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Abstract
The goal of this paper is to provide a complete and refined study of the standard L-functions
L(π,Std, s) for certain non-generic cuspidal automorphic representations π of G2(A). For
a cuspidal automorphic representation π of G2(A) that corresponds to a modular form ϕ

of level one and of even weight on G2, we explicitly define the completed standard L-
function, �(π,Std, s). Assuming that a certain Fourier coefficient of ϕ is nonzero, we prove
the functional equation �(π,Std, s) = �(π,Std, 1 − s). Our proof proceeds via a careful
analysis of a Rankin-Selberg integral that is due to an earlier work of Gurevich and Segal.
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zeroes
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1 Introduction

1.1 History

Let G2 denote the split exceptional linear algebraic group over Q of Dynkin type G2, and
suppose that π is a cuspidal automorphic representation of G2(A). The study of L-functions
associated to such representations has a substantial history. Piatetski-Shapiro et al. [14]
were the first to study such an L-function by constructing a Rankin-Selberg integral for the
tensor product L-function of π and a cuspidal automorphic representation on GL2 . Their
result applies to the π that are globally generic, that is, those π that admit a nonvanishing
Whittaker coefficient. Later Ginzburg [6] proved that for generic π , the partial standard
L-function LS(π,Std, s) has a meromorphic continuation with at most a simple pole by
constructing an appropriate Rankin-Selberg integral.

For cuspidal representations π that are not necessarily generic, the corresponding Rankin-
Selberg integrals were constructed in the works of Ginzburg and Hundley [7], Gurevich and
Segal [11] and then Segal [17]. It was proven in [17] that the partial standard L-function of
such a representation π admits a meromorphic continuation to the complex plane. However,
bounding the poles of the L-function LS(π,Std, s) in a left half-plane, and proving a func-
tional equation relating its values at s to its values at (1 − s) are difficult problems. This
is, in part, due to the difficulty of analyzing local L-functions and local zeta integrals at the
ramified finite places and at the archimedean place.

1.2 Statements of results

Modular forms on G2 were introduced by Gan et al. in [5]. Briefly, these are automorphic
forms on G2(A) that correspond to representations in the form π = π f ⊗ π∞ where π f

denotes a representation that is unramified at everyfinite place andπ∞ is a certain quaternionic
discrete series representation ofG2(R).Let K denote amaximal compact subgroup ofG2(R),
so that K � (SU(2) × SU(2))/{±1} with the first copy of SU(2) being the long root and
the second being the short root. Then for � ≥ 2, there is a discrete series representation π�,∞
of G2(R) whose minimal K -type is Sym2�(C2) � 1 as a representation of SU(2) × SU(2).
Such representations π�,∞ are not generic.

Let � ≥ 2 be an even integer. We define the archimedean L-factor as

L∞(π�,∞, s) = �C(s + � − 1)�C(s + �)�C(s + 2� − 1)�R(s + 1). (1.1)

Here

�R(s) = π−s/2�(s/2) and �C(s) = 2(2π)−s�(s),

where � is the usual gamma function. It is worthwhile to point out that Gross and Savin [10,
p. 168] had previously defined the archimedean L-factor for representations of the compact
group G c

2 (R). We easily see that our archimedean L-factor agrees with theirs by setting
k1 = 0 and k2 = � − 2 in their notation.

For such representations π = π f ⊗π�,∞, an L-function L(π,Std, s) is defined. Then the
completed L-function is given by

�(π,Std, s) = L∞(π�,∞, s)L(π,Std, s),

where L∞(π�,∞, s) is as given in (1.1). Our main results concern these L-functions.
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The completed standard… 485

Further, we recall that such a representation π has an associated cuspidal modular form
ϕπ on G2 that has weight � and level one. It was proved in [5] that the Fourier coefficients
of such a modular form ϕπ depend on a cubic ring T such that T ⊗ R � R × R × R. We
thus denote them by aϕπ (T ).

Our first result is as follows.

Theorem 1.1 Suppose that ϕ is a level one cuspidal modular form on G2 of positive even
weight � that generates the cuspidal automorphic representation π. Further, assume that the
Fourier coefficient of ϕ corresponding to the split cubic ring Z × Z × Z is nonzero. Then

�(π,Std, s) = �(π,Std, 1 − s)

for all s ∈ C.

We carefully note that at present, it is not knownwhether there exists such a level one, even
weight cuspidal modular form ϕ with a nonzero Z×Z×Z Fourier coefficient. However, it is
certainly expected (by analogy with Siegel modular forms of genus two) that these modular
forms exist in abundance.We also note that the recent work [3] provides a dimension formula
for the space of level one, cuspidal modular forms on G2 of weight at least three. However,
[3] sheds no light about the existence of specific nonzero Fourier coefficients of such forms,
as is needed in Theorem 1.1.

The proof of Theorem 1.1 is based on a refined analysis of a Rankin-Selberg integral that
was defined in [11]. Moreover, a Dirichlet series for the L-function L(π,Std, s) follows from
the proof of Theorem 1.1. We also have

Corollary 1.2 Let the assumptions be as in Theorem 1.1, and let aϕ(T ) denote the Fourier
coefficient of ϕ corresponding to the cubic ring T that satisfies T ⊗R � R×R×R. Then

∑

T⊆Z3,n≥1

aϕ(Z + nT )

[Z3 : T ]s−�+1ns
= aϕ(Z3)

L(π,Std, s − 2� + 1)

ζ(s − 2� + 2)2ζ(2s − 4� + 2)
.

Here the sum is over the subrings T of Z × Z × Z and integers n ≥ 1.

In [15], Pollack gave a streamlined account of the Rankin-Selberg integrals in [11] and
[17] whereby simplifying some of their computations. He used his analysis of the Rankin-
Selberg integral to provide a Dirichlet series representation for the standard L-function of
modular forms on G2 outside the primes p = 2 and p = 3, and began some calculations
of the archimedean zeta integral associated to the global Rankin-Selberg convolution. Thus,
Theorem 1.1 and Corollary 1.2 bring the work that began in [15] to completion.

Observe that by studying the archimedean factor L∞(π�,∞, s), one can verify that the
integers 1, 3, 5, . . . , � − 1 are critical for L(π,Std, s) in the sense of Deligne, that is, both
of the values L∞(π�,∞, s) and L∞(π�,∞, 1 − s) are finite at these integers. It would be
extremely interesting to obtain a special value result in the direction of Deligne’s conjecture
for these L-values. While such a result is beyond the reach of our methods, we can obtain
a result on what can be considered the most basic special value, namely, a result on the
trivial zeros of the L-function L(π,Std, s). This is an immediate corollary of the functional
equation of the completed L-function. In more detail, the completed L-function�(π,Std, s)
is finite and nonzero for Re(s) � 0, and also for Re(s) 	 0 by using the functional equation.
However, the archimedean factor L∞(π�,∞, s) has poles at negative integers of sufficiently
large absolute value. These poles are compensated for by the zeros of the standard L-function.
We therefore deduce the following from Theorem 1.1.
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486 F. Çiçek et al.

Corollary 1.3 Let the assumptions be as in Theorem 1.1. Then L(π,Std, s) vanishes to order
3 at negative even integers of sufficiently large absolute value, and vanishes to order 4 at
negative odd integers of sufficiently large absolute value.

1.3 Outline of the proof of Theorem 1.1

As mentioned, our proof of Theorem 1.1 is based on a refined analysis of the Rankin-Selberg
integral in [11] and is a continuation of the work in [15].

Let G denote the split group Spin(8). If ϕ is a modular form on G2 of weight �, then by
definition, ϕ is a V�-valued automorphic function on G2(A), where V� = Sym2�(C2) (see
[15] for a more detailed account of modular forms onG2). For a normalized Eisenstein series
E∗

� (g, s) on G(A) that takes values in V�, we will consider the Rankin-Selberg integral

I�(ϕ, s) =
∫

G2(Q)\G2(A)

{ϕ(g), E∗
� (g, s)}K dg.

Here {·, ·}K : V� ⊗ V� → C is a K -equivariant pairing. In order to obtain Theorem 1.1, we
will prove that

I�(ϕ, s) = aϕ(Z3)�(π,Std, s − 2)

up to a nonzero constant, and that the Eisenstein series E∗
� (g, s) satisfies the functional

equation

E∗
� (g, s) = E∗

� (g, 5 − s).

For the proof of the first statement, we will analyze local integrals Ip(s) for finite primes
p, which will be defined in (3.4), and an archimedean integral I ∗(s; �) defined in (8.1). We
will prove that these local integrals are equal to the corresponding local L-factors up to some
simple factors. For p ≥ 5, the local integrals Ip(s) were analyzed in [11]. To carry out the
computation of these integrals for p = 2, 3, we follow a method in [15] and use some results
on cubic rings. The analysis of the integral I ∗(s; �)was begun in [15], where the computation
was reduced to that of an integral J ′(s) over the space of real binary cubics of a general
form that was previously considered by Shintani [20]. We will evaluate the integral J ′(s)
explicitly in terms of the gamma function, thereby proving that I ∗(s; �) = L(π�,∞, s − 2)
up to a nonzero constant.

To prove the functional equation for E∗
� (g, s), we will use Langlands’ functional equa-

tion for the Eisenstein series. Since our Eisenstein series E∗
� (g, s) is not spherical at the

archimedean place, we will make a careful analysis of certain archimedean intertwining
operators.

Remark The methods in this paper are somewhat flexible but also have some limitations.
For instance, in terms of the calculations of the unramified integrals at the finite places,

our restriction toQ is simply for convenience. These calculations would follow just as easily
over other ground fields. However, where we really use our assumption that Q is the ground
field is in the archimedean calculation. Indeed, we do not expect that the calculations in
Sects. 7 and 8 will have close analogues for other number fields.

Also, notice thatwe have several assumptions on ourmodular forms onG2.Firstly,we only
consider modular forms of level one. This allows us to do an unramified computation at every
finite place. Without this assumption, it would also be difficult to obtain a precise functional
equation for an Eisenstein series that is used in the Rankin-Selberg integral. We also restrict
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our discussion to quaternionic modular forms due to reasons that can be considered to be
purely archimedean. For such modular forms, we can define a completed L-function, prove
its relation to the global Rankin-Selberg convolution, and prove its functional equation.
This archimedean assumption does not make the unramified computations any easier or
different. However, by working with quaternionic modular forms, we are able to compute
the archimedean integral as in Sect. 8. We would not expect to be able to do an analogous
computation for non-spherical, non-quaternionic automorphic forms.

Finally, note that we only consider the Z × Z × Z Fourier coefficient of quaternionic
modular forms. This assumption is used to make the unramified calculation as simple as
possible at every finite place. In particular, replacing Z×Z×Zwith another maximal totally
real cubic ring, we would still expect to be able to do the resulting archimedean calculation.
Importantly, Theorem 1.1 and its corollaries require that ourmodular form supports a nonzero
Fourier coefficient corresponding to the split cubic ring Z × Z × Z.

1.4 Organization of the paper

We now provide an outline of our paper. In Sect. 2, we setup some notation. Then in the
next section, we give an overview of the Rankin-Selberg integral and present our strategy to
calculate the non-archimedean local integrals. In Sect. 4, we prove some results that relate
some cubic rings to some binary cubic forms. In Sect. 5, we compute the Fourier coefficient
of the so-called approximate basic function. In Sect. 6, we complete the computation for
the case of unramified primes. This involves computing the function �p,χ (t, g), which is
defined in (3.5) and is related to the inducing section of the Eisenstein series, and some
calculations with certain Hecke operators. In Sect. 7, we prove the functional equation of
the Eisenstein series E∗

� (g, s) and then in Sect. 8, we compute the archimedean zeta integral
I ∗(s; �). Finally in Sect. 9, we combine our work and complete the proof of our results.

2 Setups

2.1 Octonions and reductive groups

It is well-known that G2 is defined as the automorphism group of an octonion algebra. In
this section, we use the split octonions algebra 
 in the Zorn model (see [15, Section 2.1])
to view G2 as a subgroup of Spin(
). We thus begin with a review of some of the notation
used in [15]. The standard representation V3 of SL3 and its dual representation V∨

3 will be
fixed. The space V3 has a standard basis {e1, e2, e3} and V∨

3 has the dual basis {e∗
1, e

∗
2, e

∗
3}.

Note that for each j = 1, 2, 3, we make the identifications

e j ∈ V3 ↔
(
0 e j
0 0

)
∈ 
 and e∗

j ∈ V∨
3 ↔

(
0 0
e∗
j 0

)
∈ 
.

Using the quadratic norm on 
, we can define the group G ′ = SO(
). Now, let G denote
the algebraic group Spin(
) defined as

G = {
(g1, g2, g3) ∈ SO(
)3 : (g1x1, g2x2, g3x3) = (x1, x2, x3) for all x1, x2, x3 ∈ 


}
,

where (x1, x2, x3) = tr
(x1(x2x3)). We fix a map proj1 : G → G ′ as (g1, g2, g3) �→ g1.
This map induces an isomorphism on Lie algebras.
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488 F. Çiçek et al.

Let 
0 be the standard maximal lattice in the Zorn model. Then 
0 consists of the
matrices

( a v
φ d

)
where a, d ∈ Z, v is in the Z-span of the {e1, e2, e3} and φ is in the Z-span

of {e∗
1, e

∗
2, e

∗
3}.

We set K f = ∏
p K p , where Kp is the hyperspecialmaximal compact subgroup ofG(Qp)

that is specified as the stabilizer of (
0 ⊗ Zp)
3 inside of G(Qp). That Kp is hyperspecial

follows from [8, Section 4] and [2, Proposition 5.4]. Similarly,we letG2(Zp) be the stabilizer
of 
0 ⊗ Zp inside G2(Qp). This is a hyperspecial maximal compact subgroup.

We now define a maximal compact subgroup of G ′(R), K ′∞, as follows. Given v ∈ V3,
suppose that ṽ ∈ V∨

3 is given by the linear mapping e j �→ e∗
j on V3. Similarly, for φ ∈ V∨

3 ,

let φ̃ in V3 be given by the linear mapping e∗
j �→ e j . We also define a quadratic form qmaj on


 ⊗ R by

qmaj

((
a v

φ d

))
= a2 + d2 + (v, ṽ) + (φ̃, φ),

where ( , ) denotes the evaluation pairing between V3 and V∨
3 . Then K ′∞ is defined as the

subgroup of G ′(R) that preserves the quadratic form qmaj. We now let K∞ ⊆ G(R) be the
inverse image of K ′∞ under the map proj1 : G → G ′.

Put another way, we define ι : 
 → 
 as

ι

((
a v

φ d

))
=

(
d −φ̃

−ṽ a

)
.

If x = ( a v
φ d

)
, then qmaj(x) = (x, ι(x)). Conjugation by ι induces a Cartan involution on

G ′ and on G2 ⊆ G (see [15, Claim 2.1]).

2.2 Lie algebra definitions

The maps G2 → G → G ′ induce Lie(G2) → Lie(G ′) � ∧2
. This embedding is the one
specified in Section 2.2 in [15], and we will use notation from that section.

The Heisenberg parabolic PG of G is defined to be the one which stabilizes the line
spanned by E13 = e∗

3 ∧ e1 in ∧2
. The Heisenberg parabolic P of G2 is similarly defined
as the stabilizer of the line spanned by E13 in Lie(G2), thus PG ∩ G2 = P .

2.3 Setup for K∞

Let

K ′∞ = S(O(4) × O(4)) = {
(g1, g2) ∈ O(4) × O(4) : det(g1) det(g2) = 1

}
.

We remind the reader that SO(4) = (SU(2) × SU(2))/{±1}. Thus there are four copies of
sl2 in Lie(K∞) ⊗C. We will introduce them explicitly as these sl2’s will be used in Sect. 7.
Note that Lie(K∞) ⊆ Lie(G ′) � ∧2
. Let

{
b1, b2, b3, b4, b−4, b−3, b−2, b−1

} = {
e1, e

∗
3, ε2, e

∗
2,−e2, ε1,−e3,−e∗

1

}
(2.1)

in order.Here ε1 = (
1 0
0 0

)
and ε2 = (

0 0
0 1

)
.With thebasis {b1, b2, b3, b4, b−4, b−3, b−2, b−1}

of 
, one has (b j , bk) = (b− j , b−k) = 0 and (b j , b−k) = δ jk . The involution ι satisfies
ι(b j ) = b− j and ι(b− j ) = b j for j = 1, 2, 3, 4. Define
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u1 = 1√
2

(
b1 + b−1

)
, u2 = 1√

2

(
b2 + b−2

)
,

v1 = 1√
2

(
b3 + b−3

)
, v2 = 1√

2

(
b4 + b−4

)
,

and

u−1 = 1√
2

(
b1 − b−1

)
, u−2 = 1√

2

(
b2 − b−2

)
,

v−1 = 1√
2

(
b3 − b−3

)
, v−2 = 1√

2

(
b4 − b−4

)
.

With the above notation, we now specify the four copies of sl2 in Lie(K∞) ⊗ C. One copy
of sl2 has the basis consisting of

• e+ = 1

2
(u1 − iu2) ∧ (v1 − iv2),

• h+ = i(u1 ∧ u2 + v1 ∧ v2),

• f + = −1

2
(u1 + iu2) ∧ (v1 + iv2).

The other sl2 from the first SO(4) in K ′∞ = S(O(4) × O(4)) is obtained by replacing v2
with −v2 in the above formulas. Thus it has a basis that consists of

• e′+ = 1

2
(u1 − iu2) ∧ (v1 + iv2),

• h′+ = i(u1 ∧ u2 − v1 ∧ v2),

• f ′+ = −1

2
(u1 + iu2) ∧ (v1 − iv2).

The third copy of sl2 has the basis consisting of

• e− = 1

2
(u−1 − iu−2) ∧ (v−1 − iv−2),

• h− = −i(u−1 ∧ u−2 + v−1 ∧ v−2),

• f − = −1

2
(u−1 + iu−2) ∧ (v−1 + iv−2).

Finally, the basis of the fourth copy of sl2 consists of

• e′− = 1

2
(u−1 − iu−2) ∧ (v−1 + iv−2),

• h′− = −i(u−1 ∧ u−2 − v−1 ∧ v−2),

• f ′− = −1

2
(u−1 + iu−2) ∧ (v−1 − iv−2).

The compatible Cartan involutions on G2 and G, and the embedding G2 ⊆ G picks out a
distinguished sl2 of the above four, the image of the long root sl2 of G2. The long root sl2
is given in Section 4.1.1 in [15] or equivalently, by combining the discussion in Section 5.1
and Section 4.2.4 of [16]. From Section 4.1.1 in [15], we obtain

E = 1

4

(
e1 + e∗

1 − i(e3 + e∗
3)) ∧ (ε2 − ε1 − i(e2 + e∗

2)
)
,

F = −E and H = [E, F].
With the identification in (2.1), it follows that the long root sl2 of G2 maps into the third

copy of sl2 in Lie(K∞) ⊗ C that was given above.
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We denote by C
2 the representation of Lie(K∞) ⊗ C which is the two-dimensional rep-

resentation of the long root sl2 and the trivial representation of the other sl2’s. Let {x, y} be
a basis of C2 on elements on which H acts as 1,−1, in order, and for which Fx = y. The
even symmetric powers in Sym2�(C2) exponentiate to representations of K∞ and have the
basis {x2�, x2�−1y, . . . , xy2�−1, y2�}.

2.4 Binary cubic forms

Here, we briefly recall some aspects of binary cubic forms, as studied in [15], that will be
used in the next subsection.

Let V2 denote the defining representation of GL2. The space

W = Sym3(V2) ⊗ det(V2)
−1

is the space of binary cubic forms. If f (w, z) = aw3 +bw2z+ cwz2 +dz3 is a binary cubic
and g ∈ GL2, then we define g · f to be the binary cubic

(g · f )(w, z) = det(g)−1 f ((w, z)g). (2.2)

Also, we will sometimes use a right action of GL2 on the space of binary cubics. We define

g̃ =
(

s −q
−r p

)
for g =

(
p q
r s

)
∈ GL2,

so that gg̃ = det(g). We then define

f · g = g̃ · f = det(g)2 f ((w, z)g−1).

There is a GL2-equivariant symplectic form on W that is defined as

〈aw3 + bw2z + cwz2 + dz3, a′w3 + b′w2z + c′wz2 + d ′z3〉 = ad ′ − bc′

3
+ cb′

3
− da′.

We have

〈g · f , g · f ′〉 = det(g)〈 f , f ′〉 and 〈 f , g · f ′〉 = 〈 f · g, f ′〉 for all f , f ′ ∈ W .

There also exists a GL2-equivariant quartic form on the spaceW . For v = aw3 +bw2z+
cwz2 + dz3 ∈ W , this is given by

q(v) =
(
ad − bc

3

)2 + 4

27
ac3 + 4

27
db3 − 4

27
b2c2

= − 1

27
(−27a2d2 + 18abcd + b2c2 − 4ac3 − 4db3).

2.5 Characters of the Heisenberg parabolic

Throughout the paper, we fix the standard additive character to be ψ : Q\A → C
×. We

will abusively denote the p-component of this additive character by ψ . Thus, if x ∈ Qp and
x = x0 + x1 with x0 ∈ Zp and x1 = m/pr , then

ψ(x) = e2π i x1 .

We let N denote the unipotent radical of the Heisenberg parabolic P of G2 and let M
denote the Levi subgroup of P that also stabilizes the line spanned by E31. We identify M
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with GL2 as in [15, Section 5.2]. We now recall this identification. Suppose that g ∈ GL2 is
represented by the matrix

(
a b
c d

)
. Then the action of g on 
 is given by

• e1 �→ ae1 + ce∗
3,• e∗

3 �→ be1 + de∗
3,• (ad − bc)ε1 �→ adε1 + abe∗

2 − cde2 − bcε2,
• (ad − bc)e∗

2 �→ acε1 + a2e∗
2 − c2e2 − acε2,

• (ad − bc)e2 �→ −bdε1 − b2e∗
2 + d2e2 + bdε2,

• (ad − bc)ε2 �→ −bcε1 − abe∗
2 + cde2 + adε2.

On another note, a binary cubic form provides a character of N . Let Z denote the one-
dimensional center of N . Denote by W the representation Sym3(V2) ⊗ det(V2)−1 of M �
GL2. The exponential map exp : W → N/Z provides an identification W � N/Z as
specified in [15, p. 18]. Namely, to the binary cubic

u1x
3 + u2x

2y + u3xy
2 + u4y

3 ∈ W ,

it associates the element

u1E12 + u2
3

v1 + u3
3

δ3 + u4E23 ∈ Lie(G2).

Now, if ω ∈ W , then n �→ ψ(〈ω, n〉) defines a character of N . Here n is the image of n in
N/Z � W and ψ is our fixed additive character.

3 The Rankin-Selberg integral

In this section, we provide an overview of the calculations that will be done in the rest of the
paper.

3.1 The Eisenstein series

We begin by defining various Eisenstein series on the group G. Recall that PG denotes the
Heisenberg parabolic of G. We denote its generating character by ν : PG → GL1, so that

δPG (p) = |ν(p)|5.
Let E�(g, s) be the Eisenstein series of weight � on G that is normalized with a flat

section. More precisely, if x and y denote the variables in Sym2�(C2), we define f�(g, s) to
be the unique section in IndG(A)

PG (A)
(|ν|s), which is valued in V� = Sym2�(C2), and satisfies

the properties

(i) f�(k f , s) = x�y� for all k f ∈ K f ⊆ G(A f ),
(ii) f�(gk, s) = k−1 · f�(g, s) for all g ∈ G(A) and k ∈ K∞.

Note that in this paper we use an unnormalized induction. We have

E�(g, s) =
∑

γ∈PG (Q)\G(Q)

f�(γ g, s).

Let �(s) be the completed Riemann zeta function, that is,

�(s) = π− s
2 �

( s
2

)
ζ(s).
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For our purposes, we define a normalized Eisenstein series as

E∗
� (g, s) = �(s − 1)2�(s)�(2s − 4)

�(s + � − 1)�(s + � − 2)

�(s − 1)�(s − 2)
E�(g, s). (3.1)

It will be convenient for our calculations to define another Eisenstein series. Let � f be
the Schwartz–Bruhat function on ∧2
⊗A f that is the characteristic function of ∧2
0 ⊗ Ẑ.
Note that � f is stable by K f . For g ∈ G(A f ) we define

ffte(g,� f , s) =
∫

GL1(A f )

|t |s� f (tg
−1E13) dt,

where ffte stands for the finite part of f . Also, let

f (g,� f , s) = ffte(g f ,� f , s) f�(g∞, s).

Because � f is K f -stable, it is immediate that f (g,� f , s) = ζ(s) f�(g, s). We set

E(g,� f , s) =
∑

γ∈PG (Q)\G(Q)

f (γ g,� f , s). (3.2)

Then the Rankin-Selberg integral is defined as

I (ϕ,�, s) =
∫

G2(Q)\G2(A)

{ϕ(g), E(g,� f , s)}K dg.

Recall that here ϕ is a modular form of weight � on G2. In particular, ϕ is valued in V�, and
constructed from a cuspidal automorphic representation π = π f ⊗ π∞,�, where π∞,� is a
quaternionic discrete series of minimal K -type V∨

� � V�. The term {ϕ(g), E(g,� f , s)}K is
the K -invariant pairing of these two V�-valued automorphic functions.

3.2 The unfolded Rankin-Selberg integral

We now explain how the Rankin-Selberg integral I (ϕ,� f , s) unfolds.
Let vE ∈ W denote the binary cubic

vE = w2z + wz2 = wz(w + z).

Also, let χ be the character of N (Q)\N (A) determined by vE via the association given at
the end of Sect. 2.5 and set

ϕχ(g) =
∫

N (Q)\N (A)

χ−1(n)ϕ(ng) dn.

We further define

ṽE = ε1 ∧ (e1 + e∗
3),

which is an element of ∧2
. Let N 0,E ⊆ N be the subgroup consisting of those n ∈ N for
which 〈vE , n〉 = 0.

Theorem 3.1 We have

I (ϕ,� f , s) =
∫

N0,E (A)\G(A)

{ f (γ0g,� f , s), ϕχ (g)}K dg, (3.3)

123



The completed standard… 493

where γ0 ∈ G(Q) satisfies γ −1
0 E13 = ṽE .

The proof of this theorem is due to Gurevich and Segal [11, 17], but its above form is
essentially Theorem 5.2 in [15].

3.3 Local integrals

In order to analyze I (ϕ,� f , s), wemust consider the associated local integral at each place of
Q. In this section,we describe these local integrals and provide an outline of their computation
to be done in the later sections.

The integral at the archimedean place is given by

I (s; �) =
∫

N0,E (R)\G2(R)

{ f�(γ0g, s),Wχ (g)}K dg.

HereWχ is the generalized Whittaker function of [15, Section 4] and [16]. Now, in view of
the normalization of the Eisenstein series in (3.1), note that

�R(s − 1)2�R(s)�R(2s − 4)
�(s + � − 1)�(s + � − 2)

�(s − 1)�(s − 2)
= 2s�R(s − 1)�C(s + � − 1)�C(s + � − 2).

Thus we suitably define a normalized archimedean zeta integral as

I ∗(s; �) = 2s�R(s − 1)�C(s + � − 1)�C(s + � − 2)I (s; �).

This integral will be computed in Sect. 8. In Theorem 8.1, we will prove that I ∗(s; �) =
L(π�,∞, s − 2) up to a nonzero constant.

We now define the local integrals at the finite places. Let �p denote the characteristic
function of ∧2
0 ⊗ Zp and

f p(g,�p, s) :=
∫

GL1(Qp)

|t |s�p(tg
−1E13) dt .

Here f p(g,�p, s) is also the associated local inducing section, so that f p(1,�p, s) = ζp(s).
Let Vπp denote the space of the representationπp , andwrite v0 for a spherical vector. Suppose
that L : Vπp → C is an (N , χ)-functional, that is,

L(nv) = χ(n)L(v) for all n ∈ N (Qp) and v ∈ Vπp .

At a finite place p, we will compute

Ip(s) = Ip(L, s) :=
∫

N0,E (Qp)\G2(Qp)

f p(γ0g,�p, s)L(gv0) dg

=
∫

N (Qp)\GL1(Qp)×G2(Qp)

|t |s�p,χ (t, g)L(gv0) dt dg, (3.4)

where

�p,χ (t, g) =
∫

N0,E (Qp)\N (Qp)

χ(n)�p(tg
−1n−1ṽE ) dn. (3.5)

We will prove the following theorem.
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Theorem 3.2 We have

Ip(s) = Ip(L; s) = L(v0)
L(πp,Std, s − 2)

ζp(s − 1)2ζp(2s − 4)
. (3.6)

The proof of this theorem proceeds by following the strategies in [11, 15, 17].
Let V7 be the perpendicular subspace to 1 in 
, and set V7(Z) = V7 ∩ 
0. Similarly,

define V7(Zp) = V7(Z) ⊗ Zp . Note that because G2 stabilizes 1, V7(Zp) is stabilized by
G2(Zp). We write r7 : G2 → GL(V7) for the action map.

We now define two Hecke operators on G2. First, for t ∈ GL1(Qp) and h ∈ G2(Qp), let

�(t, h) = char
(
t · r7(h) ∈ End(V7(Zp))

)
.

We call this the approximate basic function (see Section 5.3 in [15] for some remarks on this
terminology). Define another Hecke operator on G2 as

T = p−3 × char
(
g ∈ G2(Qp), p.r7(g) ∈ End(V7(Zp))

)
.

For ease of notation, let z = p−s . In order to prove (3.6), we will prove that
∫

GL1(Qp)×G2(Qp)

|t |s+2�(t, g)L(gv0) dt dg

= M(πp, s)
∫

N (Qp)\GL1(Qp)×G2(Qp)

|t |s+1�p,χ (t, g)L(gv0) dt dg, (3.7)

where

M(πp, s) = (1 − pz)(1 − z)N0(πp, s − 1)ζp(s)
2ζp(2s − 2),

and

N0(πp, s)v0 = 1 + (p−1 + 1)z + z2

p
+ (p−2 + p−1)z3 + z4

p2
− z2

p
T .

Proving (3.7) implies our desired relation between Ip(L; s) and L(πp,Std, s) as in Theo-
rem 3.2, which is essentially Proposition 7.1 in [11]. For an explanation of this implication,
see Section 5.3 in [15].

Now, (3.7) has been proved for p ≥ 5 in [11, 15]. We will prove it for p = 2, 3 as well. To
do so, we will compute the left-hand side and the right-hand side of (3.7) separately and show
that they are the same. The left-hand side will be considered in Sect. 5 and the right-hand
side will be computed in Sect. 6. In order to do these computations, some properties of binary
cubic forms and their relations to cubic rings will be useful. We spell these out in the next
section.

4 The arithmetic invariant theory of binary cubics

In this section, we describe some results on the relationship between binary cubic forms and
cubic rings. We refer to [5, Section 4] and [9] for a primer on this relationship.

Suppose that

f (w, z) = aw3 + bw2z + cwz2 + dz3

is a binary cubic over some ring R. One associates to f the cubic R-algebra T with the basis
{1, ω, θ} and the multiplication table
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• ωθ = −ad ,
• ω2 = −ac + aθ − bω,
• θ2 = −bd + cθ − dω.

Following [5, Section 4], we call such a basis a good basis. Suppose that m = ( m11 m12
m21 m22

)

is a 2 × 2 matrix with coefficients in R. Write Tm for the R-lattice in T that is spanned by
{1,m11ω + m12θ,m21ω + m22θ}. Let ω′′ and θ ′′ be defined by the relation

(
ω′′
θ ′′

)
= m

(
ω

θ

)
=

(
m11 m12

m21 m22

) (
ω

θ

)
. (4.1)

One can naturally ask what condition guarantees that Tm is closed under multiplication. This
question is answered by the following proposition.

Proposition 4.1 Suppose that R has characteristic 0. Set

f ′(w, z) = m · f (w, z),

where the action is as given in (2.2) and write

f ′(w, z) = a′w3 + b′w2z + c′wz2 + d ′z3.

With the notation as above, the R-lattice Tm is closed under multiplication if and only if

(i) f ′(w, z) has coefficients in R, that is, a′, b′, c′, d ′ ∈ R,

(ii) and

(
b′

−c′
)

≡ m

(
b

−c

)
(mod 3).

The proof of this proposition requires a lemma. Following the notation in (4.1), set ω′′ =
m11ω + m12θ and θ ′′ = m21ω + m22θ . Let ω′ and θ ′ in T ⊗ Frac(R) be defined by

(
ω′
θ ′

)
= m

(
ω

θ

)
+ 1

3

{(
b′

−c′
)

− m
( b

−c

)}
.

Finally, let

ω0 = ω + b

3
and θ0 = θ − c

3
,

so that tr(ω0) = tr(θ0) = 0.

Lemma 4.2 The elements ω′ and θ ′ defined above have the multiplication table

(i) ω′θ ′ = −a′d ′,
(ii) ω′2 = −a′c′ + a′θ ′ − b′ω′,
(iii) θ ′2 = −b′d ′ + c′θ ′ − d ′ω′.

Proof This lemma is well-known. It is essentially the statement that our association of cubic
rings to binary cubic forms is equivariant under the action of GL2. For completeness, we
give some details regarding a proof.

First, instead of checking the multiplication table above of {1, ω′, θ ′}, we verify the equiv-
alent multiplication table for

(
ω′
0

θ ′
0

)
= m

(
ω0

θ0

)
.

Now, the trace 0 basis {ω0, θ0} has the multiplication table

• ω0θ0 = b

3
θ0 − c

3
ω0 +

(
bc

9
− ad

)
,
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• ω2
0 = aθ0 − b

3
ω0 + 2

9
(b2 − 3ac),

• θ20 = c

3
θ0 − dω0 + 2

9
(c2 − 3bd).

We wish to prove that the multiplication table for {ω′
0, θ

′
0} has the same form, with a, b, c, d

replaced by a′, b′, c′, d ′, respectively. To do this, we first write the multiplication table of
{ω0, θ0} as
(

ω0

θ0

)(
ω0 θ0

) = 1

3

(
3a b
b c

)
θ0 − 1

3

(
b c
c 3d

)
ω0 + 1

9

(
2b2 − 6ac bc − 9ad
bc − 9ad 2c2 − 6bd

)
.

Then we obtain

m

(
ω0

θ0

)(
ω0 θ0

)
mt = 1

3

(
m−1

21 m

(
3a b
b c

)
mt − m−1

11 m

(
b c
c 3d

)
mt

)
ω′
0

+ 1

3

(
m−1

22 m

(
3a b
b c

)
mt − m−1

12 m

(
b c
c 3d

)
mt

)
θ ′
0

+ 1

9
m

(
2b2 − 6ac bc − 9ad
bc − 9ad 2c2 − 6bd

)
mt .

Equivalently, this is
(

ω′
0

θ ′
0

)(
ω′
0 θ ′

0

) = − 1

3
det(m)−1

(
m21m

(
3a b
b c

)
mt + m22m

(
b c
c 3d

)
mt

)
ω′
0

+ 1

3
det(m)−1

(
m11m

(
3a b
b c

)
mt + m12m

(
b c
c 3d

)
mt

)
θ ′
0

+ 1

9
m

(
2b2 − 6ac bc − 9ad
bc − 9ad 2c2 − 6bd

)
mt .

Then
(

ω′
0

θ ′
0

)(
ω′
0 θ ′

0

)= 1

3

(
3a′ b′
b′ c′

)
θ0 − 1

3

(
b′ c′
c′ 3d ′

)
ω0+ 1

9

(
2b′2 − 6a′c′ b′c′ − 9a′d ′
b′c′ − 9a′d ′ 2c′2 − 6b′d ′

)
,

where we used the definition of the action of GL2 on binary cubics and the equivariance of
the Hessian of a binary cubic. The lemma then follows. ��

We denote the condition (ii) of Proposition 4.1 by † as below.
(

b′
−c′

)
≡ m

(
b

−c

)
(mod 3). (†)

Then the statement of Proposition 4.1 follows immediately from

Proposition 4.3 The following statements are equivalent.

(i) The R-lattice Tm spanned by {1, ω′′, θ ′′} is closed under multiplication.
(ii) The R-lattice spanned by {1, ω′, θ ′} is closed under multiplication and † holds.
(iii) m · f has coefficients in R and † holds.

Proof From Lemma 4.2, it is clear that (ii) and (iii) are equivalent. It is also clear that (ii)
implies (i). To prove that (i) implies (ii), we argue as follows. First, we define

(
δ1
δ2

)
= m

3

(
b

−c

)
+ 1

3

(−b′
c′

)
,
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so that ω′ = ω′′ + δ1 and θ ′ = θ ′′ + δ2. Observe that

ω′′θ ′′ = (ω′ − δ1)(θ
′ − δ2) = B − δ1θ

′′ − δ2ω
′′

for some B ∈ Frac(R). Thus if (i) holds, then δ1, δ2 ∈ R. Since δ1, δ2 ∈ R, the equalities
ω′ = ω′′ + δ1, θ ′ = θ ′′ + δ2 imply that the R-lattice spanned by {1, ω′, θ ′} is closed under
multiplication, so that (ii) holds. The result then follows. ��

In the case where R = Zp , we can go further.

Proposition 4.4 If SpanZp
(1, ω′, θ ′) is closed under multiplication, then † holds. Equiva-

lently, if m · f has its coefficients in Zp, then † holds.

Although this proposition has nontrivial content only when p = 3, we write down its
proof for general p.

Proof The idea is to use the Cartan decomposition of m ∈ GL2(Qp) ∩ M2(Zp). That is,
such an m is a product k1tk2 for some k1, k2 ∈ GL2(Zp) and a diagonal element t in
GL2(Qp) ∩ M2(Zp).

We first claim that ifm = k ∈ GL2(Zp), then † automatically holds for thism. To see this,
note that because k ∈ GL2(Zp), SpanZp

(1, ω, θ) = SpanZp
(1, ω′′, θ ′′). Thus that † holds

follows from the equivalence of (i) and (iii) of Proposition 4.3.
Now suppose that m = t = diag(t1, t2) is diagonal in M2(Zp) ∩GL2(Zp). Then for such

m, b′ = t1b and c′ = t2c, and it is clear that if t · f has coefficients in Zp , then † holds.
Now suppose that m = k1tk2 and that m · f has coefficients in Zp . It follows that tk2 · f

has coefficients in Zp . Thus, from what has been said, † holds for m′ = tk2. Applying k1, it
follows that † holds for m, as desired. ��

Recall that an order is a subring of a K -algebra, where K is a field and R is an integral
domain in K , which is a full R-lattice. We note the following corollary of Lemma 4.2.

Corollary 4.5 Set R = Zp, and let the binary cubic f (w, z) correspond to the maximal order
T in the étale Qp-algebra T ⊗Qp. Assume that for m ∈ GL2(Qp), the coefficients of m · f
lie in Zp. Then m ∈ M2(Zp).

Proof Suppose that m = ( m11 m12
m21 m22

)
and T has the good basis {1, ω, θ}. We have ω′ =

m11ω + m12θ + δ1 and θ ′ = m21ω + m22θ + δ2. Since m · f has coefficients in Zp ,
Lemma 4.2 implies that SpanZp

(
1, ω′, θ ′) is closed under multiplication. But then, because

T is maximal by assumption, we must have ω′, θ ′ ∈ T . It follows that all entries of m are in
Zp , as desired. ��

5 The Fourier coefficient of the approximate basic function

In this section, we explain the computation of the left-hand side of (3.7). For t ∈ GL1 and
h ∈ GL2 � M the Levi of the Heisenberg parabolic of G2, define

Dχ (t, h) =
∫

N (Qp)

χ(n)�(t, nh) dn.

Then by the Iwasawa decomposition, the left-hand side of (3.7) is

D(s) =
∫

GL1(Qp)×GL2(Qp)

δ−1
P (h)|t |s+2Dχ (t, h)L(hv0) dh dt .
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For p ≥ 5, the Dχ (t, h) is computed in [15, Proposition 5.7]. Below we explain that the
expression obtained for Dχ (t, h) in loc cit continues to hold for p = 2 and p = 3.

We now recall various notations from [15] that we need to state for the computation of
Dχ (t, h). First, let

fmax(w, z) = aw3 + bw2z + cwz2 + dz3

be a binary cubic form corresponding to the maximal order

OE = Zp × Zp × Zp ∈ Q
3
p,

so that fmax is some GL2(Zp) translate of wz(w + z). Let {1, ω, θ} be the good basis ofOE

associated to fmax. For x =
(

α β
γ δ

)
∈ GL2(Qp), T (x) denotes the Zp-module spanned by

{1, δω − βθ,−γω + αθ}. Hence T (x) = T̃x in the notation of Sect. 4, where x̃ is as defined
in Sect. 2.4. Note that by the results of Sect. 4, if T (x) is closed under multiplication, then
x ∈ M2(Zp) and x̃ · fmax = fmax · x has its coefficients in Zp , and vice versa.

For a general binary cubic form � with coefficients in Zp , defineN (�) to be the number
of 0’s of� in P1(Fp). Also, for an element h ∈ GL2(Qp), define val(h) ∈ Z to be the largest
integer n so that p−nh ∈ M2(Zp).

Proposition 5.1 Define x0(h) by x0(h) = p− val(h)h, and setλ = det(h)/t .Write D′
χ (λ, h) =

Dχ (t, h), that is, D′
χ is the same function as Dχ , except that it is expressed in terms of the

new variables λ and h. Further, let

ε(x0(h)) =
{
1 if x0(h) ∈ GL2(Zp),

2 if x0(h) /∈ GL2(Zp).

Then

D′
χ (λ, h) = | det(λ−1h)|−1 char

(
h ∈ M2(Zp), val(λ

−1h) ∈ {0, 1}, T (x0(h)) a ring
)

×
{
1 if val(λ−1h) = 0
N ( fmax) − ε(x0(h)) if val(λ−1h) = 1

}
.

Proof This is essentially Proposition 5.7 in [15]. The proof carries over line-by-line except
one minor change. To aid the reader in checking this, we give some of the omitted details
from loc cit to clarify that the result continues to hold for p = 2, 3.

First, we show that Dχ (t, h) �= 0 implies h ∈ M2(Zp). We have Dχ (t, h) =∫
N ψ(〈ω, n〉)�(t, nh) dn, where ω is the element of W that corresponds to fmax. By the

change of variable n �→ hnh−1, we find that up to positive constant coming from the change
in measure,

Dχ (t, h) =
∫

N
ψ(〈ω, hnh−1〉)�(t, hn)dn.

Now,� is right-invariant underG2(Zp), so if u0 ∈ G2(Zp)∩N , then�(t, hnu0) = �(t, hn).
Then by the change of variable n �→ nu0 in Dχ (t, h), one finds that

Dχ (t, h) = ψ(〈ω, hu0h
−1〉)Dχ (t, h).

Thus, for Dχ (t, h) to be nonzero, one must have 〈ω, hu0h−1〉 ∈ Zp for every u0 ∈ N ∩
G2(Zp). It follows thatω ·h corresponds to a binary cubic formwithZp integral coefficients,
and thus h ∈ M2(Zp) by Corollary 4.5.
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Let us remark upon the one aspect of the proof which is ever so slightly different from
the proof of Proposition 5.7 in [15]. In loc cit, one verifies that if Dχ (t, h) nonzero, then
fmax · x0(h) has coefficients in Zp . By Proposition 4.4, one concludes that T (x0(h)) is a ring.
The rest of the proof is as that of Proposition 5.7 in [15]. ��

6 Non-archimedean zeta integral

In this section, we compute the right-hand side of (3.7). In the case when p ≥ 5, the
calculation is done in [15], so the new work is for p = 2 and 3. Still, many computations are
similar to the ones in the proof for the case p ≥ 5.

6.1 The computation of8p,�

To compute the right-hand side of (3.7), we first compute the function �p,χ (t, g) in (3.5).
The computation of this function is different from the one in Lemma 5.6 of [15].

Lemma 6.1 Suppose that h = (
a b
c d

)
is in theHeisenberg Levi, so that h takes e1 to ae1+ce∗

3
and e∗

3 to be1 + de∗
3 . Let f0(w, z) = w2z + wz2. Set λ = det(h)/t and h′ = 1

λ
h̃ =

λ−1
(

d −b−c a

)
. Set f1(w, z) = h′ · f0(w, z), and write fi (w, z) = αiw

3 +βiw
2z+γiwz2 +

δi z3 for i = 0, 1. Then

�p,χ (t, h) = |λ|A0(λ, h),

where A0(λ, h) is the characteristic function of the quantities

• λ ∈ Z,
• h′ ∈ Z,
• h′ · f0(w, z) = det(h′)−1 f0((w, z)h′) ∈ Z,

•
(

β1

−γ1

)
≡ h′

(
β0

−γ0

)
(mod 3).

Before we prove this lemma, we introduce some notation and state a corollary of it. For
a cubic ring T over Zp , the largest integer c so that T = Zp + pcT0 for a cubic ring T0 over
Zp is called the p-adic content of T and is denoted by c(T ). If T corresponds to the binary
cubic g, then the p-adic content of T is the largest integer c so that p−cg has coefficients in

Zp . Let x =
(

α β
γ δ

)
∈ GL(2,Qp). Recall that T (x) denotes the Zp-module spanned by

{1, δω − βθ,−γω + αθ}, where {1, ω, θ} is the good basis of the fixed maximal order.

Corollary 6.2 We have

A0(λ, h) = char
(
λ ∈ Zp, T (λ−1h) is a ring

) = char
(
λ ∈ Zp, λ | pc(T (h))

)
.

Proof This follows from Lemma 6.1 by an application of the results of Sect. 4. The condition
λ ∈ Zp corresponds to the first bullet point while the condition λ | pc(T (h)) corresponds to
the last three bullet points in Lemma 6.1. ��

Note that the characteristic function in the statement of Corollary 6.2 is the same charac-
teristic function as described in [15, p. 21] for p ≥ 5.
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We now introduce some notation that will be used in the proof of Lemma 6.1. Recall that

0 is the split model of the integral octonions with Z-basis {ε1, ε2, e1, e2, e3, e∗

1, e
∗
2, e

∗
3}. For

α j and γk in a ring R, we define

{α1, α2, α3}e1 := α1ε1 ∧ e1 − α2ε2 ∧ e1 + α3e
∗
2 ∧ e∗

3,

{α1, α2, α3}e2 := α1ε1 ∧ e2 − α2ε2 ∧ e2 + α3e
∗
3 ∧ e∗

1,

{α1, α2, α3}e3 := α1ε1 ∧ e3 − α2ε2 ∧ e3 + α3e
∗
1 ∧ e∗

2,

and

{γ1, γ2, γ3}e∗
1

:= γ2ε1 ∧ e∗
1 − γ1ε2 ∧ e∗

1 + γ3e2 ∧ e3,

{γ1, γ2, γ3}e∗
2

:= γ2ε1 ∧ e∗
2 − γ1ε2 ∧ e∗

2 + γ3e3 ∧ e1,

{γ1, γ2, γ3}e∗
3

:= γ2ε1 ∧ e∗
3 − γ1ε2 ∧ e∗

3 + γ3e1 ∧ e2

as elements of ∧2
Z

0 ⊗ R. This notation is useful because one has

[{α1, α2, α3}e1 , {β1, β2, β3}e2
] = {α2β3 + α3β2, α3β1 + α1β3, α1β2 + α2β1}e∗

3

and
[{γ1, γ2, γ3}e∗

1
, {δ1, δ2, δ3}e∗

2

] = {γ2δ3 + γ3δ2, γ3δ1 + γ1δ3, γ1δ2 + γ2δ1}e3 .
We also obtain

[{α1, α2, α3}e1 , {γ1, γ2, γ3}e∗
3

] = (α1γ1 + α2γ2 + α3γ3)e1 ∧ e∗
3,[{α1, α2, α3}e j , {β1, β2, β3}e j

] = 0.
(6.1)

For our later use, we record the following formulas. From the formulas in Sect. 2.5, we find
that under the action of m = (

a b
c d

) ∈ GL2 � M , we have

2ε1 ∧ e1 + ε2 ∧ e1 − e∗
2 ∧ e∗

3 �→ a
(
2ε1 ∧ e1 + ε2 ∧ e1 − e∗

2 ∧ e∗
3

)

+c
(
2ε2 ∧ e∗

3 + ε1 ∧ e∗
3 + e1 ∧ e2

)
,

and

2ε1 ∧ e∗
3 + ε2 ∧ e∗

3 − e1 ∧ e2 �→ b
(
ε1 ∧ e1 + 2ε2 ∧ e1 + e∗

2 ∧ e∗
3

)

+d
(
2ε1 ∧ e∗

3 + ε2 ∧ e∗
3 − e1 ∧ e2

)
.

In other words,

{2,−1,−1}e1 �→ a{2,−1,−1}e1 + c{−2, 1, 1}e∗
3
,

and

{−1, 2,−1}e∗
3

�→ b{1,−2, 1}e1 + d{−1, 2,−1}e∗
3
.

Now, recall that

ṽE = ε1 ∧ (e1 + e∗
3) = ε1 ∧ e1 + ε1 ∧ e∗

3 = {1, 0, 0}e1 + {0, 1, 0}e∗
3
.

We thus have

ṽE = {1, 0, 0}e1 + {0, 1, 0}e∗
3

= 1

3

(
{1, 1, 1}e1 + {1, 1, 1}e∗

3

)
+ 1

3

(
{2,−1,−1}e1 + {−1, 2,−1}e∗

3

)
.

(6.2)
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The terms in the first set of parentheses are in the Lie algebra g2 and they correspond to the
cubic x2y + xy2 in the sense that was described in the first paragraph of [15, p. 18].

For m ∈ M � GL2, we can now compute mṽE . Write m = (
a b
c d

)
. Also, let f0(w, z) =

w2z + wz2, and

m · f0(w, z) = det(m)−1 f0((w, z)m) = αw3 + βw2z + γwz2 + δz3.

We also recall the following notations from Section 4.1 in [15].

E12 = −e1 ∧ e∗
2, E23 = −e2 ∧ e∗

3,

v1 = {1, 1, 1}e1 , δ3 = {1, 1, 1}e∗
3
.

By using this notation and (6.2), we obtain

mṽE =αE12 + 1

3
βv1 + 1

3
γ δ3 + δE23

+ 1

3

(
a{2,−1,−1}e1 + c{−2, 1, 1}e∗

3
+ b{1,−2, 1}e1 + d{−1, 2,−1}e∗

3

)
.

Finally, we need to present one piece of calculation before the proof of Lemma 6.1.
Suppose that X = u1E12 + u2v1 + u3δ3 + u4E23 is in the Lie algebra of N , that is, the
unipotent radical of the Heisenberg parabolic of G2. We need to compute [X , ṽE ]. By (6.1),

[X , ṽE ] = [u2v1 + u3δ3, ṽE ] = [u2{1, 1, 1}e1 + u3{1, 1, 1}e∗
3
, {1, 0, 0}e1 + {0, 1, 0}e∗

3
]

= u2[{1, 1, 1}e1 , {0, 1, 0}e∗
3
] − u3[{1, 0, 0}e1 , {1, 1, 1}e∗

3
]

= (u2 − u3)e1 ∧ e∗
3 .

We are now in a position to compute �p,χ (t, h).

Proof of Lemma 6.1 Set λ = det(h)/t and n = exp(X). From the computations above, we
obtain

n−1ṽE = ṽE + (u2 − u3)E13.

Then

th−1n−1ṽE = th−1ṽE + t det(h)−1(u2 − u3)E13 = λ−1 det(h)(h−1 · ṽE ) + u2 − u3
λ

E13.

Now, h−1 = det(h)−1
(

d −b−c a

)
. Thus

th−1n−1ṽE =α1E12 + β1

3
v1 + γ1

3
δ3 + δ1E23 + u2 − u3

λ
E13

+ λ−1

3

(
d{2,−1,−1}e1 − c{−2, 1, 1}e∗

3
− b{1,−2, 1}e1 + a{−1, 2,−1}e∗

3

)
.

We will use this expression to verify the result. Indeed, by rewriting it, we obtain

th−1n−1ṽE = α1E12 + δ1E23 + u2 − u3
λ

E13

+ λ−1d{1, 0, 0}e1 + λ−1b{0, 1, 0}e1 + 1

3
(β1 − λ−1d − λ−1b){1, 1, 1}e1

+ λ−1c{1, 0, 0}e∗
3
+ λ−1a{0, 1, 0}e∗

3
+ 1

3
(γ1 − λ−1c − λ−1a){1, 1, 1}e∗

3
.

Observe that in order for the integral over N 0,E\N in (3.5) to be nonzero, we must have λ ∈
Zp . Moreover, the resulting integral is |λ| times the characteristic function of the quantities
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• α1, δ1 ∈ Zp ,
• λ−1a, λ−1b, λ−1c, λ−1d ∈ Zp ,

• 1

3
(β1 − λ−1d − λ−1b),

1

3
(γ1 − λ−1c − λ−1a) ∈ Zp .

The result follows. ��

6.2 The local unramified computations

Recall that T (x) is the Zp-module spanned by {1, δω − βθ,−γω + αθ} as in Sect. 6.1. For
ease of notation, we set

c(x) = c(T (x)) for x ∈ GL2(Qp).

For an element h ∈ GL(2,Qp), let [h] denote the coset h GL(2,Zp). Whether or not T (x)
is closed under multiplication is independent of the element x ∈ h GL(2,Zp). Recall the
integral Ip(s) = Ip(L; s) in (3.4). By using the exact same calculations as in [15, p. 22], we
find that

Ip(s + 1) = 1

1 − z

∑

[h]
L(hv)| det(h)|−2zval(det(h))−c(h)

(
1 − zc(h)+1) char

(
c(h) ≥ 0

)
.

We define

Ph(z) := zval(det(h))−c(h)
(
1 − zc(h)+1) char

(
c(h) ≥ 0

)
,

and write

Ip(s + 1) = 1

1 − z

∑

[h]
L(hv)| det(h)|−2Ph(z).

To evaluate of Ip(s) in terms of L-functions, we must apply M(πp, s) to Ip(s + 1) (see
[15, Section 5.4, 5.8]). The computations follow line-by-line just as in loc cit. To demonstrate
that the results in [15] also hold for p = 2, 3, we fill in various details that were omitted in
that paper.

Suppose h = pch0, with f0 = fmax ·h0 integral and not divisible by p, so that the content
of h is c, so c(h) = c. We begin by explaining the proof of the following lemma, which is a
restatement of Lemma 5.10 in [15].

Lemma 6.3 Suppose f = pc f0, with f0 in each of the cases enumerated below. Denote by
� f the rank twoO-lattice corresponding to f . Depending on some cases, the content c(�′)
of the index p sublattices �′ of � f can be described as follows.

(1) If f0 irreducible mod p, then there are (p + 1) sublattices �′ each of which have index
p and satisfy c(�′) = c − 1.

(2) If f0 = �g where � is a line and g is irreducible modulo p, then there is one sublattice
�′ = �� with c(��) = c while the other p sublattices satisfy c(�′) = c − 1.

(3) If f0 = �1�2�3 where the �i are distinct lines modulo p, then there are three sublattices
given by �′ = ��i for i = 1, 2, 3, and each satisfy c(��i ) = c, while for other (p − 2)
sublattices �′ we have c(�′) = c − 1.

(4) If f0 = �21�2 where �1, �2 are distinct lines modulo p, then there is one sublattice
�′ = ��1 with c(��1) = c+1, another sublattice�′ = ��2 that has c(��2) = c while
the other (p − 1) sublattices �′ all satisfy c(�′) = c − 1.
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(5) If f0 = α�3 where � is a line modulo p and α ∈ (O/p)×, then there is one sublattice
�′ = �� with c(��) = c+ 2 while the other p sublattices �′ all satisfy c(�′) = c− 1.

Proof First we claim that f0 factors into linear factors over an unramified field extension L
ofQp . To see this, let T0 be the cubic ring corresponding to f0. Then by assumption, T0⊗Qp

is an unramified extension of Qp . It follows that for some unramified field extension L/Qp ,
one has T0 ⊗ L ≈ L × L × L . The binary cubic corresponding to the right-hand side is split,
say xy(x + y). The association between binary cubics and cubic rings is clearly compatible
with base change, so it follows that f0 factors over L .

Let OL denote the ring of integers in L . By Gauss’s Lemma, we conclude that f0 factors
into linear factors over OL , say f0 = �1 · �2 · �3. By using this factorization of f0 and the
fact that p is a uniformizer in OL , the lemma follows without much difficulty.

Suppose that we are in the final case, so f0 ≡ α�3 modulo p. Without loss of generality,
we can assume that � = x . Then by the factorization of f0 given above, we can write
f0(w, z) = β�′

1�
′
2�

′
3 with β ∈ O×

L and �′
1 ≡ �′

2 ≡ �′
3 ≡ x modulo p. It follows that

1
p f0(p(w, z)) has content 2, showing that one of the (q + 1) sublattices has content 2.
The rest of the proof proceeds similarly. ��
Next, we explain some of the aspects of the proof that were omitted in the explanations

after Lemma 5.10 in [15]. In loc cit, we have

Ph(z) = zv−c(1 − zc+1) char
(
c ≥ 0

)
.

as we set v = v(h) = val(det(h)) and c = c(h). Define

T (p) = GL2(O)( p 0
0 1 )GL2(O)

and

T (p−1) = GL2(O)( p−1 0
0 1

)GL2(O).

From Section 5.7 in [15], we recall the function

Mh(z) = p2Php(z) + Php−1(z) + (N ( fmax · h) − 1)Ph(z) + pPh∗T (p)(z) + Ph∗T (p−1)(z).

Also recall that for a Hecke operator Y on GL2 with coset decomposition Y =∑
i ai [yi GL2(O)], we have Ph∗Y (z) = ∑

i ai Phyi . Note that hyi and hp are simply scalar
multiples of the matrix h. Moreover, we define

B0(z) = 1 + (p + 1)z + pz2 + (p2 + p)z3 + p2z4.

In [15], the purpose of the discussion below Lemma 5.10 is to prove the following result,
which is a restatement of Lemma 5.12 of loc cit.

Lemma 6.4 Let the notations be as above. Then

(1 + pz)−1L(E, s)
(
B0(z)Ph(z) − z2Mh(z)

)

= char
(
val(h) = c(h)

)
zv−c(1 + N ( fmax) − ε(h0)z

)
.

We first elaborate on the evaluation of B0(z)Ph(z) − z2Mh(z) in case c(h) ≥ 2, which is
the case explained in loc cit. Let

g(z) = p2zv−c+1(1 − zc+2) + zv−c−1(1 − zc) + pzv−c(1 − zc+1).

Then, when c ≥ 2, the first three terms in the above expression forMh(z) give g(z). The point
is that when h is changed, v and c change, as these depend on h. One has v(hp) = v(h)+2 and
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c(hp) = c(h)+ 1. Thus Php(z) = zv−c+1(1− zc+2). Similarly, Php−1(z) = zv−c−1(1− zc),
because v(hp−1) = v(h) − 2 and c(hp−1) = c(h) − 1. Finally, because c ≥ 1, we have
N = N ( fmax ·h) = p+1, so (N −1)Ph(z) = pzv−c(1− zc+1). Putting these computations
together gives

p2Php(z) + Php−1(z) + (N − 1)Ph(z) = g(z).

The terms inMh(z)with theHecke operators are computed usingLemma6.3. For example,
when f0 is irreducible modulo p, we have v(hgi ) = v(h) + 1 and c(hgi ) = c(h) − 1 using
Lemma 5.10. Here gi are the coset representatives for the Hecke operator T (p). Then, in this
case, Ph∗T (p)(z) = (p + 1)zv−c+2(1 − zc). Similarly,

Ph∗T (p−1)(z) = (p + 1)zv−c+1(1 − zc−1).

Combining the above expressions gives the expression for Mh(z) at the bottom of [15, p.
27].

Remark There is a typo on page 27 in [15]. In the case f0 = α�3, the term zv−c+2(1− zc+2)

should instead say zv−c−2(1 − zc+2).

We now claim that the cases where c = 1 in fact do not need to be considered sepa-
rately from those where c ≥ 2. Indeed, this is because the terms that vanish because of the
char(c(h) ≥ 0) in case c = 1 all have a (1 − zc−1) in them, and so vanish anyway.

We now explain the calculation of B0(z)Ph(z) − z2Mh(z) in the case c = 0. First note
that, in the case c = 0,

N = N ( fmax · h) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if c = 0 and f0 is irreducible modulo p,
1 if c = 0 and f0 = �p,
3 if c = 0 and f0 = �1�2�3,

2 if c = 0 and f0 = �21�2,

1 if c = 0 and f0 = α�3.

From this expression for N , one computes Mh(z) in case c = 0 as follows.

(1) Let f0 be irreducible modulo p. In this case, we necessarily have h = 1 and Mh(z) =
p2z(1 − z2) + (−1)(1 − z). Also, Ph(z) = 1 − z and then B0(z)Ph(z) − z2Mh(z) =
(1 + qz)(1 − z3).

(2) Let f0 ≡ �q (mod p). We have Mh(z) = p2zv+1(1− z2) + zv(1− z) + pzv+1(1− z)
and thus B0(z)Ph(z) − z2Mh(z) = zv(1 + pz)(1 − z2).

(3) Let f0 ≡ �1�2�3 (mod p).We haveMh(z) = p2zv+1(1−z2)+2zv(1−z)+3pzv+1(1−
z) and then B0(z)Ph(z) − z2Mh(z) = zv(1 + pz)(1 − z)2(1 + 2z).

(4) Let f0 ≡ �21�2 (mod p). Then Mh(z) = p2zv+1(1− z2) + zv(1− z) + pzv+1(1− z) +
pzv(1 − z2) + zv−1(1 − z) and B0(z)Ph(z) − z2Mh(z) = zv(1 + pz)(1 − z)(1 − z2).

(5) Let f0 ≡ α�3 (mod p). Then Mh(z) = p2zv+1(1− z2)+ pzv−1(1− z3)+ zv−2(1− z2)
and B0(z)Ph(z) − z2Mh(z) = 0.

Now, for B0(z)Ph(z)−z2Mh(z), we find the same expression as the one on the top of page 28
in loc cit except with c = 0. Hence we obtain Lemma 6.4. Combined with the relationship

(B0(z) − pz2T )I (s + 1) = 1

1 − z

∑

[h]
L
(
m(h)v

) | det(h)|−2(B0(z)Ph(z) − z2Mh(z)
)
,

this completes our evaluation of I (s).
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7 The Eisenstein series

We repeat the definition of the normalized Eisenstein series in (3.1).

E∗
� (g, s) = �(s − 1)2�(s)�(2s − 4)

�(s + � − 1)�(s + � − 2)

�(s − 1)�(s − 2)
E�(g, s).

The purpose of this section is to prove the following theorem.

Theorem 7.1 We have

E∗
� (g, s) = E∗

� (g, 5 − s).

This theorem is an immediate consequence of Langlands’ functional equation, with the
difficulty lying in the computation of the appropriate intertwining operator of the section
f�(g, s). We remark that Segal [18] has studied the poles of this and related Eisenstein series
in a right half-plane.

Consider the diagonal maximal T ′ of G ′ consisting of the elements

t = diag
(
t1, t2, t3, t4, t

−1
4 , t−1

3 , t−1
2 , t−1

1

)
.

For 1 ≤ j ≤ 4, let r ′
j denote the characters ofT

′ that takes the element t to t j .Wefix amaximal
T of G that maps to T ′ under the map G → G ′, and write r j for the restriction of r ′

j to T . We
label theDynkin diagramofG by rootsα1 = r1−r2, α2 = r3+r4, α3 = r3−r4, α4 = r2−r3.
Then α4 is the central vertex of the diagram.

We abuse notation and also denote the restriction to T of the character t �→ |t j | of T ′
by r j . Then the inducing character for our Eisenstein series is |ν|s = s(r1 + r2). This is in

IndGB (δ
1/2
B λs) with δ

1/2
B = 3r1 + 2r2 + r3 and λs = (s − 3)r1 + (s − 2)r2 − r3.

Let N be the unipotent radical of the Heisenberg parabolic, so that the roots in N are
r1−r3, r1−r4, r1+r4, r1+r3, r2−r3, r2−r4, r2+r4, r2+r3, r1+r2. The long intertwiner
for N is w = [412343214] = [412434214]. Here the notation [i jk] means that one performs
a reflection in the roots i, j, k from right to left. To see that this expression forw as a product
of simple reflections is correct, one checks that w makes the roots in N negative, and that it
has length 9.

Now, we set

M(w, s) f�(g, s) =
∫

N (A)

f�(w
−1ng, s) dn.

If the real part of s is sufficiently large, then this integral converges and has a meromorphic
continuation in s. We will prove the following result on the integral.

Proposition 7.2 We have

M(w, s) f�(g, s) = c�(s) f�(g, 5 − s),

where

c�(s) = �(s − 3)2�(s − 4)�(2s − 5)

�(s − 1)2�(s)�(2s − 4)

�(s − 2)�(s − 3)�(s − 2)�(s − 1)

�(s − � − 3)�(s − � − 2)�(s + � − 1)�(s + � − 2)
.

Proof of Theorem 7.1 We note the identity

�(s − 2)�(s − 3)

�(s − � − 2)�(s − � − 3)
= �(4 − s + �)�(3 − s + �)

�(4 − s)�(3 − s)
.
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The result then follows from Proposition 7.2, Definition (3.1) and Langlands’ functional
equation. ��

For the rest of this section, we focus on proving Proposition 7.2. We first introduce some
notation. Let x, y be indeterminates, s be a complex parameter, and � be a fixed positive even
integer. Also, set

f+ = x + y and f− = x − y.

We have

Span
({
x2�−2 j y2 j + x2 j y2�−2 j : 0 ≤ j ≤ �/2

})

= Span
({

f 2�−2 j
+ f 2 j− + f 2 j+ f 2�−2 j

− : 0 ≤ j ≤ �/2
}) := Veven,

say. We think of Veven as sitting inside the space V� = Sym2�(C2) (see Sect. 3.1). We will
define a few operators on the space Veven. For a nonnegative integer k and z ∈ C, let

(z)k = z(z + 1)(z + 2) · · · (z + k − 1).

This is the so-called Pochhammer symbol.
For a complex number s, we define [s; x, y] as the diagonal operator on Veven given by

x2�−2 j y2 j + x2 j y2�−2 j �→
( 1−s

2

)
| �
2− j |( 1+s

2

)
| �
2− j |

(
x2�−2 j y2 j + x2 j y2�−2 j

)

for each 0 ≤ j ≤ �/2. Similarly, we define [s; f+, f−] as the diagonal operator on Veven that
is given by

f 2�−2 j
+ f 2 j− + f 2 j+ f 2�−2 j

− �→
( 1−s

2

)
| �
2− j |( 1+s

2

)
| �
2− j |

(
f 2�−2 j
+ f 2 j− + f 2 j+ f 2�−2 j

−
)

for each 0 ≤ j ≤ �/2.

Proof of Proposition 7.2 In our computation of the image of f�(g, s) under the intertwining
operator M(w, s), we will use the so-called cocycle property which was given in Theo-
rem 4.2.2 in [19]. This theorem implies that M(w, s) can be viewed as a composition of
intertwiners that are associated to simple reflections.

To apply the cocycle property, we record how the simple reflections in the product w =
[412434214] move the character λs = (s − 3)r1 + (s − 2)r2 + (−1)r3 around, and how the
associated one-dimensional intertwining operators act on the inducing section f�(g, s). This
is provided in Table 1. ��

The notation in this table has the following meaning, as we explain by an example. Set

λ′
s = (s − 3)r1 + (−1)r2 + (s − 2)r3.

When we apply the intertwining operator associated to the reflection [4] to the inducing
section f�(g, s), we obtain the unique K f -spherical, K∞-equivariant element of Ind(δ1/2B λ′

s),
whose value at g = 1 is

�(s − 1)

�(s)
[s − 1; f+, f−](x�y�).
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Denote the resulting inducing section by f ′
�(g, s), and set

λ′′
s = (−1)r1 + (s − 3)r2 + (s − 2)r3.

Then, if we apply the intertwining operator associated to the reflection [1] to f ′
�(g, s), then

we obtain the unique K f -spherical, K∞-equivariant element of Ind(δ1/2B λ′′
s ), whose value at

g = 1 is
(

�(s − 2)

�(s − 1)
[s − 2; x, y] ◦ �(s − 1)

�(s)
[s − 1; f+, f−]

)
(x�y�).

Note that the terms in Table 1 that are in the form of ratios of �-values follow from a
formula of Gindikin andKarpelevich, while the terms such as [s−1; f+, f−] and [s−2; x, y]
arise due to the fact that our inducing section is not spherical at the archimedean place. We
postpone providing a complete justification of the operators in Table 1 until the next section.
Granted this, the �-values multiply to

�(s − 3)2�(s − 4)�(2s − 5)

�(s − 1)2�(s)�(2s − 4)

(see also Table 12 in [18]). The other terms give the polynomial intertwiner

Mpoly(s) =[s − 4; f+, f−] ◦ [s − 3; x, y]2 ◦ [s − 2; f+, f−] ◦ [2s − 5; x, y]
◦ [s − 3; f+, f−] ◦ [s − 2; x, y]2 ◦ [s − 1; f+, f−]. (7.1)

The proposition now follows from the following proposition.

Proposition 7.3 Let Mpoly(s) be as in (7.1). We have

Mpoly(s)x
�y� = cpoly,�(s)x

�y�,

Table 1 Intertwining operators

Simple reflection Intertwiner New character

[4] �(s − 1)

�(s)
[s − 1; f+, f−] (s − 3)r1 + (−1)r2 + (s − 2)r3

[1] �(s − 2)

�(s − 1)
[s − 2; x, y] (−1)r1 + (s − 3)r2 + (s − 2)r3

[2] �(s − 2)

�(s − 1)
[s − 2; x, y] (−1)r1 + (s − 3)r2 + (2 − s)r4

[4] �(s − 3)

�(s − 2)
[s − 3; f+, f−] (−1)r1 + (s − 3)r3 + (2 − s)r4

[3] �(2s − 5)

�(2s − 4)
[2s − 5; x, y] (−1)r1 + (2 − s)r3 + (s − 3)r4

[4] �(s − 2)

�(s − 1)
[s − 2; f+, f−] (−1)r1 + (2 − s)r2 + (s − 3)r4

[2] �(s − 3)

�(s − 2)
[s − 3; x, y] (−1)r1 + (2 − s)r2 + (3 − s)r3

[1] �(s − 3)

�(s − 2)
[s − 3; x, y] (2 − s)r1 + (−1)r2 + (3 − s)r3

[4] �(s − 4)

�(s − 3)
[s − 4; f+, f−] (2 − s)r1 + (3 − s)r2 + (−1)r3
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where

cpoly,�(s) = (s − 3)(s − 4)2(s − 5)2 · · · (s − � − 2)2(s − � − 3)

(s + � − 2)(s + � − 3)2(s + � − 4)2 · · · (s − 1)2(s − 2)

= �(s − 2)�(s − 3)�(s − 2)�(s − 1)

�(s − � − 3)�(s − � − 2)�(s + � − 1)�(s + � − 2)
.

In other words, the above proposition proves that x�y� is an eigenvector for the operator
Mpoly(s) with the eigenvalue cpoly,�(s). This proposition will be proved in Sect. 7.2.

7.1 The root intertwiners

The purpose of this section is to explain the presence of the terms that appear in the “Inter-
twiner” column of Table 1. We require the following lemma.

Lemma 7.4 Let B denote the upper-triangular Borel of SL2. For θ ∈ R, set kθ =(
cos θ − sin θ
sin θ cos θ

)
. Suppose that fSL2, j (g, s) is the section in IndSL2(R)

B(R)
(δ

1/2
B δ

s/2
B ) that satisfies

fSL2, j
(
gkθ , s

) = ei jθ fSL2, j (g, s)

for all g ∈ SL2(R) and kθ ∈ SO(2) as above. Then
∫

R

fSL2, j

(( 0 −1
1 0

)( 1 x
0 1

)
g, s

)
dx = i j

�C(s)

�R(s − j + 1)�R(s + j + 1)
fSL2, j (g,−s).

If j is even, then this becomes

∫

R

fSL2, j

(( 0 −1
1 0

)( 1 x
0 1

)
g, s

)
dx = �R(s)

�R(s + 1)

( 1−s
2

)
| j/2|( 1+s

2

)
| j/2|

fSL2, j (g,−s).

Proof The proof is standard. To give some details anyway, we consider the case g = 1. Note
that
(
0 −1
1 0

) (
1 x
0 1

) =
(
1 −x(x2+1)−1

0 1

) (
(x2+1)−1/2 0

0 (x2+1)1/2

) (
x(x2+1)−1/2 −(x2+1)−1/2

(x2+1)−1/2 x(x2+1)−1/2

)
.

From this, we obtain
∫

R

fSL2, j

(( 0 −1
1 0

)( 1 x
0 1

)
, s

)
dx =

∫

R

(x2 + 1)−(s+1)/2
(

x + i

(x2 + 1)1/2

) j

dx

=
∫

R

(x + i)−(s− j+1)/2(x − i)−(s+ j+1)/2 dx .

This last integral is evaluated in [12, p. 279], which gives

i j21−sπ
�(s)

�(
s− j+1

2 )�(
s+ j+1

2 )
= i j

�C(s)

�R(s − j + 1)�R(s + j + 1)
.

Note that when j is even,

�C(s)

�R(s − j + 1)�R(s + j + 1)
= �R(s)�R(s + 1)

�R(s − j + 1)�R(s + j + 1)

= �R(s)

�R(s + 1)

�R(s + 1)�R(s + 1)

�R(s − j + 1)�R(s + j + 1)
,
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and

�R(s + 1)�R(s + 1)

�R(s − j + 1)�R(s + j + 1)

= �((s + 1)/2)2

�((s − j + 1)/2)�((s + j + 1)/2)
=

(
s+1−| j |

2

)

| j/2|( s+1
2

)
| j/2|

= (−1) j/2
( 1−s

2

)
| j/2|( 1+s

2

)
| j/2|

.

The result then follows. ��
Before applying the above lemma, we note the following calculations. For each positive

root α, let ϕα : SL2 → G be the root SL2 that is determined by a pinning of G. This pinning
is assumed to be compatible with the Cartan involutions, that is, θ(ϕα(g)) = ϕα( t g−1). On
the Lie algebra level, the root sl2’s give rise to the elements dϕα

((
0 1−1 0

))
in the Lie algebra

of G. We list these elements now.

• α1 = r1−r2, b1∧b−2+b−1∧b2 = u1∧u2−u−1∧u−2 = − i

2
(h+ +h′+ +h− +h′−),

• α2 = r3 +r4, b3 ∧b4 +b−3 ∧b−4 = v1 ∧v2 +v−1 ∧v−2 = − i

2
(h+ −h′+ −h− +h′−),

• α3 = r3 −r4, b3 ∧b−4 +b−3 ∧b4 = v1 ∧v2 −v−1 ∧v−2 = − i

2
(h+ −h′+ +h− −h′−),

• α4 = r2−r3, b2∧b−3+b−2∧b3 = u2∧v1−u−2∧v−1 = − i

2
(−H+−H ′++H−+H ′−)

where H ? = e? + f ? for ? ∈ {+, ′+,−, ′−}.
By combining these calculations with Lemma 7.4, we arrive at the proposition below. Let

w j ∈ N (T )Q ∩ (K f K ) be the simple reflection in the Weyl group that corresponds to the
simple root α j . The proposition computes the rank one intertwining operator associated to
w j on the inducing sections that arise in Table 1. Below,Uα j denotes the unipotent subgroup
of G that corresponds to the simple root α j .

Proposition 7.5 Suppose that λ = α1r1 + α2r2 + α3r3 + α4r4 is an unramified character
of T (A). Let f ∈ IndG(A)

B(A)
(δ

1/2
B λ) be V�-valued such that f is K -equivariant, K f -invariant,

and f (1) ∈ Veven. Set s = 〈α∨
j , λ〉, where α∨

j is the coroot associated to α j . If s > 1, then
the integral

M(w j ) f (g) =
∫

Uα j (A)

f (w−1
j xg) dx

is absolutely convergent. Moreover, the value M(w j ) f (g) is the unique V�-valued, K -

equivariant, K f -invariant element of Ind
G(A)
B(A)

(δ
1/2
B w j (λ)), and its value at g = 1 is

M(w j ) f (1) =
⎧
⎨

⎩

�(s)
�(s+1) [s; x, y] f (1) if j = 1, 2, 3,

�(s)
�(s+1) [s; f+, f−] f (1) if j = 4.

Proof The proof is standard except the computation of the value of M(w j ) f (g) at g = 1.We
explain the case j = 1 as the other cases are similar. To evaluateM(w1) f (1), we use a pinning
of G to pull back the calculation to SL2. Thus, we assume that ϕα1 : SL2 → G is compatible
with the integral structures, the Cartan involution, and that it satisfies the properties

ϕ1

( 0 1
−1 0

)
= w1 and ϕ1

( 1 ∗
0 1

)
= Uα1 .
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We can also assume that

dϕ1

( 0 1
−1 0

)
= b1 ∧ b−2 + b−1 ∧ b2.

Then we have

M(w1) f (1) =
∫

A

f

(
ϕ1

( 0 1
−1 0

)( 1 x
0 1

))
dx .

The function f ◦ϕ1 on SL2 is an element of the induction space corresponding to δ
(s+1)/2
B , as

in Lemma 7.4. The integrals over the finite places give ζ(s)
ζ(s+1) , as standard. The computation

of the integral over R follows from the fact that dϕ1(
(

0 1−1 0

)
) acts on x2�−2 j y2 j the same

way as − i
2h

−
� , which acts by −i(� − 2 j). The result thus follows from Lemma 7.4. ��

The above proposition yields the intertwining operators that appear in Table 1.

7.2 The polynomial intertwiner

The purpose of this section is to prove Proposition 7.3, from which Proposition 7.2 follows.
The proof of Proposition 7.3 requires the following two lemmas.

Lemma 7.6 Let u, v be variables and w be a complex parameter. Also, put

Fw(u, v) = (
1 − 2u − 2v + (u − v)2

)−w
.

Then

Fw(u, v) = (1 − 2u − 2v + (u − v)2)−w =
∑

j,k≥0

p j,k(w)
u jvk

j !k! ,

where

p j,k(w) = �(2w + j + k)�(w + j + k + 1/2)�(w + 1/2)

�(2w)�(w + k + 1/2)�(w + j + 1/2)
.

Proof First, note that the p j,k(w) are polynomials in w. To see this, one uses the func-
tional equation for the gamma function, that is, �(s + 1) = s�(s). Now, if the polynomials
p j,k(w) are indeed the Taylor coefficients of Fw(u, v), then these polynomials must satisfy
the expression

p j,k(w − 1) = p j,k(w) − 2 j p j−1,k(w) − 2kp j,k−1(w) + j( j − 1)p j−2,k(w)

− 2 jkp j−1,k−1(w) + k(k − 1)p j,k−2(w).
(7.2)

This relationship comes from comparing both sides of the identity

(
1 − 2u − 2v + u2 − 2uv + v2

)(∑

j,k

p j,k(w)
u jvk

j !k!
)

= Fw−1(u, v) =
∑

j,k

p j,k(w − 1)
u jvk

j !k! .

Now, we have two claims:

(i) One can verify (7.2) directly.
(ii) Combined with the fact that the p j,k(w) are polynomials, (7.2) implies the lemma.
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For the proof of the first claim, we again use the functional equation �(s + 1) = s�(s)
and relate the polynomials p j,k(w) to p j,k(w − 1). For example, we obtain

p j,k(w) = (2w − 2 + j + k)(2w − 1 + j + k)(w + j + k − 1/2)(w − 1/2)

(2w − 2)(2w − 1)(w + j − 1/2)(w + k − 1/2)
p j,k(w − 1).

One can obtain similar expressions relating p j−1,k(w), p j−1,k−1(w), ... to p j,k(w−1). Thus
the identity in (7.2) becomes an identity for rational functions of w, j, k, which one can then
verify directly.

For the proof of the second claim, note that the Taylor coefficients of Fw(u, v) are neces-
sarily polynomials in w. Thus, to see that they are equal to p j,k(w), it suffices to check that
they are equal at infinitely many integers. But (7.2) allows one to induct, and thus verify the
Taylor expansion of Fw(u, v) for all negative integers w.

This completes the proof of the lemma. ��

Lemma 7.7 Let f+ = x + y and f− = x − y as before. Then we have

(i)
([s − 1; x, y] ◦ [s; f+, f−])(x�y�) = c′(s)

2�
f �+ f �− ,

(ii)
([s − 1; f+, f−] ◦ [s; x, y])( f �+ f �−) = 2�c′(s)x�y�,

where we set

c′(s) = (s − �)(s − � + 2) · · · (s − 4)(s − 2)

(s + 1)(s + 3) · · · (s + � − 3)(s + � − 1)
.

Proof Part (ii) follows from part (i) by switching the roles of x, y with f+, f−. We now prove
part (i). Note that x = f++ f−

2 and y = f+− f−
2 , so 4xy = f 2+ − f 2−. Thus

4� x
�y�

�! =
�∑

j=0

(−1) j
f 2�−2 j
+ f 2 j−

(� − j)! j ! . (7.3)

Also, observe that

( 1−s
2

)∣∣∣ �
2− j

∣∣∣
( 1+s

2

)∣∣∣ �
2− j

∣∣∣

= (−1)
�
2− j �

( 1−s
2 − ( �

2 − j)
)
�

( 1−s
2 + ( �

2 − j)
)

�
( 1−s

2

)2 . (7.4)

Let w = 1−s−�
2 . Then by combining (7.3) and (7.4), we obtain

(−1)
�
2 4� [s; f+, f−] x

�y�

�! = �(w)2

�(w + �/2)2

�/2∑

j=0

�(w + � − j)�(w + j)

�(w)2

f 2�−2 j
+ f 2 j−

(� − j)! j ! .

We sum �(w+�/2)2

�(w)2
times the right-hand side over non-negative even integers � and use the

identity

∑

k≥0

�(w + k)

�(w)

zk

k! = (1 − z)−w,
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to find that

�(w)2

�(w + �/2)2
(1 − f 2+)−w(1 − f 2−)−w = �(w)2

�(w + �/2)2
(1 − 2(x2 + y2) + (x2 − y2)2)−w

= �(w)2

�(w + �/2)2
∑

j,k≥0

p j,k(w)
x2 j y2k

j !k! .

In the first equality, we used the relations f+ f− = x2 − y2 and f 2+ + f 2− = 2(x2 + y2). The
second equality follows from Lemma 7.6.

Note that if j + k = �, then

[s − 1; x, y]
(
x2 j y2k + x2k y2 j

)

= (−1)�/2+k �(w + j + 1
2 )�(w + k + 1

2 )

�(w + �+1
2 )2

(
x2 j y2k + x2k y2 j

)
.

Then

4� ([s − 1; x, y] ◦ [s; f+, f−])
(
x�y�

�!
)

= �(w)2

�(w + �/2)2
∑

j,k≥0,
j+k=�

(−1)k p j,k(w)
�(w + j + 1/2)�(w + k + 1/2)

�(w + (� + 1)/2)2
x2 j y2k

j !k! .

By Lemma 7.6,

p j,k(w)
�(w + j + 1/2)�(w + k + 1/2)

�(w + (� + 1)/2)2
= �(2w + �)�(w + � + 1/2)�(w + 1/2)

�(2w)�(w + (� + 1)/2)2
.

Then

4�
([s − 1; x, y] ◦ [s; f+, f−])

(
x�y�

�!
)

= �(w)2�(2w + �)�(w + � + 1/2)�(w + 1/2)

�(w + �/2)2�(w + (� + 1)/2)2�(2w)

(x2 − y2)�

�! .

Here, x2 − y2 = f+ f−. Thus, rewriting the above equation in terms of s gives the statement
in the lemma. Indeed, the product of the gamma functions can be written as

�(2w + �)

�(2w)
· �(w + � + 1/2)

�(w + (� + 1)/2)
· �(w + 1/2)

�(w + (� + 1)/2)
· �(w)2

�(w + �/2)2
,

where each of these individual ratio of gamma functions is a rational function of w. We find
that this rational function equals

2� (2w + � + 1)(2w + � + 3) · · · (2w + 2� − 1)

(2w)(2w + 2)(2w + 4) · · · (2w + � − 2)
= 2� (s − �)(s − � + 2) · · · (s − 6)(s − 4)(s − 2)

(s + 1)(s + 3) · · · (s + � − 3)(s + � − 1)
.

The above is 2�c′(s). This completes the proof of part (i) and hence the lemma. ��

Proof of Proposition 7.3 The proposition now follows easily from the factorization of
Mpoly(s) in (7.1) and Lemma 7.7. ��

123



The completed standard… 513

8 Archimedean zeta integral

In this section, we explicitly compute the archimedean integral that is part of the Rankin-
Selberg integral. Below, we use the symbol ∼ to denote equality up to a nonzero constant
that may or may not depend on the weight � of the modular form. Also, the constant that is
implied by ∼ may be different at each occurrence of the symbol.

Recall that in Sect. 3.3 we defined

I ∗(s; �) = 2s�R(s − 1)�C(s + � − 1)�C(s + � − 2)I (s; �), (8.1)

where

I (s; �) =
∫

N0,E (R)\G2(R)

{ f�(γ0g, s),Wχ (g)}K dg.

Here Wχ is the generalized Whittaker function. This means that Wχ : G2(R) → V� is a
smooth function of moderate growth which satisfies the condition

Wχ (ngk) = χ(n)k−1 · Wχ (g) for all n ∈ N (R), k ∈ K and g ∈ G2(R),

and we haveD�Wχ = 0 for the Schmid operatorD� (see [15, p. 10]). Also, the braces { , }K
denote the K -equivariant pairing on V� that is unique up to a scalar multiple.

Our goal is to prove the following theorem.

Theorem 8.1 We have

I ∗(s; �) ∼ �R(s − 1)�C(s + � − 3)�C(s + � − 2)�C(s + 2� − 3).

Note that by (8.1), it suffices to compute the integral I (s; �). In Section 6 of [15], an expression
for this integral was found. To state that result, we define the function

J ′(s) = |q(vE )|−s
∫

V ∗
|q(v)|se−|〈v,r0(i)〉|2 dV

|q(v)| . (8.2)

Here, V ∗ is the GL2(R)-orbit that consists of the binary cubics that split over R and dV
denotes the Haar measure on V ∗. Note that V ∗ is a subset of W , which is the space of
binary cubic forms. Also, vE = (0, 1

3 ,
1
3 , 0) corresponds to the binary cubic x

2y + xy2, and
r0(i) = (1,−i,−1, i) corresponds to the binary cubic (x − iy)3. The quartic form q and the
symplectic pairing 〈 , 〉 are as defined in Sect. 2.4.

Our first step in computing I (s; �) is proving the following result.

Proposition 8.2 We have

I (s; �) ∼ π−s �(s + 2� − 3)�(s + � − 2)�((s + � − 3)/2)2

�((s + �)/2)�(s + � − 3)�((3s + 3� − 7)/2)
J ′

(
s + � − 2

2

)
,

where the function J ′ is as defined in (8.2).

Proof Let χ ′ denote the archimedean part of the character ψ(〈vE , n〉), so that χ ′(n) =
e2π i〈vE ,n〉. In the notation of [15], compared with the third displayed equation on page 30 of
[15], we have

I (s; �) =
∫

GL2(R)

∫

(N0,E\N )(R)

| det(m)|−3e2π i〈vE ,n〉

||x(n,m)||(s+�)
{prK (x(n,m))�,Wχ ′(m)}K dn dm.
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Here, we need to note that in loc cit, the function

I (s,�) =
∫

N0,E (R)\GL1(R)×G2(R)

|t |s{�(tg−1ṽE ),Wχ (g)}K dg

is used instead. The �((s + �)/2) in the expression for I (s,�) in loc cit has disappeared
here since I (s; �) is defined in terms of the flat section f�(γ0g, s) whereas I (s,�) in [15]
was defined in terms of a section that takes the value �((s + �)/2) at g = 1.

Now, by following the same argument as in [15, p. 30], we obtain

I (s; �) ∼
∫

GL2(R)×(N0,E\N )(R)

| det(m)|s+�−2e2π iβ

(|α|2 + |β|2)(s+�)/2

×
(∑

j

(
�
j

)
(iβ)�− j |α| j K ( j)

0 (2π |α|)
)
dn dm.

Using the change of variables β �→ (2π)−1β and m �→ (2π12)−1m, as α depends on m, we
find that

I (s; �) ∼ (2π)−s
∫

GL2(R)×(N0,E\N )(R)

| det(m)|s+�−2eiβ

(|α|2 + |β|2)(s+�)/2

×
(∑

j

(
�
j

)
(iβ)�− j |α| j K ( j)

0 (|α|)
)
dn dm.

Consequently, I (s; �) ∼ (2π)−s�((s + �)/2)−1 I (s,�). The result now follows from the
first part of Theorem 6.2 in [15]. ��
Remark In [15], the factor |q(vE )|−s was mistakenly omitted in the first part of Theo-
rem 6.2. It should first appear in the fifth displayed equation on page 32, as | det(g)|2 =
|q(vE )|−1|q(v)|, and then be carried over to the expression for I (s,�) in the first part of
Theorem 6.2.

As our next step, we now prove

Proposition 8.3 Let J ′(s) be as in (8.2). We have

J ′(s) ∼ 2−6s�(2s)
�(3s − 1/2)

�(s + 1/2)3
.

Proof To compute J ′(s), it suffices to integrate over those elements of V ∗ which have nonzero
leading coefficients since the set of such elements of V ∗ has co-measure zero. Such a binary
cubic can be written as

t(w − r1z)(w − r2z)(w − r3z)

for t, r1, r2, r3 ∈ R. To compute the integral J ′(s), we make the variable change

• a = t ,
• b = −t(r1 + r2 + r3),
• c = t(r1r2 + r2r3 + r3r1),
• d = −tr1r2r3.

The Jacobian of this transformation equals

∂(a, b, c, d)

∂(t, r1, r2, r3)
=

∣∣∣∣∣∣∣∣

1 0 0 0
∗1 t t t
∗2 t(r2 + r3) t(r1 + r3) t(r1 + r2)
∗3 tr2r3 tr1r3 tr1r2

∣∣∣∣∣∣∣∣
=±t3(r1−r2)(r2−r3)(r3−r1),
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where ∗1, ∗2, ∗3 denote some real numbers. Note that we have

q(w2z + wz2)−1q(t(w − r1z)(w − r2z)(w − r3z)) = t4(r1 − r2)
2(r2 − r3)

2(r3 − r1)
2.

By combining this with the change of variables, we write

J ′(s) =
∫

t,r1,r2,r3
t4s−4e−t2(1+r21 )(1+r22 )(1+r23 )

∏

1≤i< j≤3

|ri − r j |2s−2 ∂(a, b, c, d)

∂(t, r1, r2, r3)
d(t, r1, r2, r3)

=
∫

t,r1,r2,r3
t4s−1e−t2(1+r21 )(1+r22 )(1+r23 )

∏

1≤i< j≤3

|ri − r j |2s−1 d(t, r1, r2, r3)

∼ �(2s)
∫

r1,r2,r3
|1 + r21 |−2s |1 + r22 |−2s |1 + r23 |−2s

∏

1≤i< j≤3

|ri − r j |2s−1 d(r1, r2, r3).

The integral on the last line is a special case of the Selberg integral. From (1.19) in [4] with
α = β = 2s, γ = s − 1

2 and n = 3, it follows that

J ′(s) ∼ 2−6s �(2s)
2∏

j=0

�(4s − 1 − (2 + j)(s − 1/2))�(1 + ( j + 1)(s − 1/2))

�(2s − j(s − 1/2))2�(s + 1/2)

= 2−6s �(2s)
�(3s − 1/2)

�(s + 1/2)3
.

��
Proof of Theorem 8.1 It immediately follows from Proposition 8.3 that

J ′
(
s + � − 2

2

)
∼ 2−3s−3�+6�(s + � − 2)

�((3s + 3� − 7)/2)

�((s + � − 1)/2)3
.

By combining this with Proposition 8.2, we obtain

I (s; �) ∼ (8π)−s �(s + 2� − 3)�(s + � − 2)2�((s + � − 3)/2)2

�(s + � − 3)�((s + � − 1)/2)3�((s + �)/2)
.

Then by (8.1),

I ∗(s; �) = 2s�R(s − 1)�C(s + � − 1)�C(s + � − 2)I (s; �)

∼ (4π)−s�R(s − 1)�C(s + � − 1)�C(s + � − 2)

× �(s + 2� − 3)�(s + � − 2)

�((s + � − 1)/2)�((s + �)/2)

�(s + � − 2)�((s + � − 3)/2)2

�(s + � − 3)�((s + � − 1)/2)2
.

Further by using the duplication formula

�(2z) = 22z−1π−1/2�(z)�
(
z + 1

2

)
,

we find that

I ∗(s; �) ∼ �R(s − 1)�C(s + � − 1)�C(s + � − 2)

× �C(s + 2� − 3)�C(s + � − 2)

�R(s + � − 1)�R(s + �)

�C(s + � − 2)�R(s + � − 3)2

�C(s + � − 3)�R(s + � − 1)2

= �R(s − 1)�C(s + � − 3)�C(s + � − 2)�C(s + 2� − 3).

This completes the proof. ��
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9 Proofs of themain results

In this short section, we combine our result on the archimedean integral I ∗(s; �) with our
results on other local integrals Ip(s) and complete the proofs of our main results. Consider

I�(ϕ, s) =
∫

G2(Q)\G2(A)

{ϕ(g), E∗
� (g, s)}K dg

as in Sect. 1.1. We have

Theorem 9.1 The integral I�(ϕ, s) is equal to aϕ(Z3)�(π,Std, s − 2), up to a nonzero
constant.

Proof Note that

E∗
� (g, s) = 2sζ(s − 1)2ζ(2s − 4)�R(s − 1)�C(s + � − 1)�C(s + � − 2)E(g,� f , s),

where E(g,� f , s) is as defined in (3.2). Also by Theorem 8.1,

I ∗(s; �) ∼ �R(s − 1)�C(s + � − 3)�C(s + � − 2)�C(s + 2� − 3).

Taking into account the normalization of the Eisenstein series E∗
� (g, s), the theorem follows

directly from Theorems 3.2 and 8.1 by using the technique of “non-unique models”, also
known as “new-way (Eulerian) integral”, which is explained in [1, 11, 13]. ��
Proof of Theorem 1.1 In Theorem7.1,we proved that E∗

� (g, s) = E∗
� (g, 5−s). By combining

this functional equation with Theorem 9.1, the result follows. ��
Proof of Corollary 1.2 This follows from Theorem 3.2 exactly as in Section 5.9 of [15]. ��
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