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Abstract

The goal of this paper is to provide a complete and refined study of the standard L-functions
L(m, Std, s) for certain non-generic cuspidal automorphic representations 7 of G2(A). For
a cuspidal automorphic representation 7w of G (A) that corresponds to a modular form ¢
of level one and of even weight on G», we explicitly define the completed standard L-
function, A (7, Std, s). Assuming that a certain Fourier coefficient of ¢ is nonzero, we prove
the functional equation A (r, Std, s) = A (s, Std, 1 — ). Our proof proceeds via a careful
analysis of a Rankin-Selberg integral that is due to an earlier work of Gurevich and Segal.
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1 Introduction
1.1 History

Let G, denote the split exceptional linear algebraic group over Q of Dynkin type G, and
suppose that 7 is a cuspidal automorphic representation of G (A). The study of L-functions
associated to such representations has a substantial history. Piatetski-Shapiro et al. [14]
were the first to study such an L-function by constructing a Rankin-Selberg integral for the
tensor product L-function of 7 and a cuspidal automorphic representation on GL, . Their
result applies to the 7 that are globally generic, that is, those 7 that admit a nonvanishing
Whittaker coefficient. Later Ginzburg [6] proved that for generic m, the partial standard
L-function L5 (i, Std, s) has a meromorphic continuation with at most a simple pole by
constructing an appropriate Rankin-Selberg integral.

For cuspidal representations 7 that are not necessarily generic, the corresponding Rankin-
Selberg integrals were constructed in the works of Ginzburg and Hundley [7], Gurevich and
Segal [11] and then Segal [17]. It was proven in [17] that the partial standard L-function of
such a representation 77 admits a meromorphic continuation to the complex plane. However,
bounding the poles of the L-function L (7, Std, s) in a left half-plane, and proving a func-
tional equation relating its values at s to its values at (1 — s) are difficult problems. This
is, in part, due to the difficulty of analyzing local L-functions and local zeta integrals at the
ramified finite places and at the archimedean place.

1.2 Statements of results

Modular forms on G, were introduced by Gan et al. in [5]. Briefly, these are automorphic
forms on G>(A) that correspond to representations in the form w = 7wy ® 7o Where 7y
denotes arepresentation that is unramified at every finite place and 7 is a certain quaternionic
discrete series representation of G, (R). Let K denote a maximal compact subgroup of G (R),
so that K ~ (SU(2) x SU(2))/{£1} with the first copy of SU(2) being the long root and
the second being the short root. Then for £ > 2, there is a discrete series representation 7y,
of G>(R) whose minimal K-type is Symzz (CHK1lasa representation of SU(2) x SU(2).
Such representations 77y« are not generic.
Let ¢ > 2 be an even integer. We define the archimedean L-factor as

Loo(Tp.00,8) = Tc(s + £ — DIg(s + £)Te(s + 26 — DIR(s + 1). (1.1)
Here
Tr(s) = 7/>I'(s/2) and Tc(s) = 2Q27) " T'(s),

where I" is the usual gamma function. It is worthwhile to point out that Gross and Savin [10,
p. 168] had previously defined the archimedean L-factor for representations of the compact
group G5 (R). We easily see that our archimedean L-factor agrees with theirs by setting
k1 = 0 and k» = £ — 2 in their notation.

For such representations 7 = 7y ® ¢, o0, an L-function L (77, Std, s) is defined. Then the
completed L-function is given by

A(m, Std, s) = Loo(7¢,00, )L (o, Std, ),

where Lo (70,00, §) 18 as given in (1.1). Our main results concern these L-functions.
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Further, we recall that such a representation 7 has an associated cuspidal modular form
¢z on G, that has weight £ and level one. It was proved in [5] that the Fourier coefficients
of such a modular form ¢, depend on a cubic ring 7 such that 7T ® R ~ R x R x R. We
thus denote them by a,, (T).

Our first result is as follows.

Theorem 1.1 Suppose that ¢ is a level one cuspidal modular form on G, of positive even
weight ¢ that generates the cuspidal automorphic representation . Further, assume that the
Fourier coefficient of ¢ corresponding to the split cubic ring 7. X 7. x Z is nonzero. Then

A(m,Std, s) = A(w, Std, 1 — )
foralls € C.

We carefully note that at present, it is not known whether there exists such a level one, even
weight cuspidal modular form ¢ with a nonzero Z x Z x Z Fourier coefficient. However, it is
certainly expected (by analogy with Siegel modular forms of genus two) that these modular
forms exist in abundance. We also note that the recent work [3] provides a dimension formula
for the space of level one, cuspidal modular forms on G, of weight at least three. However,
[3] sheds no light about the existence of specific nonzero Fourier coefficients of such forms,
as is needed in Theorem 1.1.

The proof of Theorem 1.1 is based on a refined analysis of a Rankin-Selberg integral that
was defined in [11]. Moreover, a Dirichlet series for the L-function L (s, Std, s) follows from
the proof of Theorem 1.1. We also have

Corollary 1.2 Let the assumptions be as in Theorem 1.1, and let a,(T) denote the Fourier
coefficient of ¢ corresponding to the cubic ring T that satisfies T @ R ~ R x R x R. Then

L(w,Std, s — 20+ 1)
C(s —20+2)2¢(2s — 46 +2)

Z ay(Z +nT)
[ZS : T]S*[‘Flns

T<Z3 n>1

= a,(7?)

Here the sum is over the subrings T of Z x 7 x 7 and integers n > 1.

In [15], Pollack gave a streamlined account of the Rankin-Selberg integrals in [11] and
[17] whereby simplifying some of their computations. He used his analysis of the Rankin-
Selberg integral to provide a Dirichlet series representation for the standard L-function of
modular forms on G outside the primes p = 2 and p = 3, and began some calculations
of the archimedean zeta integral associated to the global Rankin-Selberg convolution. Thus,
Theorem 1.1 and Corollary 1.2 bring the work that began in [15] to completion.

Observe that by studying the archimedean factor L, (¢, 0, s), one can verify that the
integers 1,3,5,...,¢ — 1 are critical for L(s, Std, s) in the sense of Deligne, that is, both
of the values Lo (¢, 00, §) and Loo(7p,00, I — s) are finite at these integers. It would be
extremely interesting to obtain a special value result in the direction of Deligne’s conjecture
for these L-values. While such a result is beyond the reach of our methods, we can obtain
a result on what can be considered the most basic special value, namely, a result on the
trivial zeros of the L-function L (7, Std, s). This is an immediate corollary of the functional
equation of the completed L-function. In more detail, the completed L-function A (7, Std, )
is finite and nonzero for Re(s) > 0, and also for Re(s) <« 0 by using the functional equation.
However, the archimedean factor Lo, (7¢,00, §) has poles at negative integers of sufficiently
large absolute value. These poles are compensated for by the zeros of the standard L-function.
We therefore deduce the following from Theorem 1.1.
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Corollary 1.3 Let the assumptions be as in Theorem 1.1. Then L(7w, Std, s) vanishes to order
3 at negative even integers of sufficiently large absolute value, and vanishes to order 4 at
negative odd integers of sufficiently large absolute value.

1.3 Outline of the proof of Theorem 1.1

As mentioned, our proof of Theorem 1.1 is based on a refined analysis of the Rankin-Selberg
integral in [11] and is a continuation of the work in [15].

Let G denote the split group Spin(8). If ¢ is a modular form on G, of weight ¢, then by
definition, ¢ is a V-valued automorphic function on G (A), where V, = Symz‘Z (C?) (see
[15] for a more detailed account of modular forms on G;). For a normalized Eisenstein series
Ej}(g,s) on G(A) that takes values in V¢, we will consider the Rankin-Selberg integral

Lg.s) = f (0(g). EX (5. 5)}x dg.
G2(Q\G2(A)

Here {-, -}k : V¢ ® V; — C is a K-equivariant pairing. In order to obtain Theorem 1.1, we
will prove that

Le(g,5) = ay,(Z°)A(, Std, s — 2)

up to a nonzero constant, and that the Eisenstein series Ez (g, s) satisfies the functional
equation

E;(g,s) = E;(g.5—5).

For the proof of the first statement, we will analyze local integrals I, (s) for finite primes
p, which will be defined in (3.4), and an archimedean integral /*(s; £) defined in (8.1). We
will prove that these local integrals are equal to the corresponding local L-factors up to some
simple factors. For p > 5, the local integrals I, (s) were analyzed in [11]. To carry out the
computation of these integrals for p = 2, 3, we follow a method in [15] and use some results
on cubic rings. The analysis of the integral /*(s; £) was begun in [15], where the computation
was reduced to that of an integral J'(s) over the space of real binary cubics of a general
form that was previously considered by Shintani [20]. We will evaluate the integral J'(s)
explicitly in terms of the gamma function, thereby proving that I*(s; £) = L(7¢ 00,5 — 2)
up to a nonzero constant.

To prove the functional equation for Ej (g, s), we will use Langlands’ functional equa-
tion for the Eisenstein series. Since our Eisenstein series £ (g, s) is not spherical at the
archimedean place, we will make a careful analysis of certain archimedean intertwining
operators.

Remark The methods in this paper are somewhat flexible but also have some limitations.

For instance, in terms of the calculations of the unramified integrals at the finite places,
our restriction to Q is simply for convenience. These calculations would follow just as easily
over other ground fields. However, where we really use our assumption that Q is the ground
field is in the archimedean calculation. Indeed, we do not expect that the calculations in
Sects. 7 and 8 will have close analogues for other number fields.

Also, notice that we have several assumptions on our modular forms on G . Firstly, we only
consider modular forms of level one. This allows us to do an unramified computation at every
finite place. Without this assumption, it would also be difficult to obtain a precise functional
equation for an Eisenstein series that is used in the Rankin-Selberg integral. We also restrict
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our discussion to quaternionic modular forms due to reasons that can be considered to be
purely archimedean. For such modular forms, we can define a completed L-function, prove
its relation to the global Rankin-Selberg convolution, and prove its functional equation.
This archimedean assumption does not make the unramified computations any easier or
different. However, by working with quaternionic modular forms, we are able to compute
the archimedean integral as in Sect. 8. We would not expect to be able to do an analogous
computation for non-spherical, non-quaternionic automorphic forms.

Finally, note that we only consider the Z x 7Z x Z Fourier coefficient of quaternionic
modular forms. This assumption is used to make the unramified calculation as simple as
possible at every finite place. In particular, replacing Z x Z x Z with another maximal totally
real cubic ring, we would still expect to be able to do the resulting archimedean calculation.
Importantly, Theorem 1.1 and its corollaries require that our modular form supports a nonzero
Fourier coefficient corresponding to the split cubic ring Z x Z x Z.

1.4 Organization of the paper

We now provide an outline of our paper. In Sect. 2, we setup some notation. Then in the
next section, we give an overview of the Rankin-Selberg integral and present our strategy to
calculate the non-archimedean local integrals. In Sect. 4, we prove some results that relate
some cubic rings to some binary cubic forms. In Sect. 5, we compute the Fourier coefficient
of the so-called approximate basic function. In Sect. 6, we complete the computation for
the case of unramified primes. This involves computing the function @, , (¢, g), which is
defined in (3.5) and is related to the inducing section of the Eisenstein series, and some
calculations with certain Hecke operators. In Sect. 7, we prove the functional equation of
the Eisenstein series E; (g, s) and then in Sect. 8, we compute the archimedean zeta integral
I*(s; £). Finally in Sect. 9, we combine our work and complete the proof of our results.

2 Setups
2.1 Octonions and reductive groups

It is well-known that G» is defined as the automorphism group of an octonion algebra. In
this section, we use the split octonions algebra ® in the Zorn model (see [15, Section 2.1])
to view G as a subgroup of Spin(®). We thus begin with a review of some of the notation
used in [15]. The standard representation V3 of SL3 and its dual representation V3v will be
fixed. The space V3 has a standard basis {e, €2, e3} and V3v has the dual basis {e], €3, e3}.
Note that for each j = 1, 2, 3, we make the identifications

0 e; ) 0 0 )
ejeV3<—>< ])E@ and e*GV3v<—><* )E@.
0 0 J e; 0

Using the quadratic norm on ©, we can define the group G’ = SO(®). Now, let G denote
the algebraic group Spin(®) defined as

G = {(gl, g2, 83) € SO(@)3 1 (g1x1, g2x2, 83x3) = (x1, x2, x3) forall x1, xp,x3 € @)},

where (x1, x2, x3) = tre(x1(x2x3)). We fix a map proj; : G — G’ as (g1, g2, 83) > g&1.
This map induces an isomorphism on Lie algebras.
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Let ®¢ be the standard maximal lattice in the Zorn model. Then ®q consists of the
matrices (; 5) where a, d € Z, v is in the Z-span of the {ey, e, €3} and ¢ is in the Z-span
of {e], 3, e3}.

Weset K ;=[] » Kp where K, is the hyperspecial maximal compact subgroup of G(Q),)
that is specified as the stabilizer of (@9 ® Z,)? inside of G(Q,). That K, is hyperspecial
follows from [8, Section 4] and [2, Proposition 5.4]. Similarly, we let G2 (Z),) be the stabilizer
of ®9 ® Z, inside G2(Q),). This is a hyperspecial maximal compact subgroup.

We now define a maximal compact subgroup of G'(R), K, as follows. Given v € V3,
suppose that U € V,” is given by the linear mapping e; — e;‘. on V3. Similarly, for ¢ € V',
let ¢ in V3 be given by the linear mapping e;f > ¢j. We also define a quadratic form gm,j on
O ® R by

qm((f,ﬁ f,)) =a’+d+ @) + @, 9),

where (, ) denotes the evaluation pairing between V3 and V3V. Then K/ is defined as the
subgroup of G'(R) that preserves the quadratic form gp,j. We now let Koo € G(R) be the
inverse image of K/ under the map proj; : G — G'.

Put another way, we define : : ® — © as

G a)-(57)

If x = (;’5 Z), then gmaj(x) = (x, t(x)). Conjugation by ¢ induces a Cartan involution on
G’ and on G, C G (see [15, Claim 2.1]).

2.2 Lie algebra definitions

The maps G, — G — G’ induce Lie(G,) — Lie(G') =~ A2©. This embedding is the one
specified in Section 2.2 in [15], and we will use notation from that section.

The Heisenberg parabolic Pg of G is defined to be the one which stabilizes the line
spanned by E13 = €3 A ey in A%@. The Heisenberg parabolic P of G, is similarly defined
as the stabilizer of the line spanned by E13 in Lie(G»), thus P N G, = P.

2.3 Setup for K,

Let
K, =504 x 0®) ={(g1,82) € O4) x O(4) : det(gy) det(g2) = 1}.

We remind the reader that SO(4) = (SU(2) x SU(2))/{x1}. Thus there are four copies of
sl in Lie(K ) ® C. We will introduce them explicitly as these sl;’s will be used in Sect. 7.
Note that Lie(K ) € Lie(G") ~ AZ0O. Let

{b1.b2,b3, b4, boa, b3, by, b 1} ={e1, 65, €2, €3, —e2, €1, —e3, —ef}  (2.1)

inorder. Heree; = (} §)ande; = (§ ). Withthebasis {by, by, b3, ba, b_s, b_3,b_3, b_1}
of ®, one has (bj,b;) = (b—j,b—) = 0 and (b, b_) = J . The involution ¢ satisfies
t(bj) =b_jand 1(b_;) = b for j = 1,2, 3, 4. Define
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1 1
Ui =E(b1+b—1), ’42=\7f2(b2+b—2),
1 1
v = E(h@ +b_3), v= E(b‘l +b_4),
and
1 1
u_| = E(bl —by), up= E(b —b_s),
oy = %(zy3 “b3). va= %(zu ).

With the above notation, we now specify the four copies of sl in Lie(K~) ® C. One copy
of sy has the basis consisting of

+ |1 . .
o :E(“l_”@)/\(vl—”&)a

o W =i(u; Aus+ v Avp),
1
o fT=—ZG+iu) A @ +iv).

The other s, from the first SO(4) in K., = S(O(4) x O(4)) is obtained by replacing v,
with —wv» in the above formulas. Thus it has a basis that consists of

4+ 1 . .
e ¢ = E(ul —iup) A (v1 +ivo),
° h/+ = i(ul AUy — V] Av2),
1
o f1T=—5 0+ iun) A @ —ivy).

The third copy of sl has the basis consisting of

1
o ¢ = E(u,1 —iu_p) A(v—1 —iv_o),
e h™ = —i(u_1 ANu_p+v_1 Av_p),
1
o [T = _E(u71 +iu_) A (v_i+iv_z).

Finally, the basis of the fourth copy of sl, consists of

1
o 7 = E(M_l —iu_) A (-1 +iv_p),
e W' = —i(u_1 ANu_p —v_1 Av_2),
1
o 7= _E(u_l +iu_) A(v_; —iv_y).
The compatible Cartan involutions on G and G, and the embedding G, € G picks out a
distinguished sl, of the above four, the image of the long root sl, of G;. The long root sl,

is given in Section 4.1.1 in [15] or equivalently, by combining the discussion in Section 5.1
and Section 4.2.4 of [16]. From Section 4.1.1 in [15], we obtain

1
E= Z(el +ef —iez+ed) Ae —e —ilex+e3)),

F=—Eand H = [E, F].
With the identification in (2.1), it follows that the long root sl, of G, maps into the third
copy of sly in Lie(Ko) ® C that was given above.
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We denote by C? the representation of Lie(K ) ® C which is the two-dimensional rep-
resentation of the long root sl and the trivial representation of the other sl,’s. Let {x, y} be
a basis of C2 on elements on which H acts as 1, —1, in order, and for which Fx = y. The
even symmetric powers in Sym2¢(C?) exponentiate to representations of K. and have the
basis {x2¢, ng’ly, o xyzz’l, yze}.

2.4 Binary cubic forms

Here, we briefly recall some aspects of binary cubic forms, as studied in [15], that will be
used in the next subsection.
Let V; denote the defining representation of GL,. The space

W = Sym*(V2) ® det(V5) ™!

is the space of binary cubic forms. If f(w, z) = aw? 4+ bw?z + cwz?* + dz> is a binary cubic
and g € GL,, then we define g - f to be the binary cubic

(g Nw,z2) =det(e)”" f((w, 2)g). 2.2)

Also, we will sometimes use a right action of GL, on the space of binary cubics. We define

~_ (s —q (P a
g_<_r p) forg_(r s)eGLg,
so that gg = det(g). We then define

frg=8 f=det@?f((w.2)g7).
There is a GL;-equivariant symplectic form on W that is defined as
bc b

(aw® 4+ bw’z + cwz®> +d2°, dw’ + bw’z + dw? +d'2) = ad’ ey + 3 da'.

We have
(g-f.g-f)=det(e)(f, f) and (f,g-f)=(f-g f)) forall f,f eW.
There also exists a GL-equivariant quartic form on the space W. For v = aw? + bw?z +

cwz? +dz> € W, this is given by

ben2 4 5 4 3 45,
q(v)_(ad—?) + gpac’ + -dbd — bl

1
—ﬁ(—27a2d2 + 18abed + b*c* — 4ac® — 4db).

2.5 Characters of the Heisenberg parabolic

Throughout the paper, we fix the standard additive character to be ¥ : Q\A — C*. We
will abusively denote the p-component of this additive character by . Thus, if x € Q, and
x = xo + x| withxg € Z, and x; = m/p", then

w_(x) — e2ﬂix1 .

We let N denote the unipotent radical of the Heisenberg parabolic P of G, and let M
denote the Levi subgroup of P that also stabilizes the line spanned by E3;. We identify M
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with GL; as in [15, Section 5.2]. We now recall this identification. Suppose that g € GL; is
represented by the matrix (‘C‘ Z). Then the action of g on © is given by

e| > aey + cej,

e = bey +dej,

(ad — bc)e| — adey + abel — cdey — bees,

(ad — bc)es — acey + aze§ —c%eyr — aces,

(ad — bc)er — —bdey — bzea‘ + d?ey + bde,

[ ]
[ ]
°
[ ]
[ ]
e (ad — bc)ey — —bce) — abe + cdey 4 ades.

On another note, a binary cubic form provides a character of N. Let Z denote the one-
dimensional center of N. Denote by W the representation Sym> (V) ® det(V>)~! of M ~
GL;. The exponential map exp : W — N/Z provides an identification W ~ N/Z as
specified in [15, p. 18]. Namely, to the binary cubic

urx® + upx?y + uzxy? + usy® € W,
it associates the element

us us .
urEp + 3 + ?53 +u4Ey3 € Lie(Gy).

Now, if w € W, then n — v ({w, 1)) defines a character of N. Here 7 is the image of n in
N/Z >~ W and ¥ is our fixed additive character.

3 The Rankin-Selberg integral

In this section, we provide an overview of the calculations that will be done in the rest of the
paper.

3.1 The Eisenstein series

We begin by defining various Eisenstein series on the group G. Recall that Pg denotes the
Heisenberg parabolic of G. We denote its generating character by v : P — GL1, so that
8ps(p) = (p)P.

Let E¢(g, s) be the Eisenstein series of weight £ on G that is normalized with a flat
section. More precisely, if x and y denote the variables in Symze (C?), we define f; (g,5)to
be the unique section in Indga(‘x)(lvl“), which is valued in Vy = Symz‘Z (C?), and satisfies
the properties

() fetks,s) =x‘y forallks € Ky € G(Ay),
(i) fe(gk,s) =k='- fi(g,s)forall g € G(A) and k € K.

Note that in this paper we use an unnormalized induction. We have

Elg. )= > filyg.s.
yeP(@\G@

Let A(s) be the completed Riemann zeta function, that is,

N

A(s) = 73T (2) (s).
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492 F.Cicek et al.

For our purposes, we define a normalized Eisenstein series as

F's+£4—DI'(s+£-2)
Ef(g,s) = A(s — 1)>A(s)AQ2s — 4 Ei (g, 5). 3.1
H(8:9) = A6 = DPAWARS =) R ) (D)
It will be convenient for our calculations to define another Eisenstein series. Let ® ¢ t’)\e
the Schwartz—Bruhat function on AZ0 ® A r that is the characteristic function of AO)RZ.

Note that @ ¢ is stable by K y. For g € G(Ay) we define

Sie (g, Py, 5) = / [t @ p(tg™" E13) dt,
GLi(Af)

where ffe stands for the finite part of f. Also, let
& @r,5) = fre(gs, Pr.5)fi(80, ).
Because @ is K p-stable, it is immediate that f(g, @ s, s) = ¢(s) fe(g, s). We set

E@Q ®p)= Y  flrg. @59 3.2)
yePE@\G(@)

Then the Rankin-Selberg integral is defined as
ro o0 = | (0(@). E(g. 7.)) d.
G2(Q\G2(A)

Recall that here ¢ is a modular form of weight £ on G». In particular, ¢ is valued in V,, and
constructed from a cuspidal automorphic representation 7 = 7y ® 7oo,¢, Where o ¢ is a
quaternionic discrete series of minimal K -type Vev >~ Vy. The term {¢(g), E(g, D, s)}k is
the K-invariant pairing of these two V,-valued automorphic functions.

3.2 The unfolded Rankin-Selberg integral

We now explain how the Rankin-Selberg integral / (¢, ® r, s) unfolds.
Let ve € W denote the binary cubic

VE = w2z +wz? = wz(w + z2).

Also, let x be the character of N(Q)\N(A) determined by vg via the association given at
the end of Sect. 2.5 and set

oy (8) = / X~ (e (ng) dn.
N@\N(A)
We further define
UE = €1 A (e1 +€3),

which is an element of A?@. Let N> C N be the subgroup consisting of those n € N for
which (vg,n) = 0.

Theorem 3.1 We have

(g, ®7.5) =/ (08, 1.5). 0y @)}k dg. (3.3)
NO-E(A\G(A)
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where yy € G(Q) satisfies )/0_1 E13 = Vg.

The proof of this theorem is due to Gurevich and Segal [11, 17], but its above form is
essentially Theorem 5.2 in [15].

3.3 Local integrals

In order to analyze I (¢, ® ¢, s), we must consider the associated local integral at each place of
Q. In this section, we describe these local integrals and provide an outline of their computation
to be done in the later sections.

The integral at the archimedean place is given by

I(5:0) = f (fe(08. ). Wy (&) dg.
NO-E(R)\G2(R)

Here W, is the generalized Whittaker function of [15, Section 4] and [16]. Now, in view of
the normalization of the Eisenstein series in (3.1), note that

F's+£—DI'(s+£—-2)
I's—DHI'(s—2)
=2Tr(s — DIc(s +€— Dlc(s + £ —2).

Tg(s — 1)’ TR(s)[R(2s — 4)

Thus we suitably define a normalized archimedean zeta integral as
I"(s;0) =2°Tr(s — DIe(s + € — DTe(s + € —2)I (s; 0).

This integral will be computed in Sect. 8. In Theorem 8.1, we will prove that 7*(s; ) =
L(7m¢ 00, § — 2) up to a nonzero constant.

We now define the local integrals at the finite places. Let ®, denote the characteristic
function of A20) ® Z p and

Folg. Bp.s) = / 15D, g~ Ev) d.
GL1(Qp)

Here f), (g, @, s) is also the associated local inducing section, so that f,(1, ®,, s) = ¢, (s).
Let V, denote the space of the representation 7 ,, and write vy for a spherical vector. Suppose
that £ : Vr, — Cis an (N, x)-functional, that is,

L(nv) = x(n)L(v) forall n € N(Qp) and v € Va,.
At a finite place p, we will compute

I,(s) =1,(L,s) = / fr(vog, ®p, 8)L(gVo) dg
NOE(@Q,)\G2(Q)p)

1 @) (1 9)L(guo)didg,  (3.4)

/N(@p)\GLl(Qp)XGz(Qp)
where

Q1. 8) = / X(M® (g~ n~ 0g) dn. (3.5)
NOE@p)\N(@p)

We will prove the following theorem.
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Theorem 3.2 We have
L(mp,Std, s —2)
Cp(s — 120,25 —4)

The proof of this theorem proceeds by following the strategies in [11, 15, 17].

Let V7 be the perpendicular subspace to 1 in ®, and set V7(Z) = V7 N ©g. Similarly,
define V7(Z),) = V7(Z) ® Z,. Note that because G stabilizes 1, V7(Z)) is stabilized by
G2(Zp). We write r7 : G2 — GL(V7) for the action map.

We now define two Hecke operators on G. First, for t € GL{(Q,) and h € G2(Q)), let

1y(s) = I,(L: 5) = L(vo) (3.6)

A(t, h) = char (¢ - r7(h) € End(V7(Z)))).

We call this the approximate basic function (see Section 5.3 in [15] for some remarks on this
terminology). Define another Hecke operator on G, as

T = p~ x char (g € G2(Qp), p.r1(g) € End(V7(Z)))).

For ease of notation, let z = p~*. In order to prove (3.6), we will prove that

/ 112 A, g)L(gvo) dr dg
GL1(Qp)xG2(Qp)

= M(xp,s) [t D, (1, 9)L(guo) didg,  (3.7)
N@Qp\GL1(Qp)xG2(Qp)

where

My, s) = (1 — p2)(1 = 2)No(p. s — DE,(5)°¢, (25 — 2),

and
2 4 2

_ Z _ _ Z Z
No(p, s)vg = 14 (p 1+1)Z+;+(p 24p ])z3+?—;T.

Proving (3.7) implies our desired relation between I,(L; s) and L(rp, Std, s) as in Theo-
rem 3.2, which is essentially Proposition 7.1 in [11]. For an explanation of this implication,
see Section 5.3 in [15].

Now, (3.7) has been proved for p > 5in[11, 15]. We will prove it for p = 2, 3 as well. To
do so, we will compute the left-hand side and the right-hand side of (3.7) separately and show
that they are the same. The left-hand side will be considered in Sect. 5 and the right-hand
side will be computed in Sect. 6. In order to do these computations, some properties of binary
cubic forms and their relations to cubic rings will be useful. We spell these out in the next
section.

4 The arithmetic invariant theory of binary cubics

In this section, we describe some results on the relationship between binary cubic forms and
cubic rings. We refer to [5, Section 4] and [9] for a primer on this relationship.
Suppose that

fw,z) = aw’ + bw?z + cwz? +d7°
is a binary cubic over some ring R. One associates to f the cubic R-algebra 7' with the basis

{1, w, 8} and the multiplication table
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e wh = —ad,
e w?=—ac+ab — bw,
o 02 =—bd + ct — dw.

Following [5, Section 4], we call such a basis a good basis. Suppose that m = (jil  712)

is a 2 x 2 matrix with coefficients in R. Write T, for the R-lattice in 7 that is spanned by
{1, my1@ + m20, my1w + mp0}. Let @” and 0” be defined by the relation

" 1) myp mp2\ /@
(9”)""(9>_<m21 e ) (5) @1
One can naturally ask what condition guarantees that 7}, is closed under multiplication. This
question is answered by the following proposition.

Proposition 4.1 Suppose that R has characteristic 0. Set
flw,2) =m- f(w,2),
where the action is as given in (2.2) and write
f'(w,2) =dw®+bwzs+dw +d'7 .
With the notation as above, the R-lattice Ty, is closed under multiplication if and only if

(1) f'(w, z) has coefficients in R, thatis, a’,b’,c’,d" € R,
.. b’ b
(i1) and <—c/) = m(_c> (mod 3).

The proof of this proposition requires a lemma. Following the notation in (4.1), set 0’ =
mijw + m20 and 0” = myjw + m0. Let o and 6" in T @ Frac(R) be defined by

(5)=(5) +3{(Z) ()}

+P ad gp=e-¢
wo=w+ = an =0,
0 3 0 3

Finally, let

so that tr(wg) = tr(6g) = 0.

Lemma 4.2 The elements o' and 0’ defined above have the multiplication table
(i) '8 =—-a'd,

(i) @?=—d'¢ +d'6 —bw,

(i) 02 = —b'd' +c'0' —d'w.

Proof This lemma is well-known. It is essentially the statement that our association of cubic
rings to binary cubic forms is equivariant under the action of GL;. For completeness, we
give some details regarding a proof.
First, instead of checking the multiplication table above of {1, ', 8'}, we verify the equiv-
/
alent multiplication table for (659 ) =m ( Cgo )
0 0
Now, the trace 0 basis {wg, 6p} has the multiplication table

b c bc
ow0902590—§w0+ ?—ad 5
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b 2
o w}=aby — 300+ 6(bz —3ac),

3
- %90 — dawg + §(c2 — 3bd).

We wish to prove that the multiplication table for {a)f), 9(’)} has the same form, with a, b, ¢, d
replaced by a’, b', ¢/, d’, respectively. To do this, we first write the multiplication table of
{wo, B} as

) (o 9)_1 3a b\, _L(b ey 1 2b* —6ac  bc —9ad
6 )\ T3\ )T 3 e 3d) T 9\ be—9ad 2¢2 —6bd |-

Then we obtain

1 _ 3a b _ b ¢

m<(g(()))(w0 o)’ = §<m211m(b C>mt_m“1m(c 3d)mz>w6
1 -1 3a b —1 b ¢

+§(m22m<b C>mt—m12m(c 3d>m’>06

1 <2b2—6ac bc—9ad) ;

T9"\ be—9ad 2¢ —6bd )™

Equivalently, this is

‘ 1 _ 3a b b
(Cgﬁ))(wg 6)) = — gdet(m) 1 <m21m (ba C)m’ + moym (c 3Cd>m’> W[
0
1 -1 361 b t b C t /
+§det(m) (m“m(b C)m +m12m(c 3d)m)00

- 20* —6ac bc—9ad \
9 bc —9ad 2c% — 6bd :

W) () 6 )=l 3a" b o — Loy o +l 202 —6a'c’ b'¢ —9d'd

oy )0 VT3 ¢ )T 3\ 3a ) T 9\ v —9d'd 2¢? —6b'd )
where we used the definition of the action of GL; on binary cubics and the equivariance of
the Hessian of a binary cubic. The lemma then follows. O

We denote the condition (ii) of Proposition 4.1 by T as below.

(_bc,) Em(_bc> (mod 3). ()

Then the statement of Proposition 4.1 follows immediately from

Proposition 4.3 The following statements are equivalent.

(1) The R-lattice T,, spanned by {1, ", 0"} is closed under multiplication.
(ii) The R-lattice spanned by {1, o', 0’} is closed under multiplication and t holds.
(i) m - f has coefficients in R and T holds.

Proof From Lemma 4.2, it is clear that (ii) and (iii) are equivalent. It is also clear that (ii)
implies (i). To prove that (i) implies (ii), we argue as follows. First, we define

(3)=5(%)=:(7)
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so that ' = " + 81 and 8’ = 0” + §,. Observe that
@"0" = (0 — 81O —8) =B —50" — 50"

for some B € Frac(R). Thus if (i) holds, then 81, 8> € R. Since 81, 82 € R, the equalities
o = o’ + 81,0 = 0" + 8§ imply that the R-lattice spanned by {1, @', 8’} is closed under
multiplication, so that (ii) holds. The result then follows. ]

In the case where R = Z,,, we can go further.

Proposition 4.4 If Spaan(l, ', 0) is closed under multiplication, then T holds. Equiva-
lently, if m - f has its coefficients in Z, then T holds.

Although this proposition has nontrivial content only when p = 3, we write down its
proof for general p.

Proof The idea is to use the Cartan decomposition of m € GL2(Q,) N M2(Z,). That is,
such an m is a product kitky for some ki, k» € GL2(Z),) and a diagonal element ¢ in
GL(Q)) N Ma(Zy).

We first claim thatif m = k € GL2(Z),), then T automatically holds for this m. To see this,
note that because k € GL2(Z)), Spanzp(l, w,0) = Spaan(l, ®”,6"). Thus that T holds
follows from the equivalence of (i) and (iii) of Proposition 4.3.

Now suppose that m = t = diag(t;, t2) is diagonal in M>(Z,) N GL2(Z)). Then for such
m, b’ = t1b and ¢’ = tpc, and it is clear that if 7 - f has coefficients in Zp, then 7 holds.

Now suppose that m = kitkz and that m - f has coefficients in Z,. It follows that tk; - f
has coefficients in Z . Thus, from what has been said, 1 holds for m’ = tk. Applying k1, it
follows that { holds for m, as desired. O

Recall that an order is a subring of a K-algebra, where K is a field and R is an integral
domain in K, which is a full R-lattice. We note the following corollary of Lemma 4.2.

Corollary 4.5 Set R = Z,,, and let the binary cubic f(w, z) correspond to the maximal order
T in the étale Qp-algebra T ® Q. Assume that for m € GL2(Q)), the coefficients of m - f
liein Zp. Then m € Mo (Zp).

mip mi2

Proof Suppose that m = (il 712) and T has the good basis {1, w, 6}. We have o' =
myw+ mpp0 + 8 and 0 = myjw + myp0 + 8. Since m - f has coefficients in Lp,
Lemma 4.2 implies that Spaan (1, o, 0 ) is closed under multiplication. But then, because

T is maximal by assumption, we must have «’, 8’ € T It follows that all entries of m are in
Zp, as desired. ]

5 The Fourier coefficient of the approximate basic function

In this section, we explain the computation of the left-hand side of (3.7). For t € GL; and
h € GL, >~ M the Levi of the Heisenberg parabolic of G5, define

D, (t, h) =/ x(n)A(t,nh)dn.
N@p)

Then by the Iwasawa decomposition, the left-hand side of (3.7) is

D(s) =/ 85 (M2 Dy (1, h)L(hvo) dh dt.
GL1(Q))xGL2(Qy)
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For p > 5, the D, (¢, h) is computed in [15, Proposition 5.7]. Below we explain that the
expression obtained for D, (¢, h) in loc cit continues to hold for p =2 and p = 3.

We now recall various notations from [15] that we need to state for the computation of
Dy (t, h). First, let

fmax (W, 2) = aw® + bw?z + cwz® + dz>
be a binary cubic form corresponding to the maximal order
3
Op =Zp xLp x Lp € Q,),

so that fiax is some GL2(Z),) translate of wz(w + z). Let {1, w, 6} be the good basis of Og
associated to fyax. For x = ( )O/‘ {; ) € GL»(Qy), T (x) denotes the Z,-module spanned by
{1, 8w — BO, —yw + ab}. Hence T (x) = T in the notation of Sect. 4, where X is as defined
in Sect. 2.4. Note that by the results of Sect. 4, if 7' (x) is closed under multiplication, then
x € Mx(Zp) and X - fmax = fmax - X has its coefficients in Z p» and vice versa.

For a general binary cubic form  with coefficients in Z,, define A'(R2) to be the number
of 0’s of 2 in P! (IF,). Also, for an element 1 € GL2(Q),), define val(h) € Z to be the largest
integer n so that p™"h € My(Z).

Proposition 5.1 Define xo(h) by xo(h) = p~ VA", and set . = det(h) /. Write D;( (A, h) =
Dy (t, h), that is, D;( is the same function as Dy, except that it is expressed in terms of the
new variables A and h. Further, let

L if xo(h) € GL2(Z),

€(xo(h)) = {2 if xo(h) ¢ GL2(Z)).

Then
D), (x. h) = |det(x"h)|~" char (h € Ma(Z,), val(x™"h) € {0, 1}, T (xo(h)) a ring)

1 if valx"'h) =0
“AUN i) — (xo(h)) i val(x"'hy =1

Proof This is essentially Proposition 5.7 in [15]. The proof carries over line-by-line except
one minor change. To aid the reader in checking this, we give some of the omitted details
from loc cit to clarify that the result continues to hold for p = 2, 3.

First, we show that D, (t,h) # O implies h € My(Z,). We have Dy(t,h) =
fN ¥ ({w, n))A(t, nh) dn, where o is the element of W that corresponds to fimax. By the
change of variable n — hnh~!, we find that up to positive constant coming from the change
in measure,

DX(t,h):/ v ((w, hnh™ ") A(t, hn)dn.
N

Now, A isright-invariantunder G2(Z,),soifug € G2(Z,)NN,then A(t, hnug) = A(t, hn).
Then by the change of variable n +— nug in D, (¢, h), one finds that

Dy (t, h) = ¥ ((w, hugh™ ")) Dy (1, h).

Thus, for D, (¢, h) to be nonzero, one must have (w, huoh’l) € Z, for every up € N N
G2(Zp). It follows that @ - i corresponds to a binary cubic form with Z , integral coefficients,
and thus h € M>(Z,) by Corollary 4.5.
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Let us remark upon the one aspect of the proof which is ever so slightly different from
the proof of Proposition 5.7 in [15]. In loc cit, one verifies that if D, (¢, h) nonzero, then
Jmax - X0 (h) has coefficients in Z,. By Proposition 4.4, one concludes that T (xo(h)) is aring.

The rest of the proof is as that of Proposition 5.7 in [15]. O

6 Non-archimedean zeta integral

In this section, we compute the right-hand side of (3.7). In the case when p > 5, the
calculation is done in [15], so the new work is for p = 2 and 3. Still, many computations are
similar to the ones in the proof for the case p > 5.

6.1 The computation of d,, ,

To compute the right-hand side of (3.7), we first compute the function @, , (¢, g) in (3.5).
The computation of this function is different from the one in Lemma 5.6 of [15].

Lemma 6.1 Suppose thath = ( a Z ) is in the Heisenberg Levi, so that h takes e to ae1+cej

and & 1o bey + dej. Let fo(w,z) = w’z + wz? Set » = det(h)/t and ' = +h =
At (_dc ;b). Set fi(w, z) = h - fo(w, z), and write fi(w, z) = ajw’ + Biw?z+ yjwz? +

8iz> fori =0, 1. Then
®p,x(t7 h) = |)\|A0()\7 h),
where Ay(X, h) is the characteristic function of the quantities

VWA
heZ,
n - fo(w, z) = det(h) ! fo((w, 2)h') € Z,

< P );h’( Po ) (mod 3).
! Y0

Before we prove this lemma, we introduce some notation and state a corollary of it. For
a cubic ring T' over Z,,, the largest integer c so that T = Z, + p“Tj for a cubic ring Ty over
Z, is called the p-adic content of T and is denoted by ¢(T'). If T' corresponds to the binary
cubic g, then the p-adic content of T is the largest integer ¢ so that p~“g has coefficients in

Zp. Letx = (‘; ’g) € GL(2, Q). Recall that T (x) denotes the Z,-module spanned by

{1, 6w — BO, —yw + aB}, where {1, w, 0} is the good basis of the fixed maximal order.
Corollary 6.2 We have

Ag(h, ) = char(x € Z,y, TG h) is a ring) = char (1 € Z,, 3| p*T@).
Proof This follows from Lemma 6.1 by an application of the results of Sect. 4. The condition
A € Z, corresponds to the first bullet point while the condition A | pcT ™) corresponds to

the last three bullet points in Lemma 6.1. O

Note that the characteristic function in the statement of Corollary 6.2 is the same charac-
teristic function as described in [15, p. 21] for p > 5.
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We now introduce some notation that will be used in the proof of Lemma 6.1. Recall that
©y is the split model of the integral octonions with Z-basis {€1, €2, e1, e2, e3, €], €3, e3}. For
a; and y; in aring R, we define

{Ot],Olz,O(3}gl = o1€] Nel —ap€ex A e -I-Ol3e>2k A e%‘,
a1, 00, 03}, 1= 01€] A €x — ar€r A ex +azel e,
) A Aey +azes Aef
{a1, @2, a3}y 1= ar1€] A €3 — @26z A ez + aze] Aes,
and
. * *
1s s et = 1 1 — V1 1 s
V1, v2. valer :=v2€1 Nef —yviea Aef +y3ea Aes
V1, 72, v3}et 1= y2€1 A €5 — yi€2 A €5 + y3e3 Ael,
2
(Y1, v2, V3lex i= y2€1 A€ —yiE2 A€ + y3e1 A ea
3

as elements of /\%@0 ® R. This notation is useful because one has

[{o1, 02, a3}e; . {B1. B2, B3ler | = {0283 + 3o, a3fi + 1 B3, a1 B2 + a2B1}ex

and

[y v2, v3ders 81,82, 83)es ] = (1283 + 382, ¥381 + 1183, 1182 + 281 )es
We also obtain
(a1, a2, @3)ers (Y1, 72, v3der] = (@11 + a2y2 + azpz)er Aej,
(a1, a2, a3)e;, (B, Ba. Bade; ] = O.

For our later use, we record the following formulas. From the formulas in Sect. 2.5, we find
that under the action of m = (¢ %) € GL; >~ M, we have

6.1)

261/\614—62/\61—6;/\6; r—>a(261/\€1+62/\€1—€§/\€§)

+c(Qeanel+e1nef el Aer),
and

261/\e§+62/\e§—61/\62 r—>b(€1 Ael+2€2/\el+e§‘/\e§)
+d(2€1/\e§"+62/\e§‘—e1Ae2).

In other words,
{2, =1, =1}, = af2, =1, =1}, +c{=2, 1, 1}er,
and
{12, —1}er = b{1, =2, 1}, +d{—1,2, —1}.x.
Now, recall that
VE = €1 Ale1+e3) =€ Anep+er Aef={1,0,0}, +1{0,1,0};.
We thus have

vE ={1,0,0}¢; +{0, 1, O}
(6.2)

(001 e + (11,10 ) + % (=1 =1 +{-1.2,-1)s) .

W —
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The terms in the first set of parentheses are in the Lie algebra g, and they correspond to the
cubic x2y + xy? in the sense that was described in the first paragraph of [15, p. 18].
Form € M ~ GL;, we can now compute mvg. Write m = (‘; Z). Also, let fo(w, z) =
w2z + wz?, and
m - fo(w, z) = det(m) ! fo(w, 2ym) = aw’ + pw’z + ywz® + 62°.
We also recall the following notations from Section 4.1 in [15].
Eip=—e A e}‘, Eyxz = —ex A eé‘,

v = (L L1, 8 =(L1 1

By using this notation and (6.2), we obtain

~ 1 1
mug =aEp + gﬂvl + 52/53 +8Ex

1
5 (a2 1 =1 (=2 1 Dy + b{1L =2, 1y +dl=1.2.~ 1))

Finally, we need to present one piece of calculation before the proof of Lemma 6.1.
Suppose that X = u1Ej3 + upvy + u3é3 + ugEr3 is in the Lie algebra of N, that is, the
unipotent radical of the Heisenberg parabolic of G,. We need to compute [X, vg]. By (6.1),

[X, V] = [ugvr +u383, Vg] = [ua{1, 1, 1}e; +usf{l, 1, 1}ex. {1, 0, 0}e; + {0, 1, 0}es]
=uz[{1, 1, 1}¢;, {0, 1, 0}es ] — u3[{1, 0, Ok¢,, {1, 1, 1}ex]
= (up — uz)ey A éj.

We are now in a position to compute &, , (¢, h).

Proofof Lemma 6.1 Set A = det(h)/t and n = exp(X). From the computations above, we
obtain

1~ ~
n= Vg =vg + (u2 —u3)Eq3.

Then
Uz — u3

th™'n= 155 = th™ 5% +tdet(h) " (ua — u3)E;3 = A~ det(h)(h™" - 7%) + Ei3.
Now, h=! =det(h)~' (4. -P). Thus

Uz —us3

th™'n™ 0 =a1 Epp + ﬁm sy 81 Eas +

E
3 3 13

31
+ 5 (A2 =1 = = =2, 1 g = DL =2, ey + al =1, 2.~ 1)eg)
We will use this expression to verify the result. Indeed, by rewriting it, we obtain

1 ]~ uz —u3
th™'n™'08 = a1 E1p + 81Ex3 + ; Eq3

1

+171d(1,0,0},, +27'5{0, 1,0}, + g(ﬁl — 27l =27y {1, 1, 1),
1

+27"el1,0,0}: +27"a{0, 1, 0}ex + 30— e =27l ay (1 1 e

Observe that in order for the integral over N>\ N in (3.5) to be nonzero, we must have A €
Z,. Moreover, the resulting integral is |A| times the characteristic function of the quantities
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o 1,081 € Zp,
o 2 la, a7 b, a7 e, 0T d € 2,

1 1
o 3Br=271d=27'h), c(n =T le—aTla) €2,

The result follows. ]

6.2 The local unramified computations

Recall that T (x) is the Z,-module spanned by {1, éw — 80, —yw® + a8} as in Sect. 6.1. For
ease of notation, we set

c(x) =c(T(x)) for x € GL2(Q)).

For an element 7 € GL(2, Q,), let [#] denote the coset # GL(2, Z,,). Whether or not T'(x)
is closed under multiplication is independent of the element x € h GL(2, Z). Recall the
integral I,(s) = I,(L; s) in (3.4). By using the exact same calculations as in [15, p. 22], we
find that

1 ‘
IpGs +1) = 3 L(hw)|det(| 2= (1 — 204 char (c(h) = 0).
—Z
(4]

We define
Py(z) = glet@m=e@(p _ e+ char (c(h) > 0),

and write

1
I(s+1) = T > Lhv)|det(h)| Py (2).
[A]

To evaluate of I, (s) in terms of L-functions, we must apply M (7, s) to I,(s + 1) (see
[15, Section 5.4, 5.8]). The computations follow line-by-line just as in [oc cit. To demonstrate
that the results in [15] also hold for p = 2, 3, we fill in various details that were omitted in
that paper.

Suppose h = p©ho, with fo = fiax - ho integral and not divisible by p, so that the content
of h is ¢, so ¢(h) = c. We begin by explaining the proof of the following lemma, which is a
restatement of Lemma 5.10 in [15].

Lemma 6.3 Suppose f = p€ fo, with fy in each of the cases enumerated below. Denote by
A g the rank two O-lattice corresponding to f. Depending on some cases, the content c(A")
of the index p sublattices A" of A y can be described as follows.

(1) If fo irreducible mod p, then there are (p + 1) sublattices A’ each of which have index
p and satisfy c(A") = ¢ — 1.

(2) If fo = Lg where £ is a line and g is irreducible modulo p, then there is one sublattice
A = A with c(A¢) = ¢ while the other p sublattices satisfy c(A') = ¢ — 1.

(3) If fo = £1£2€3 where the {; are distinct lines modulo p, then there are three sublattices
given by A = Ay, fori =1, 2,3, and each satisfy c(Ag;) = ¢, while for other (p — 2)
sublattices A we have c(A') = ¢ — 1.

@ If fo = Z%Ez where £1, £y are distinct lines modulo p, then there is one sublattice
A = Ay, withc(Ay,) = ¢+ 1, another sublattice A’ = Ay, that has ¢c(Ag,) = ¢ while
the other (p — 1) sublattices A’ all satisfy c(A') = ¢ — 1.
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OS) If fo= ol where £ is a line modulo p and o € (O/p)*, then there is one sublattice
A = Ay withc(Ay) = ¢ +2 while the other p sublattices A’ all satisfy c(A') = ¢ — 1.

Proof First we claim that fy factors into linear factors over an unramified field extension L
of Q,. To see this, let Ty be the cubic ring corresponding to fy. Then by assumption, 7o ® Q,,
is an unramified extension of Q,,. It follows that for some unramified field extension L/Q,,
one has Ty ® L &~ L x L x L. The binary cubic corresponding to the right-hand side is split,
say xy(x + y). The association between binary cubics and cubic rings is clearly compatible
with base change, so it follows that fj factors over L.

Let O, denote the ring of integers in L. By Gauss’s Lemma, we conclude that fy factors
into linear factors over Oy, say fo = £1 - {2 - £3. By using this factorization of fy and the
fact that p is a uniformizer in Oy, the lemma follows without much difficulty.

Suppose that we are in the final case, so fo = «£> modulo p. Without loss of generality,
we can assume that £ = x. Then by the factorization of fj given above, we can write
fo(w,z) = B L4505 with B € Of and ¢ = ¢, = {5 = x modulo p. It follows that
% Jo(p(w, z)) has content 2, showing that one of the (¢ + 1) sublattices has content 2.

The rest of the proof proceeds similarly. O

Next, we explain some of the aspects of the proof that were omitted in the explanations
after Lemma 5.10 in [15]. In loc cit, we have

Py(z) = 2°°(1 — 2!y char (¢ > 0).
as we set v = v(h) = val(det(h)) and ¢ = c(h). Define
7(p) = GL2(0)(49) GLy(0)
and
T(p~") = GL2(O)(7, 9) GLy(O).
From Section 5.7 in [15], we recall the function
My(z) = szhp(Z) + Ppp-1(2) + (N(fmax - ) — D Pr(2) + pPhst(p) (@) + Ppar(p-1)(2)-

Also recall that for a Hecke operator ¥ on GL, with coset decomposition ¥ =
> ailyi GL2(0)], we have Phyy(2) = Y ; a Pyy,;. Note that hy; and hp are simply scalar
multiples of the matrix 4. Moreover, we define

Bo(z) = 1 + (p+ Dz + p2? + (p* + p)2® + p**.

In [15], the purpose of the discussion below Lemma 5.10 is to prove the following result,
which is a restatement of Lemma 5.12 of loc cit.

Lemma 6.4 Let the notations be as above. Then

(1+ p2) "' L(E, s) (Bo(z) Ph(2) — 22 My (2))
= char (val(h) = ¢(h))2" (1 + N(fmax) — €(h0)z).

We first elaborate on the evaluation of By(z) P, (z) — z2M),(z) in case c(h) > 2, which is
the case explained in loc cit. Let

g(2) = p?2" A = 2 4 2771 = 29 4 pzt e — .
Then, when ¢ > 2, the first three terms in the above expression for M, (z) give g(z). The point

is that when £ is changed, v and ¢ change, as these depend on /. One has v(hp) = v(h)+2 and
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c(hp) = c(h)+ 1. Thus Py, (z) = 2"~ (1 — z%2). Similarly, Py,,-1(z) = 2"~ (1 —z9),
because v(hp~!) = v(h) — 2 and c(hp~') = c(h) — 1. Finally, because ¢ > 1, we have
N = N(famax-h) = p+1,50 (N — 1) Py(2) = pz?~¢(1 —z¢th). Putting these computations
together gives

P2Pup(@) + Pyt () + (N = DPiy(2) = g(2).

The terms in M), (z) with the Hecke operators are computed using Lemma 6.3. For example,
when fj is irreducible modulo p, we have v(hg;) = v(h) + 1 and c(hg;) = c(h) — 1 using
Lemma 5.10. Here g; are the coset representatives for the Hecke operator 7 (p). Then, in this
case, Pry7(p)(2) = (p + DzV=+2(1 = z9). Similarly,

Pz p-1y(@) = (p+ D"~ —z7h.

Combining the above expressions gives the expression for M}, (z) at the bottom of [15, p.
217].

Remark There is a typo on page 27 in [15]. In the case fy = a3, the term zV~“T2(1 — z¢+2)
should instead say z"~¢2(1 — z¢+2).

We now claim that the cases where ¢ = 1 in fact do not need to be considered sepa-
rately from those where ¢ > 2. Indeed, this is because the terms that vanish because of the
char(c(h) > 0) in case ¢ = 1 all have a (1 — z°~!) in them, and so vanish anyway.

We now explain the calculation of By(z) P, (z) — z>Mj(z) in the case ¢ = 0. First note
that, in the case ¢ = 0,

if c =0 and fy is irreducible modulo p,
if c=0 and fy={p,

if c=0 and fy = £1£2¢3,

if c=0 and fy =302,

if c=0 and fo = af’.

N:N(fmax'h):

—_— N W= O

From this expression for N, one computes M, (z) in case ¢ = 0 as follows.

(1) Let fo be irreducible modulo p. In this case, we necessarily have 7 = 1 and My (z) =
p?z(1 — 22) + (=1)(1 — z). Also, Py(z) = 1 — z and then By(z) Py(z) — 2> Mj(z) =
(1+q(1 —27).

(2) Let fo = £g (mod p). We have My, (z) = p*z"t' (1 —z22) +2°(1 —2) + pz'T1 (1 —2)
and thus Bo(2) Py (z) — 2>Mj,(z) = z' (1 4 pz)(1 — Z2).

(3) Let fo = £1£2€3 (mod p). Wehave Mj,(z) = p2z'T1(1—z2)+2z°(1—2)+3pz' (1 —
z) and then Bo(2) Py (z) — 2> My (z) = 2V (1 + pz)(1 — 2)>(1 + 22).

(4) Let fo = €3¢, (mod p). Then My (z) = p*z°+t1(1 = 22) +2°(1 —2) + pz* (1 —2) +
pz’(1—2%) 4+ 27 (1 = 2) and By(2) P (2) — 22 M (z) = z'(1 + p2)(1 — 2)(1 — 2%).

(5) Let fo = af? (mod p). Then My,(z) = p22' (1 -2+ pz 1A -2 +2"2(1 - 22)
and Bo(z) Py (z) — 22 M, (z) = 0.

Now, for Bo(z) Py (z) —z> M}, (z), we find the same expression as the one on the top of page 28
in loc cit except with ¢ = 0. Hence we obtain Lemma 6.4. Combined with the relationship

1
(Bo(@) = p DI (s + 1) = 7= > L(m(nyv) | det()|* (Bo(2) Pa (2) = 2* M3 (2)),
[A]

this completes our evaluation of 7 (s).
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7 The Eisenstein series

We repeat the definition of the normalized Eisenstein series in (3.1).

P(s+¢—DI(s+¢€—2
E}(g.5) = A(s — D*A(s)A(2s — 4) (s?@_l;rgfz) )Eg(g,s).

The purpose of this section is to prove the following theorem.

Theorem 7.1 We have
Ej(g.s) = E;(g,5— ).

This theorem is an immediate consequence of Langlands’ functional equation, with the
difficulty lying in the computation of the appropriate intertwining operator of the section
fe(g, s). We remark that Segal [18] has studied the poles of this and related Eisenstein series
in a right half-plane.

Consider the diagonal maximal T’ of G’ consisting of the elements

t=diag (.0, 13, 1,1, 15 0 ).

Forl < j <4, let r} denote the characters of 7" that takes the element 7 to ;. We fix a maximal
T of G that maps to 7’ under the map G — G’, and write r; for the restriction of r} to 7. We
label the Dynkin diagram of G by roots oy = r1 —rp, 02 = r3+r4, €3 = r3—r4, 04 = ry—r3.
Then a4 is the central vertex of the diagram.

We abuse notation and also denote the restriction to 7' of the character ¢ > |¢;| of T”
by r;. Then the inducing character for our Eisenstein series is [v|* = s(r| 4 r2). This is in
Ind$ (8)/%5s) with 8)/> = 3r) + 25 + r3 and As = (s — 3)r + (s — 2)r2 — 3.

Let N be the unipotent radical of the Heisenberg parabolic, so that the roots in N are
ry—13,r\ —ra,r1+ra,r1+r3, ro—r3, ro—ra, ra+ra, ry+r3, r1 +ra. The long intertwiner
for N is w = [412343214] = [412434214]. Here the notation [ jk] means that one performs
areflection in the roots i, j, k from right to left. To see that this expression for w as a product
of simple reflections is correct, one checks that w makes the roots in N negative, and that it
has length 9.

Now, we set

Mw, s) fi(g.s) = f fe(w™'ng, s)dn.
N(A)

If the real part of s is sufficiently large, then this integral converges and has a meromorphic
continuation in s. We will prove the following result on the integral.

Proposition 7.2 We have
M(w,s) fe(g,s) = ce(s) fe(8,5 — ),
where

A(s —3)2A(s — HAQ2s — 5) (s —2)I'(s —3)(s —2)I'(s — 1)
Al — D2A(S)AQRs —4) T(s—£—3)(s—€—2)T(s+L— DI (s+£—2)

ce(s) =

Proof of Theorem 7.1 We note the identity

Fs—2T(s—-3)  T@—s+OFG—s+0)
Ts—(—2T(s—(—-3)  T@l-9TG—y)
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The result then follows from Proposition 7.2, Definition (3.1) and Langlands’ functional
equation. o

For the rest of this section, we focus on proving Proposition 7.2. We first introduce some
notation. Let x, y be indeterminates, s be a complex parameter, and £ be a fixed positive even
integer. Also, set

fyr=x+y and f_=x-y.
We have

Span({xzz_zjyzj +x2jy2€_2j 10<j< K/Z})
20-2j 2j 2j 20-2j .
= Span({ {7 f2 + £ L2 00 < j < £/2)) = Vewen,
say. We think of Veyey as sitting inside the space V, = Sym” (C?) (see Sect. 3.1). We will
define a few operators on the space Veyen. For a nonnegative integer k and z € C, let

@Dk =zz+DE+2)---(z+k—1).

This is the so-called Pochhammer symbol.
For a complex number s, we define [s; x, y] as the diagonal operator on Veyen given by

(%)\é—j\
(]+S

X220 20 4 22020
T)\g—j\

(x2l—2jy2j +x2jy25—2j)

foreach 0 < j < ¢/2. Similarly, we define [s; f, f_] as the diagonal operator on Veyen that
is given by

*)\é—j\

s
2
(%),

—~

20-2j ,2j 2j ,20-2j 20-2j 2j 2j 20-2j
el S el (S22 4 g2 2
‘.
Q*J\

foreach0 < j < ¢/2.

Proof of Proposition 7.2 In our computation of the image of f;(g, s) under the intertwining
operator M (w, s), we will use the so-called cocycle property which was given in Theo-
rem 4.2.2 in [19]. This theorem implies that M (w, s) can be viewed as a composition of
intertwiners that are associated to simple reflections.

To apply the cocycle property, we record how the simple reflections in the product w =
[412434214] move the character A; = (s — 3)r; + (s — 2)r2 + (—1)r3 around, and how the
associated one-dimensional intertwining operators act on the inducing section f¢(g, s). This
is provided in Table 1. O

The notation in this table has the following meaning, as we explain by an example. Set
A; =G6=3)r1+(Drn+(—2)rs.

When we apply the intertwining operator associated to the reflection [4] to the inducing
section f¢(g, s), we obtain the unique K s-spherical, K o,-equivariant element of Ind(éz/ ZA;),

whose value at g = 1 is

As—1)

NORL 1 fi, £21059.
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Denote the resulting inducing section by f/(g, s), and set
A = (=Dri+ (s =3)r2+ (s — 2)r3.

Then, if we apply the intertwining operator associated to the reflection [1] to f;(g, s), then
we obtain the unique K y-spherical, K-equivariant element of Ind((S;g/ ZA;’ ), whose value at
g=1is

(A(s—2) AGs—1)

[s—2;x,y]oW

. (a4
oD [s = 15 f, f-])(x .

Note that the terms in Table 1 that are in the form of ratios of A-values follow from a
formula of Gindikin and Karpelevich, while the terms such as [s —1; f, f—]and [s —2; x, y]
arise due to the fact that our inducing section is not spherical at the archimedean place. We
postpone providing a complete justification of the operators in Table 1 until the next section.
Granted this, the A-values multiply to

A(s —3)2A(s —HAQ2s — 5)
Als — D2A(s)A(2s — 4)
(see also Table 12 in [18]). The other terms give the polynomial intertwiner
Mpoy(s) =[s —4; fr, f-lols =3 x,y1% o[s — 25 fi, f-]o[2s — 5:x, y]
ols =3; fy, flols —2ix, yPPols — 13 fy. f-1.

The proposition now follows from the following proposition.

(7.1)

Proposition 7.3 Let Myo1y(s) be as in (7.1). We have

Mpoly(s)xéy[ = Cpoly.t (S)xly[,

Table 1 Intertwining operators

Simple reflection Intertwiner New character
Als — 1)

(4] AG) [s =15 fi, /-] (s =3)r1+(=Drp+ (s = 2)r3

(1] A= eyl (=11 + (5 = 3 + (s — 23
AG—1)

2] A= ey (=D + G =3+ 2 — )y
A —1)

[4] A= 5 p (=D + G =33 + 2 = )rg
Al —2)

[3] AR =)0 sixy (=D + @ = $)r3 + (s — 3y
AQ2s —4)

[4] A =Dy o p f] (=) + Q=) + (s — 3y
A(s—1) ’

2] A= 5y (=11 + @ = )2 + G - 9)r3
A(s —2) -

(1 A= @ =)+ (=Dra+ G - 5)r3
A(s —2)

41 A =4 fr [ @ =91 +G=9r+(Dr
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where

(s =3 —D2s—5% - (s—L—2%(s—€—23)
(s+HL—=2(s+L—=3)2(+L—4)2 - (s—D%(s —2)
_ F's—2)I'(s=3)I's=2)I'(s—1)
T (s —L=3)(s—L -l (s+L—DI(s+£—-2)

Cpoly.Z(s) =

In other words, the above proposition proves that x¢y® is an eigenvector for the operator
Mpoly (s) with the eigenvalue cpoly,¢(s). This proposition will be proved in Sect. 7.2.

7.1 The root intertwiners

The purpose of this section is to explain the presence of the terms that appear in the “Inter-
twiner” column of Table 1. We require the following lemma.

Lemma7.4 Let B denote the upper-triangular Borel of SLy. For 8 € R, set kg =

(2?; g _CS;“OG ) Suppose that fs1,,;(g, s) is the section in Indg&()R) (82/ 28;;/ 2) that satisfies

fsia,j(gke, s) = €7’ fsi,. (g, 9)

forall g € SLo(R) and kg € SO(2) as above. Then

(0 =1\l . rees) o
fRfSL“«l 0 )(o l)g’s>dx" Tas —j + DPgG + 7+ o 70

If j is even, then this becomes

0 —1\/1 x _ TI'r(s) (l%s)\j/z\
/RfSL“((l 0 )(O l)g’s)dx_FR(s+l) (%) fsL,,j (g, —s).

1i/2l

Proof The proof is standard. To give some details anyway, we consider the case g = 1. Note
that

© H( x)_(l 7x(x2+l)’l)((xz+1)7]/2 0 )(x(x%rl)*‘/2 7(x2+1)*‘/2)
10 0 177 \o 1 0 (241172 @242y 242 )

From this, we obtain

(O —Ty(l _ 2 —(s+1)/2 xi‘f‘ij
L ()30 1)) ar= o poen ()
— / (x + l')—(s—j+1)/2(x _ l-)—(s+j+1)/2 dx.
R

This last integral is evaluated in [12, p. 279], which gives

jinl=s I'(s) — i Ce(s)

FCANrEHE) — TeGs—j+ DIRGs +j + 1)

Note that when j is even,

Lc(s) _ I'r(s)T'r(s + 1)
Tr(s —j+DIrGs+,j+1)  Tr(s—j+DIRG+,j+1)
I'r(s) Ir(s + DI'r(s + 1)

TTRG+DTRG —j+ DIRG+j+ 1)
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and
I'r(s + DIr(s + 1)
Ir(s —j+ DIRG+j+ 1)

s+1—|j|) -
~ (s + 1)/2)? _< = Jup_ i
- _ i - s+1 - I+s ’
Ps=j+D/DA0s+i+D/2) (), 2 )i
The result then follows. O

Before applying the above lemma, we note the following calculations. For each positive
root &, let ¢ : SLy — G be the root SL; that is determined by a pinning of G. This pinning
is assumed to be compatible with the Cartan involutions, that is, 6 (¢4 (2)) = @« (‘g™ 1). On
the Lie algebra level, the root sl’s give rise to the elements dg, (( %)) in the Lie algebra

of G. We list these elements now.
o ;=11 —12, byAb_2+b_|Aby =uj Aup—u_1 Aii_r = —%(h++h’+—|—h7+h’7),
e ay =13+74, bB3Abs+b_3Ab_4 =V AVIFV_1AV_y = —%(h+—h’+—h_+h/_),
o a3=r3—714, b3Ab_4+b_3Abs =V AV —V_| AV = —%(h+—h’++h— —h'),

i
o 0y =ry—r3, bhyANb_3+b_2Ab3 = ur Avi—u_rAv_| = _E(_H+_H/++H_+H/_)
where H” = ¢’ + f for? € {+, '+, —, '—}.

By combining these calculations with Lemma 7.4, we arrive at the proposition below. Let
w; € N(T)g N (K 7K) be the simple reflection in the Weyl group that corresponds to the
simple root o ;. The proposition computes the rank one intertwining operator associated to
w; on the inducing sections that arise in Table 1. Below, Uy; denotes the unipotent subgroup
of G that corresponds to the simple root «.

Proposition 7.5 Suppose that . = a1r; + axry + a3r3 + aar4 is an unramified character

of T(A). Let f € Indg((jg (8113/2)») be V¢-valued such that f is K -equivariant, K ¢-invariant,

and f(1) € Veyen. Set s = (a/V, M), where otjv is the coroot associated to aj. If s > 1, then
the integral '

M fe = | LS ds

is absolutely convergent. Moreover, the value M(w;) f(g) is the unique Vg-valued, K-

equivariant, K ¢-invariant element ofIndg((ﬁ; (8113/2wj (X)), and its value at g = 1 is

Az(\s(i)l)[s;x, ylf(1) if j=1,2,3,
O s foL fIF) 0 =4

Proof The proof is standard except the computation of the value of M (w;) f(g) atg = 1. We
explain the case j = 1 as the other cases are similar. To evaluate M (w;) f (1), we use a pinning
of G to pull back the calculation to SL;. Thus, we assume that ¢, : SLy — G is compatible
with the integral structures, the Cartan involution, and that it satisfies the properties

(5 §) = iy 7)=te

M(w;) f(1) =
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We can also assume that
0 1
d(p](_l O)Zbl/\bfz-i-bfl/\bz.

Then we have

M(wof(l):/Af(wl(_Ol )G ’{))dx.

The function f o ¢ on SLj is an element of the induction space corresponding to

[46))
C(s+1)°

of the integral over R follows from the fact that d¢; (( _01 (1))) acts on x

8;;4—1)/2’ as

in Lemma 7.4. The integrals over the finite places give as standard. The computation

26-27y2] the same

way as —%h[, which acts by —i (£ — 2j). The result thus follows from Lemma 7.4. O

The above proposition yields the intertwining operators that appear in Table 1.

7.2 The polynomial intertwiner

The purpose of this section is to prove Proposition 7.3, from which Proposition 7.2 follows.
The proof of Proposition 7.3 requires the following two lemmas.

Lemma 7.6 Let u, v be variables and w be a complex parameter. Also, put
Fy,v)=(1—-2u—2v+ (u— v)z)_w.
Then
w ul v
Fou,v) =1 =2u=2v+@—-v)"" = Y pjaw)—,
X Jlk!
Jk>0
where
FrRQw+j+O(w+j+k+1/2)I'(w+ 1/2)
FrQu)(w+k+1/2)T'(w+ j +1/2) '

Proof First, note that the p; x(w) are polynomials in w. To see this, one uses the func-
tional equation for the gamma function, that is, I'(s + 1) = sT'(s). Now, if the polynomials
pj.k(w) are indeed the Taylor coefficients of Fy,(u, v), then these polynomials must satisfy
the expression

Pjk(w) =

pikw—1)=pjrw) —=2jpj-1x(w) —2kp;j p—1(w) + j(j — Dpj-2.x(w)
—2jkpj_1—1(w) +k(k = Dpj r—2(w).

This relationship comes from comparing both sides of the identity

(7.2)

ul vk
(1= 2u — 2v + u? — 2uv + vQ)(ij,k(w)W)
& Ik!
ul vk
= Fumt@,v) = 3 pjaw =D =pr.
ik

Now, we have two claims:

(i) One can verify (7.2) directly.
(if) Combined with the fact that the p; x(w) are polynomials, (7.2) implies the lemma.
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For the proof of the first claim, we again use the functional equation I'(s + 1) = sI'(s)
and relate the polynomials p; x(w) to p; x (w — 1). For example, we obtain

Quw—=24j+kQw—1+4j+kw+j+k—1/2)w—1/2)
Qw—2)Qw — D(w+j —1/2)(w +k —1/2)

pjk(w) = pjk(w—1).
One can obtain similar expressions relating p; 1 x(w), pj—1,k—1(w), ... to pj x (w—1). Thus
the identity in (7.2) becomes an identity for rational functions of w, j, k, which one can then
verify directly.

For the proof of the second claim, note that the Taylor coefficients of Fy,(u, v) are neces-
sarily polynomials in w. Thus, to see that they are equal to p; x(w), it suffices to check that
they are equal at infinitely many integers. But (7.2) allows one to induct, and thus verify the
Taylor expansion of Fy, (u, v) for all negative integers w.

This completes the proof of the lemma. O

Lemma?7.7 Let f+ = x + yand f— = x — y as before. Then we have

() (Is — Lx,ylols; fr, f21) x50 = (Z)f+ff ,
() (s — 1 fo, ol olss 2, V) (FEFD = 2@c’(s>x ¥

where we set

=0 —L+2)---(s—4D(s—2)

(s) = .
C+DE+3) - (s+L=3)s+L-1

Proof Part (ii) follows fro fpart (i) by sw1tch1ng theroles of x, y with f, f_. We now prove
part (i). Note that x = and y = £57= so4xy = f+ f2. Thus

20-2j ,2j
‘xy Z( 1)Jf f‘. (7.3)

Also, observe that

ST T

(7.4)

Letw = HT_Z Then by combining (7.3) and (7.4), we obtain

xtyt rw? LT+ e—Hrw+j) 22
= )2 Z

¢ Tw+¢/2 T(w)? =Nt

Lo
(=D2 4% [s; f4, f-]

Dwtt/2)? oo

We sum T(w)?

the right-hand side over non-negative even integers ¢ and use the
identity

r k) z*

Z Fw+k) 2" =(1—z)",

prerd M'w) k!
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to find that
['(w)? . rew . Tw)? 2, 2 2 202 -w
P+ g~ D = g e 7207 £ 00000
B F(U_))z 2/ 2k
“Tw+/2)? . 2 Pk )

J. k=0

In the first equality, we used the relations f, f_ = x> — y* and ff + 2 =2(x%+ y?). The
second equality follows from Lemma 7.6.
Note that if j 4+ k = ¢, then

[s —1; x, y] (xzjyzk +x2ky2/)

. |
— (=1t P+ j+ Pl +k+3) (x2jy2k +x2ky2]>
Fw + )2

Then

ny
45 ([s — Ly x, ylo[s; fy, f- ])( )

I (w)? 3 )y )r(w+j+1/2)r(w+k+1/2)x2fy2k
]

T Tw+6/2? = T(w+ (€ + 1)/2)2 e
]+k=£
By Lemma 7.6,
P DT Ak 1/2)  T@u A OF L4 /2T +1/2)
Pjk T(w+ £+ 1)/2)2 - Q)T (w + (€ +1)/2)2
Then

T(w)’T' Qw + OT (w + £+ 1/2)T(w + 1/2)
C(w+ £/2)2T (w + (£ + 1)/2)2T Qw)
(XZ _ yZ)K
o

4%(Ls — Lix, ylolss fy. f])(”>=

Here, x2 — y2 = f f_. Thus, rewriting the above equation in terms of s gives the statement
in the lemma. Indeed, the product of the gamma functions can be written as
FrRQw+4£) Tw+e+1/2) C'(w+1/2) I'(w)?
'Qw) w4+ €+1)/2) T(w+E+1)/2) T'(w+£/2)2°

where each of these individual ratio of gamma functions is a rational function of w. We find
that this rational function equals

@A EFDEWHL+3) Qw2 —1) =06 = E+2) (=6 — 4 —2)
Qw)2w +2)Qw+4) - Qw4+ £ —2) CHDGE+3) - (+L—3)s+e—1)

The above is 2¢¢(s). This completes the proof of part (i) and hence the lemma. O

Proof of Proposition 7.3 The proposition now follows easily from the factorization of
Mpory(s) in (7.1) and Lemma 7.7. O
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8 Archimedean zeta integral

In this section, we explicitly compute the archimedean integral that is part of the Rankin-
Selberg integral. Below, we use the symbol ~ to denote equality up to a nonzero constant
that may or may not depend on the weight £ of the modular form. Also, the constant that is
implied by ~ may be different at each occurrence of the symbol.

Recall that in Sect. 3.3 we defined

I*(s:0) = 2°Tr(s — DTe(s 4+ £ — DIc(s + £ — 2)1(s: £), 8.1)

where
I(s:.0) = / (Fo(vog. 0. Wy (@) ds.
NOER)\Ga(R)

Here W, is the generalized Whittaker function. This means that W, : Go(R) — Vgisa
smooth function of moderate growth which satisfies the condition

Wy (ngk) = )((n)k_1 Wy (g) forall n e N(R), k € K and g € G2(R),

and we have Dy W, = 0 for the Schmid operator Dy (see [15, p. 10]). Also, the braces {, }x
denote the K -equivariant pairing on V, that is unique up to a scalar multiple.
Our goal is to prove the following theorem.

Theorem 8.1 We have
I*(s; ) ~Tr(s — DIc(s + € —3) (s +£ —2)Tels +2¢ — 3).
Note thatby (8.1), it suffices to compute the integral I (s; £). In Section 6 of [ 15], an expression
for this integral was found. To state that result, we define the function
; dv
J'(5) =lqwp) ™ f lg@)e IO =
v lg (V)]

Here, V* is the G Ly (R)-orbit that consists of the binary cubics that split over R and dV
denotes the Haar measure on V*. Note that V* is a subset of W, which is the space of
binary cubic forms. Also, vg = (0, % % 0) corresponds to the binary cubic xzy + xy2, and

8.2)

ro(i) = (1, —i, —1, i) corresponds to the binary cubic (x — iy)3. The quartic form ¢ and the
symplectic pairing (, ) are as defined in Sect. 2.4.
Our first step in computing / (s; £) is proving the following result.

Proposition 8.2 We have

T +20=3)T(s +€—2)I'((s + € — 3)/2)? ,(s +¢ —2)
I1(s;8) ~m )

F(s+0)/2T(s+£-=3)'(3Bs+3¢—-7)/2) 2
where the function J' is as defined in (8.2).
Proof Let x’ denote the archimedean part of the character ¥ ((vg, 1)), so that x'(n) =

e2mH{VE-N) 1p the notation of [15], compared with the third displayed equation on page 30 of
[15], we have

| det(m)|*3e2”i<”Eﬁ)
Is:6)= / / F))
GLy(®) J(NVE\N)(R)  [|x(n, m)[|Y

{pry (x(n, m)*, W (m)}k dn dm.

@ Springer



514 F.Cicek et al.

Here, we need to note that in loc cit, the function

1.0 = | 1 (@ (g™ 550, W, () dg
NOE@)\GL1(R)xG2(R)
is used instead. The I'((s + £)/2) in the expression for /(s, ®) in loc cit has disappeared
here since /(s; £) is defined in terms of the flat section f;(ypg, s) whereas I (s, ®) in [15]
was defined in terms of a section that takes the value I'((s + ¢)/2) at g = 1.
Now, by following the same argument as in [15, p. 30], we obtain

|det(m)|s+5—262ﬂiﬂ
I(s; ) ~ 2 161072
GL, R)x (NO-E\N)y®) (lee|= + [B[%)

x (z, (f)(iﬂ)‘—f|a|f’1<(§”(2n|a|)) dndm.

Using the change of variables 8 — (27)~!8 and m — (2715)'m, as « depends on m, we
find that

(s ) ~ @)~ / | det(m)[+%e'P
' GLy®)x (NO-E\N)®) (]2 + |B]2)5+0/2

x (z]. (Yapy— |a|fK5”<|a|)> dndm.

Consequently, 1(s; £) ~ Qm)~*T'((s + £)/2)~ I (s, ®). The result now follows from the
first part of Theorem 6.2 in [15]. ]

Remark 1In [15], the factor |g(vg)|™® was mistakenly omitted in the first part of Theo-
rem 6.2. It should first appear in the fifth displayed equation on page 32, as | det(g)|> =
|q(vE)|_1 |g(v)|, and then be carried over to the expression for /(s, ®) in the first part of
Theorem 6.2.

As our next step, we now prove

Proposition 8.3 Let J'(s) be as in (8.2). We have

'Gs —1/2)

(s +1/2)3°

Proof Tocompute J'(s), it suffices to integrate over those elements of V* which have nonzero

leading coefficients since the set of such elements of V* has co-measure zero. Such a binary
cubic can be written as

J'(s) ~27%T2s)

t(w —riz)(w —r2z)(w —r3z)
fort,ry, rp, r3 € R. To compute the integral J/(s), we make the variable change

e a=t1I,

e b=—t(ri +ry+r3),

o c =1t(riry 4+ rar3 + rary),
o d= —trirrs.

The Jacobian of this transformation equals

1 0 0 0
d(a,b,c,d) *] t t t 3
— = =430 — - ).
at,ry,ra, r3) ¥y t(ro4+1r3) t(ry+r3) t(rp+r2) (r1=r2)(r2=r3)(r3—r1)
*3 trar3 trir3 trirp
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where %1, %7, *3 denote some real numbers. Note that we have
g’z +w)qg(w — r12)(w — R W —r32)) = *r1 — 1), — r3)*(rs — r1)”.

By combining this with the change of variables, we write

7(s) :/ PG UNE T I _ppr 2@bed o
1.r1,r2.r3 J a(t,ry,rp, r3) -

1<i<j<3
2 2 2 2 _
=/ t4s—le—t (+r)(+r3)(1+r3) l_[ Iri — rj|2s ld(t, 1. r2, 13)
L1727 1<i<j<3
- - - 25—1
~T(25) R I e el P T e [ R P S e (OIS

r1.12,13 I<i<j<3

The integral on the last line is a special case of the Selberg integral. From (1.19) in [4] with
a=p=2s,y=s5—%andn =3, it follows that

2 ) '
T ~27%res) ] Tds —1— Q24 j)(s —1/2)F A + (j + (s — 1/2))

Hin T(2s — j(s — 1/2))20(s + 1/2)

F'Gs — 1/2)

=20 T

Proof of Theorem 8.1 It immediately follows from Proposition 8.3 that

SHE=2\ s s  T(Bs +36=7)/2)
7 (H5) ~ e s - TSR

By combining this with Proposition 8.2, we obtain

[(s+20 —3)T(s 4+ £ —2)2T((s + £ — 3)/2)?

L O~ 1) R G+ = D2 TG 1 0)2)

Then by (8.1),
I*(s; £) = 2°Tr(s — DIe(s + € — DIe(s + € — 2)1(s; £)
~ (4m)*Tr(s — DIc(s + € — DIc(s +£—2)
5 I(s+20—3)(s+L—2) T(s+L£—2((s+£—3)/2)?
T((s+0—1)/QT (s +£)/2) T(s +£ —3)((s + £ —1)/2)

Further by using the duplication formula

P =22 Pror(z+ 1),
we find that
I*(s:€) ~Tr(s — DI'c(s + £ — DIc(s + £ —2)
Fe(s +20—3)els +£—2) Tels + € — 2)Twr(s + £ — 3)2

Fr(s +€—DIRr(s +€) Tcls+£€—3)r(s +£—1)2
=TrG—DI'cs+€—=3)Tcls+£€—2)Tc(s +2¢—3).

This completes the proof. O
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9 Proofs of the main results

In this short section, we combine our result on the archimedean integral 7*(s; £) with our
results on other local integrals 1, (s) and complete the proofs of our main results. Consider

I(g.s) = / (0(8). EX(g. )}k dg
G2(Q\G2(A)

as in Sect. 1.1. We have

Theorem 9.1 The integral I¢(p, s) is equal to a, (Z3)A(r, Std, s — 2), up to a nonzero
constant.

Proof Note that
Ef(g.5) =2"¢(s = )*¢(2s = HTr(s — DTc(s + £ — DIc(s + £ — 2 E(g, . 5),
where E(g, ® ¢, s) is as defined in (3.2). Also by Theorem 8.1,
I*(s;0) ~Tr(s — Dle(s + £ — 3)e(s + £ — 2)Te(s + 22 — 3).

Taking into account the normalization of the Eisenstein series E;‘ (g, s), the theorem follows
directly from Theorems 3.2 and 8.1 by using the technique of “non-unique models”, also
known as “new-way (Eulerian) integral”, which is explained in [1, 11, 13]. m]

Proof of Theorem 1.1 In Theorem 7.1, we proved that E; (g, s) = E; (g, 5—s). By combining
this functional equation with Theorem 9.1, the result follows. O

Proof of Corollary 1.2 This follows from Theorem 3.2 exactly as in Section 5.9 of [15]. O
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