let Φf be the characteristic 
function of V ′

0(Ẑ) and set Φ = Φf ⊗ Φ∞,�, a Scwhartz-Bruhat function on V ′(A).
We now set

fV ′,�(g, Φ, s) =
∫

|t|sΦ(tf2g) dt.
GL1(A)
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Denote by PV ′ the parabolic subgroup of SO(V ′) that stabilizes the line spanned by f2. 
The Eisenstein series EV ′,�(g, s) is defined as

EV ′,�(g, s) =
∑

γ∈P ′(Q)\ SO(V ′)(Q)

fV ′,�(γg, Φ, s).

The sum converges absolutely when Re(s) > 10. The purpose of this subsection is to 
prove the following proposition.

Proposition 6.1.1. The Eisenstein series EV ′,8(g, s) is regular at s = 8, and is the au-
tomorphic function associated to a holomorphic weight 8 modular form on SO(V ′) with 
rational Fourier coefficients.

As mentioned above, Proposition 6.1.1 is likely well-known; as we do not know of a 
precise reference, we give a brief sketch of the proof.

Proof. Denote by P0,V ′ the minimal parabolic of SO(V ′) that stabilizes the flag

V ′ ⊇ Span(e2, Θ, f2, f1) ⊇ Span(Θ, f2, f1) ⊇ Span(f2, f1) ⊇ Span(f1) ⊇ 0.

We begin by computing the constant term of EV ′,8(g, s) to P0,V ′ . Denote by r1, r2

characters of the diagonal split torus of SO(V ′), so that the positive roots associated to 
P0,V ′ are {r1−r2, r1, r2, r1+r2}. Denote the simple reflections associated to these positive 
roots by w12 and w2, in obvious notation. The constant term of EV ′,8(g, s) along P0,V ′ is 
the sum of four terms of the form M(w, s)fV ′,8(g, Φ, s), for w = 1, w12, w2w12, w12w2w12.

Define λs = (s − 5)r1 + (−4)r2. Then the inducing section fV ′,�(g, Φ, s) defines an 

element of Ind
SO(V ′)
P0,V ′ (δ1/2

P0,V ′ λs) that is spherical at every finite place, but not spherical 
at infinity. Applying the Weyl group elements w, the character λs is moved as follows:

• λs = (s − 5)r1 + (−4)r2

• w12�→ (−4)r1 + (s − 5)r2, ζ(s−1)
ζ(s)

ΓR(s−1)
ΓR(s)

( 2−s
2

)
�/2(

s
2

)
�/2

• w2�→ (−4)r1 + (5 − s)r2, ζΘ(s−5)
ζΘ(s−1)

Γ(s−5)
Γ(s−1) = ζ(s−5)ζ(s−8)

ζ(s−1)ζ(s−4)
Γ(s−5)
Γ(s−1)

• w12�→ (5 − s)r1 + (−4)r2, ζ(s−9)
ζ(s−8)

ΓR(s−9)
ΓR(s−8)

( 10−s
2

)
�/2(

s−8
2

)
�/2

• = λ10−s.

We have also included above the c(w, s)-factors introduced by the intertwining operators. 
Plugging in � = 8, one finds that the above c(w, s)-functions are 0 at s = 8, using that 
ζ(0) is finite and nonzero.

It follows that the constant term of EV ′,8(g, s = 8) to PV ′,0 consists only of 
fV ′,8(g, Φ, s = 8). Moreover, for g = g∞ ∈ SO(V ′)(R), one has
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fV ′,8(g, Φ, s = 8) = π−8ζ(8)Γ(8)(f2g, v1 + iv2)8

||f2g||16 = C8

(f2g, v1 − iv2)8

for a nonzero rational number C8.
From the above facts one can deduce that EV ′,8(g, Φ, s = 8) corresponds to a holo-

morphic modular form on SO(V ′) of weight 8 with rational Fourier coefficients. �
6.2. The Eisenstein series on SO(H3 ⊕ Θ)

Set V = H3 ⊕Θ = H ⊕V ′, with H spanned by e1, f1 and V ′ = Span{e2, e3, Θ, f3, f2}. 
The fixed integral lattice in V is V0 = H3

0 ⊕ Θ0. Denote by Φf the characteristic func-
tion of the lattice V0(Ẑ) in V (Af ). In this subsection, we analyze the Eisenstein series 
E8(g, Φf , s) on SO(V ) at s = 9, which is outside the range of absolute convergence. In 
particular, we prove the following proposition.

Proposition 6.2.1. The Eisenstein series E8(g, Φf , s) is regular at s = 9 and defines a 
modular form of weight 8 on SO(V ) at this point. Moreover, π−8E8(g, Φf , s = 9) has 
rational Fourier expansion.

Proof. We consider the constant term of E8(g, Φf , s) to the Levi subgroup GL1 × SO(V ′). 
There are three terms: The inducing section (supported on x8y8), the Eisenstein series 
EV ′,8(g, s − 1; 8) (supported on x16 + y16; see [Pol20b, Proposition 3.3.2]), and an inter-
twining operator M(w0, s) applied to the inducing section.

As the inducing section is spherical at every finite place, the finite part of the inter-
twining operator M(w0, s) is computed easily. For the finite places, one obtains for the 
function c(w0, s)

c(w0, s) = ζ(s − 1)
ζ(s)

ζ(s − 2)
ζ(s − 1)

ζΘ(s − 6)
ζΘ(s − 2)

ζ(s − 10)
ζ(s − 9)

ζ(s − 11)
ζ(s − 10)

= ζ(s − 6)ζ(s − 11)
ζ(s)ζ(s − 5) .

Consequently, c(w0, s) vanishes at s = 9. Moreover, by Remark 4.1.3, the archimedean 
intertwiner is finite and nonzero at s = 9. Therefore, the intertwined inducing section 
vanishes at s = 9.

Applying Proposition 6.1.1, one obtains that E8(g, s = 9; 8) has constant term a sum 
of the inducing section f(g, Φf , s = 9) and the holomorphic Eisenstein series EV ′,8(g, s =
8; 8). It now follows from Corollary 3.2.5 that D8 annihilates this constant term. From 
Lemma 3.2.6 one then concludes that D8E8(g, s = 9; 8) = 0, proving that this Eisenstein 
series is a modular form of weight 8 on SO(V ).

To prove that the Fourier expansion of E8(g, s = 9; 8) is rational, we use Corol-
lary 4.5.8. In particular, in Corollary 4.5.8, one only needs the inequality � ≥ n/2, not 
� > n + 1. In our case of interest, � = 8 and n = 10, so we may apply this result. We 
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claim that the rank one Fourier coefficients of E8(g, s = 9; 8) consists only of a single 
term, as in (4); the integral in (5) again vanishes.

To see that the integral (5) vanishes, one proceeds as follows. First, because η is 
isotropic, we assume without loss of generality that η = rf2. Because our inducing 
section is spherical, we can assume r is an integer. Now by Corollary 4.5.8–which we 
may apply as remarked above–the archimedean part of (5) vanishes at s = 9. Thus, we 
must show that the finite adelic part does not give rise to a pole at this value of s. To see 
this, for this particular η = rf2, one can compute the integral (5) directly, by factoring 
it as a spherical intertwining operator and then a one-dimensional character integral. 
The spherical intertwining operator is M(w, s) = M(w23we3w23w12, s), in the notation 
of Proposition 4.1.2. This intertwining operator gives a function c(w, s) as

c(w, s) = ζ(s − 1)
ζ(s)

ζ(s − 2)
ζ(s − 1)

ζΘ(s − 6)
ζΘ(s − 2)

ζ(s − 10)
ζ(s − 9)

= ζ(s − 6)ζ(s − 9)
ζ(s)ζ(s − 5)

which is finite and nonzero at s = 9. The one-dimensional character integral produces a 
factor of σs−11(n)

ζ(s−10) , which again is finite and non-zero at s = 9. Altogether, one sees that 
the integral (5) vanishes at s = 9, as desired.

Because of this vanishing, and again because Corollary 4.5.8 applies in the case � = 8, 
n = 10, the calculation of the Fourier coefficients of E8(g, s = 9) now proceeds exactly 
as in Theorem 4.5.10, using Proposition 6.1.1 to treat the constant term. Because the 
inducing section is spherical at every finite place, the Fourier coefficients are valued in 
Q ⊆ Q. This completes the proof of the proposition. �
6.3. Intertwining operators and the modular form of weight 8 on GJ

In this subsection we analyze the Eisenstein EJ(g, s; 8) that is spherical at every finite 
place. See [Pol20b, section 2.2] for this Eisenstein series. Let P0 denote the minimal 
parabolic of GJ . The purpose of this subsection is to prove the following proposition.

Proposition 6.3.1. The Eisenstein series EJ (g, s; 8) is regular at s = 9 and defines a 
square integrable modular form of weight 8 at this point. Moreover, its constant term 
along P0 is a sum of two terms.

Our proof of Proposition 6.3.1 rests on the computation of several intertwining op-
erators. The rational root system of GJ is of type F4; let α1, α2, α3, α4 be the simple 
roots:

◦ − − − −◦ ==>== ◦ − − − −◦;
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the roots are labeled 1, 2, 3, 4 from left to right. Let Φ+ denote the positive roots for this 
root system and ΦC3 the roots inside the Levi of type C3. As is standard, let

[WF4/WC3 ] = {w ∈ WF4 : w(ΦC3 ∩ Φ+) ⊆ Φ+}

be the set of minimal length coset representatives. Here WF4 is the Weyl group of the 
F4 root system, and WC3 is the subgroup of WF4 generated by the simple reflections 
corresponding to the roots α2, α3, α4. The set [WF4/WC3 ] has 24 elements.

As in [Gan00a], we single out two special elements of [WF4/WC3 ]:

w0 = [123214323412321]

w−1 = [23214323412321],

of length 15 and 14 respectively. Here the indices indicate how w0, w1 are expressed as a 
product of simple reflections. All other elements of [WF4/WC3 ] have length less than 14.

Denote by fJ(g, s; 8) the inducing section used to define the Eisenstein series 
EJ(g, s; 8) that is spherical at every finite place. For w ∈ [WF4/WC3 ], we consider the 
intertwining operator

M(w, s)f(g, s; 8) =
∫

Uw(A)

f(w−1ng, s; 8) dn.

Here Uw is the unipotent group defined as

Uw =
∏

α>0:w−1(α)<0

Uα

and Uα is the unipotent group associated to the rational root α. Note that if α is a long 
root, then dim Uα = 1, whereas if α is a short root then dim Uα = 8.

With notation as above, the content of this subsection is to prove the following propo-
sition, which will be the main step in proving Proposition 6.3.1.

Proposition 6.3.2. Suppose w ∈ [WF4/WC3 ]. Then

(1) If w �= w0, w �= w−1, then M(w, s)f(g, s; 8) is finite at s = 20.
(2) If w = w−1, then M(w, s)f(g, s; 8) has a simple pole at s = 20.
(3) If w = w0, then M(w, s)f(g, s; 8) has a simple pole at s = 20 and vanishes at s = 9.

Proof. Let us first write down the long intertwiner M(w0, s). At the finite places, one 
obtains [GRS97]

c(w0, s) = ζ(2s − 29)ζ(s − 28)ζ(s − 23)ζ(s − 19)
.

ζ(2s − 28)ζ(s)ζ(s − 5)ζ(s − 9)
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The function c(w0, s) is finite nonzero at s = 20 and 0 at s = 9.
At the archimedean place, one can compute c∞(w0, s) by factorizing w0 = [12321] ◦

[43234] ◦ [12321], and then using Proposition 4.1.2 to compute the [12321] factors. From 
now on, all archimedean intertwining operators are calculated up to exponential factors 
and nonzero constants. The middle [43234] intertwiner turns out to be spherical. One 
obtains

c∞(w0, s) = cB3
8 (s − 17)cC3

mid(s)cB3
8 (s)

where

cC3
mid(s) = Γ(s − 10)

Γ(s − 6)
Γ(s − 14)
Γ(s − 10)

ΓR(2s − 29)
ΓR(2s − 28)

Γ(s − 15)
Γ(s − 11)

Γ(s − 19)
Γ(s − 15) =

Γ(s − 29
2 )Γ(s − 19)

Γ(s − 6)Γ(s − 11)

and cB3
� (s) is from Proposition 4.1.2. In this case,

cB3
8 (s) =

(
s−9

2
)

4(
s−2

2
)

5
· Γ (s − 6)

Γ (s − 2) ·
(

s−18
2

)
4(

s−11
2

)
5

.

Simplifying,

c∞(w0, s) = Γ(s − 6)Γ(s − 23)
Γ(s − 2)Γ(s − 19) ·

(
s
2 − 9

)
4

(
s−17

2 − 9
)

4(
s
2 − 1

)
5

(
s−11

2
) (

s−19
2

)
5

(
s
2 − 14

) .

This function is immediately checked to be finite and nonzero at s = 9 and has a pole 
at s = 20. Combining with properties of c(w0, s), this gives part (3) of the proposition.

Most of the w ∈ [WF4/WC3 ] give absolutely convergent adelic integrals at s = 20. 
There are 7 that do not, and these 7 have the following factorizations:

• [4323412321]
• [3214323412321]
• w−1 = [23214323412321]
• [214323412321]
• [21323412321]
• [14323412321]
• w0 = [123214323412321]

We will explain in a bit of detail the computation of M(w−1, s). The computation of the 
other intertwining operators is completely analogous or simpler.

To record the computations, we use the standard Euclidean model of the F4-root 
system. Specifically, consider Z4, with inner product x · y = x1y1 + x2y2 + x3y3 + x4y4, 
where x = (x1, x2, x3, x4)E and y = (y1, y2, y3, y4)E . We write the subscript ‘E’ to 
indicate the implicit Euclidean inner product. Now, set
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• α1 = (0, 1, −1, 0)E

• α2 = (0, 0, 1, −1)E

• α3 = (0, 0, 0, 1)E

• α4 = 1
2 (1, −1, −1, −1)E .

With the αi as the simple roots, this gives a model of the F4-root system.
Let λs = (s − 23, s − 6, −5, −4), which we think of as an unramified character of 

P0. For this λs, one has f(g, s; 8) ∈ IndGJ

P0
(λsδ

1/2
P0

). Although it is a bit more than is 
necessary to compute M(w−1, s), we record how the long element w0 moves around λs:

• λs = (s − 23, s − 6, −5, −4)E

• [1]; (s − 23, −5, s − 6, −4)E ; s − 1
• [2]; (s − 23, −5, −4, s − 6)E ; s − 2
• [3]; (s − 23, −5, −4, 6 − s)E ; s − 6
• [2]; (s − 23, −5, 6 − s, −4)E ; s − 10
• [1]; (s − 23, 6 − s, −5, −4)E ; s − 11
• [4]; (−13, −4, s − 15, s − 14)E ; s − 10
• [3]; (−13, −4, s − 15, 14 − s)E ; s − 14
• [2]; (−13, −4, 14 − s, s − 15)E ; 2s − 19
• [3]; (−13, −4, 14 − s, 15 − s); s − 15
• [4]; (6 − s, s − 23, −5, −4)E ; s − 19
• [1]; (6 − s, −5, s − 23, −4)E ; s − 18
• [2]; (6 − s, −5, −4, s − 23)E ; s − 19
• [3]; (6 − s, −5, −4, 23 − s)E ; s − 23
• [2]; (6 − s, −5, 23 − s, −4)E ; s − 27
• [1]; (6 − s, 23 − s, −5, −4)E ; s − 28
• = λ29−s.

In each line, the [j] indicates that a simple reflection corresponding to the root j has 
been performed, to get from the previous line to the current line. The final parameter 
s −k is the parameter needed to calculate a rational-rank-one intertwining operator, and 
is given as follows: If one has [j]μ′ = μ, then the final parameter is the Euclidean inner 
product αj · μ′. For example, in the line

•[2]; (s − 23, −5, −4, s − 6)E ; s − 2,

one has j = 2, μ = (s − 23, −5, −4, s − 6)E , μ′ = (s − 23, −5, s − 6, −4)E , and

α2 · μ′ = (0, 0, 1, −1)E · (s − 23, −5, s − 6, −4)E = (1)(s − 6) + (−1)(−4) = s − 2.

With the above data, and combining Proposition 4.1.4, Proposition 4.1.2, and the tech-
nique of [Pol20b, page 26], one can compute the intertwining operators M(w, s) without 
too much difficulty. As mentioned, we will now detail the computation of M(w−1, s).
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First, the finite, spherical part of M(w−1, s) is computed immediately from the terms 
s − k of the above itemized data. One gets

c(w−1, s) = ζ(2s − 29)ζ(s − 27)ζ(s − 23)ζ(s − 19)
ζ(2s − 28)ζ(s)ζ(s − 5)ζ(s − 9) .

The function c(w−1, s) has a simple pole at s = 20.
The archimedean calculation is, of course, more involved. First, applying the first 10

elements in the factorization of w−1 gives an archimedean factor of cC3
mid(s)cB3

8 (s), in the 
notation above. This product is

cC3
mid(s)cB3

8 (s) =
Γ(s − 29

2 )Γ(s − 19)
Γ(s − 6)Γ(s − 11)

(
s−9

2
)

4(
s−2

2
)

5
· Γ (s − 6)

Γ (s − 2) ·
(

s−18
2

)
4(

s−11
2

)
5

,

which is finite and nonzero at s = 20.
Set f1 = x + y, f2 = x − y, as before Proposition 4.1.4. The archimedean intertwiner 

M∞([21], s) that comes after the [4323412321] can now be computed by Proposition 4.1.4. 
One obtains a factor of C8(s − 17), in the notation of that proposition, and the resulting 
inducing section is supported on f8

1 f8
2 at g∞ = 1. The function C8(s − 17) is3

C8(s − 17) =
(

s−26
2

)
4(

s−17
2 − 1

)
5

.

The next intertwining operator, an application of M([3], s), is spherical, and gives a 
factor of Γ(s−23)

Γ(s−19) , which has a simple pole at s = 20. Thus, the archimedean intertwiner 
M∞([3214323412321], s) is finite and nonzero at s = 20.

To do the final application of an intertwining operator, the M∞([2], s), we use the 
technique of [Pol20b, page 26]. Expressing f8

1 f8
2 in the x, y basis, one gets

f8
1 f8

2 = C4(x16 + y16) + C3(x14y2 + x2y14) + C2(x12y4 + x4y12) + C1(x10y6 + x6y10)

+ C0(x8y8)

for nonzero constants Ck, 0 ≤ k ≤ 4. For 0 ≤ k ≤ 4, on the term multiplying Ck the 
operator M∞([2], s) now produces factors of the form

ΓR(s − 27)
ΓR(s − 26)

( 28−s
2

)
k(

s−26
2

)
k

.

For 0 ≤ k ≤ 3 this is zero, while for k = 4 this is finite and nonzero. This completes our 
analysis of M(w−1, s), and with it, the proposition. �

3 Although this function vanishes to first order s = 20, the function c([214323412321], s) has a simple pole 
at s = 20, so there is no contradiction to the statement of the proposition.
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We now complete the proof of Proposition 6.3.1.

Proof of Proposition 6.3.1. Using Proposition 6.3.2, the proof of Proposition 6.3.1 pro-
ceeds exactly as the proof of Corollary 4.1.2 of [Pol20b]. The only thing left to remark 
upon is the square integrability of EJ(g, s = 9; 8). For this, we apply Jacquet’s criterion 
[MgW95, I.4.11 Lemma]. Writing in terms of the simple rational roots, one has

λs = (s − 23, s − 6, −5, −4)E = (2s − 29)α1 + (3s − 57)α2 + (4s − 84)α3 + (2s − 46)α4

and

[1]λs = (s − 23, −5, s − 6, −4)E = (s − 28)α1 + (3s − 57)α2 + (4s − 84)α3 + (2s − 46)α4.

Plugging in s = 9, one sees that all the exponents are negative in these characters, and 
thus EJ(g, s = 9; 8) is square integrable. �
6.4. Proof of Theorem 6.0.2

The proof of this theorem, in its entirety, was outlined at the beginning of section 6. 
The only thing left to prove is step (4) of this outline and to discuss the constant 
term ENJ

J (g, s = 9; 8) of EJ (g, s = 9; 8) along the unipotent radical of the Heisenberg 
parabolic.

For step (4), note that the constant term EV
J (g, s; 8) for g in the Levi subgroup LJ(A)

is a sum of Eisenstein series on LJ , one for each element of the double coset

PJ(Q)\GJ(Q)/QJ(Q) = WC3\WF4/WB3 .

The Eisenstein series associated to the double coset PJ(Q)1QJ (Q) is ELJ
8 (g, s).

At s = 9, we have computed the constant term of each of these Eisenstein series down 
to P0, and it is clear that they are identified, because the two terms contributing to the 
constant term of EJ(g, s = 9; 8) along P0 are those that come from the elements of length 
0 and 1 of [WC3\WF4 ]. Consequently, at s = 9, the difference EV

J (g, s; 8) − ELJ
8 (g, s) has 

vanishing constant term along P0. Because the difference EV
J (g, s; 8) −ELJ

8 (g, s) is a sum 
of Eisenstein series on LJ , we conclude EV

J (g, s = 9; 8) = ELJ
8 (g, s = 9). This proves 

step (4) of the outline above.
The constant term ENJ

J (g, s = 9; 8) is analyzed in [Pol20b, Corollary 3.5.1]. The 
holomorphic weight 8 Siegel Eisenstein on HJ = GE7,3 appears, along with the constant 
ζ(9)

(2π)8 . As mentioned previously, this weight 8 Eisenstein series is analyzed in [Kim93], who 
proves that it has rational Fourier coefficients. This completes the proof of Theorem 6.0.2.
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7. The minimal modular form

In this final section, we discuss the minimal modular form on G = SO(3, 8k + 3) in 
certain special cases, and an application to the construction of a distinguished modular 
form on G′ = SO(3, 8k + 2). The results of this section are, in a sense, the analogues of 
the results in [Pol20b] with quaternionic E8 replaced by the classical group D4k+3,3.

In more detail, the group G supports a minimal modular form θ, that is spherical at 
all finite places. The purpose of this section is to recognize θ as the value of an Eisenstein 
series on G, to compute its Fourier expansion, and to show that the restriction θ′ = θ|G′

of θ to G′ is a distinguished modular form on G′. The fact that θ′ is distinguished is 
an example of the simplest “lifting law” from [Pol18], the one in section 2.2 of [Pol18], 
whereas the distinguished and singular modular forms constructed in [Pol20b] use the 
(more complicated) lifting laws considered in section 7 and section 8 of [Pol18].

Let Θ0 denote the ring of Coxeter’s octonions, so that Θ0 is the even unimodular 
quadratic lattice of dimension 8. For an integer k ≥ 1, let V0 = H3

0 ⊕ Θk
0 be the fixed 

lattice inside V = H3 ⊕ Θk. Set V ′ = H2 ⊕ Θk and set G = SO(V ). Fix a vector ω ∈ V ′

with q′(ω) < 0. Denote by Vω = (Qω)⊥ the orthogonal complement of Qω, so that 
V = Qω ⊕ Vω. Set G′ = SO(Vω) � SO(3, 8k + 2) and define V ′

ω = Vω ∩ V ′.
Let Φf be the characteristic function of V0 ⊗ Ẑ ⊆ V ⊗ Af and E(g, s) =

π−4kE4k(g, Φf , s) the Eisenstein series which was studied in detail in section 4. The 
purpose of this section is to prove the following theorem.

Theorem 7.0.1. The Eisenstein series E(g, s) is regular at s = 4k+1 and θ(g) := E(g, s =
4k+1) is a modular form of weight � = 4k at this point. The modular form θ has rational 
Fourier expansion with all rank two Fourier coefficients equal to 0. The restriction θ′ =
θ|G′ is a modular form on G′ of weight �. It is distinguished in the sense that if η ∈ V ′

ω

has q′(η) �= 0, then the Fourier coefficient aθ′(η) �= 0 implies q′(η) ∈ (Q×)2(−q(ω)).

Proof. Most of the work is to check the relevant intertwining operators, which show that 
E(g, s) is regular at s = � + 1 and defines a modular form of weight � at this point. To 
do this, we proceed as in section 6 and consider first the case of the Eisenstein series 
EV ′,�(g, s) on SO(V ′) evaluated at s = � = 4k.

The constant term of the Eisenstein series EV ′,�(g, s) along the minimal rational 
parabolic consists of four terms: the inducing section, and intertwining operators M(w, s)
applied to the inducing section, where w = w12, w2w12, w12w2w12 in the notation of 
Proposition 6.1.1. For ease of notation, set m0 = 4k and ζan(s) = ζ(s)ζ(s − m0 + 1). 
These intertwining operators produce functions c(w, s) as follows:

(1) c(w12, s) = ζ(s−1)
ζ(s)

ΓR(s)
ΓR(s)

( 2−s
2

)
�/2(

s
2

)
�/2

(2) c(w2w12, s) = c(w12, s) ζan(s−m0−1) Γ(s−m0−1)

ζan(s−1) Γ(s−1)
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(3) c(w12w2w12, s) = c(w2w12, s) ζ(s−2m0−1)
ζ(s−2m0)

ΓR(s−2m0−1)
ΓR(s−2m0)

(
2m0+2−s

2

)
�/2(

s−2m0
2

)
�/2

.

One checks easily that these functions c(w12, s), c(w2w12, s) and c(w12w2w12, s) vanish 
at s = � = m0. Consequently, as in Proposition 6.1.1, EV ′,�(g, s) is regular at s = � and 
is the automorphic function associated to a holomorphic modular form of weight � on 
SO(V ′) with rational Fourier coefficients.

Next, to see that E�(g, Φf , s) is regular at s = � + 1 = 4k + 1, we consider its constant 
term along the parabolic P = MN , just as in Proposition 6.2.1. Just as in the proof of 
this proposition, to see that E�(g, Φf , s) is regular at s = � + 1 and defines a modular 
form of weight � at this point, it suffices to check that the c-function associated to the 
long intertwiner M(w0, s) vanishes at s = � + 1. The finite part of this intertwiner gives

cf (w0, s) = ζ(s − 1)ζ(s − 2)ζan(s − 2 − m0)ζ(s − 2 − 2m0)ζ(s − 3 − 2m0)
ζ(s)ζ(s − 1)ζan(s − 2)ζ(s − 1 − 2m0)ζ(s − 2 − 2m0)

= ζ(s − 2 − m0)ζ(s − 3 − 2m0)
ζ(s)ζ(s − 1 − m0) .

This function vanishes at s = � + 1 = m0 + 1 = 4k + 1. The archimedean part of this 
intertwining operator was computed in Proposition 4.1.2. One obtains

c∞(w0, s) =

(
s−�−1

2
)

�/2(
s−2

2
)

�/2+1

Γ(s − 2 − m0)
Γ(s − 2)

(
s
2 − 1 − m0 − �/2

)
�/2(

s−3
2 − m0

)
�/2+1

.

This function is finite and nonzero at s = m0 + 1 = � + 1. Consequently, c(w0, s) =
cf (w0, s)c∞(w0, s) vanishes at s = � + 1, so that E�(g, Φf , s) is regular at s = � + 1 and 
defines a modular form of weight � at this point.

The function θ(g) is defined to be the value π−�E�(g, Φf , s = � + 1) = π−4kE4k(g, Φf ,

s = 4k+1). By [MS97, Theorem 1.1] and [Sav94, Proposition 4.1, Corollary 4.2], the min-
imal representation of split p-adic D4k+3 occurs as the spherical sub in IndG

P (|ν|4k+1) =
IndG

P (δ1/2
P |ν|−1). By these cited results, it follows that the modular form θ(g) has van-

ishing rank two Fourier coefficients.
The rationality of the rank one Fourier coefficients of θ(g) is treated similarly to the 

rationality of the rank one Fourier coefficients of the Eisenstein series considered in 6.2.1, 
but with a little more work. Specifically, the rationality follows from the vanishing of the 
integral (5). As in the proof of Proposition 6.2.1, to see that this integral vanishes, we 
factorize it into an intertwining operator and a one-dimensional character integral. The 
intertwining operator is associated to the element w′ = w23w3w23w12 of the Weyl group, 
in the notation of Proposition 4.1.2. The finite part Mf (w′, s) produces a c-function

cf (w′, s) = ζ(s − 1)ζ(s − 2)ζan(s − 2 − m0)ζ(s − 2 − 2m0)

ζ(s)ζ(s − 1)ζan(s − 2)ζ(s − 1 − 2m0)
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= ζ(s − 2 − m0)ζ(s − 2 − 2m0)
ζ(s)ζ(s − 1 − m0) ,

which is finite and nonzero at s = m0 + 1. Similar to the evaluation of M(w−1, s) in the 
proof of Proposition 6.3.2, the archimedean part of the intertwiner M(w′, s) produces 
c-functions

cj(w′, s) =

(
s−�−1

2
)

�/2(
s−2

2
)

�/2+1

Γ(s − 2 − m0)
Γ(s − 2)

ΓR(s − 2 − 2m0)
ΓR(s − 1 − 2m0)

( 3+2m0−s
2

)
j(

s−1−2m0
2

)
j

for integers j with 0 ≤ j ≤ �/2 = m0/2. All of these functions cj(w′, s) vanish at 
s = m0 +1 = � +1. Finally, the one-dimensional character integrals produce holomorphic 
functions of s divided by ζ(s − 2 − 2m0)ΓR(s − 2 − 2m0). This latter function is finite 
at s = m0 + 1. Combining this with the calculation of the functions c(w′, s), one sees 
that the integral (5) vanishes at s = m0 + 1, as desired. The rationality of the Fourier 
expansion of θ(g) follows.

The fact that θ′ is a modular form of weight � follows by a simple analysis of the 
differential operators D� on G and on G′ as in Proposition 5.1.1. Finally, that θ′ is 
distinguished follows from the discussion in [Pol18, section 2.2]. This completes the proof 
of the theorem. �
Appendix A. Proofs of selected results

This appendix contains the proofs of some of the results stated in the main body of 
the text but not proved there.

A.1. Proofs from section 3

Proof of Proposition 3.2.1. We first write out D̃� in coordinates. We obtain

D̃F =
n∑

j=1
DM

iv1−v2,uj
F ⊗ ((−1/2)y ⊗ y ⊗ u∨

j )

+ (u+ ∧ uj)F ⊗ ((
√

2/4)(x ⊗ y + y ⊗ x) ⊗ u∨
j )

+ DM
iv1+v2,uj

F ⊗ ((−1/2)x ⊗ x ⊗ u∨
j )

+ ((iv1 − v2) ∧ u−)F ⊗ ((−1/2)y ⊗ y ⊗ u∨
−)

+ (u+ ∧ u−F ) ⊗ ((
√

2/4)(x ⊗ y + y ⊗ x) ⊗ u∨
−)

+ ((iv1 + v2) ∧ u−F )((−1/2)x ⊗ x ⊗ u∨
−).

To compute the operator D� in coordinates, we must apply the contraction pr :
V� ⊗ p∨ → (S2�(Y2) ⊕ S2�−2(Y2)) � Vn+1. With our coordinates x, y this contraction 
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is [x�+v][y�−v] ⊗ y �→ [x�+v−1][y�−v] and [x�+v][y�−v] ⊗ x �→ −[x�+v][y�−v−1]. For D� we 
therefore obtain

2D�F =
n∑

j=1
u∨

j ⊗

⎛⎝ ∑
−�≤v≤�

DM
iv1−v2,uj

Fv(−[x�+v−1][y�−v] ⊗ y)

+
∑

−�≤v≤�

√
2

2 (u+ ∧ uj)Fv([x�+v−1][y�−v] ⊗ x − [x�+v][y�−v−1] ⊗ y)

+
∑

−�≤v≤�

DM
iv1+v2,uj

Fv([x�+v][y�−v−1] ⊗ x)

⎞⎠
+ u∨

− ⊗

⎛⎝ ∑
−�≤v≤�

((iv1 − v2) ∧ u−F )v(−[x�+v−1][y�−v] ⊗ y)

+
∑

−�≤v≤�

√
2

2 (u+ ∧ u−)Fv([x�+v−1][y�−v] ⊗ x − [x�+v][y�−v−1] ⊗ y)

+
∑

−�≤v≤�

((iv1 + v2) ∧ u−F )v([x�+v][y�−v−1] ⊗ x).

⎞⎠
From the fact that E · ([x�+v][y�−v]) = (� + v + 1)[x�+v+1][y�−v−1] and F ·

([x�+v][y�−v]) = (� − v + 1)[x�+v−1][y�−v+1] we get

((iv1 − v2) ∧ u−) F =
∑

−�≤v≤�

(−2DV ′

tm(iv1−v2)Fv +
√

2(� + v)Fv−1)[x�+v][y�−v]

and

((iv1 + v2) ∧ u−) F =
∑

−�≤v≤�

(−2DV ′

tm(iv1+v2)Fv +
√

2(� − v)Fv+1)[x�+v][y�−v].

The proposition follows. �
Conclusion of proof of Theorem 3.2.4. In subsection 3.2 we proved that the functions 
Wη of Definition 3.2.2 satisfied the correct (K ∩ M)-equivariance property. We now 
complete the rest of the proof of Theorem 3.2.4.

We begin by considering the differential equations of Proposition 3.2.1. Assume for 
now that t > 0. From Proposition 3.2.1, we obtain that the Fv satisfy the following 
differential-difference equations:

(1) (t∂t − (� + v))Fv−1 = −uη(t, m)Fv

(2) (t∂t − (� − v + 1))Fv = −uη(t, m)∗Fv−1
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(3) DM
iv1−v2,uj

Fv = −i
√

2t(η, muj)Fv−1

(4) DM
iv1+v2,uj

Fv−1 = −i
√

2t(η, muj)Fv.

Define F 0
v by the equality Fv = t�+1F 0

v . Then we obtain

((t∂t)2 − v2)F 0
v = (t∂t − v)(t∂t + v)F 0

v

= (t∂t − v)
(
−uη(t, m)∗F 0

v−1
)

= −uη(t, m)∗(t∂t − v + 1)F 0
v−1

= |uη(t, m)|2F 0
v .

Because Fv(t, m) is of moderate growth at t → ∞, we deduce that F 0
v (t, m) =

Cv(m)Kv(|uη(t, m)|) for some function Cv(m) of m.
Now, because (y∂y + v)Kv(y) = −yKv−1(y), (t∂t + v)Kv(t|μ|) = −|μ|tKv−1(|μ|t) if μ

is independent of t. Set μ =
√

2i(η, m(iv1 − v2)). Thus

−(|μ|t)Cv(m)Kv−1(|μ|t) = (t∂t + v)F 0
v

= −uη(t, m)∗F 0
v−1

= −uη(t, m)∗Cv−1(m)Kv−1(|uη(t, m)|).

Thus

Cv(m) =
(

uη(t, m)∗

|uη(t, m)|

)
Cv−1(m) =

(
|uη(t, m)|
uη(t, m)

)
Cv−1(m).

We conclude that Cv(m) = C0(m) 
(

|uη(t,m)|
uη(t,m)

)v

for some function C0(m) that does not 
depend on t.

To see that C0(m) = C is a constant, independent of m, we use the final two differential 
equations involving DM

iv1±v2,uj
. One verifies immediately from the definitions that

DM
iv1±v2,uj

{m �→ (η, m(iv1 − v2))} = −(iv1 ± v2, iv1 − v2)(η, muj). (23)

This is 0 for DM
iv1−v2,uj

and 2(η, muj) for DM
iv1+v2,uj

. It follows that

DM
iv1+v2,uj

(|uη(t, m)|) = |uη(t, m)|
uη(t, m)

√
2ti(η, muj) (24)

and

DM
iv1−v2,uj

(|uη(t, m)|) =
(

|uη(t, m)|
uη(t, m)

)−1 √
2ti(η, muj). (25)

From (24) and (25) and the third and fourth enumerated equations applied to the case 
v = 0, resp. v = 1, one obtains that DM

iv ±v ,u C0(m) = 0. By the (K ∩ M)-equivariance 

1 2 j
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proved above, we know that C0(mk) = C0(m) for all k ∈ K ∩ M . Combined with the 
differential equations DM

iv1±v2,uj
C0(m) = 0 for all j, this gives that C0(m) = C is a 

constant, as desired.
Let us now check that F (t, m) =

∑
�≤v≤� Fv(t, m) x�+vy�−v

(�+v)!(�−v)! with

Fv(t, m) = t�+1
(

|uη(t, m)|
uη(t, m)

)v

Kv(|uη(t, m)|)

satisfies the above differential equations on the connected component of the identity. To 
see this, first note that the identity (y∂y + v)Kv(y) = −yKv−1(y) implies that the Fv

satisfy the second difference-differential equation. Similarly, the identity (y∂y−v)Kv(y) =
−yKv+1(y) implies that the Fv satisfy the first difference-differential equation. To see 
that this F (t, m) satisfies the third and fourth difference-differential equations, first note 
that

DM
iv1+v2,uj

(
|uη(t, m)|
uη(t, m)

)
= −|uη(t, m)|

uη(t, m)2

√
2ti(η, muj).

Moreover, from ∂yKv(y) = v
y Kv(y) − Kv+1(y), one obtains

DM
iv1+v2,uj

Kv(|uη(t, m)|)

=
(

v

|uη(t, m)|Kv(|uη(t, m)|) − Kv+1(|uη(t, m)|)
) (

|uη(t, m)|
uη(t, m)

) √
2ti(η, muj).

Combining these two equations gives

DM
iv1+v2,uj

((
|uη(t, m)|
uη(t, m)

)v

Kv(|uη(t, m)|)
)

= −
√

2ti(η, muj)
((

|uη(t, m)|
uη(t, m)

)v+1

Kv+1(|uη(t, m)|)
)

which shows that the F (t, m) satisfies the fourth enumerated differential equation. The 
case of the third equation is similar.

Finally, we consider the condition (η, η) ≥ 0. By Lemma 3.2.3, we must check that 
F (t, m) ≡ 0 if there exists m ∈ SO(V ′)(R) so that (η, m(iv1 − v2)) = 0. This follows by 
the argument of [Pol20a, Proposition 8.2.4]. �
Appendix B. “Next to minimal representation” by Gordan Savin

Abstract. Let F be a p-adic field. We show that the spherical representation of the 
exceptional E8 whose Satake parameter corresponds to the sub-sub regular unipotent 
orbit has its wave-front set contained in the closure of the orbit 2A1.
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B.1. Notation and statement

Let G be the group of F -points of the exceptional group of type E8, and g its Lie 
algebra. Let s ⊂ g be a rank 2 split Cartan subalgebra spanned by two adjacent co-roots. 
Then s-grading of g gives a restricted root system Φ of type G2, and we can write

g = g0 ⊕ (⊕α∈Φ gα),

where g0 is the centralizer of s in g. Then g0 = [g0, g0] ⊕ s, and [g0, g0] is a simple Lie 
algebra of type E6. The dimension of gα is 1 for long roots and 27 for short roots. As a 
helpful convention, we shall denote elements in long root spaces with lower case letters, 
and elements in short root spaces with upper case letters. Short root spaces have a cubic 
form defined as follows. Let β be a short root. Then there exists a unique long root α
so that Π = {α, β} is a set of simple roots. In particular, γ = α + 3β is a long root. Fix 
non-zero elements x ∈ gα and z ∈ gγ . For every Y ∈ gβ define det(Y ) ∈ F by

[Y, [Y, [Y, x]]] = det(Y ) · z.

The root system Φ, and the choice of simple roots Π = {α, β} defines a pair maximal 
parabolic subgroups P = MN and Q = LU of G with Levi factors of type E7 and E6×A1, 
respectively. The unipotent radical N is a Heisenberg group with one dimensional center 
N1. We have

Lie(N1) ∼= g2α+3β

and

Lie(N/N1) ∼= gα ⊕ gα+β ⊕ gα+2β ⊕ gα+3β .

Let ψ : F → C× be a non-zero character. Any character of N is of the form

ψn̄(n) = ψ(〈log n, n̄〉),

for some

n̄ ∈ g−α ⊕ g−α−β ⊕ g−α−2β ⊕ g−α−3β
∼= Lie(N/N1)∗

where 〈log n, ̄n〉 is the Killing form pairing on g. Open M -orbits on Lie(N/N1)∗ are 
parameterized by F ×/(F ×)2. To see this, the stabilizer C of (1, 0, 0, 1) in M is a semi-
direct product of a simply connected E6 and S2. Since the Galois cohomology of p-adic 
simply connected groups is trivial, it follows that the Galois cohomology of C is equal to 
H1(F, S2) ∼= F ×/(F ×)2. More precisely, there is a quartic homogeneous polynomial q on 
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Lie(N/N1)∗ and a character ν of M , such that q(m(n̄)) = ν(m)2q(n̄), for all n̄. Thus an 
open orbit consists of all n̄ ∈ Lie(N/N1)∗ such that q(n̄) is in a fixed class of squares in 
F ×. The reader can find a general formula for q in Section 4.3 [Po]. We shall only need 
the case n̄ = (a, 0, A, 0) when q(n̄) is a multiple of a · det(A). In particular, every open 
orbit has an element n̄ of this form.

Let I(s), s ∈ R be the degenerate principal series representation of G obtained by 
inducing unramified, R+-valued, characters of P . The induction is normalized, and the 
parameter s is chosen so that the trivial representation is a quotient of I(29/2) and a 
submodule of I(−29/2). More generally, we have I(s)∨ ∼= I(−s).

Theorem B.1.1. Let V0 ⊆ I(−11/2) be a submodule generated by a spherical vector. Then 
V0 is small, i.e.

(V0)N,ψn̄
= 0

for all n̄ = (a, 0, A, 0) with det(A) �= 0. In particular, its Wave-Front set [JLS] is con-
tained in the closure of the nilpotent orbit whose Bala-Carter notation is 2A1.

We observe that, since V0 is a submodule of I(−11/2), its Wave-Front set is not larger 
than the closure of the nilpotent orbit whose Bala-Carter notation is A2. The vanishing 
given by Theorem B.1.1 guarantees that the Wave-Front is small as stated.

B.2. Fourier Jacobi functor

Now we turn our attention to the other maximal parabolic subgroup Q = LU . The 
unipotent subgroup U has a filtration U ⊃ U1 ⊃ U2 where U1 = [U, U ] and U2 is the 
center of U . We have

Lie(U2) ∼= gα+3β ⊕ g2α+3β ,

Lie(U1/U2) ∼= gα+2β

and

Lie(U/U1) ∼= gβ ⊕ gα+β .

Any A ∈ g−α−2β
∼= Lie(U1/U2)∗ defines a character ψA of U1 by

ψA(u) = ψ(〈log u, A〉).

Assume that det A �= 0. (We note that the Levi factor L acts transitively on the set of 
A such that det(A) �= 0 [SW].) The character ψA is trivial on U2, and there exists a 
unique irreducible (Heisenberg) representation ρA of U/U2 such that U1/U2 acts on it 
as ψA. This representation can be realized as follows: Let U ′ = U ∩ N . Let ψ′

A be the 
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restriction of ψn̄ to U ′, where n̄ = (a, 0, A, 0). The notation reflects the fact that ψ′
A

depends only on A. The subgroup U ′ is a polarization of U needed to write down the 
Heisenberg representation:

ρA
∼= IndU

U ′(ψ′
A).

Let SL2 be the factor of [L, L] corresponding to the long root α. Since α is perpendic-
ular to α + 2β, SL2 acts trivially by conjugation on U1/U2 and hence on the character 
ψA. By the general theory of Weil representation, ρA extends to a representation of a 
two-fold cover S̃L2 (ρA is essentially a tensor product of 27 Weil representations of S̃L2). 
Thus ρA is a representation of (a two-fold cover) of the Jacobi group

J = SL2 �U.

Let (π, V ) be a smooth J-module. Then SL2 naturally acts on the quotient VU1,ψA
. 

Let

FJA(V ) = HomU (ρA, VU1,ψA
).

On FJA(V ) we define an action of S̃L2 by

T �→ π(g) ◦ T ◦ ρA(g−1),

for g ∈ S̃L2. By Proposition 3.1 in [We], the functor V �→ FJA(V ) is exact and, by 
Corollary 2.4 in [We], we have a natural isomorphism of J-modules

FJA(V ) ⊗ ρA
∼= VU1,ψA

.

Let U0 = SL2 ∩N , so that Lie(U0) ∼= gα. Recall that n̄ = (a, 0, A, 0) and let ψa : U0 →
C× be the restriction of ψn̄ to U0 ⊂ N .

Lemma B.2.1. Let V be a smooth J-module. We have an isomorphism

VN,ψn̄
∼= FJA(V )U0,ψa

.

Proof. Recall that U ′ = U ∩ N and ψ′
A is the restriction of ψn̄ to U ′. Since N = U ′U0, 

we can write

VN,ψn̄
= (VU ′,ψ′

A
)U0,ψa

.

Since U1 ⊂ U ′ and the restriction of ψ′
A to U1 is ψA, we can redundantly write

(VU ′,ψ′ ) = (VU1,ψA
)U ′,ψ′ .
A A
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Substituting VU1,ψA
∼= FJA(V ) ⊗ ρA,

VU ′,ψ′
A

∼= FJA(V ) ⊗ (ρA)U ′,ψ′
A

.

Using ρA
∼= IndU

U ′(ψ′
A) it is well known that

(ρA)U ′,ψ′
A

∼= C

and this isomorphism is given by f �→ f(1), evaluating f ∈ IndU
U ′(ψ′

A) at 1. The normal-
izer B̃0 of U0 in S̃L2 acts naturally on this line, hence U0 must act trivially on this line. 
Now completing the proof is trivial. �
Theorem B.2.2. We have an isomorphism of S̃L2-modules

FJA(I(s)) ∼= i(s) := IndS̃L2
B̃0

χ̃s

where χ̃s a Weil index twisted by | · |s. The induction is normalized so it is irreducible 
for s �= ±1/2.

Proof. We have an isomorphism of J-modules

(IndS̃L2
B̃0

χ̃s) ⊗ ρA
∼= IndS̃L2

B̃0
(ρA ⊗ χ̃s)

given by f ⊗ v �→ F ,

F (g) = f(g) · ρA(g)(v), g ∈ S̃L2.

T he Heisenberg representation ρA, when restricted to B̃0U , is induced from the character 
of B̃0U ′ obtained by action of this group on the line (ρA)U ′,ψ′

A
. Using transitivity of 

induction, it follows that the J-module i(s) ⊗ ρA is induced from a character of B0U ′. 
Call μs that character.

Let W be the Weyl group of G, and w0 ∈ W the longest element. Since N ⊂ J , Pw0J

is an open subset of G. Let I0(s) ⊂ I(s) be the J-submodule consisting of functions in 
I(s) supported on Pw0J . It is fairly straightforward to check that (I0(s))U1,ψA

is induced 
from the character μs of B0U ′ (see Theorem 4.3.1 in [We] for a similar computation). 
Thus

(I0(s))U1,ψA
∼= i(s) ⊗ ρA

and i(s) ⊂ FJA(I(s)). It remains to show that FJA(I(s)) is not larger. So assume that 
FJA(I(s))/i(s) �= 0. Since any genuine representation of S̃L2 is Whittaker generic (i.e. 
(U0, ψa)-coinvariants are non-trivial for some a ∈ F ×) and i(s) is Whittaker generic for 
every a ∈ F ×, it follows that the dimension of FJA(I(s))U0,ψa

is at least 2 for some 
a �= 0. Hence, by Lemma B.2.1,
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dim(I(s)N,ψn̄
) ≥ 2.

This is a contradiction since this space is one-dimensional. �
Observe that, if the statement of Theorem B.1.1 fails for V , then FJA(V ) �= 0. 

Thus, exactness of the FJ functor, combined with Theorem B.2.2, implies that I(s), 
for s �= ±1/2 contains only one big irreducible subquotient. Thus, in order to prove 
Theorem B.1.1, it suffices to show that the quotient I(−11/2)/V0 is not small. We shall 
execute this strategy in the next section.

B.3. Finishing the proof

We have the standard intertwining operator As : I(s) → I(−s). This intertwining 
operator is non-zero for every s, although it can have poles: for every constant section 
fs ∈ I(s), As(fs) is a rational function in qs. In particular, it has finitely many poles on 
R. Let f◦

s be a non-zero, constant, spherical, section. Then As(f◦
s ) = c(s)f◦

−s where

c(s) = ζ(2s)ζ(s − 27/2)ζ(s − 17/2)ζ(s − 9/2)
ζ(2s + 1)ζ(s + 29/2)ζ(s + 19/2)ζ(s + 11/2)

and ζ(s) = 1/(1 − q−s). Note that c(s) vanishes for s = −29/2, −19, 2, −11/2 and −1/2. 
In particular, the intertwining operator kills V0 ⊂ I(−11/2) and hence maps a proper 
quotient of I(−11/2)/V0 into I(11/2). Thus it suffices to prove that any non-trivial 
submodule of I(11/2) is not small.

Let B ⊂ G be a Borel subgroup. Let T ⊂ B be a maximal split. This gives a root 
system with a choice of simple roots, and we use the standard realization of the E8 root 
system in E = R8. For convenience we write down simple roots:

α1 = 1
2(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8)

α2 = e2 − e1, α3 = e3 − e2, α4 = e1 + e2, α5 = e4 − e3, α6 = e5 − e4, α7 = e6 − e5,

α8 = e7 − e6

Any unramified character χ of the maximal torus T with values in R+ (hence forth 
a real character) can be identified with an element in E, denoted by the same symbol 
such that

χ ◦ α∨(t) = |t|〈χ,α〉

for all t ∈ F × where α∨ : F × → T is the co-root of α and 〈χ, α〉 is the usual dot product 
in E.

Let V be a smooth G-module. Let rB(V ) denote the normalized Jacquet functor with 
respect to B. Any irreducible character of T that appears as a quotient of V is called an 
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exponent of V . If V ⊆ IndG
B(χ) then χ is an exponent of V by the Frobenius reciprocity. 

Assume that χ is real, and 〈χ, α〉 �= ±1. Then IndG
B(χ) ∼= IndG

B(χs), where s is the simple 
reflection given by α. This is a simple consequence of induction in stages, to the parabolic 
B ∪BsB, and using the knowledge of real principal series of SL2(F ), that is, 〈χ, α〉 �= ±1
guarantees that we are staying away from reducibility points. Thus, if 〈χ, α〉 �= ±1, then 
χs is also an exponent of V . We shall use this observation to write down some exponents 
of V ⊆ I(s), where s ∈ R. We observe that I(s) ⊂ IndG

B(χ) where

χ = (0, −1, −2, −3, −4, −5, s + 17
2 , s − 17

2 ).

For example, if s = −29/2, then χ = −ρ, the exponent of the trivial representation, and 
indeed the trivial representation is a submodule of I(−29/2). Consider the case s = 11/2, 
where we have a proper spherical quotient and a non-spherical submodule V . Then

χ = (0, −1, −2, −3, −4, −5, 14, −3).

Using simple reflections we can move 14 all the way to the left, to obtain another exponent

(14, −1, −2, −3, −4, −5, −3)

of V . Using the reflection s1 we get

1
2(15, 13, 11, 9, 7, 5, 3, −19)

and then followed by s4,

1
2(−13, −15, 11, 9, 7, 5, 3, −19).

Now we move −15 and −13 to the right to arrive at

χ′ = 1
2(11, 9, −13, 7, −15, 5, 3, −19).

Let R ⊃ B be the parabolic group, whose Levi is of the type A3
1, and the simple factors 

correspond to simple roots α4, α5 and α7. Observe that

〈χ′, α4〉 = 〈χ′, α5〉 = 〈χ′, α7〉 = 10.

Since 〈χ′, αi〉 �= ±1, for i = 4, 5, 7, χ′ is an exponent of an irreducible principal series 
representation of R. It follows that rR(V ) is a Whittaker generic representation of the 
Levi factor of R. This implies that V has a non-zero degenerate Whittaker model cor-
responding to the orbit 3A1. By Theorem A in [GGS] non-vanishing of any degenerate 
Whittaker model corresponding to the orbit 3A1 implies non-vanishing of the generalized 
model corresponding to 3A1. In the language of this paper this means that FJ(V ) �= 0. 
Hence V is not small, and this completes the proof of Theorem B.1.1.
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