

1

ADVANCES IN MORPHODYNAMIC MODELING OF COASTAL

2

BARRIERS: A REVIEW

3 Steven W.H. Hoagland^{1*}, Catherine R. Jeffries², Jennifer L. Irish³, Robert Weiss⁴, Kyle Mandli⁵,
4 Sean Vitousek⁶, Catherine M. Johnson⁷, and Mary A. Cialone⁸

5 ¹Department of Civil and Environmental Engineering & Center for Coastal Studies, Virginia
6 Tech, Blacksburg, VA

7 ²Department of Geosciences & Center for Coastal Studies, Virginia Tech, Blacksburg, VA

8 ³Department of Civil and Environmental Engineering & Center for Coastal Studies, Virginia
9 Tech, Blacksburg, VA

10 ⁴Department of Geosciences & Center for Coastal Studies, Virginia Tech, Blacksburg, VA

11 ⁵Department of Applied Physics and Applied Mathematics, Columbia University, New York City,
12 NY

13 ⁶United States Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA;
14 Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL

15 ⁷National Park Service, Region 1, Narragansett, RI; Department of Natural Resources Science,
16 University of Rhode Island, Kingston, RI

17 ⁸Coastal and Hydraulics Laboratory, Engineer Research and Development Center, U.S. Army
18 Corps of Engineers, Vicksburg, MS

19 **ABSTRACT**

20 As scientific understanding of barrier morphodynamics has improved, so has the ability to
21 reproduce observed phenomena and predict future barrier states using mathematical models. In
22 order to use existing models effectively and improve them, it is important to understand the current

*Corresponding author: shoagland@vt.edu

23 state of morphodynamic modeling and the progress that has been made in the field. This manuscript
24 offers a review of the literature regarding advancements in morphodynamic modeling of coastal
25 barrier systems and summarizes current modeling abilities and limitations. Broadly, this review
26 covers both event-scale and long-term morphodynamics. Each of these sections begins with an
27 overview of commonly modeled phenomena and processes, followed by a review of modeling
28 developments. After summarizing the advancements toward the stated modeling goals, we identify
29 research gaps and suggestions for future research under the broad categories of improving our
30 abilities to acquire and access data, furthering our scientific understanding of relevant processes,
31 and advancing our modeling frameworks and approaches.

32 INTRODUCTION

33 Coastal barriers are narrow landforms that are separated from the continental mainland by a
34 shallow waterbody (see Figure 1). These barriers can be book-ended by inlets (i.e., barrier islands)
35 or they can be connected to the mainland at one end (i.e., barrier spits) or both (baymouth barriers).
36 The combination of backbarrier environment, subaerial island, and shoreface are often succinctly
37 referred to as the ‘barrier system’ or simply ‘barrier.’ As of 2011, over 20,000 kilometers of
38 the world’s coasts were characterized by a barrier system, accounting for approximately 10% of
39 all coastlines (Stutz and Pilkey 2011). Barriers provide significant benefits during coastal storms
40 such as surge volume and wave energy reduction (Grzegorzewski et al. 2011), wetland protection
41 (Wamsley et al. 2009), sediment stabilization through the presence of subaerial or backbarrier
42 vegetation, and protection of aquatic habitat (Bridges et al. 2013). Additionally, barrier islands
43 have become popular as both vacation destinations (Pilkey et al. 2011) and permanent residential
44 areas, which has led to increases in population density (Zhang and Leatherman 2011).

45 Although many barriers have undergone rapid urban development since the mid-20th cen-
46 tury (Dolan and Lins 1986), Stutz and Pilkey (2011) described this development boom as being
47 “ironically” timed due to coastal hazard accelerations associated with current trends in sea level
48 rise (SLR). According to the Intergovernmental Panel on Climate Change, global mean sea level
49 (MSL) is predicted to rise between 0.25 and 1.0 meter by the end of the century (Oppenheimer

50 et al. 2019). If these predictions hold true, the rates of barrier island morphological change and
51 associated flooding during storms and other events will most certainly increase (e.g., Gutierrez
52 et al. 2007). In addition to exacerbating coastal flooding, SLR also drives the evolution of the
53 barrier system itself, influencing processes that change both the island's shape and location. Thus,
54 on many barrier coastlines, permanent structures have been constructed on land that was and is
55 expected to continue migrating toward the mainland (Pilkey et al. 2011). Changes in the location
56 and geometrical configuration of barrier systems are expected to alter the benefits that they provide
57 to neighboring mainland communities. Therefore, it is critically important for all who are involved
58 in coastal management to understand barrier island morphodynamics to produce the best possible
59 outcomes for coastal communities.

60 While the earliest literature tended to document observations and initial theories of barrier
61 morphodynamics, research has recently - in the last three or so decades - shifted toward the
62 development and intensified use of computational models. Based on this observation, we note that
63 where modeling often lagged behind or paralleled our advancements in scientific understanding,
64 it has recently been used to validate and advance it. Many models have been developed over the
65 last 3-4 decades. A review of these models may help new or future researchers survey the field of
66 barrier morphodynamic modeling.

67 A few notable review papers have recently been published related to barrier morphodynamics.
68 Some of these papers focus on a single, specific component of coastal change such as overwash (e.g.,
69 Donnelly et al. 2006) or storm sequencing and recovery (e.g., Eichentopf et al. 2019). Other reviews
70 capture the larger-scale morphological response of barrier systems, but their application is either
71 constrained to a particular location (e.g., Rosati and Stone 2009), focused on a particular driver
72 such as climate change (e.g., Toimil et al. 2020), or focused in-depth on a particular spatiotemporal
73 scale (e.g., Sherwood et al. (2022)). Table 1 provides a summary of these reviews and their focus
74 areas. These reviews provide a valuable synthesis of relevant work but are not sufficient to capture
75 the trends and advancements in barrier morphodynamic modeling.

76 The purpose of this manuscript is to fill that gap by providing a review of the literature

77 regarding advancements in morphodynamic modeling of coastal barrier systems. Our review of
78 modeling advancements is divided in two broad categories: 1) event-scale morphodynamics, and 2)
79 long-term morphodynamics.¹ These sections begin with a brief description of commonly modeled
80 phenomena and processes, followed by a review of relevant modeling efforts, which are categorized
81 according to their primary intent. At the conclusion of these sections, we summarize the primary
82 contributions of the modeling developments and their limitations. Finally, we conclude with the
83 identification of research gaps that currently exist and suggest directions for future research.

84 A few items should be noted regarding this study. First, there are some relevant topics (e.g.,
85 anthropogenic impacts, influences of vegetation) which are only briefly discussed due to our focus on
86 morphodynamic modeling. Second, we have intentionally included many models and/or modeling
87 approaches from the early literature so that the current models might be understood in their proper
88 historical context, which requires knowledge of both previous and ongoing efforts. Additionally,
89 this review primarily focuses on models in wide use in the research community. Therefore, some
90 commonly used propriety models have only been briefly mentioned. Lastly, although our review
91 is focused on barrier morphodynamics, many of the relevant processes play an important role for
92 non-barrier coasts. Therefore, in order to fully understand the modeling advancements relevant to
93 barrier systems, we must consider some modeling efforts that are not barrier-specific.

94 Before starting this review, it may be helpful to orient the unfamiliar reader by defining our
95 modeling goals and our terms. In the next section we have attempted to summarize our modeling
96 goals with one overarching statement or *Grand Challenge*. This is followed by a brief discussion
97 of terminology used in this manuscript.

98 **Grand Challenge**

99 In theory, the ideal morphodynamic model would produce accurate predictions in a reasonable
100 time without significant computational expense. As we consider how these ideals translate into
101 reality, there are multiple modeling goals that we must work toward and important intermediate
102 steps that we must first achieve. However, rather than outlining each goal, we have attempted to

¹Refer to the *Terminology* section for definitions of ‘event-scale’ and ‘long-term.’

103 synthesize them into a single overarching goal, or *Grand Challenge*, as follows:

104 *To predict barrier system morphodynamics in multiple spatiotemporal dimensions*
105 *(e.g., short to long time scales, transect to regional evolution) with a high degree of*
106 *confidence, under reasonable computational resources constraints, and considering*
107 *relevant factors such as event-driven morphological change, evolution during non-*
108 *stormy periods, biological processes (and other potential subsystem influences), and*
109 *anthropogenic impacts.*

110 We intend the phrase “predicting... with a high degree of confidence” to mean predictions that have
111 at least been partially validated and are useful in planning and decision-making. Throughout this
112 review, the reader is encouraged to consider each development in light of the *Grand Challenge*.
113 At the conclusion of each major section, we summarize the modeling advancements and extant
114 limitations, offering our perspectives on progress toward this overarching goal. To maintain this
115 focus, it should be noted that some relevant topics such as biological processes and anthropogenic
116 impacts are given more of a cursory discussion.

117 **Terminology**

118 There are some inconsistencies in terminology in the body of work on barrier morphodynamics.
119 Thus for the purpose of this review, our aim here is to define terms that describe what is being
120 modeled (e.g., a phenomenon, a process), the types of mathematical representations that are used
121 (e.g., a model, a formulation), and the spatiotemporal scales used throughout the paper.

122 When discussing phenomena, we are talking about observable characteristics, behaviors, or
123 events of a system. While the spatiotemporal scales of a system may vary (e.g., initiation of particle
124 movement vs. shoreline behavior), there are phenomena associated with each system that may
125 be mathematically represented via the development of a model. When we discuss processes, we
126 are referring to patterned events that systematically contribute to the observable phenomena of a
127 system. Based on these terms, we also distinguish between models and formulations. Whereas
128 models are developed to represent phenomena, specific formulations are developed to represent

129 processes. Models, therefore, may contain one or more formulations of a process. For example,
130 consider the development and growth of a spit. The spit development and/or growth would be
131 the observed phenomenon that is systematically progressed by the process of longshore sediment
132 transport (LST). Thus, we might develop a model that predicts spit development and growth using
133 a specific LST formulation.

134 The last terms that need to be defined up front are related to the spatial and temporal scales at
135 which the relevant processes are typically resolved in coastal morphodynamic modeling. Herein,
136 we adopt the temporal scale classification of [Rosati and Stone \(2009\)](#), and adopt a slightly modified
137 version of the spatial scale classification of [Cowell et al. \(2003a\)](#). These scales are presented in
138 Table 2 and are used throughout this paper. Note, we also use the term ‘event scale’ throughout
139 this manuscript to refer to the combination of small spatial and short temporal scales.

140 **EVENT-SCALE MORPHODYNAMICS**

141 This section provides an overview of commonly modeled phenomena and processes associated
142 with event-scale morphodynamics, a review of relevant modeling efforts, and a summary of
143 advancements toward the *Grand Challenge*.

144 **Commonly Modeled Phenomena and Processes**

145 Acute sediment transport processes, which are characterized by a sudden onset and short-term
146 duration, are initiated when a storm approaches the coast. Chronic transport processes, which are
147 characterized by gradual beginnings and mid- to long-term duration, are not initiated during storms
148 but are intensified by them. As these transport processes are initiated or intensified, the barrier
149 responds in the form of morphological adjustment. To frame the discussion on storm response, we
150 use the storm impact scale published by [Sallenger \(2000\)](#), wherein acute processes occur within
151 four regime classifications: swash, collision, overwash, and inundation (see Figure 2). Each regime
152 has certain morphological responses associated with runup levels.

153 In the *swash* and *collision* regimes, increased water levels by storm surge and wave runup lead
154 to increased erosion on the beach and dune, depositing the eroded material seaward of the beach.
155 *Collision* differs from *swash* in that the water level exceeds the dune toe, allowing waves to collide

156 with and erode the lower parts of the dune slope, which can lead to avalanching of the upper dune.
157 [Sallenger \(2000\)](#) points out that while sediment transported offshore under this regime may return
158 to the beach, this sediment typically does not make it back to the dune structure, resulting in net
159 erosion of the dunes over time. In the *overwash* regime, water levels are high enough such that
160 incident wave runup intermittently flows over the dune peaks or antecedent low spots, carrying
161 mobilized sediment with it. Lastly, the *inundation* regime involves complete submergence of the
162 barrier which can lead to inlet formation (i.e., breaching) and significant increases in the cross-shore
163 sediment transport (XST) rates ([Sallenger 2000](#)). Inundation is associated with extreme levels of
164 erosion that pick up normally dry (subaerial) sediment.

165 One regime that Sallenger does not include is the *outwash* regime, following the terminology
166 proposed by [Over et al. \(2021\)](#), which describes seaward flows and associated offshore sediment
167 transport. Although it is possible to have initial seaward surge depending on the orientation of
168 the islands and the approach angle of the storm, initial surge levels are typically directed onshore.
169 Therefore, seaward flows associated with the *outwash* regime usually occur after storms make
170 landfall or pass by the area of interest, which reverses the predominant wind direction. Applied to
171 a typical barrier system, this reversed wind field can cause backbarrier water levels to surge above
172 receding ocean-side water levels. In this instance, breaching may be initiated from the backbarrier
173 by outwash flows that scour a new channel through the island, liquefaction of previously-weakened
174 dune structures, or a combination of both. Various studies including [Shin \(1996\)](#), [McCall et al.](#)
175 ([2010](#)), [Smallegan and Irish \(2017\)](#), [Harter and Figlus \(2017\)](#), and [Over et al. \(2021\)](#) highlight the
176 importance of considering this regime when modeling storm event morphodynamics.

177 The following sections offer an introductory discussion on commonly modeled phenomena and
178 processes associated with barrier response to storm events, namely profile erosion and shoreface
179 response, overwash, and breaching. This is followed by a review of relevant modeling efforts.

180 *Beach Profile Erosion and Shoreface Response*

181 While the term ‘profile’ can be used to describe a wide range of the barrier system, we use
182 the term ‘beach profile’ herein to describe the morphodynamic response of the barrier’s beach-

183 dune complex and upper shoreface, which we loosely define as the morphologically ‘active zone’
184 following [Stive and de Vriend \(1995\)](#) and [Cowell et al. \(2003a\)](#). Generally, there are two primary
185 factors that contribute to erosion of the beach profile under storm conditions: 1) increased offshore-
186 directed currents and 2) increased total runup. As the waves intensify, the beach profile state turns
187 erosional (assuming a prior accretive state) as wave-driven sediment transport becomes dominated
188 by undertow and rip currents which are offshore-directed ([Aagaard and Kroon 2017](#)). Sediment
189 is eroded from the upper portions of the profile and deposited on the shoreface, typically in a
190 subaqueous bar, which is then delivered back to the profile once storm conditions subside ([Quartel](#)
191 [et al. 2007](#)). This cycle of erosion and subsequent recovery has been observed over seasonal wave-
192 climate changes ([Shephard 1950](#)) and event-scale changes ([Ranasinghe et al. 2012b](#)). Secondly, the
193 total runup, as produced by a combination of storm surge, astronomical tide, and wave runup, may
194 exceed the *swash* regime water level to collide with the dune and cause notching (i.e., erosion and
195 recession of the lower dune), followed by slumping or avalanching ([Edelman 1968](#); [Roelvink et al.](#)
196 [2009](#)). For a more thorough review of sediment transport processes during storms and relevant
197 factors, including the role of infragravity waves and incident wave non-linearity, the reader is
198 referred to [Aagaard and Kroon \(2017\)](#) and references therein.

199 These two primary factors (i.e., increased offshore-directed currents and increased total runup)
200 contribute to barrier morphodynamics in significant ways. For example, in the *collision* regime
201 they lead to a net loss of sediment offshore to the lower (inactive) profile ([Sallenger 2000](#)). This
202 net loss effectively limits the ability of the beach and dunes to fully recover to pre-storm conditions
203 without requiring external sediment sources (i.e., from the shelf, erodible profile outcrops, or
204 LST gradients). Moreover, although much of the eroded sediment is brought back to the beach
205 and dunes after the storm, this natural renourishment of the profile is not instantaneous, but can
206 take days or weeks to recover (e.g., [List et al. 2006](#); [Quartel et al. 2007](#)), leaving the barrier
207 system in a temporarily hyper-vulnerable state. Profile recovery between storm events, although
208 less studied than erosional events, is critically important to understanding barrier vulnerabilities to
209 storm sequences and long-term morphology ([Eichentopf et al. 2019](#)).

210 *Overwash*

211 Overwash occurs when water flows over the dunes. Sediment is carried by the water and
212 deposited behind the dunes as washover. While overwash was associated with intermittent over-
213 topping in Sallenger's *overwash* regime, it should be noted that by definition, overwash also occurs
214 during Sallenger's *inundation* regime and the proposed *outwash* regime, as the landward or sea-
215 ward directed flows continue to transport sediment across the dunes. [Donnelly et al. \(2006\)](#) offered
216 distinct definitions for runup overwash and inundation overwash and discussed the differences and
217 implications of each process.

218 Three factors are the primary contributors to increased likelihood of barrier island overwash:
219 1) antecedent low spots in barrier topography, 2) high water levels driven primarily by storm surge,
220 and 3) large incident waves. Although it can be argued that this is self-evidently true, it is also
221 confirmed in the early literature on barrier island storm response (e.g., [McCann 1979](#); [Cleary and](#)
222 [Hosier 1979](#)). In addition to these three main contributing factors, overwash occurrence has also
223 been associated with other variables including previous overwash activity, barrier island width, and
224 vegetation density ([McCann 1972](#); [Fisher and Simpson 1979](#); [Cleary and Hosier 1979](#)). However,
225 some of these factors can be indirectly related to antecedent topography. For example, areas that
226 have experienced previous overwash events are also locations where the dunes have been likely been
227 lowered; thus, previous overwash activity can be linked to pre-storm discontinuities in the dune
228 elevation. Similarly, since dune vegetation promotes sediment settling and dune growth, vegetation
229 density could generally be considered a proxy for pre-storm topography. [Donnelly et al. \(2006\)](#)
230 identified two other important factors including the direction of storm approach, which influences
231 incident wave heights, and nearshore bathymetry, which impacts wave transformation.

232 Storms have significant morphological impact on barrier islands, which in turn affect the
233 continued evolution and response to future storms. Observations from the early literature describe
234 both destructive and constructive effects of overwash: destructive in that overwash may lower or
235 destroy the dunes (e.g., [Nichols and Marston 1939](#)) and constructive in that overwash may contribute
236 to aggradation of the barrier islands over time (e.g., [Rosen 1979](#)). Both of these effects directly

237 impact flood risk from future storms. Again, to avoid duplicating work, the reader is referred to
238 the review by [Donnelly et al. \(2006\)](#), which covers a variety of topics related to overwash including
239 field and laboratory studies, modeling efforts, and its impact on barrier morphodynamics.

240 *Breaching*

241 Breaching is the creation of an inlet in a barrier that establishes direct hydraulic connectivity
242 between the ocean and backbarrier water body ([Kraus and Hayashi 2005](#)). Breaches have been
243 shown to account for water level increases both during the storm event in the form of bay surge
244 (e.g., [Cañizares and Irish 2008](#)) and after the storm event in the form of increased tidal range
245 (e.g., [Conley 1999](#)). Excess flooding, property damage, habitat loss, and decreased navigability are
246 possible negative outcomes from a breach; however, breaching is also desirable in some cases and
247 may be intentionally performed in order to increase habitat connectivity for certain estuarine wildlife
248 ([Gerwing et al. 2020](#)) or to prevent undesirable backbarrier conditions including low salinity, poor
249 water quality, and in some cases flooding ([Kraus and Wamsley 2003](#)).

250 From some of the earliest published observations of breaching, we know that multiple breaches,
251 of various widths and depths, may form and expand during a single storm event (e.g., [Nichols and](#)
252 [Marston 1939](#)). More recent studies have highlighted the dynamic nature of breaches, which can
253 significantly change dimensions over relatively short time periods and even migrate alongshore
254 ([Kraus and Wamsley 2003; Wamsley and Kraus 2005](#)). Timing of the initial breaching process
255 has received relatively little attention in the literature due to the difficult nature of collecting field
256 data. However, a study by [Visser \(1998\)](#) and a related modeling exercise by [Roelvink et al. \(2009\)](#)
257 estimated lateral growth rates of breaches between 1 and 2 cm/s during initial formation. During
258 the phases of breach growth, XST is much greater than LST; however, once flow in the breach
259 ceases, LST may cause closure of the breach ([Kraus et al. 2002](#)).

260 In exploring the causes of breaching, researchers have often wanted to know on which side of
261 the barrier breaching is initiated. Multiple theories of breach formation are present in the early
262 literature, as reviewed by [Pierce \(1970\)](#), including breaching from the backbarrier side through
263 the escape of impounded water ([Shaler 1895](#)) and ocean-side breaching by wave-driven erosion

264 (Johnson 1919). Pierce (1970) determined that barriers are most likely to breach from the lagoon
265 side but stated that a narrow barrier could also be breached by erosion from the sea. Although
266 this perspective was published as early as 1970, it received little attention until recent years (e.g.,
267 McCall et al. 2010; Sherwood et al. 2014; Harter and Figlus 2017; Smallegan and Irish 2017).

268 Kraus et al. (2002) described two breaching processes and their association with lagoon-side
269 or ocean-side breaching. The two processes are 1) scouring and channelization and 2) seepage
270 and liquefaction. Scouring and channelization most commonly occur from the seaward side of
271 the barrier, when sustained storm surge allows for water to (semi)continuously inundate the island
272 with flow over the barrier; conversely, seepage and liquefaction typically initiate breaching from
273 the landward side of a narrow barrier (Kraus et al. 2002). However, recent modeling studies (e.g.,
274 Shin 1996; McCall et al. 2010; Sherwood et al. 2014; Smallegan and Irish 2017) have also shown
275 that seaward-sloping water level gradients that occur after the ocean-side's peak storm surge have
276 the potential to scour channels across the barrier as well that can lead to seaward sediment transport
277 and breaching.

278 Modeling Efforts

279 As stated previously, modeling efforts are classified according to their primary intent. Most
280 event-scale morphodynamic models or formulations were developed to simulate a few key phe-
281 nomena or processes including: 1) beach and dune erosion, 2) shoreface response, 3) overwash,
282 4) breaching, and 5) combinations of categories 1 through 4. The following sections review the
283 relevant modeling efforts which are also graphically summarized in Figure 3.

284 *Modeling Beach and Dune Erosion*

285 Modeling work on storm-driven response of the beach-dune complex was initiated and signifi-
286 cantly advanced by researchers in the Netherlands in the 1960s and 70s. Edelman (1968) observed
287 that when storm surge levels exceeded the dune toe, the dune would undergo significant erosion
288 and partial avalanching. Based on these observations, Edelman published the first analytical for-
289 mulation (i.e., method with a closed-form solution) for predicting dune erosion and retreat, later
290 termed the 'Provisional Method.' This method assumed the formation of a new dune toe at the peak

291 storm surge elevation and balanced the volume of sediment eroded from the dunes with deposition
292 in the nearshore zone (see Figure 4b) using linear approximations of both the nearshore and dune
293 profiles. Four years later, Edelman used the same principles to publish a similar method which
294 considered more realistic (e.g., non-linear) profile shapes (Edelman 1972). In addition to sediment
295 conservation and the new dune toe location, Edelman's work was based on other key assumptions
296 including a constant profile shape, rapid (or instantaneous) profile response, and the presence of
297 both storm and pre/post-storm equilibrium profiles.

298 Other analytical methods were developed to predict beach and dune erosion using similar
299 assumptions; these models included DUROS (Vellinga 1986), and those of Kobayashi (1987),
300 Dean (1991), and Kriebel and Dean (1993). Fundamentally, each of these models is similar in that
301 they are based on balancing eroded and deposited sediment volumes, while the main differences lie
302 in the factors that influence the new profile shape. For example, the profile depth in the non-linear
303 Provisional Method was considered only a function of distance from the shoreline (Edelman 1972),
304 while other methods allowed the depth to adjust based on factors such as wave height and sediment
305 characteristics (e.g., Vellinga 1986, Dean 1991). Komar et al. (1999) also developed a simple
306 method to predict dune retreat based on the foreshore slope and the height of the runup above the
307 dune toe; this approach was recommended by FEMA for United States Pacific Coast beaches as
308 of 2005 (Mull and Ruggiero 2014). Vellinga's (1986) DUROS model continues to be used in the
309 Netherlands to assess the health and safety of the coastal dunes (Bosboom and Stive 2021).

310 One important limitation with these early models arises from the assumption of instantaneous
311 response. Because the duration of a storm is often much shorter than the time required for profiles to
312 erode to their new equilibrium states, they rather erode some fractional amount toward equilibrium
313 but never reach it. Komar and Moore (1983) put it succinctly, stating that these methods “*should*
314 *be regarded as an upper limit or an erosion potential that would result if the storm conditions were*
315 *held constant indefinitely.*” For conservative estimates and design standards, these methods may
316 prove reliable. However, for higher levels of modeling accuracy, it may be necessary to shift toward
317 time-dependent models or the combination of idealized models with a time-dependent function

318 (e.g., [Kriebel and Dean 1993](#)).

319 [Fisher and Overton \(1984\)](#) proposed another type of modeling approach that focuses on the
320 impact of swash on the dune face. These are appropriately called ‘Swash Impact’ approaches. The
321 main idea undergirding this approach is that erosion of the dune is proportional to the impact force
322 of colliding waves, which can be related to the waves’ bore heights and approach velocities (see
323 Figure 4c). Through a series of laboratory experiments, linear relationships were found between
324 the amount of dune erosion and swash impact force, modulated by statistically significant factors
325 such as grain size and dune density ([Overton et al. 1988](#); [Overton et al. 1994](#)). This relationship
326 was also identified in the field through a series of experiments at Duck, North Carolina ([Fisher et al.](#)
327 [1987](#)).

328 Other methods using this approach were developed by [Nishi and Kraus \(1996\)](#), [Larson et al.](#)
329 ([2004a](#)), and most recently by [Palmsten and Holman \(2012\)](#). [Nishi and Kraus \(1996\)](#) calculated the
330 swash impact force by multiplying the mass of water in the approaching wave by its deceleration
331 upon impact. Using large-scale wave tank experiments on compacted and uncompacted dunes,
332 they found linear relationships between the weight of eroded sediment and the impact force. They
333 also found uncompacted sediment to be more susceptible to swash impact erosion and suggested
334 artificially compacted dunes as a possible method of erosion control. Using the linear relationship
335 between erosion and swash impact force as an initial assumption, [Larson et al. \(2004a\)](#) derived
336 an analytical model that predicted dune recession as a function of bore speed, initial geometry,
337 empirical transport coefficients, and foreshore slope, which was assumed to linearly continue
338 landward of the dune toe. The authors used four previously published datasets to test their model
339 and to empirically derive an optimal transport coefficient. Lastly, [Palmsten and Holman \(2012\)](#)
340 improved on this formulation in two main ways: 1) they used a Gaussian distribution to model
341 variability in wave runup elevations, and 2) they tested various runup exceedance values and found
342 that using a runup exceedance value of 16% led to better dune erosion predictions in the laboratory
343 when compared to the 2% runup exceedance guidance recommended by [Sallenger \(2000\)](#).

344 *Modeling Shoreface Response*

345 Paralleling these advancements was the development of more complex sediment transport
346 formulations. While these formulations may vary in approach, they are similar in that they relate
347 hydrodynamic parameters (e.g., velocity) to sediment transport rates. Thus, for the purposes of
348 this discussion, we refer to these more complex formulations as coupled hydrodynamics-sediment
349 transport (*HD-ST*) formulations. Since a review of each formulation would take considerable space,
350 we offer a cursory description the *HD-ST* formulations and refer interested readers to [Larson and](#)
351 [Kraus \(1989\)](#), [Dean and Dalrymple \(2002\)](#), [Nielsen \(2009\)](#), [Aagaard and Hughes \(2013\)](#), [Bosboom](#)
352 and [Stive \(2021\)](#), and references therein for additional details.

353 In highly resolved models, coupled *HD-ST* formulations use hydrodynamic parameters to
354 predict both bed load and suspended load transport rates. Bed load transport is typically estimated
355 as a function of the bed shear stress, sediment density, and average grain diameter (often using
356 Shields parameter), whereas the suspended sediment transport rate is calculated by integrating the
357 vertical velocity and concentration profiles, the latter of which can be based on functions such as
358 the Rouse profile or advection-diffusion calculations ([Bosboom and Stive 2021](#)).

359 Depending on the application, not all models can afford the computational burden associated
360 with coupled *HD-ST* formulations. Other approaches with less computational burden have gained
361 popularity, such as the equilibrium-based approach, originally developed by [Kriebel and Dean](#)
362 ([1985](#)), which assumes the existence of an equilibrium shoreface profile that controls how the
363 shoreface responds under specific hydrodynamic conditions. It is founded on the idea that if
364 hydrodynamic conditions remained constant, then the shoreface would respond until constructive
365 (landward) and destructive (seaward) forces along the profile were balanced, leading to a steady
366 profile with a XST rate of zero. [Kriebel and Dean \(1985\)](#) developed a formulation that calculates an
367 equilibrium profile based on depth-dependent energy dissipation rates. XST rates are then calculated
368 at a particular shoreface depth based on the difference between the actual energy dissipation rate
369 and the rate associated with the equilibrium profile ([Dean and Dalrymple 2002](#)).

370 Another popular approach is the energetics approach, which was originally developed by [Bag-](#)

371 nold (1963) for fluvial sediment transport. This approach considers the hydrodynamic environment
372 as a machine that performs a certain amount of work (sediment transport) based on the available
373 power input (kinetic energy) modulated by some efficiency factor (resistance to transport) (Bagnold
374 1966). Bed load and suspended load transport rates are calculated separately based on the available
375 wave power, or the wave energy flux per unit width, which drives the transport (Dean and Dalrymple
376 2002). While the energetics approach has been successful in predicting offshore-directed sediment
377 transport rates during storm events, this approach has generally underpredicted onshore sediment
378 transport during recovery periods (Aagaard and Hughes 2013).

379 *Modeling Overwash*

380 Efforts to quantitatively understand and predict overwash have led to the development of various
381 formulations, which generally fall into one of two categories. Those in the first category may be
382 described as ‘Bulk’ approaches, as defined by Donnelly et al. (2006), since they relate certain
383 hydrodynamic parameters (e.g., wave height) to bulk washover volumes (see Figure 5a). Williams
384 (1978) published the earliest bulk formulation, which predicted the washover rate as a function of
385 excess runup (i.e., depth of runup over the dune crest) and wave period. Later bulk formulations (e.g.,
386 Tanaka et al. 2002) were based on laboratory experiments by Kobayashi et al. (1996), which showed
387 a linear relationship between overwash and washover rates. Formulations in the second category
388 apply coupled *HD-ST* formulations, which were discussed in the previous section. Donnelly
389 et al. (2006) reviewed at least three of these formulations and their results including Leatherman
390 (1976) who coupled the Einstein transport equation to velocity measurements, Sánchez-Arcilla and
391 Jiménez (1994) who combined the Van Rijn formulation with velocities calculated using the Chezy
392 equation, and Baldock et al. (2005) who applied a standard sheet flow model based on Shield’s
393 parameter to calculated swash velocities.

394 In the last fifteen years, most overwash modeling efforts have been directed toward developing,
395 improving, and applying the coupled *HD-ST* formulations, which are typically just one component
396 of event-scale morphodynamic models that resolve multiple sediment transport processes at small
397 spatial scales. At the time of Donnelly’s (2006) review, only one such model (i.e., SBEACH) was

able to predict overwash. The original formulation, developed by Wise et al. (1996), predicted sediment transport landward of the swash zone boundary based on the estimated wave bore velocity at the dune crest, and interpolated the transport rate to both landward and seaward limits. This formulation was later updated by Larson et al. (2004b) who modified landward flow dissipation by including a lateral spreading component, and Donnelly et al. (2005, 2009) who used the Sallenger (2000) regimes to model intermittent overwash by wave runup and quasi-steady overwash during barrier inundation, the latter of which used a standard weir equation. Donnelly et al. (2005, 2009) compared the updated model results to post-Hurricane field data at Assateague Island, Maryland, Folly Beach, South Carolina, and Garden City Beach, South Carolina, showing good agreement with the post-storm profiles. Additionally, Donnelly's model was shown to outperform that of Larson et al. (2004b) in predicting the post-storm profile at Assateague.

Recent work has also involved the incorporation of bulk overwash formulations into long-term and large-scale barrier evolution models. The long-term model of Jiménez and Sánchez-Arcilla (2004) employs a bulk formulation for modeling overwash rates based on empirically derived annual overwash volumes. This formulation uses the critical length concept of Leatherman (1979), which posits a theoretical threshold (i.e., critical barrier width and height) at which overwash is prevented. Deviations from these critical thresholds are used to estimate accommodation space (or volume) in the subaerial and backbarrier zones (see Figure 5 5b). Thus, event-driven overwash is modeled continuously and quantified by the available accommodation space up to some predetermined maximum annual overwash volume. More recent models (e.g., Lorenzo-Trueba and Ashton 2014, Lorenzo-Trueba and Mariotti 2017) also use the critical length concept to model overwash in their long-term models.

Larson et al. (2009) followed a different approach, developing an analytical method to simulate the retreat of the barrier (or dune) based on landward (i.e., overwash) and seaward (i.e., profile erosion) sediment fluxes. Using a triangular approximation for the island or dune, these flux values were correlated with the ratio of dune crest to total runup elevations, and validation with field data showed results could provide order-of-magnitude estimations of overwash flux.

425 *Modeling Breaching*

426 In modeling a breach, there are a number of important components that one may wish to consider
427 including the location of breach occurrence, the timing of breach formation, breach dimensions
428 and its progression (i.e., expansion or contraction), and finally its ultimate state (e.g., natural
429 closure, stable inlet). While there has been some quantitative work on predicting systematic breach
430 occurrence (e.g., [Kraus et al. 2008](#)) and long-term inlet stability (see [Kraus and Wamsley 2003](#) and
431 references therein), our focus will be limited to models with strong morphodynamic components
432 (i.e., breach formation, initial breach growth, and long-term progression).

433 [Visser \(1998\)](#) developed a conceptual model of breach formation and initial growth. Although
434 the model was originally developed for sand dikes, it can also be applied to barrier islands. The
435 conceptual model described five phases: 1) erosion and steepening of the inner slope of the scour
436 channel, 2) decreasing of the crest width, 3) crest lowering and breach widening, 4) breach widening
437 as flow changes from critical flow to subcritical flow, and 5) breach widening during subcritical
438 flow until the flow ceases. This conceptual model was translated into BRES, a numerical model that
439 predicts breach formation and initial growth based on discharge (calculated using the broad-crested
440 weir equation) through an initial trapezoidal cross-section ([Visser 2000](#)). Testing against multiple
441 laboratory and field studies, [Visser \(2000\)](#) found good agreement between predicted breach widths
442 over time and measured data.

443 [Basco and Shin \(1999\)](#) published a 1D numerical breaching model based on storm stages, in
444 a similar fashion to Sallenger's ([2000](#)) regimes. Dune erosion was modeled in the first stage,
445 followed by a diffusion-based approach to overwash in the second stage. The third stage aligns with
446 Sallenger's *inundation* regime, while the fourth stage aligns with the *outwash* regime. In these last
447 two regimes, barrier inundation and breaching were modeled by combining the 1D Saint-Venant
448 equations with the sediment transport formulation of [Van Rijn \(1984\)](#). This approach to breach
449 modeling has been included in more recent event-scale morphodynamic models (e.g., Delft3D,
450 XBeach), which combine hydrodynamic output with specific sediment transport formulations.
451 These models predict breach formation during barrier inundation, when flow velocities across the

452 island scour antecedent low spots into fully-formed channels. Additional details on these models
453 may be found in the following section.

454 [Kraus \(2003\)](#) developed an analytical breaching model that predicts the development of a
455 rectangular breach toward equilibrium dimensions using an exponential time function. The model
456 starts with some initial channel or non-uniformity in the dune or island and proceeds toward a full
457 breach based on flow through the channel which erodes the channel bed and sides. [Kraus \(2003\)](#)
458 found the breach response to be sensitive to initial channel dimensions. [Kraus and Hayashi \(2005\)](#)
459 later expanded the model to include a coupled *HD-ST* formulation, where breach progression was
460 based on calculated bottom and critical shear stresses. The model was shown to reproduce general
461 trends of an observed breach, yet it tended to underestimate the breach width and overestimate the
462 breach depth ([Kraus and Hayashi 2005](#)).

463 A more recent analytical breaching model was developed by [Nienhuis et al. \(2021\)](#) that is based
464 on the hypothesis that a breach develops when the volume of sediment transport by overwash exceeds
465 the sediment volume stored in the subaerial island. Overwash volume is calculated analytically
466 using a triangular storm surge time series and integrating an overwash flux equation that considers
467 surge height, width and depth of the dune gap, and a friction coefficient to account for vegetation
468 impacts. [Nienhuis et al. \(2021\)](#) compared their model results to Delft3D simulations and found
469 that it performed reasonably well, although the Delft3D simulations predictions varied across one
470 additional order of magnitude compared to the analytical model. Results were also compared
471 with observations from Hurricane Sandy which showed that the model performed much better for
472 undeveloped barriers as compared to developed barriers.

473 *Multifaceted Event-Scale Modeling*

474 A variety of morphodynamic models have been developed to simulate more than one event-scale
475 phenomena/process - we refer to these as ‘multifaceted’ models. Readers familiar with the literature
476 will recognize that many of these multifaceted models are commonly called ‘process-based’ models,
477 although we have intentionally avoided this term due to its inconsistent and ambiguous usage in the
478 literature, as well as its implication that more abstracted models are not based on processes. Below

479 we present select event-scale models, followed by a brief discussion of multifaceted modeling
480 efforts related to storm sequencing and post-storm recovery, which has received less attention from
481 researchers until recently.

482 Event Scale Models

483 While a variety of multifaceted event-scale models exist, herein we focus on models that have
484 been thoroughly cited in the literature and are widely used by the coastal morphodynamics research
485 community. These include models such as SBEACH (Larson and Kraus 1989), which rely on
486 equilibrium concepts, and models such as DUROSTA (also known as Unibest-DE) (Steetzel 1993),
487 CShore (Kobayashi et al. 2008), Delft3D (Lesser et al. 2004), and XBeach (Roelvink et al. 2009),
488 which are based on coupled *HD-ST* formulations. Some of the primary differences between these
489 models are shown in Table 3, including model dimensionality, included processes, and process
490 formulations. Below we discuss the development of each model and highlight some significant
491 improvements. Readers are referred to the references provided with each model for additional
492 details.

493 SBEACH (Larson and Kraus 1989) was developed in the late 1980s to predict profile response
494 to storm events. The model employed the XST formula of Kriebel and Dean 1985, which is based
495 on the difference in energy dissipation between the actual profile and an equilibrium profile. The
496 model was originally calibrated using data from large wave tank experiments, showing its ability
497 to predict foreshore erosion and bar formation, and its inability to predict features landward of
498 the bar such as the trough and berm development during accretionary simulations (Larson and
499 Kraus 1989). The original model (which did not include overwash) was formally updated with the
500 overwash formulations of Wise et al. (1996) and again by Larson et al. (2004b), who showed good
501 agreement between model predictions and measured profile changes for observations at Ocean City
502 and Assateague, Maryland. SBEACH has more recently been incorporated in economic models
503 for evaluating beach nourishment projects (e.g., Gravens et al. 2007), probabilistic frameworks for
504 predicting erosion (e.g., Callaghan et al. 2013), and model comparison studies, where it produced
505 better morphological predictions than XBeach when using default parameters, but underperformed

506 when calibration data were employed (e.g., Callaghan et al. 2013; Simmons et al. 2019).

507 DUROSTA, which is an acronym in Dutch for “dune erosion - time dependent,” was developed
508 in the early 1990s as an unsteady, numerical model upgrade to the analytical beach and dune
509 erosion models DUROS (Vellinga 1986) and DUROS+ (the ‘+’ representing the addition of wave
510 period to the original model parameterization). The model was initially validated by comparison
511 to laboratory data and various field experiments and showed good prediction capabilities on the
512 subaqueous profile while underestimating dune retreat (Steetzel 1993). DUROSTA was used by
513 Van Baaren (2007), who found that wave period, bed slope, and the location of transition between
514 the wet and dry profile zones were important model parameters. Hoonhout (2009) also used the
515 DUROSTA model to study the effects of shoreline curvature on dune erosion and retreat during
516 storm events, finding that consideration of shoreline curvature significantly impacted the model
517 results. Currently, DUROSTA and another cross-shore model Unibest-TC (Ruessink et al. 2007)
518 are optional modules that may be employed when using the one-line model Unibest-CL+.

519 De Goede (2020) presented a historical review of the development of Delft3D, from initial
520 2D shallow water code development in the late 1960s, to coupling of updated wave models (e.g.,
521 SWAN), to the addition of turbulence closure models for 3D flows in the 1990s, and finally
522 the incorporation of sediment transport formulations into the hydrodynamic module. Lesser et al.
523 (2004) presented details on the latter update, as well as the inclusion of a morphological acceleration
524 factor for long-term simulations and validation studies showing that the results compared well to
525 analytical solutions, laboratory data, and other accepted numerical model solutions. Delft3D is
526 widely used in both practice and research (De Goede 2020), including studies on event-scale
527 flooding (e.g., Cañizares and Irish 2008), storm sequence morphodynamics (e.g., Alfageme and
528 Cañizares 2005), breach stability and growth (e.g., Alfageme et al. 2007), and morphodynamic
529 changes between storm events (e.g., van Ormondt et al. 2020).

530 Johnson et al. (2012) presented a thorough summary of the historical development of CShore
531 from its initial goals in modeling non-linear wave transformation in the late 1990s, to aiding in
532 coastal structure design, and finally its development toward modeling nearshore morphodynamics

533 in the late 2000s. [Johnson et al. \(2012\)](#) also provided results from a sensitivity analyses, model
534 calibration, and validation at nine field sites, which showed the model was capable of producing
535 reasonable estimates of event-driven morphological changes, while tending to under-predict dune
536 erosion and retreat. Work and improvement on the model has continued through at least 2015
537 ([Kobayashi 2016](#)), and the model has also been extended to two-dimensions (C2Shore), the latter
538 of which was validated through simulations of morphological response to Hurricane Katrina at
539 Ship Island, Louisiana ([Grzegorzewski et al. 2013](#)). CShore does not explicitly model sheet flow
540 or ebb currents, reducing its applicability during barrier inundation ([Harter and Figlus 2017](#)).

541 XBeach is considered the state-of-the-art event-scale model to predict barrier response to storm
542 events. Lead by [Roelvink et al. \(2009\)](#), XBeach was developed as an open source model to
543 predict all of the main morphological responses associated with storm events (i.e., beach and dune
544 erosion, overwash, and breaching) corresponding to the storm impact regimes of [Sallenger \(2000\)](#).
545 Model validation studies showed it was able to predict storm hydrodynamics and morphological
546 responses well ([Roelvink et al. 2009](#)), although subsequent studies have shown that high simulated
547 velocities in the swash zone consistently led to slight overpredictions of erosion near the dune
548 toe (e.g., [van Dongeren et al. 2009](#), [De Vet 2014](#)). To correct these overpredictions, researchers
549 have attempted to artificially lower sediment mobilization (by modifying the critical Shield's
550 number); however, while this led to more accurate predictions of dune toe erosion, it decreased
551 the accuracy of breaching simulations ([De Vet 2014](#)). [Elsayed and Oumeraci \(2017\)](#) found that
552 modifying suspended sediment concentrations based on the local bed slope helped to resolve this
553 issue. Some of the most recent work with XBeach has involved modifying roughness coefficients.
554 [Passeri et al. \(2018\)](#) implemented spatially varied roughness coefficients based on land cover, which
555 showed improved morphodynamic predictions over simulations with constant roughness values.
556 Alternatively, [van der Lught et al. \(2019\)](#) implemented dynamic roughness values that vary during
557 the simulation according to erosion and deposition patterns, which showed improved results over
558 simulations with static roughness values.

559 Many of these event-scale models continue to be tested and applied today. Although XBeach has

560 become the standard for modeling event-scale morphodynamics, recent comparison studies indicate
561 that other models (e.g., CSHORE, SBEACH, Delft3D) are also being used and evaluated for their
562 strengths (e.g., [Harter and Figlus 2017](#); [Simmons et al. 2019](#); [Cho et al. 2019](#)). Furthermore,
563 various studies have loosely coupled these event-scale models together to utilize the strengths of
564 each model. For example, [Cañizares and Irish \(2008\)](#) used SBEACH to simulate dune erosion and
565 lowering prior to inundation and breaching using Delft3D. XBeach and Delft3D have also been
566 loosely coupled in a recent breaching study by [van Ormondt et al. \(2020\)](#), who used XBeach to
567 simulate breaching development during the storm and Delft3D to simulate breach development and
568 growth after the storm event.

569 Model coupling has also been utilized in the development of new modeling systems. The
570 COAWST modeling system, which was developed by coupling a regional ocean model (i.e., ROMS),
571 a nearshore wave model (i.e., SWAN), and an open source sediment transport model (i.e., CSTMS)
572 ([Warner et al. 2010](#)), is appearing more frequently in the coastal morphodynamics literature,
573 including specific application to shoreline change modeling (e.g., [Safak et al. 2017](#)) and barrier
574 islands (e.g., [Safak et al. 2016](#); [Warner et al. 2018](#)). Numerous other modeling systems have been
575 developed (see [Kaveh et al. 2019](#)), but have yet to gain a literature foothold in this particular field
576 of study.

577 Storm Sequences and Post-Storm Recovery

578 Some of these event-scale models have also been applied to the study of storm sequences,
579 which investigates the non-linear impact of sequential storms on beach and dune erosion, where
580 successive smaller storms have a cumulative effect that exceeds the impact of an independent event
581 ([Senechal et al. 2017](#)). Various modeling studies have been conducted to quantify this cumulative
582 impact and to determine the most important driving factors such as antecedent beach states (e.g.,
583 [Splinter et al. 2014](#)) and the order of the most severe storms within the sequence (e.g., [Dissanayake
et al. 2015](#)).

585 Based on a survey of the literature, [Eichentopf et al. \(2019\)](#) identified three primary conceptual
586 descriptions to aid in modeling the impact of storm sequences, and discussed evidence from

published studies for each description. The three conceptual descriptions are: 1) initial storm destabilization, where the first storm in the sequence erodes the beach, leaving it more vulnerable to the next storm event, 2) extreme storm impact, where the largest storm event of the sequence is of primary importance regardless of storm order, and 3) benchmark storm impact, where all events in a storm sequence may be combined and modeled as a single large storm event, similar to a benchmark or design storm approach in hydrologic analysis. Various types of models that have been employed and/or developed to study storm sequences including statistical models (e.g., [Pender and Karunaratna 2013](#)), long-term equilibrium-based models such as ShoreFor ([Davidson et al. 2017](#)) or PCR ([Ranasinghe et al. 2012a](#)), and multifaceted event-scale models such as XBeach and Delft3D (e.g., [Splinter et al. 2014](#); [Dissanayake et al. 2015](#)).

In addition to reviewing the literature on storm sequencing, [Eichentopf et al. \(2019\)](#) also provide a brief section on recovery, which they indicate is much less studied than the impact of storm sequences. They concluded with recommendations for future research, which broadly included additional physical and numerical simulations, improved data collection efforts, and stronger research emphasis on beach recovery processes.

Summary of Advancements and Limitations

The practice of modeling event-scale barrier morphodynamics has followed a natural progression from conceptualizing models based on observations, to the creation of simplified and efficient rule-based models, to the development of more complex sediment transport formulations coupled with hydrodynamic calculations at fine spatiotemporal scales. Reconsidering our *Grand Challenge* statement, it is apparent that significant advancements have been made over the last fifty years. The earliest and most basic models (e.g., analytical dune erosion models) were intuitive, easy to use, and could provide conservative estimates for dune recession and likelihood of failure. Empirical studies followed, which advanced our ability to quantify the impact of key processes based on hydrodynamic output (e.g., predicting notching/avalanching of the dune face based on swash impact, predicting overwash volumes based on runup exceedance, predicting sediment transport rates based on velocity and concentration profiles, etc.). This improvement in scientific understanding, along

614 with the advancements in computing power, has allowed us to continue reducing the spatiotemporal
615 scales of our morphological predictions while maintaining or increasing accuracy.

616 However, there are still major limitations to our modeling capabilities. Although the accuracy
617 of simulations has improved, we are still a long way from high confidence predictions. This is
618 partially due to the scarcity of data to evaluate the predictive capability of models mid-storm.
619 Event-scale models are able to capture the general trends of erosion and deposition compared to
620 pre- and post-storm profile (or LiDAR) data; however, the small-scale predictive abilities of our
621 models during storm is largely unknown since there is little to no data to validate those predictions.
622 Our apparent distance from high-confidence predictions can also be attributed to both epistemic
623 uncertainty (i.e., that which arises from our lack of knowledge of the relevant processes) and
624 intrinsic uncertainty (i.e., that which arises from the inherent randomness of natural processes).
625 For example, we know that some factors - such as vegetation and anthropogenic impacts - play
626 an important role in event-scale morphodynamics, yet the modeling of such factors is (for various
627 reasons) still in its infancy. Additionally, the inherent randomness of forcing conditions (e.g., storm
628 characteristics, wave climates) and initial conditions (e.g., bathymetry, sediment characteristics) is
629 difficult to capture at smaller scales.

630 **LONG-TERM MORPHODYNAMICS**

631 This section provides an overview of commonly modeled phenomena and processes associ-
632 ated with long-term morphodynamics, a review of relevant modeling efforts, and a summary of
633 advancements toward the *Grand Challenge*.

634 **Commonly Modeled Phenomena and Processes**

635 During the periods of time in between storm events, chronic sediment transport processes
636 resume their work that contributes to gradual morphological change. The following sections discuss
637 commonly modeled long-term phenomena (i.e., shoreline change and barrier transgression) and
638 relevant morphodynamic processes.

639 *Shoreline Change*

640 The shoreline can be smoothed or caused to vary in form depending on the angle of the incident
641 waves which drive LST (Ashton et al. 2001). Thus, shoreline change is observed as the local
642 shoreline is moved either landward or seaward by gradients in LST rates. These gradient-driven
643 changes can also manifest themselves in other ways including island migration, barrier elongation,
644 inlet migration, and island dimensional changes.

645 Although it is not as common, entire barrier islands can migrate in the direction of LST when
646 sediment is eroded from the updrift end, carried alongshore, and deposited at the downdrift end,
647 assuming no updrift sediment sources. Otvos Jr. (1970) noted this phenomenon in the northern
648 Gulf of Mexico by observing that barriers can migrate large distances (i.e., several kilometers) from
649 their location of origin. When the barriers are stable and not prone to migration, newly formed
650 inlets may migrate instead. This phenomenon results from a LST gradient across the inlet, where
651 sediment is deposited updrift of the inlet and eroded downdrift.

652 Dimensional changes may also be observed due to LST gradients and the placement of engi-
653 neering structures. McCann (1979) observed that most islands developed greater widths on the
654 downdrift end of the island as compared to the updrift end, which was attributed to a minimal
655 amount of updrift sediment available for transport. If a continuous source of updrift sediment is
656 present, and sediment is not removed from the barrier system, then barrier elongation could be
657 observed as sediment is continually added to the downdrift end. Penland and Boyd (1981) de-
658 scribed lateral migration of barrier islands and the influence of placing coastal structures at various
659 locations along the islands. For example, structures placed near the updrift end tended to reduce
660 the total island area while structures placed in the middle of the island tended to increase the total
661 area.

662 *Barrier Transgression*

663 In addition to shoreline change, most barrier islands are undergoing transgression (i.e., landward
664 migration) in accordance with SLR. However, this migration did not appear to be widely accepted
665 in some of the earliest literature (e.g., Schwartz 1973, Leatherman 1987). Nevertheless, once

transgression was recognized by the research community, many studies sought to identify the driving mechanisms that were primarily responsible for it. [Otvos Jr. \(1970\)](#) indicated that overwash and aeolian processes were primarily responsible for the landward movement, which was supported by others such as [Moody \(1964\)](#) and [Godfrey \(1970\)](#) ([Leatherman 1987](#)). Others found sediment transport through tidal inlets and/or breaches to play a much larger role (e.g., [Pierce 1969](#); [Armon and McCann 1979](#); [Fisher and Simpson 1979](#); [Leatherman 1979](#); [USACE 1984](#)).

SLR rate is also considered one of the primary drivers of barrier transgression through its interaction with storm processes such as overwash and breaching. Although not developed specifically for barriers, the Bruun Rule ([Bruun 1962](#)) exemplifies the theorized direct relationship between SLR and shoreline transgression. The interaction between rates of SLR and other transgressive processes was published in an interesting study by [Moslow and Heron Jr. \(1979\)](#). They found that previous high rates of SLR were correlated with dominating overwash processes and high rates of transgression. Conversely, when the rate of SLR slowed, they found that transgression also slowed and inlet dynamics became the dominant method of sediment transport between the ocean and backbarrier environment.

During landward transgression, barrier islands may also maintain their elevation with respect to SLR through the combination of overwash and inlet dynamics/breaching. As SLR effectively reduces barrier island relief, barriers are more prone to overwash and inundation during storm events, which deposit sediment on the island or behind it (i.e., washover deposits). This deposition effectively translates the island landward and increases its elevation. As this process is sustained, the barrier sediment may be conceptualized as ‘rolling’ over itself, which has led to the description of this cycle as ‘barrier rollover’ ([Moore and Murray 2018](#)). [Lorenzo-Trueba and Ashton \(2014\)](#) referred to this sustainable behavior as dynamic equilibrium.

Similarly, lagoonal washover deposits and flood tidal shoals have been shown to assist the barrier in maintaining its elevation through the reduction of accommodation space for future washover ([Stolper et al. 2005](#)). For example, consider a salt marsh that grows on top of washover deposited in a lagoon during some initial storm event. When a subsequent storm arrives, sediment that would

have been deposited in the lagoon is now deposited on top of the new salt marsh. Thus, the salt marsh (and previous washover deposit) acts to reduce the available lagoon space for washover, and elevation is increased in that location as a result. Recent modeling work has suggested that the presence of backbarrier marsh not only increases island elevations, but actually reduces landward transport by encouraging the subaerial deposition of sediments (Johnson et al. 2021). As the barrier continues its rollover toward the mainland, those previously buried marsh and lagoonal sediments may show up as shoreface outcrops which can affect the future morphodynamics through changes in the sediment supply (i.e., the source of sediment that feeds the growing barrier).

Although sustained barrier transgression is associated with increases in subaerial elevations with SLR, barriers may also lose elevation due to compaction of the underlying sediment. Hoyt (1969) was possibly the first to mention the idea of vertical movement by compaction or isostatic adjustment. He stated that “*compaction or isostatic movement caused by weight of the sediment deposited in the coastal area may result in formation of lakes or lagoons by depression of the chenier plain below water level.*” As the barrier rolls over previous marsh sediment, the marsh sediment compacts under the load of the island, inducing an even higher local rate of SLR.

Barrier island transgression is also considered to be influenced by two other factors: 1) the slope of the shelf over which it is migrating and 2) the sediment supply. If we only consider the geometry of the system and assume that barriers maintain their dimensions, it is apparent that barriers must migrate at higher rates over shallower slopes in order to keep pace with SLR (Pilkey and Davis 1987). Numerous studies have concluded that antecedent topography is extremely important to the development and configuration of modern day barrier islands (e.g., Halsey 1979; Oertel 1979; Belknap and Kraft 1985). Others have concluded that sediment supply is more important to the rate of migration, with less sediment supply leading to increased migration (e.g., Swift 1975; Storms et al. 2002; Moore et al. 2007; Ruggiero et al. 2010). Dillon (1970) commented on the cross-shore migration of barriers through stratigraphy observations and concluded that barriers were not forced to continue landward migration with SLR, but could drown if the sea level advanced too quickly or if there was an insufficient supply of sand.

720 **Modeling Efforts**

721 Perhaps the most challenging question related to barrier morphology is, “What will be the
722 state of a barrier system 10, 100, or even 1000 years from now?” Compared to analyzing and
723 predicting short-term responses, there is considerably less evidence available (that is, evidence
724 or data collected using our current era’s level of scientific certainty) to evaluate historical trends
725 and make long-term projections. Stratigraphic observation and analysis may provide a partial
726 glimpse of historical system states; however, it also requires assumptions and a hermeneutic to
727 make the evidence meaningful, thereby reducing the certainty of conclusions that may be drawn.
728 On the other hand, there are also problems when extrapolating small-scale processes to large
729 spatiotemporal scales (i.e., the problem of error propagation). Thus, the problem of long-term
730 morphological analysis and prediction is not a trivial one, especially since it is closely tied to
731 uncertainties surrounding climate change (e.g., future SLR and changes in storminess). Numerous
732 publications from the early 1990s into the early 2000s discuss the philosophy behind long-term
733 morphological prediction. The interested reader is referred to [Stive et al. \(1990\)](#), [Terwindt and](#)
734 [Battjes \(1990\)](#), [De Vriend \(1991b\)](#), [Latteux \(1995\)](#), and [Cowell et al. \(2003b\)](#) for further details on
735 this topic.

736 Similar to the previous section, the review of long-term morphodynamic modeling efforts is
737 broken down according to the primary intent of each model. Thus, modeling efforts are categorized
738 by those which model 1) shoreline change, 2) shoreface evolution, 3) barrier transgression, and
739 4) phenomena that are typically combinations of categories 1-3. To assist the reader in keeping
740 track of the models discussed, Figure 6 offers a graphical representation of long-term models, in
741 the chronology of their publication, that simulate some combination shoreface evolution, shoreline
742 change, dune growth/erosion, or overwash. Table 4 is a comprehensive summary of the long-term
743 models discussed in this review, which includes each model’s relevant processes.

744 *Modeling Shoreline Change*

745 Long-term modeling of shoreline change is often referred to as ‘shoreline evolution’ modeling
746 since the most observable impact of LST gradients is shoreline displacement, either landward

747 or seaward. The first approach to modeling shoreline evolution stemmed from One-line Theory,
748 published by [Pelnard-Considere \(1956\)](#). Models derived from this theory, commonly called ‘one-
749 line models,’ assume a constant equilibrium profile and calculate position changes in a single
750 contour line - the shoreline - over time considering only the gradients in the LST rate (see Figure
751 7a).

752 [Larson et al. \(1987\)](#) published a review of one-line modeling theory and analytical solutions
753 that had been developed for various coast-specific and structure-specific situations. Two years later,
754 [Hanson and Kraus \(1989\)](#) presented the one-line model GENESIS, which would become one of the
755 most widely used one-line models for predicting shoreline evolution in practice, though not without
756 criticism ([Young et al. 1995](#), [Houston 1996](#)). One-line models are still being developed and used
757 today, likely due to their simplicity, intuitiveness, and ease of calculation. The Coastal Evolution
758 Model (CEM) of [Ashton et al. \(2001\)](#) is a one-line model that predicts shoreline response due to
759 high-angle waves, assuming a constant linear shoreface out to an estimated closure depth. From
760 numerical experiments, they found that high-angle waves cause small shoreline perturbations to
761 grow into larger formations, such as cuspates and spits. Additionally, they found that shoreline
762 protrusions can shelter downdrift features from the high-angle waves, affecting the evolution of such
763 features. [Thomas and Frey \(2013\)](#) and [Kim et al. \(2020\)](#) reviewed other common one-line models
764 including UNIBEST-CL+ ([Deltares 2021](#)), GenCade ([Frey et al. 2012](#)), which is a combination
765 of GENESIS and the regional Cascade model ([Larson et al. 2002](#)), and the proprietary LITPACK
766 model. These models include advances such as coupling XST formulations, wave transformation,
767 and wave-current interaction. Notably, GenCade includes advances to model tidal inlet evolution
768 and inlet dynamics such as inlet bypassing and inlet feature (e.g., shoal) sediment balance.

769 [Bakker \(1968\)](#) was unsatisfied with the one-line theory’s assumption of parallel bathymetric
770 contour lines near engineered structures due to the apparent discontinuity it produced. In 1968,
771 Bakker published a two-line model whereby XST could be approximated between two profile zones
772 based on the profile’s deviation from an equilibrium state (see Figure 7b). [Perlin and Dean \(1979\)](#)
773 were the first to suggest expanding Bakker’s two-line approach to multiple lines, and followed up

774 with publication of their n-line model six years later, which was named for its ability to handle a
775 user-defined ‘n’ number of contour lines (Perlin and Dean 1985). Although limited in their ability
776 to produce non-monotonically decreasing profiles, these models were the first to add elements of
777 cross-shore change to one-line models, paving the way for later n-line models that would attempt
778 to integrate both XST and LST (e.g., Steetzel et al. 1998).

779 Buijsman (1997) published the ASMITA model, which simulated interaction between the
780 adjacent shoreline and tidal inlets. The model consisted of five nodes that represented the tidal
781 channel, ebb shoal, flood shoal, and the adjacent shorelines. Sediment flux between these nodes was
782 calculated based on equilibrium formulations of each feature. A similar approach was incorporated
783 into the regional barrier island model called Cascade, presented by Larson et al. (2002). While
784 ASMITA focused on modeling the channel evolution, Cascade focused on modeling the regional
785 shoreline position over long time scales, but accounted for the dynamic inlet features in the form
786 of sediment source and sink terms. Larson et al. (2002) applied Cascade to a regional stretch of a
787 U.S. East Coast barrier island and found the model was able to satisfactorily predict the shoreline
788 position updrift and downdrift of two inlets.

789 *Modeling Shoreface Evolution*

790 Although long-term modeling of barrier transgression was well underway by the 1980s, most
791 models assumed a constant profile shape. It wasn’t until the mid-1990s that shoreface evolution
792 began to be modeled, with the publication of the Hinged Panel Model (HPM) (de Vriend et al.
793 1993) and the Advection-Diffusion Model (ADM) (Niedoroda et al. 1995).

794 A conceptualized model of the shoreface profile by de Vriend et al. (1993) discretized the
795 shoreface into 3 sections: 1) the upper shoreface, 2) the lower shoreface, and 3) the middle
796 shoreface, which acted as a transition zone between the upper and lower zones. On the lower
797 shoreface, profile movement was assumed to be negligible compared to the scales of interest, while
798 the upper shoreface was assumed to be highly active out to the depth of closure (i.e., the transition
799 point to the middle shoreface). The sections were considered to be rigid panels, which rotated
800 about hinge points at the panel intersections based on the net sediment transport into or out of

801 the panel zone. This led Cowell et al. (2003b) to refer to this model as the Hinged-Panel Model
802 (HPM). Stive et al. (1995) published a full treatment on HPM, which used Bowen's energetics
803 formulation for XST between the shoreface sections. They found that HPM produced reasonable
804 hindcast simulations, and that the effect of substrate slope on profile evolution was only relevant at
805 geologic timescales.

806 Niedoroda et al. (1995) published a similar model, the main difference being the continuous
807 formulation of XST as compared to the paneled formulation of Stive and de Vriend. The continuous
808 formulation is depth-dependent and breaks down the transport into a bed load (i.e., advective) term
809 and a suspended load (i.e., diffusive) term; thus, it was called the Advection-Diffusion Model
810 (ADM) by Cowell et al. (2003b). Although Stive et al. (1995) and Niedoroda et al. (1995) do not
811 apply their models to barrier coasts specifically, their work signifies advancement in cross-shore
812 shoreface modeling and the increased importance of including cross-shore processes in long-term
813 models.

814 Another class of models that simulate shoreface evolution are equilibrium shoreline models,
815 which have become increasingly popular for simulating event-based to interannual change. These
816 models combine equilibrium-based formulations of shoreface evolution with shoreline change
817 models (typically one-line models). The two most popular models include Yates et al. (2009) and
818 the Shoreline Forecast (ShoreFor) model of Davidson et al. (2013). Both models demonstrate that
819 beaches often respond directly to wave forcing (e.g., as quantified by wave energy or dimensionless
820 fall velocity); however, the equilibrium response time scale (which is often longer than a single
821 storm event) plays an exceedingly important role in the morphological evolution. Further, the
822 extensive observations and developed model of Yates et al. (2009) show that beaches become
823 increasingly resistant to erosion while in an eroded state.

824 *Modeling Barrier Transgression*

825 Models of shoreline change and shoreface evolution often produce a landward or seaward shift
826 in the shoreline and/or profile based on gradients in the sediment transport rates. However, these
827 models are not able to account for barrier transgression as an observed phenomenon. Thus, nu-

828 merous models were developed to simulate long-term transgression based on cross-shore processes
829 (e.g., overwash, breaching, inlet dynamics) and long-term forcing conditions (e.g., SLR).

830 Translation Models

831 **Bruun (1962)** introduced what is perhaps the most popular hypothesis about cross-shore trans-
832 gression, which states that an equilibrium beach profile translates upward and landward with SLR
833 while conserving sediment volume. Years later this became known as the ‘Bruun Rule’ (**Schwartz**
834 **1967**). Because the profile is ‘translated,’ these types of models are often called ‘translation models’
835 in the literature, and many them have been developed since publication of the Bruun Rule.

836 The Bruun Rule (**1962**) predicts profile recession distance based on the amount of SLR and the
837 average beach slope while conserving sediment. In subsequent examination of his theory, **Bruun**
838 (**1983**) revisited the assumptions behind the model development and cautioned modelers who might
839 attempt to apply the Bruun Rule in coupled alongshore models and progradational scenarios. Upon
840 further review of initial publications by **Bruun (1962)** and **Schwartz (1967)**, several researchers have
841 offered criticism of the way that the Bruun Rule (and the underlying equilibrium profile concept)
842 is used in current models (e.g., **Pilkey et al. 1993**; **Thieler et al. 2000**). Conceding that some of
843 the criticisms of **Pilkey et al. (1993)** were valid, **Dubois (1993)** stated that such models can still
844 be useful in formulating research questions and site-specific equilibrium-based models. A more
845 recent study by **Wolinsky and Murray (2009)** highlighted additional limitations of the Bruun Rule
846 as applied to long-term simulations on the order of millennia.

847 **Rosati et al. (2013)** offered a review of field studies that attempted to validate the Bruun Rule
848 (or modified forms of it). More recently, the Bruun Rule has been used to model both barred and
849 bermed beach profiles in a laboratory setting (e.g., **Atkinson et al. 2018**). **D’anna et al. (2021)**
850 recently presented a reinterpretation of the Bruun Rule that explicitly partitions shoreline recession
851 into passive flooding of the beach profile and wave-driven reshaping components. Similarly, **Troy**
852 **et al. (2021)** assessed long-term profile submergence versus Bruunian recession of beaches on the
853 Great Lakes, a model environment to observe the effects of significant water-level variability, which
854 serves as a proxy for future SLR.

855 The Bruun Rule has also been expanded since its initial publication. [Dean and Maurmeyer](#)
856 (1983) presented the Generalized Bruun Rule, which expanded the original model to include the
857 recession of barrier coasts specifically, and noted that greater recession rates were predicted due
858 to the additional sand volume being deposited on the subaerial island and in the lagoon. The
859 Bruun Rule was also expanded to include source and sink terms in the models of Everts (1985,
860 1987). Everts proposed that historical rates of SLR and shoreface retreat are preserved in the slope
861 of the seaward profile, assuming that the profile is not significantly reworked by LST or tectonic
862 deformation processes. Everts compared present and past ratios of SLR to shoreface retreat for
863 five U.S. East Coast barrier islands and found that some barriers are in a narrowing state. Everts
864 proposed that these barriers would continue to narrow until a critical width is reached, at which point
865 landward migration of the island would begin. This theory employed the previously mentioned
866 critical length concept, which was first proposed by [Leatherman \(1983\)](#) and has since been utilized
867 in other models (e.g., [Lorenzo-Trueba and Ashton 2014](#)). Further modifications of the Bruun Rule
868 were published by [Rosati et al. \(2013\)](#), who included an additional term representing XST in the
869 landward direction by overwash and/or aeolian processes, and [Dean and Houston \(2016\)](#), who
870 added a LST term and sediment source/sink terms to Rosati's 2013 formulation.

871 [Cowell et al. \(1992\)](#) developed the Shoreface Translation Model (STM), which allowed modelers
872 to keep track of changes in stratigraphy, and was later used in conjunction with field observations
873 to perform hindcasting simulations ([Cowell et al. 1995](#)). The STM was later expanded using a
874 probabilistic framework to produce distributions of results that could be statistically evaluated in
875 risk management frameworks ([Cowell et al. 2006](#)).

876 Most recently, [McCarroll et al. \(2021\)](#) published the ShoreTrans model, which follows similar
877 profile translation methodology with a couple of distinctions and additions. First, the model
878 uses measured profiles instead of parametric representations. Second, in addition to the profile
879 translation, ShoreTrans also accounts for has been modified to incorporate dunes erosion and
880 accretion, sediment flux between the upper (active) and lower (inactive) shoreface, as well as
881 source and sink terms that can modify the sediment supply.

882 Other Transgression Models

883 More recent transgression models can't simply be described as 'translation' models, since they
884 also simulate profile changes. For example, [Storms et al. \(2002\)](#) published an evolution model
885 called BARSIM, which was intended to preserve the simulation's erosion and depositional time
886 history for comparison to observed shoreface stratigraphy. They describe BARSIM as a 'process-
887 response' model in which erosional and depositional mechanisms were modeled separately. [Storms](#)
888 [et al. \(2002\)](#) conducted multiple numerical experiments and found that their model successfully
889 captured several general observations: 1) increased grain sizes led to steeper shoreface slopes, 2)
890 higher sediment supply values decreased retrogradation and increased the likelihood of aggradation
891 or progradation, 3) higher SLR rates increased the likelihood of barrier overstepping, and 4) lower
892 substrate slopes allowed for greater landward rates of migration.

893 [Stolper et al. \(2005\)](#) published the GEOMBEST model, which allows for depth-dependent
894 shoreface adjustment toward a theoretical equilibrium profile, thus allowing the shoreface to
895 temporarily exist in disequilibrium. GEOMBEST is also able to simulate heterogeneous stratigraphic
896 units that can differ in erodability. Using the conceptual model of [Cowell et al. \(2003a\)](#),
897 GEOMBEST divides each simulated coastal tract into three cross-shore zones (i.e., shoreface,
898 backbarrier, and estuary). [Stolper et al. \(2005\)](#) used this model to estimate possible stratigraphic
899 histories in both steep and gentle sloping environments, showing that quantitative estimates may be
900 useful where historical data may be lost or otherwise unavailable. They also showed that substrate
901 slope plays an important role when non-erodible outcrops are present. Specifically, they found
902 that steep slopes lead to narrowing of the estuary and barrier drowning unless there is an external
903 increase in sediment supply.

904 Based on sensitivity analyses with GEOMBEST, [Moore et al. \(2007\)](#) found that increasing the
905 SLR rate and decreasing sediment supply led to increased barrier migration. [Moore et al. \(2010\)](#)
906 also studied the Holocene evolution of U.S. East Coast barrier islands and found that the most
907 vulnerable islands were large with less erodible substrates and gentle slopes. [Brenner et al. \(2015\)](#)
908 confirmed these findings and also found that positive and negative feedbacks occur based on the

909 slope of the substrate and island trajectory, and the composition of the substrate and backbarrier
910 deposits; the negative feedback adjusts island trajectory to the substrate slope while the positive
911 feedback leads to barrier width adjustments.

912 In studying the effects of compaction on barrier island migration, [Rosati et al. \(2006\)](#) developed
913 the Migration, Consolidation, and Overwash (MCO) model to predict the response of barrier
914 systems to a series of storm events. The MCO model used the Convolution Method of [Kriebel](#)
915 and [Dean \(1993\)](#) to predict responses when there was no overwash, and the numerical method
916 of [Donnelly et al. \(2005\)](#) to estimate overwash volumes when water levels exceeded the berm
917 height. [Rosati et al. \(2006\)](#) found that when consolidation was considered, there was considerable
918 increases in migration distance and reduction of dune elevations. They found that increases in surge
919 heights and deep-water wave heights also led to significant increases in migration reduction of dune
920 elevations. [Rosati et al. \(2010\)](#) updated the 2006 model to include the overwash formulations
921 by [Donnelly et al. \(2009\)](#), and found that barriers on top of compressible substrates migrated
922 much faster than barriers on non-compressible substrates, assuming a sufficient sand supply. They
923 also found lower dune elevations and island volume loss to be more prevalent when compressible
924 substrates were present, the thickness of which was found to be non-linearly related to consolidation
925 rates.

926 [Masetti et al. \(2008\)](#) developed the Barrier Island Translation (BIT) model with separate
927 sediment transport formulations for shoreface evolution, inner shelf reworking, overwash, and
928 backbarrier infilling. They found barrier migration to undergo significant increases and decreases
929 in migration rate according to the substrate slope and sediment availability. Additionally, they
930 found that offshore subaqueous bodies of sediment were most likely due to barrier migration over
931 a non-uniform surface, rather than drowning of previous barrier islands.

932 [Lorenzo-Trueba and Ashton \(2014\)](#) developed a barrier island evolution model (hereafter
933 ‘LTA14’ model) to evaluate long-term behavior of the system. The model tracked transect boundary
934 changes in the cross-shore direction based on sediment flux calculations. They found that barriers
935 evolved following one of four behaviors: height drowning, width drowning, constant transgression

(or dynamic equilibrium), and periodic transgression. Most recently, [Reeves et al. \(2021\)](#) expanded the LTA14 model domain to consider dune and subaerial island processes in a model called Barrier3D. The Barrier3D model used the LTA14 equations to simulate shoreline and nearshore profile change, and included additional formulations for dune growth during non-stormy periods, dune reduction by overwash, alongshore dune elevation changes, and sediment transport by overwash and backbarrier overland flow. Barrier3D also used probability distributions to simulate synthetic storm events and barrier recovery between storms ([Reeves et al. 2021](#)).

943 Multifaceted Evolution Models

944 Whereas most of the previously discussed long-term models were developed to simulate one
945 primary phenomenon (e.g., shoreline change, shoreface evolution, barrier transgression), other
946 recent models have been developed with the intent to simulate multiple long-term phenomena. We
947 discuss four categories of these multifaceted evolution models: 1) coupled backbarrier models, 2)
948 models that combine shoreline change and transgression, 3) models that combine shoreline change
949 and shoreface evolution (i.e., equilibrium shoreline models), and 4) extended event-scale models.

950 Coupled Barrier-Backbarrier Models

951 In the last decade, barrier island evolution models have been coupled with backbarrier models
952 to evaluate interactions or feedbacks between the systems. [Walters et al. \(2014\)](#) published GE-
953 OMBEST+, which coupled GEOMBEST with a backbarrier model from [Mariotti and Fagherazzi](#)
954 ([2010](#)). Using this model, they found that overwash played an important role in that it provided
955 a narrow platform for backbarrier marsh growth, which in turn reduced island migration rates by
956 decreasing accommodation space for sediment deposition. [Lorenzo-Trueba and Mariotti \(2017\)](#)
957 also developed a coupled model that combined the backbarrier marsh model of [Mariotti and Carr](#)
958 ([2014](#)) and [Lorenzo-Trueba and Ashton \(2014\)](#). They found that including processes such as im-
959 port/export of fine sediment to the barrier environment significantly impacted the accommodation
960 space for overwashed sediment, which ultimately led to either a sustained island that migrated or
961 one that drowned.

962 Models that Couple Shoreline Change and Transgression

963 Noting that most of the previous modeling efforts focused on either shoreline change or trans-
964 gression, models are increasingly being developed to include both components. In 2006, the CEM
965 model was updated to include a function for barrier overwash (Ashton and Murray 2006) and
966 was later coupled with the LTA14 cross-shore barrier model (Ashton and Lorenzo-Trueba 2015).
967 The authors found that when alongshore coupling was less significant, large alongshore variations
968 persisted longer in the simulation; thus, alongshore coupling was found to act as a dampener on
969 barrier transgression (Ashton and Lorenzo-Trueba 2015).

970 Nienhuis and Lorenzo-Trueba (2019) published the BarrieR Inlet Environment (BRIE) model,
971 which modified and extended the combined model of Ashton and Lorenzo-Trueba (2015) to include
972 inlet dynamics. The model simulated inlet formation (i.e., breaching) and cross-sectional area
973 changes, and including alongshore sediment volume balancing between updrift and downdrift
974 sides of the inlet. BRIE also included a stratigraphic model that keeps track of how sediment
975 types (i.e., lagoonal, washover deposits, flood tidal shoals) are re-worked over time (Nienhuis and
976 Lorenzo-Trueba 2019).

977 Other models include that of Palalane and Larson (2020), ShorelineS (Roelvink et al. 2020), and
978 IH-LANS (Alvarez-Cuesta et al. 2021). The Cascade model, which simulates shoreline changes for
979 a region of barrier islands, was updated by Palalane and Larson (2020) to include XST components
980 from Larson et al. (2016), which included overwash, beach and dune erosion, transport between
981 the beach and offshore bar, and aeolian transport. The ShorelineS model, developed by Roelvink
982 et al. (2020), models shoreline change, overwash, and includes the ability to split and merge barrier
983 islands or spits. It is also planned for ShorelineS to be coupled with XBeach or Delft3D to simulate
984 island and inlet migration in future work (Roelvink et al. 2020). Alvarez-Cuesta et al. (2021)
985 developed the IH-LANS model which combines LST (using a modified version of CERC based
986 on Hallermeier (1980)) and XST (following Toimil et al. (2017)), while also including specific
987 formulations for engineering structures such as groins, seawalls, and breakwaters.

988 Models that Couple Shoreline Change and Shoreface Evolution

989 Although not limited to barrier island modeling, many long-term models now couple shoreline
990 change and shoreface evolution models. One of the earliest examples of this approach was the
991 3DBeach model, published by [Larson et al. \(1990\)](#), which was a combination of SBEACH and
992 GENESIS, and was capable of simulating dynamic profile features such as offshore bars.

993 Recently developed models incorporate equilibrium shoreline models as one aspect of their
994 predictive capabilities. These models include CoSMoS-COAST ([Vitousek et al. 2017](#)), LX-Shore
995 ([Robinet et al. 2018](#)), and COCOONED ([Antolínez et al. 2019](#)). CoSMoS-COAST combines the
996 one-line model of [Vitousek and Barnard \(2015\)](#), the equilibrium model of [Yates et al. \(2009\)](#), a
997 translation component similar to [Bruun \(1962\)](#), and a long-term residual shoreline trend following
998 [Long and Plant \(2012\)](#). LX-Shore combines the wave model SWAN with LST (e.g., CERC,
999 Kamphuis 1991) and XST (e.g., [Davidson et al. 2013](#)) formulations in a 2D horizontal grid,
1000 similar to the CEM model setup ([Robinet et al. 2018](#)). Lastly, the COCOONED model ([Antolínez
1001 et al. 2019](#)) couples a one-line approach similar to [Vitousek and Barnard \(2015\)](#), a cross-shore
1002 equilibrium model similar to [Miller and Dean \(2004\)](#), and the analytical dune erosion method of
1003 [Kriebel and Dean \(1993\)](#).

1004 Notably, data assimilation techniques have been tried with many of these equilibrium shoreline
1005 models. [Long and Plant \(2012\)](#) were one of the first to use data assimilation for shoreline evolution
1006 predictions. They combined a modified version of the [Yates et al. \(2009\)](#) model, which predicts
1007 long-term and short-term trends of shoreline position, with a joint extended Kalman Filter (eKF)
1008 assimilation approach that updates the model predictions based on shoreline position observations.
1009 Other models that have used Kalman filtering include CoSMos-COAST ([Vitousek et al. 2017](#)),
1010 ShoreFor ([Ibaceta et al. 2020](#)), and IH-LANS ([Alvarez-Cuesta et al. 2021](#)).

1011 Extended Event-Scale Models

1012 Another common modeling approach that combines XST and LST is the extension of multi-
1013 faceted event-scale models for use in long-term simulations. Due to computational constraints,
1014 event-scale models have primarily been used to simulate short-term changes. However, recently
1015 they have also been employed and extended to predict long-term changes where computational

1016 burden is reduced through hydrodynamic averaging or lengthening the morphological time step.

1017 [Vemulakonda et al. \(1988\)](#) were among the first to utilize this approach with the Coastal Inlet
1018 Processes (CIP) Model, which was originally developed to predict tidal inlet shoaling for ingress
1019 and egress of U.S. submarines. Wave and circulation models were coupled together with a sediment
1020 transport model, the latter of which required a user-defined time step that effectively extended the
1021 hydrodynamic conditions. Comparing model results to a year's worth of navigation channel survey
1022 data, the model was shown to satisfactorily predict sediment transport rates ([Vemulakonda et al.](#)
1023 [1988](#)).

1024 A more recent and common approach is that of [Lesser et al. \(2004\)](#), who applied a morphological
1025 acceleration factor (*morfac*) within Delft3D to effectively lengthen the sediment transport time step
1026 for long-term simulations. [Lesser et al. \(2004\)](#) showed that using *morfac* in simplified cases did
1027 not cause the results to significantly deviate from the full solution. This approach was extended by
1028 [Roelvink \(2006\)](#), who proposed running multiple accelerated simulations in parallel for different
1029 tidal phases and using a weighted average of morphological change to update the bathymetry for
1030 the next time step.

1031 Event-scale models are also used to model storm sequences and recovery periods between
1032 storms. [Ranasinghe et al. \(2012a\)](#) developed the Probabilistic Coastline Recession (PCR) model,
1033 which generates 100-year sequences of storm events and employs the event-scale swash impact
1034 model of [Larson et al. \(2004a\)](#) (LEH04) to predict dune recession. The model also considered SLR
1035 projections and used a constant, empirically derived rate of dune recovery between storm events
1036 ([Ranasinghe et al. 2012a](#)). [Long et al. \(2020\)](#) developed a modeling framework for Breton Island,
1037 Louisiana, to assess restoration design alternatives that used XBeach to model the island's response
1038 to successive storm events over a 15-year time period. Shoreface and bay-side erosion between
1039 storm events were not modeled explicitly, but were accounted for through manual manipulation of
1040 the pre-storm profiles ([Long et al. 2020](#)).

1041 **Summary of Advancements and Limitations**

1042 The literature indicates that over the last fifty years significant advancements have been made in
1043 long-term morphodynamic modeling of barrier systems. Again, model development has followed
1044 a rather natural progression - from the simplified to the complex. The intuition behind some of
1045 the earliest models (e.g., one-line and translation models) laid a foundation on which subsequent
1046 model development has been steadily built. More complex formulations have been developed to
1047 predict shoreface shape changes, rather than assuming a constant equilibrium profile. Additional
1048 processes have been added (e.g., overwash representations, changes in sediment supply) to more
1049 closely capture the underlying mechanics of barrier transgression. Models are also increasingly
1050 being developed to incorporate other sub-systems (e.g., the backbarrier marsh-lagoon system) that
1051 impact the long-term morphodynamics.

1052 Yet there are still many limitations to be addressed, including (but not limited to) model val-
1053 idation, uncertainty characterization, and the incorporation of relevant processes and important
1054 factors. Although there is a wealth of satellite imagery available to coastal researchers, this dataset
1055 is limited both in the information it contains (i.e., primarily shoreline and marsh positions) and its
1056 temporal coverage for long-term model calibration and validation. This lack of long-term quanti-
1057 tative data is one likely reason why many long-term models have not been thoroughly validated.
1058 Other long-term models that were originally created to explore barrier island morphodynamics and
1059 develop new hypotheses - what [Murray \(2003\)](#) calls 'exploratory models' - have largely remained
1060 as such and have not yet shifted toward the prediction of real systems. Additionally, although
1061 testing model sensitivity is common practice, most models are not developed to explicitly consider
1062 input parameter uncertainty. Models typically receive averaged or representative input values and
1063 produce a single-value output rather than a statistical range of predictions. Another limitation, sim-
1064 ilar to event-scale modeling, is that most previous efforts have focused on evolution of the natural
1065 barrier system and have neglected anthropogenic impacts. Other relevant processes such as barrier
1066 subsidence, aeolian transport, backbarrier marsh growth/erosion, and factors that impact erosion
1067 and deposition such as vegetation type and density, have mostly been excluded from long-term

1068 models with only a few exceptions.

1069 One modeling challenge that has persisted over time is the extrapolation of small-scale sediment
1070 transport predictions to large scale coastal behavior (LSCB) - a link which is certainly intuitive.
1071 However, the problem of uncertainty or error propagation, where uncertainty or error at the small
1072 scale compounds over time resulting in imprecise or inaccurate predictions, has stifled this type
1073 of long-term modeling. [De Vriend \(1991a\)](#) indicates the extraordinary challenge of this unsolved
1074 problem saying, "...it must even be doubted whether models formulated at a small scale will ever be
1075 able to describe LSCB," and reverently quips that "we may need another Ludwig Prandtl" before
1076 we have a good answer.

1077 RESEARCH GAPS AND NEEDS

1078 Based on the advancements that have been made toward our *Grand Challenge*, and the lim-
1079 itations that persist in our modeling efforts, we have identified critical gaps and future research
1080 needs that might be addressed moving forward. The gaps and needs highlighted below are those we
1081 believe are most critical for making progress toward the *Grand Challenge*. We acknowledge, how-
1082 ever, that other gaps and needs exist. The research gaps and needs may be generally categorized as
1083 follows: 1) Observations, data availability and accessibility, 2) Scientific understanding of relevant
1084 processes, and 3) Modeling framework and approach. These categories are expounded below.

1085 Observations, Data Availability, and Accessibility

1086 One of major limitations of our current modeling efforts is the availability of data. While
1087 technological advancements during the 20th century increased our ability to collect good data, the
1088 timing of these advancements means the quantity of long-term data for validation is sparse. On the
1089 other hand, event-scale data are not limited by time, but by the complexities and dangers associated
1090 with collecting perishable data before, during, and immediately following storm events. However,
1091 to improve our scientific understanding of the relevant processes and associated modeling efforts,
1092 we must overcome these data limitations so that we can ground truth our theories and formulations in
1093 observations. Herein we discuss a few high-level issues regarding data acquisition and accessibility,

1094 while assuming that some methodological advancements for data collection and analysis will be
1095 required to further our understanding of the relevant processes discussed in the following section.

1096 Long-term observations of coastal morphodynamics generally exist only at a limited number
1097 of well-monitored sites (e.g., Duck, NC, [Larson and Kraus 1994](#); Torrey Pines, CA, [Ludka et al.](#)
1098 [2019](#); Ocean Beach, CA, [Barnard et al. 2012](#); Fire Island, NY, [Lentz and Hapke 2011](#); Narrabeen-
1099 collaroy, Australia, [Turner et al. 2016](#); Truc Vert, France, [Castelle et al. 2020](#); Hasaki, Japan, [Banno](#)
1100 [et al. 2020](#); South Holland, Netherlands, [de Schipper et al. 2016](#)), which are maintained by various
1101 government agencies and academic institutions. It is vital that these long-term monitoring efforts
1102 continue while new avenues of data at higher spatiotemporal resolutions are sought. As such, we
1103 must be diligent to make the most of available datasets, develop new ones, and make them broadly
1104 accessible. We must develop and promote centralized, open access databases (e.g., the Community
1105 Surface Dynamics Modeling System - CSDMS) that contain both open access models and collected
1106 data (e.g., the use of public archival in the National Science Foundation's DesignSafe ([Rathje et al.](#)
1107 [2017](#)), or post-event field data ([Berman et al. 2020](#))). Increasing the amount and quality of available
1108 data would also be useful for blind model comparisons, data assimilation, and machine learning
1109 applications.

1110 One way to push toward increased dataset availability is to continue to capitalize on technologies
1111 that exist and are readily available. A perfect example of this is remote sensing data, such as publicly
1112 available satellite imagery (e.g., [Luijendijk et al. 2018](#); [Vos et al. 2019](#); [Turner et al. 2021](#)). We also
1113 expect that publicly accessible LiDaR datasets will become more widely available with continued
1114 advancements in drone technology ([Shaw et al. 2019](#)). It might also require us to creatively enlist
1115 the public's help in data collection such as using public photos and photogrammetry (e.g., [Harley](#)
1116 [et al. 2019](#)). A second way to advance this initiative is by developing new data collection methods
1117 or technologies. Due to the perishable nature of pre- and post-storm data and the uncertainties
1118 surrounding the timing and location of storm events, morphological data before, during, and after
1119 storm events is difficult to obtain. Certain efforts are underway to help coordinate, collect, and
1120 make available this perishable data, including the National Science Foundation's NHERI RAPID

1121 Facility (Wartman et al. 2020; Berman et al. 2020) and Nearshore Extreme Events Reconnaissance
1122 program (Rauenheimer 2020).

1123 **Scientific Understanding of Relevant Processes**

1124 Epistemic uncertainty and the exclusion of relevant factors are two important previously men-
1125 tioned limitations. The epistemological issues discussed herein include both hydrodynamics and
1126 sediment transport, and the relevant factors discussed include vegetation dynamics and anthro-
1127 pogenic impacts.

1128 Despite hydrodynamic simulation advancements, increased complexity in sediment transport
1129 formulations has not always translated to increased accuracy. Quoting from a study by Davies
1130 et al. (2002) in which multiple transport formulations were compared, Bosboom and Stive (2021)
1131 noted that most sediment transport predictions are only accurate within an order of magnitude,
1132 and that empirical calibration of these model formulations is still necessary in many cases. They
1133 also remarked that the simpler formulations are still often the best available ones. This indicates
1134 an obvious shortcoming in our ability to reproduce realistic hydrodynamic forcing conditions and
1135 to model the relationship between forcing and sediment transport. Aagaard and Hughes (2013)
1136 highlighted some of the latter shortcomings, stating that there is room for improvement in our
1137 quantitative understanding of bed load and suspended load transport, as well as our knowledge of
1138 which parameters (other than bed shear stress) can lead to better transport rate predictions. Notably,
1139 while such improvements would certainly lead to advancements in event-scale modeling efforts,
1140 the initial impact on long-term models would be minimal.

1141 One of the greatest advancements in event-scale morphodynamic modeling in recent years
1142 was the inclusion of infragravity waves in the hydrodynamic calculations (Sherwood et al. 2022).
1143 While we still do not fully understand the mechanics of how these waves impact nearshore sediment
1144 transport (Aagaard and Kroon 2017), we now recognize their importance in predicting event-scale
1145 morphodynamic response. Other factors such as the non-linearity of incident waves, the interaction
1146 of incident and infragravity waves, and swash zone dynamics, including turbulence and boundary
1147 layer flows, may also prove to be key missing components in coupled hydrodynamics-sediment

1148 transport formulations that have a significant impact on event-scale morphodynamics. While
1149 these factors may be key missing components, the small scales needed to resolve some of these
1150 hydrodynamic and sediment transport processes would require computational resources that make
1151 such modeling practically infeasible at present. Continued computational advancements may help
1152 to alleviate such limitations.

1153 In studying and developing formulations for event-scale processes such as overwash and breaching,
1154 it is important to consider all of the contributions to total inundation height, including tides,
1155 storm surge, and waves. The exclusion of one or more of these contributions can alter the total
1156 inundation height and corresponding morphological response. Furthermore, special consideration
1157 should be given to the timing of these contributions, as recent work has shown that time differences
1158 between the bay peak surge and ocean peak surge can lead to bay-side breaching (e.g., [Shin 1996](#);
1159 [McCall et al. 2010](#); [Sherwood et al. 2014](#); [Smallegan and Irish 2017](#)).

1160 Since data for event-scale morphodynamic response are sparse, future work should capitalize
1161 on previously published studies or available data from historical events (e.g., [van Ormondt et al.](#)
1162 [2020](#)), which may yield additional insights into the nature of overwash and breaching. Moreover,
1163 since overwash and breach observations are difficult to obtain in the field, physical modeling that
1164 leverages advancements in data collection methods and instrumentation may also help us better
1165 understand and quantify these processes. Although these physical modeling studies would require
1166 careful consideration of potential scaling issues, we believe that valuable insights into the overwash
1167 and breaching processes remain to be gained from this method of study.

1168 Another factor that may be prioritized for future studies is coastal vegetation. Currently,
1169 we have a general understanding of how vegetation impacts barrier morphodynamics (e.g., dune
1170 stabilization, subaerial accretion, increased flow roughness) and vice versa (e.g., [van der Lugt](#)
1171 [et al. 2019](#)); however, our quantitative understanding, and field-verification of that understanding,
1172 is further behind. Moving forward, beneficial research efforts would include the quantification
1173 of vegetation impact for parameters such as vegetation type, location, density, and hydrodynamic
1174 conditions for implementation in event-scale and long-term models. Recent studies (e.g., [Ayat](#)

1175 and Kobayashi 2015; Zinnert et al. 2019) indicated that this research is underway, and recent
1176 modeling studies (e.g., Passeri et al. 2018; van der Lugt et al. 2019) exemplify the initial stages
1177 of incorporating this information into event-scale morphodynamic analysis. Furthermore, with
1178 the U.S. Army Corps of Engineers' recent release of international guidelines on the design and
1179 implementation of Natural and Nature-Based Features (NNBF) (Bridges et al. 2021), we expect
1180 future studies to quantify the performance of NNBF in various coastal environments.

1181 Many coastal barriers are no longer representative of a natural environment as they are either
1182 developed or impacted by development and engineering structures on neighboring shorelines.
1183 Although many early studies and models sought to quantify the impact of engineering structures on
1184 littoral transport (e.g., one-line modeling of shoreline changes near groins), relatively few studies
1185 have quantitatively addressed the morphological impact of human development and other large-
1186 scale coastal restoration practices. Additionally, we would benefit from better understanding how
1187 the coastal management process works holistically, including how policies are developed, how
1188 individual restoration decisions are made, and how studies which quantify anthropogenic impacts
1189 influence the management process, considering cultural, political, and socioeconomic differences
1190 across localities. This type of analysis has largely been absent in the barrier morphodynamics
1191 literature, with the exception of a few observational studies on the feedbacks between coastal
1192 protection and real estate values (e.g., Keeler et al. 2018), and modeling studies that consider the
1193 coupling of barrier morphodynamics with the incentives of developers and owners (e.g., McNamara
1194 and Werner (2008)) and individuals in the coastal real estate market (e.g., McNamara and Keeler
1195 (2013)). Moving forward, beneficial research topics would include understanding the quantitative
1196 morphodynamic response between developed and natural barrier systems (e.g., Rogers et al. 2015),
1197 and the incentives, behavior, and impacts of human agents in what is appropriately called a
1198 'coupled human-landscape' or 'coupled natural-human' system (McNamara and Lazarus 2018;
1199 NASEM 2018).

1200 **Modeling Framework and Approach**

1201 There are several ways in which our modeling frameworks and overall approach may continue
1202 to improve in order to further research and achieve higher-confidence predictions. First, since
1203 modeling is inherently tied to the scientific understanding of the processes being studied, advancements
1204 in how those processes are understood must be regularly incorporated into the improvement
1205 of existing models and the development of new models. As research has naturally become more
1206 focused and specialized, many recent studies have been published related to specific components of
1207 barrier island morphodynamics (e.g., sediment transport between the inner shelf and active profile,
1208 beach-dune interactions, backbarrier marsh dynamics, etc.). Therefore it is critically important
1209 that holistic models of barrier morphodynamics incorporate the theory and formulations of more
1210 focused models.

1211 Second, although some of the recently published long-term morphodynamic models included
1212 sensitivity analyses for various parameters, model results are still largely presented as single
1213 simulation output. Modeling efforts would benefit by increasingly employing ensemble approaches
1214 (e.g., Monte-Carlo techniques) that consider input parameter uncertainty. Rather than producing
1215 a single output, a probabilistic range of results would be produced that can help characterize
1216 uncertainty in the model predictions (Vitousek et al. 2021). Such an approach lends itself not only
1217 to identifying expected values, but also to identifying extreme scenarios and the input parameter
1218 combinations that cause them. Additionally, with the large number of models that have been
1219 developed, modelers may consider a multiple-model ensemble approach to evaluate the range of
1220 predictions across various models, as has been done with model comparison studies (e.g., Montaño
1221 et al. 2020). Such an approach would emulate the current practice for forecasting hurricanes and
1222 would also naturally facilitate model comparisons and identification of robust and accurate models.

1223 Third, as we focus on expanding data accessibility and collection capabilities, we must be
1224 diligent to incorporate the available data. In addition to model validation, data may be used to train
1225 and/or reduce error in model predictions using machine learning and data assimilation methods,
1226 respectively. There are many ways in which machine learning may be employed in morphodynamic

modeling to improve predictions and fine-tune model parameters for a specific site (Goldstein et al. 2019). Machine learning may also be employed to reduce computational burden. As models include relevant processes at smaller scales, the computational burden will naturally increase; however, machine learning techniques can serve to abstract those computationally expensive processes, effectively substituting a recognized or learned pattern for a more complex algorithm. One drawback to these powerful data-driven approaches is that it is possible to ‘over-train’ a model with limited data, which effectively reduces its predictive capability for conditions that have yet to be observed. Despite the benefits and drawbacks of these methods, there are still relatively few models that explicitly incorporate them, suggesting there is still much room for model improvement.

Fourth, many models still focus only on parts of the barrier system, without considering all relevant processes. Such scientific focus up to this point was likely necessary to better understand specific system components; however, our current knowledge of important processes should lead to more complex, coupled, and fully representative models. For example, recent models (e.g., Walters et al. 2014; Lorenzo-Trueba and Mariotti 2017) have shown the importance of coupling the backbarrier marsh-lagoon system to barrier evolution models; however, there are still relatively few models that incorporate these as coupled systems. Barrier subsidence has received relatively little attention in the literature and has been incorporated into a minority of barrier evolution models (e.g., Rosati et al. 2006; Rosati et al. 2010). Yet, from these few studies, we see that consolidation rates can significantly impact the future evolution of the system. The role of aeolian transport has also largely been neglected in barrier island evolution models. Although a large body of work exists regarding aeolian transport and its role in dune recovery (e.g., Brodie et al. 2017), few full-scale barrier evolution models have integrated this research. This may be the case, at least in part, because of the relatively recent focus on modeling storm sequences and post-storm beach and dune recovery (Eichentopf et al. 2019). However, as various studies have indicated the importance of these morphological components, modeling efforts would be most beneficial by driving toward the incorporation of all relevant processes.

Finally, anthropogenic influences, such as urban development and its associated infrastructure,

1254 have changed and will continue to change the way many of the fundamental processes discussed in
1255 this review affect barrier island morphology. This also includes coastal engineering infrastructure,
1256 which is often intended to reduce inundation and erosion, or to support recreational and commer-
1257 cial navigation. Thus, modeling paradigms shifted toward representing barrier islands as coupled
1258 human-natural systems would provide important insights (McNamara and Lazarus 2018). Mod-
1259 eling frameworks that included anthropogenic impacts such as the effects of human agents (e.g.,
1260 McNamara and Werner 2008), urban development (e.g., Rogers et al. 2015), and coastal restoration
1261 practices (e.g., Long et al. 2020), would help us explore and evaluate their impacts which would be
1262 useful in coastal planning.

1263 **Summary**

1264 In closing, future research and development in the area of morphodynamic modeling of coastal
1265 barrier systems would benefit by leveraging existing and new datasets, advancements in observation
1266 technologies, and emerging data science approaches to better characterize morphological response
1267 and its uncertainty. Continuing the research community shift toward open access models and
1268 data would facilitate more rapid advancement in this area. Scientific advances are most needed
1269 in understanding anthropogenic and ecological influences on barrier morphological change. Also
1270 essential is advancing scientific understanding of observed morphological phenomena and the
1271 underlying sediment transport processes, including the coupling between a barrier and its sub-
1272 systems. Such advancements will bring us closer to achieving the overarching goal of high-
1273 confidence predictions of barrier system morphodynamics in multiple spatiotemporal dimensions.

1274 **DATA AVAILABILITY STATEMENT**

1275 No data, models, or code were generated or used during the study.

1276 **ACKNOWLEDGEMENTS AND DISCLAIMERS**

1277 This material is based upon work that is primarily supported by the U.S. Army Corps of
1278 Engineers through the U.S. Coastal Research Program (under Grant No. W912HZ-20-2-0005)
1279 and partially supported by the National Science Foundation (under Grant Number 1735139). Any

opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of these organizations. This publication was also prepared in part by Steven Hoagland using Federal funds under award NA18OAR4170083, Virginia Sea Grant College Program Project R/72155T, from the National Oceanic and Atmospheric Administration's (NOAA) National Sea Grant College Program, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of Virginia Sea Grant, NOAA, or the U.S. Department of Commerce.

Disclaimer for non-endorsement of commercial products and services: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

REFERENCES

Aagaard, T. and Hughes, M. (2013). "Sediment Transport." *Treatise on Geomorphology*, J. Shroder and D. Sherman, eds., Academic Press, San Diego, CA, vol. 10 edition, Chapter 10.4, 74–105.

Aagaard, T. and Kroon, A. (2017). "Sediment Transport Under Storm Conditions on Sandy Beaches." *Coastal Storms: Processes and Impacts*, P. Ciavola and G. Coco, eds., John Wiley & Sons Ltd., Chapter 3, 44–63.

Alfageme, S. and Cañizares, R. (2005). "Process-based morphological modeling of a restored barrier island: Whiskey Island, Louisiana, USA." *Coastal Dynamics 2005 - Proceedings of the Fifth Coastal Dynamics International Conference*, 1–11.

Alfageme, S. R., Khondker, M., and Canizares, R. (2007). "Breach stability and growth analysis using a morphological model." *Coastal Sediments '07 - Proceedings of 6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes*.

Alvarez-Cuesta, M., Toimil, A., and Losada, I. J. (2021). "Modelling long-term shoreline evolution in highly anthropized coastal areas. Part 1: Model description and validation." *Coastal Engineering*, 169.

Antolínez, J. A., Méndez, F. J., Anderson, D., Ruggiero, P., and Kaminsky, G. M. (2019). "Pre-

dicting Climate-Driven Coastlines With a Simple and Efficient Multiscale Model." *Journal of Geophysical Research: Earth Surface*, 124(6), 1596–1624.

Armon, J. W. and McCann, S. B. (1979). "Morphology and landward sediment transfer in a transgressive barrier island system, southern Gulf of St. Lawrence, Canada." *Marine Geology*, 31(3-4), 333–344.

Ashton, A. D. and Lorenzo-Trueba, J. (2015). "Complex Responses of Barriers to Sea-Level Rise Emerging from a Model of Alongshore-Coupled Dynamic Profile Evolution." *The Proceedings of the Coastal Sediments 2015*, WORLD SCIENTIFIC, 1–7 (7).

Ashton, A. D. and Murray, A. B. (2006). "High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes." *Journal of Geophysical Research: Earth Surface*, 111(4), 1–19.

Ashton, A. D., Murray, A. B., and Amoult, O. (2001). "Formation of coastline features by large-scale instabilities induced by high-angle waves." *Nature*, 414, 296–300.

Atkinson, A. L., Baldock, T. E., Birrien, F., Callaghan, D. P., Nielsen, P., Beuzen, T., Turner, I. L., Blenkinsopp, C. E., and Ranasinghe, R. (2018). "Laboratory investigation of the Bruun Rule and beach response to sea level rise." *Coastal Engineering*, 136(December 2017), 183–202.

Ayat, B. and Kobayashi, N. (2015). "Vertical Cylinder Density and Toppling Effects on Dune Erosion and Overwash." *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 141(1), 04014026.

Bagnold, R. A. (1963). "Mechanics of marine sedimentation."

Bagnold, R. A. (1966). "An Approach to the Sediment Transport Problem from General Physics.." *USGS Professional Paper*, 42.

Bakker, W. (1968). "The Dynamics of a Coast with a Groyne System." *Proc. 11th ICCE*, 492–517.

Baldock, T. E., Hughes, M. G., Day, K., and Louys, J. (2005). "Swash overtopping and sediment overwash on a truncated beach." *Coastal Engineering*, 52(7), 633–645.

Banno, M., Nakamura, S., Kosako, T., Nakagawa, Y., Yanagishima, S. I., and Kuriyama, Y. (2020). "Long-term observations of beach variability at Hasaki, Japan." *Journal of Marine Science and*

1333 *Engineering*, 8(11), 1–17.

1334 Barnard, P. L., Hansen, J. E., and Erikson, L. H. (2012). “Synthesis study of an erosion hot spot,
1335 Ocean Beach, California.” *Journal of Coastal Research*, 28(4), 903–922.

1336 Basco, D. R. and Shin, C. S. (1999). “A one-dimensional numerical model for storm-breaching of
1337 barrier islands.” *Journal of Coastal Research*, 15(1), 241–260.

1338 Belknap, D. F. and Kraft, J. C. (1985). “Influence of antecedent geology on stratigraphic preservation
1339 potential and evolution of Delaware’s barrier systems.” *Marine Geology*, 63(1-4), 235–262.

1340 Berman, J. W., Wartman, J., Olsen, M., Irish, J. L., Miles, S. B., Tanner, T., Gurley, K., Lowes,
1341 L., Bostrom, A., Dafni, J., Grilliot, M., Lyda, A., and Peltier, J. (2020). “Natural Hazards Re-
1342 connaissance With the NHERI RAPID Facility.” *Frontiers in Built Environment*, 6(November),
1343 1–16.

1344 Bosboom, J. and Stive, M. J. F. (2021). *Coastal Dynamics*. Delft University of Technology, Delft,
1345 The Netherlands.

1346 Brennan, P. (2016). “Image of Beach Erosion from Hurricane Matthew,
1347 <<https://pixabay.com/users/paulbr75-2938186/>>.

1348 Brenner, O. T., Moore, L. J., and Murray, A. B. (2015). “The complex influences of back-barrier
1349 deposition, substrate slope and underlying stratigraphy in barrier island response to sea-level
1350 rise: Insights from the Virginia Barrier Islands, Mid-Atlantic Bight, U.S.A.” *Geomorphology*,
1351 246, 334–350.

1352 Bridges, T., King, J., Simm, J., Beck, M., Collins, G., Lodder, Q., and Mohan, R. (2021).
1353 “International Guidelines on Natural and Nature-Based Features for Flood Risk Management.”
1354 *Report no.*, U.S. Army Corps of Engineers, Washington, D.C. (9).

1355 Bridges, T. S., Henn, R., Komlos, S., Scerno, D., Wamsley, T., and White,
1356 K. (2013). “Coastal Risk Reduction and Resilience.” *Report No. July*,
1357 <<http://www.swg.usace.army.mil/Portals/26/docs/PAO/Coastal.pdf>>.

1358 Brodie, K. L., Palmsten, M. L., and Spore, N. J. (2017). “Coastal Foredune Evolution, Part
1359 1: Environmental Factors & Forcing Processes affecting Morphological Evolution.” *Erdc/Chl*

1360 *Chetn-Ii-56*, (February), 1–10.

1361 Bruun, P. (1962). “Sea Level Rise as a Cause of Shore Erosion.” *Proc. ASCE Journal Waterways*
1362 *Harbors Div.*, 88, 117–130.

1363 Bruun, P. (1983). “Review of conditions for uses of the Bruun rule of erosion.” *Coastal Engineering*,
1364 7(1), 77–89.

1365 Buijsman, M. C. (1997). “The impact of gas extraction and sea level rise on the morphology of the
1366 Wadden Sea.

1367 Callaghan, D. P., Ranasinghe, R., and Roelvink, D. (2013). “Probabilistic estimation of storm
1368 erosion using analytical, semi-empirical, and process based storm erosion models.” *Coastal*
1369 *Engineering*, 82, 64–75.

1370 Cañizares, R. and Irish, J. L. (2008). “Simulation of storm-induced barrier island morphodynamics
1371 and flooding.” *Coastal Engineering*, 55(12), 1089–1101.

1372 Castelle, B., Bujan, S., Marieu, V., and Ferreira, S. (2020). “16 Years of Topographic Surveys of
1373 Rip-Channelled High-Energy Meso-Macrotidal Sandy Beach.” *Scientific Data*, 7(1), 1–9.

1374 Chardón-Maldonado, P., Pintado-Patiño, J. C., and Puleo, J. A. (2016). “Advances in swash-zone
1375 research: Small-scale hydrodynamic and sediment transport processes.” *Coastal Engineering*,
1376 115, 8–25.

1377 Cho, M., Yoon, H.-D., Do, K., Son, S., and Kim, I.-H. (2019). “Comparative Study on the
1378 Numerical Simulation of Bathymetric Changes under Storm Condition.” *Journal of Coastal*
1379 *Research*, 91(sp1), 106.

1380 P. Ciavola and G. Coco, eds. (2017). *Coastal Storms*. John Wiley & Sons, Ltd, Chichester, UK (5).

1381 Cleary, W. J. and Hosier, P. E. (1979). “Geomorphology, Washover History, and Inlet Zonation:
1382 Cape Lookout, North Carolina to Bird Island, North Carolina.” *Barrier Islands: From the Gulf*
1383 *of St. Lawrence to the Gulf of Mexico*, S. P. Leatherman, ed., Academic Press.

1384 Conley, D. C. (1999). “Observations on the impact of a developing inlet in a bar built estuary.”
1385 *Continental Shelf Research*, 19(13), 1733–1754.

1386 Cowell, P., Roy, P., and Jones, R. (1992). “Shoreface Translation Model: Computer Simulation of

1387 Coastal-Sandbody Response to Sea Level Rise.” *Mathematics and Computers in Simulation*, 33,
1388 603–608.

1389 Cowell, P., Roy, P. S., and Jones, R. A. (1995). “Simulation of large-scale coastal change using a
1390 morphological behaviour model.” *Marine Geology*, 126, 45–61.

1391 Cowell, P. J., Stive, M. J., Niedoroda, A. W., De Vriend, H. J., Swift, D. J., Kaminsky, G. M., and
1392 Capobianco, M. (2003a). “The Coastal-Tract (Part 1): A Conceptual Approach to Aggregated
1393 Modeling of Low-Order Coastal Change.” *Journal of Coastal Research*, 19(4), 812–827.

1394 Cowell, P. J., Stive, M. J., Niedoroda, A. W., Swift, D. J., De Vriend, H. J., Buijsman, M. C.,
1395 Nicholls, R. J., Roy, P. S., Kaminsky, G. M., Cleveringa, J., Reed, C. W., and De Boer, P. L.
1396 (2003b). “The Coastal-Tract (Part 2): Applications of Aggregated Modeling of Lower-order
1397 Coastal Change.” *Journal of Coastal Research*, 19(4), 828–848.

1398 Cowell, P. J., Thom, B. G., Jones, R. A., Everts, C. H., and Simanovic, D. (2006). “Management
1399 of uncertainty in predicting climate-change impacts on beaches.” *Journal of Coastal Research*,
1400 22(1), 232–245.

1401 Davidson, M. A., Splinter, K. D., and Turner, I. L. (2013). “A simple equilibrium model for
1402 predicting shoreline change.” *Coastal Engineering*, 73, 191–202.

1403 Davidson, M. A., Turner, I. L., Splinter, K. D., and Harley, M. D. (2017). “Annual prediction of
1404 shoreline erosion and subsequent recovery.” *Coastal Engineering*, 130(October), 14–25.

1405 Davies, A. G., Van Rijn, L. C., Damgaard, J. S., Van De Graaff, J., and Ribberink, J. S. (2002).
1406 “Intercomparison of research and practical sand transport models.” *Coastal Engineering*, 46(1),
1407 1–23.

1408 De Goede, E. D. (2020). “Historical overview of 2D and 3D hydrodynamic modelling of shallow
1409 water flows in the Netherlands.” *Ocean Dynamics*, 70(4), 521–539.

1410 de Schipper, M. A., de Vries, S., Ruessink, G., de Zeeuw, R. C., Rutten, J., van Gelder-Maas, C.,
1411 and Stive, M. J. (2016). “Initial spreading of a mega feeder nourishment: Observations of the
1412 Sand Engine pilot project.” *Coastal Engineering*, 111, 23–38.

1413 De Vet, P. (2014). “Modelling sediment transport and morphology during overwash and breaching

1414 events.” 187.

1415 De Vriend, H. J. (1991a). “Mathematical modelling and large-scale coastal behavior - Part 2:
1416 Predictive Models.” *Journal of Hydraulic Research*, 29(6), 741–753.

1417 De Vriend, H. J. (1991b). “Mathematical modelling and large-scale coastal behaviour - Part 1:
1418 Physical Processes.” *Journal of Hydraulic Research*, 29(6), 727–740.

1419 de Vriend, H. J., Capobianco, M., Chesher, T., de Swart, H. E., Latteux, B., and Stive, M. J. (1993).
1420 “Approaches to long-term modelling of coastal morphology: A review.” *Coastal Engineering*,
1421 21(1-3), 225–269.

1422 Dean, R. G. (1991). “Equilibrium beach profiles: characteristics and applications.” *Journal of
1423 Coastal Research*, 7(1), 53–84.

1424 Dean, R. G. and Dalrymple, R. A. (2002). *Coastal Processes with Engineering Applications*.
1425 Cambridge University Press.

1426 Dean, R. G. and Houston, J. R. (2016). “Determining shoreline response to sea level rise.” *Coastal
1427 Engineering*, 114, 1–8.

1428 Dean, R. G. and Maurmeyer, E. (1983). “Models for Beach Profile Response.” *Handbook of Coastal
1429 Processes and Erosion*, P. D. Komar, ed., CRC Press, Taylor and Francis Group, Chapter 7.

1430 Deltares (2021). “UNIBEST-CL+.

1431 Dillon, W. (1970). “Submergence Effects on a Rhode Island Barrier and Lagoon and Inferences on
1432 Migration of Barriers.” *J. Geol.*, 78.

1433 Dissanayake, P., Brown, J., and Karunaratna, H. (2015). “Impacts of storm chronology on the
1434 morphological changes of the Formby beach and dune system, UK.” *Natural Hazards and Earth
1435 System Sciences*, 15(7), 1533–1543.

1436 Dolan, R. and Lins, H. (1986). “The Outer Banks of North Carolina.” *US Geological Survey
1437 Professional Paper*, (1177 B), 1–49.

1438 Donnelly, C., Kraus, N., and Larson, M. (2006). “State of Knowledge on Measurement and
1439 Modeling of Coastal Overwash.” *Journal of Coastal Research*, 22(4), 965–991.

1440 Donnelly, C., Larson, M., and Hanson, H. (2009). “A numerical model of coastal overwash.”

1441 *Proceedings of the Institution of Civil Engineers - Maritime Engineering*, 162(3), 105–114.

1442 Donnelly, C., Ranasinghe, R., and Larson, M. (2005). “Numerical modeling of beach profile change
1443 caused by overwash.” *Coastal Dynamics 2005 - Proceedings of the Fifth Coastal Dynamics
1444 International Conference*, 1–15.

1445 Dubois, R. N. (1993). “Discussion of Orrin Pilkey, Robert S. Young, Stanley R. Riggs, A. W. Sam
1446 Smith, Huiyan Wu and Walter D. Pilkey, 1993. The concept of shoreface profile of equilibrium:
1447 A critical review..” *Journal of Coastal Research*, 9(4), 28–31.

1448 D’anna, M., Idier, D., Castelle, B., Vitousek, S., and Le Cozannet, G. (2021). “Reinterpreting
1449 the bruun rule in the context of equilibrium shoreline models.” *Journal of Marine Science and
1450 Engineering*, 9(9).

1451 Edelman, T. (1968). “Dune erosion during storm conditions.” *Proc. 11th ICCE*, American Society
1452 of Civil Engineers.

1453 Edelman, T. (1972). “Dune erosion during storm conditions.” *Proc. 13th ICCE*, American Society
1454 of Civil Engineers.

1455 Eichentopf, S., Karunarathna, H., and Alsina, J. M. (2019). “Morphodynamics of sandy beaches
1456 under the influence of storm sequences: Current research status and future needs.” *Water Science
1457 and Engineering*, 12(3), 221–234.

1458 Elsayed, S. M. and Oumeraci, H. (2017). “Effect of beach slope and grain-stabilization on coastal
1459 sediment transport: An attempt to overcome the erosion overestimation by XBeach.” *Coastal
1460 Engineering*, 121(June 2016), 179–196.

1461 ESA (2021). “Sentinel-2 satellite imagery (courtesy of the U.S. Geological Survey),
1462 <<https://sentinel.esa.int/web/sentinel/missions/sentinel-2>>.

1463 Everts, C. H. (1985). “Sea Level Rise Effects on Shoreline Position.” 111(6), 985–999.

1464 Everts, C. H. (1987). “Continental Shelf Evolution in Response to a Rise in Sea Level.” *Shelf
1465 Evolution*.

1466 Fisher, J. and Overton, M. (1984). “Numerical Model for Dune Erosion Due to Wave Uprush.”
1467 *Proc. 19th ICCE*, B. L. Edge, ed., Houston, TX, American Society of Civil Engineers.

1468 Fisher, J. J. and Simpson, E. J. (1979). "Washover and Tidal Sedimentation Rates as Environmental
1469 Factors in Development of a Transgressive Barrier Shoreline." *Barrier Islands: From the Gulf of*
1470 *St. Lawrence to the Gulf of Mexico*, S. P. Leatherman, ed., Academic Press.

1471 Fisher, J. S., Overton, M. F., and Chisholm, T. (1987). "Field Measurements of Dune Erosion.." *Proceedings of the Coastal Engineering Conference*, 2(1984), 1107–1115.

1472 Frey, A. E., Connell, K. J., Hanson, H., Larson, M., Thomas, R. C., Munger, S., and Zundel,
1473 A. (2012). "GenCade Version 1 Model Theory and User 's Guide Coastal and Hydraulics
1474 Laboratory GenCade Version 1 Model Theory and User 's Guide.

1475 Gerwing, T. G., Plate, E., Kidd, J., Sinclair, J., Burns, C. W., Johnson, S., Roias, S., McCulloch,
1476 C., and Bocking, R. C. (2020). "Immediate response of fish communities and water chemistry
1477 to causeway breaching and bridge installation in the Kaouk River estuary, British Columbia,
1478 Canada." *Restoration Ecology*, 28(3), 623–631.

1479 Godfrey, P. J. (1970). "Oceanic overwash and its ecological implications on the Outer Banks of North
1480 Carolina." *Report no.*, Office of Natural Science Studies, National Parks Service, Washington,
1481 D.C.

1482 Goldstein, E. B., Coco, G., and Plant, N. G. (2019). "A review of machine learning applications to
1483 coastal sediment transport and morphodynamics." *Earth-Science Reviews*, 194(April), 97–108.

1484 Gravens, M. B., Males, R. M., and Moser, D. A. (2007). "Beach-fx: Monte Carlo life-cycle
1485 simulation model for estimating shore protection project evolution and cost benefit analyses."
1486 *Shore and Beach*, 75(1), 12–19.

1487 Grzegorzewski, A. S., Cialone, M. A., and Wamsley, T. V. (2011). "Interaction of Barrier Islands
1488 and Storms: Implications for Flood Risk Reduction in Louisiana and Mississippi." *Journal of*
1489 *Coastal Research*, 59, 156–164.

1490 Grzegorzewski, A. S., Johnson, B. D., Wamsley, T. V., and Rosati, J. D. (2013). "Sediment Transport
1491 and Morphology Modeling of Ship Island, Mississippi, USA, During Storm Events." *Coastal*
1492 *Dynamics 2013*.

1493 Gutierrez, B. T., Williams, S. J., and Thieler, E. R. (2007). "Potential for shoreline changes due to

1495 sea-level rise along the US mid-Atlantic region.” *US Geological Survey Open-File Report*, 1278,
1496 25.

1497 Hallermeier, R. J. (1980). “A profile zonation for seasonal sand beaches from wave climate.”
1498 *Coastal Engineering*, 4(C), 253–277.

1499 Halsey, S. D. (1979). “Nexus: New Model of Barrier Island Development.” *Barrier Islands: From*
1500 *the Gulf of St. Lawrence to the Gulf of Mexico*, S. P. Leatherman, ed., Academic Press.

1501 Hanson, H. and Kraus, N. C. (1989). “GENESIS: Generalized Model for Simulating Shoreline
1502 Change. Technical Report CERC-89-19.” *Report no.*

1503 Harley, M. D., Kinsela, M. A., Sánchez-García, E., and Vos, K. (2019). “Shoreline change mapping
1504 using crowd-sourced smartphone images.” *Coastal Engineering*, 150, 175–189.

1505 Harter, C. and Figlus, J. (2017). “Numerical modeling of the morphodynamic response of a low-
1506 lying barrier island beach and foredune system inundated during Hurricane Ike using XBeach
1507 and CSHORE.” *Coastal Engineering*, 120(April 2016), 64–74.

1508 Hoonhout, B. (2009). “Dune erosion along curved coastlines.

1509 Houston, J. R. (1996). “Discussion of: Young, R.S.; Pilkey, O.H.; Bush, D.M.; and Thieler, E.R.
1510 A discussion of the generalized model for simulating shoreline change (GENESIS), *Journal of*
1511 *Coastal Research* 11(3), 875-886.” *Journal of Coastal Research*, 12(4), 1038–1043.

1512 Hoyt, J. (1969). “Chenier Versus Barrier, Genetic and Stratigraphic Distinction.” *Amer. Assn.*
1513 *Petroleum Geologists Bull.*, 53.

1514 Ibaceta, R., Splinter, K. D., Harley, M. D., and Turner, I. L. (2020). “Enhanced Coastal Shoreline
1515 Modeling Using an Ensemble Kalman Filter to Include Nonstationarity in Future Wave Climates.”
1516 *Geophysical Research Letters*, 47, 1–12.

1517 Jiménez, J. A. and Sánchez-Arcilla, A. (2004). “A long-term (decadal scale) evolution model for
1518 microtidal barrier systems.” *Coastal Engineering*, 51(8-9), 749–764.

1519 Johnson, B. D., Kobayashi, N., and Gravens, M. B. (2012). “Cross-Shore Numerical Model
1520 CSHORE for Waves , Currents , Sediment Transport and Beach Profile Evolution.” *Great Lakes*
1521 *Coastal Flood Study, 2012 Federal Inter-Agency Initiative Cross-Shore*, (September), 158.

1522 Johnson, C. L., Chen, Q., Ozdemir, C. E., Xu, K., McCall, R., and Nederhoff, K. (2021). “Morpho-
1523 dynamic modeling of a low-lying barrier subject to hurricane forcing: The role of backbarrier
1524 wetlands.” *Coastal Engineering*, 167(April), 103886.

1525 Johnson, D. W. (1919). *Shore Processes and Shoreline Development*. John Wiley & Sons, Inc.

1526 Kamphuis, J. W. (1991). “Alongshore sediment transport rate distribution.” *Coastal Sediments '91*,
1527 117(6), 170–183.

1528 Kaveh, K., Reisenbüchler, M., Lamichhane, S., Liepert, T., Nguyen, N. D., Bui, M. D., and
1529 Rutschmann, P. (2019). “A Comparative Study of Comprehensive Modeling Systems for Sedi-
1530 ment Transport in a Curved Open Channel.” *Water*, 11.

1531 Keeler, A. G., McNamara, D. E., and Irish, J. L. (2018). “Responding to Sea Level Rise: Does
1532 Short-Term Risk Reduction Inhibit Successful Long-Term Adaptation?.” *Earth's Future*, 6(4),
1533 618–621.

1534 Kim, S.-c., Styles, R., Rosati, J., Ding, Y., and Permenter, R. (2020). “A Comparison of GenCade,
1535 Pelnard-Considere, and LITPACK.” *Report No. April*, United States Army Corps of Engineers.

1536 Kobayashi, N. (1987). “Analytical Solution for Dune Erosion by Storms.” *Journal of Waterway,
1537 Port, Coastal, and Ocean Engineering*, 113(4), 401–418.

1538 Kobayashi, N. (2016). “Coastal Sediment Transport Modeling for Engineering Applications.”
1539 *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 142(6), 03116001.

1540 Kobayashi, N. and Farhadzadeh, A. (2008). “Cross-Shore Numerical Model Cshore for Waves,
1541 Currents, Sediment Transport and Beach Profile Evolution.

1542 Kobayashi, N., Farhadzadeh, A., Melby, J., Johnson, B. D., and Gravens, M. B. (2010). “Wave
1543 Overtopping of Levees and Overwash of Dunes.” *Journal of Coastal Research*, 26(5), 888–900.

1544 Kobayashi, N., Payo, A., and Schmied, L. (2008). “Cross-shore suspended sand and bed load
1545 transport on beaches.” *Journal of Geophysical Research: Oceans*, 113(7), 1–17.

1546 Kobayashi, N., Tega, Y., and Hancock, M. W. (1996). “Wave Reflection and Overwash of Dunes.”
1547 *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 122(3), 150–153.

1548 Komar, P. D., McDougal, W., Marra, J., and Ruggiero, P. (1999). “The rational analysis of setback

distances: Applications to the Oregon Coast." *Shore & Beach*, 67.

Komar, P. D. and Moore, J. R. (1983). *Handbook of Coastal Processes and Erosion*. CRC Press, Taylor and Francis Group, 2018 (orig edition).

Kraus, N., Militello, A., and Todoroff, G. (2002). "Barrier Beaching Processes and Barrier Spit Breach, Stone Lagoon, California." *Shore and Beach*, 70(4), 21–28.

Kraus, N. C. (2003). "Analytical model of incipient breaching of coastal barriers." *Coastal Engineering Journal*, 45(4), 511–531.

Kraus, N. C. and Hayashi, K. (2005). "Numerical Morphologic Model of Barrier Island Breaching." 2120–2132.

Kraus, N. C., Patsch, K., and Munger, S. (2008). "Barrier beach breaching from the lagoon side, with reference to Northern California." *Shore and Beach*, 76(2), 33–43.

Kraus, N. C. and Wamsley, T. V. (2003). "Coastal Barrier Breaching, Part 1: Overview of Breaching Processes." *US Army Corps of Engineers*, (March), 1–14.

Kriebel, D. L. and Dean, R. G. (1985). "Numerical Simulation of Time-Dependent Beach and Dune Erosion." *Coastal Engineering*, 9, 221–245.

Kriebel, D. L. and Dean, R. G. (1993). "Convolution Method for Time-Dependent Beach-Profile Response." *J. Waterway, Port, Coastal, Ocean Eng.*, 119(2), 204–226.

Larson, M., Donnelly, C., Jiménez, J. A., and Hanson, H. (2009). "Analytical model of beach erosion and overwash during storms." *Proceedings of the Institution of Civil Engineers - Maritime Engineering*, 162(3), 115–125.

Larson, M., Erikson, L., and Hanson, H. (2004a). "An analytical model to predict dune erosion due to wave impact." *Coastal Engineering*, 51(8-9), 675–696.

Larson, M., Hanson, H., and Kraus, N. C. (1987). "Analytical Solutions of the One-Line Model of Shoreline Change." *Technical Report CERC-87-15*.

Larson, M. and Kraus, N. (1989). "SBEACH : Numerical Model for Simulating Storm-Induced Beach Change." *Technical Report CERC-89-9*.

Larson, M. and Kraus, N. C. (1994). "Temporal and spatial scales of beach profile change, Duck,

1576 North Carolina.” *Marine Geology*, 117(1-4), 75–94.

1577 Larson, M., Kraus, N. C., and Hanson, H. (1990). “Decoupled Numerical Model of Three-
1578 Dimensional Beach Change.” *Proc. 22nd ICCE*, Delft, The Netherlands, American Society
1579 of Civil Engineers.

1580 Larson, M., Kraus, N. C., and Hanson, H. (2002). “Simulation of Regional Longshore Sediment
1581 Transport and Coastal Evolution – the “Cascade” Model.” (January), 2612–2624.

1582 Larson, M., Palalane, J., Fredriksson, C., and Hanson, H. (2016). “Simulating cross-shore material
1583 exchange at decadal scale. Theory and model component validation.” *Coastal Engineering*, 116,
1584 57–66.

1585 Larson, M., Wise, R., and Kraus, N. C. (2004b). “Coastal Overwash, Part 2: Upgrade to SBEACH.”
1586 *Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-XIV-14*. Vicksburg,
1587 MS: US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory,
1588 Coastal an(September), 21.

1589 Latteux, B. (1995). “Techniques for long-term morphological simulation under tidal action.” *Marine
1590 Geology*, 126(1-4), 129–141.

1591 Leatherman, S. P. (1976). “Quantification of Overwash Processes.” Ph.D. thesis, University of
1592 Virginia, Charlottesville, Virginia.

1593 Leatherman, S. P. (1979). “Migration of Assateague Island, Maryland, by inlet and overwash
1594 processes.” *Geology*, 7, 104–107.

1595 Leatherman, S. P. (1983). “Barrier dynamics and landward migration with Holocene sea-level rise.”
1596 *Nature*, 301(3), 415–417.

1597 Leatherman, S. P. (1987). “Annotated Chronological Bibliography of Barrier Island Migration.”
1598 *Journal of Coastal Research*, 3(1), 1–14.

1599 Lentz, E. E. and Hapke, C. J. (2011). “Geologic framework influences on the geomorphology of
1600 an anthropogenically modified barrier island: Assessment of dune/beach changes at Fire Island,
1601 New York.” *Geomorphology*, 126(1-2), 82–96.

1602 Lesser, G. R., Roelvink, J. A., van Kester, J. A., and Stelling, G. S. (2004). “Development and

1603 validation of a three-dimensional morphological model." *Coastal Engineering*, 51(8-9), 883–
1604 915.

1605 List, J. H., Farris, A. S., and Sullivan, C. (2006). "Reversing storm hotspots on sandy beaches:
1606 Spatial and temporal characteristics." *Marine Geology*, 226, 261–279.

1607 Long, J., Dalyander, P. S., Poff, M., Spears, B., Borne, B., Thompson, D., Mickey, R., Dartez, S.,
1608 and Grandy, G. (2020). "Event and decadal-scale modeling of barrier island restoration designs
1609 for decision support." *Shore & Beach*, 88(1), 49–57.

1610 Long, J. W. and Plant, N. G. (2012). "Extended Kalman Filter framework for forecasting shoreline
1611 evolution." *Geophysical Research Letters*, 39(13), 1–6.

1612 Lorenzo-Trueba, J. and Ashton, A. D. (2014). "Rollover, drowning, and discontinuous retreat:
1613 Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic
1614 model." *Journal of Geophysical Research: Earth Surface*, 779–801.

1615 Lorenzo-Trueba, J. and Mariotti, G. (2017). "Chasing boundaries and cascade effects in a coupled
1616 barrier-marsh-lagoon system." *Geomorphology*, 290, 153–163.

1617 Ludka, B. C., Guza, R. T., O'Reilly, W. C., Merrifield, M. A., Flick, R. E., Bak, A. S., Hesser,
1618 T., Bucciarelli, R., Olfe, C., Woodward, B., Boyd, W., Smith, K., Okihiro, M., Grenzeback, R.,
1619 Parry, L., and Boyd, G. (2019). "Sixteen years of bathymetry and waves at San Diego beaches."
1620 *Scientific Data*, 6(1), 1–13.

1621 Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S. (2018).
1622 "The State of the World's Beaches." *Scientific Reports*, 8(1), 6641.

1623 Mariotti, G. and Carr, J. (2014). "Dual role of salt marsh retreat: Long-term and short-term
1624 resilience." *Water Resources Research*, 50(4), 2963–2974.

1625 Mariotti, G. and Fagherazzi, S. (2010). "A numerical model for the coupled long-term evolution of
1626 salt marshes and tidal flats." *Journal of Geophysical Research*, 115.

1627 Masetti, R., Fagherazzi, S., and Montanari, A. (2008). "Application of a barrier island translation
1628 model to the millennial-scale evolution of Sand Key, Florida." *Continental Shelf Research*, 28(9),
1629 1116–1126.

1630 McBride, R. A., Anderson, J. B., Buynevich, I. V., Cleary, W., Fenster, M. S., FitzGerald, D. M.,
1631 Harris, M. S., Hein, C. J., Klein, A. H., Liu, B., de Menezes, J. T., Pejrup, M., Riggs, S. R.,
1632 Short, A. D., Stone, G. W., Wallace, D. J., and Wang, P. (2013). *Morphodynamics of Barrier*
1633 *Systems: A Synthesis*, Vol. 10.

1634 McCall, R. T., Van Thiel de Vries, J. S., Plant, N. G., Van Dongeren, A. R., Roelvink, J. A.,
1635 Thompson, D. M., and Reniers, A. J. (2010). “Two-dimensional time dependent hurricane
1636 overwash and erosion modeling at Santa Rosa Island.” *Coastal Engineering*, 57(7), 668–683.

1637 McCann, S. (1972). “Reconnaissance Survey of Hog Island, Prince Edward Island.” *Maritime*
1638 *Sediments*, 0(3), 107–113.

1639 McCann, S. (1979). “Barrier Islands in the Southern Gulf of St. Lawrence, Canada.” *Barrier*
1640 *Islands: From the Gulf of St. Lawrence to the Gulf of Mexico*, S. P. Leatherman, ed., Academic
1641 Press.

1642 McCarroll, R. J., Masselink, G., Valiente, N. G., Scott, T., Wiggins, M., Kirby, J. A., and Davidson,
1643 M. A. (2021). “A rules-based shoreface translation and sediment budgeting tool for estimating
1644 coastal change: ShoreTrans.” *Marine Geology*, 435, 106466.

1645 McNamara, D. E. and Keeler, A. (2013). “A coupled physical and economic model of the response
1646 of coastal real estate to climate risk.” *Nature Climate Change*, 3(6), 559–562.

1647 McNamara, D. E. and Lazarus, E. D. (2018). “Barrier Islands as Coupled Human-Landscape Sys-
1648 tems.” *Barrier Dynamics and Response to Changing Climate*, L. J. Moore and A. B. Murray,
1649 eds., Springer, New York, 363–383.

1650 McNamara, D. E. and Werner, B. T. (2008). “Coupled barrier island-resort model: 1. Emergent
1651 instabilities induced by strong human-landscape interactions.” *Journal of Geophysical Research:*
1652 *Earth Surface*, 113(1), 1–10.

1653 Miller, J. K. and Dean, R. G. (2004). “A simple new shoreline change model.” *Coastal Engineering*,
1654 51(7), 531–556.

1655 Montaño, J., Coco, G., Antolínez, J. A., Beuzen, T., Bryan, K. R., Cagigal, L., Castelle, B.,
1656 Davidson, M. A., Goldstein, E. B., Ibaceta, R., Idier, D., Ludka, B. C., Masoud-Ansari, S.,

1657 Méndez, F. J., Murray, A. B., Plant, N. G., Ratliff, K. M., Robinet, A., Rueda, A., Sénéchal, N.,
1658 Simmons, J. A., Splinter, K. D., Stephens, S., Townend, I., Vitousek, S., and Vos, K. (2020).
1659 “Blind testing of shoreline evolution models.” *Scientific Reports*, 10(1), 1–10.

1660 Moody, D. (1964). “Coastal morphology and processes in relation to the development of submarine
1661 sand ridges off Bethany Beach, Delaware.” Ph.D. thesis, Johns Hopkins University, Baltimore,
1662 Maryland.

1663 Moore, L. J., List, J. H., Williams, S. J., and Stolper, D. (2007). “Modeling Barrier Island Response
1664 to Sea-Level Rise in the Outer Banks, North Carolina.” *ASCE Coastal Sediments*, (December).

1665 Moore, L. J., List, J. H., Williams, S. J., and Stolper, D. (2010). “Complexities in barrier island
1666 response to sea level rise: Insights from numerical model experiments, North Carolina Outer
1667 Banks.” *Journal of Geophysical Research*, 115(F3).

1668 Moore, L. J. and Murray, A. B. (2018). *Barrier dynamics and response to changing climate*.

1669 Moslow, T. F. and Heron Jr., S. D. (1979). “Quaternary Evolution of Core Banks, North Carolina:
1670 Cape Lookout to New Drum Inlet.” *Barrier Islands: From the Gulf of St. Lawrence to the Gulf
1671 of Mexico*, S. P. Leatherman, ed., Academic Press.

1672 Mull, J. and Ruggiero, P. (2014). “Estimating Storm-Induced Dune Erosion and Overtopping along
1673 U.S. West Coast Beaches.” *Journal of Coastal Research*, 298(6), 1173–1187.

1674 Murray, A. B. (2003). “Contrasting the Goals, Strategies, and Predictions Associated With Simpli-
1675 fied Numerical Models and Detailed Simulations.” *Prediction in Geomorphology, Geophysical
1676 Monograph 135*.

1677 NASEM (2018). *Understanding the Long-Term Evolution of the Coupled Natural-Human Coastal
1678 System*.

1679 Nichols, R. and Marston, A. (1939). “Shoreline changes in Rhode Island produced by hurricane of
1680 September 21, 1938..” *Geological Society of America Bulletin*, 50.

1681 Niedoroda, A. W., Reed, C. W., Swift, D. J., Arato, H., and Hoyanagi, K. (1995). “Modeling
1682 shore-normal large-scale coastal evolution.” *Marine Geology*, 126, 181–199.

1683 Nielsen, P. (2009). *Coastal And Estuarine Processes*. World Scientific Publishing Company.

1684 Nienhuis, J. H., Heijkers, L. G., and Ruessink, G. (2021). "Barrier Breaching Versus Overwash
1685 Deposition: Predicting the Morphologic Impact of Storms on Coastal Barriers." *Journal of*
1686 *Geophysical Research: Earth Surface*, 126(6), 1–17.

1687 Nienhuis, J. H. and Lorenzo-Trueba, J. (2019). "Simulating barrier island response to sea level
1688 rise with the barrier island and inlet environment (BRIE) model v1.0." *Geoscientific Model*
1689 *Development*, 12(9), 4013–4030.

1690 Nishi, R. and Kraus, N. (1996). "Mechanism and Calculation of Sand Dune Erosion by Storms."
1691 *Proc. 26th ICCE*, 3034–3047.

1692 Oertel, G. F. (1979). "Barrier Island Development during the Holocene Recession, Southeastern
1693 United States." *Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico*, S. P.
1694 Leatherman, ed., Academic Press.

1695 Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai,
1696 R., Cifuentes-Jara, M., Deconto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac,
1697 B., and Sebesvari, Z. (2019). "Sea Level Rise and Implications for Low Lying Islands, Coasts
1698 and Communities Coordinating." *IPCC SR Ocean and Cryosphere*, H.-O. Portner, D. Roberts, V.
1699 Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintobeck, A. Alegria, M. Nicolai,
1700 A. Okem, J. Petzold, B. Rama, and N. Weye, eds., In press.

1701 Ottos Jr., E. (1970). "Development and Migration of Barrier Islands, Northern Gulf of Mexico."
1702 *Geol. Soc. Amer. Bull.*, 81.

1703 Over, J.-S., Brown, J., Sherwood, C., Hegermiller, C., Wernette, P., Ritchie, A., and Warrick, J.
1704 (2021). "A survey of storm-induced seaward-transport features observed during the 2019 and
1705 2020 hurricane seasons." *Shore & Beach*, 89(2), 31–40.

1706 Overton, M. F., Fisher, J. S., and Young, M. A. (1988). "Laboratory Investigation of Dune Erosion."
1707 *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 114(3), 367–373.

1708 Overton, M. F., Pratikto, W. A., Lu, J. C., and Fisher, J. S. (1994). "Laboratory investigation of
1709 dune erosion as a function of sand grain size and dune density." *Coastal Engineering*, 23(1-2),
1710 151–165.

1711 Palalane, J. and Larson, M. (2020). "A Long-Term Coastal Evolution Model with Longshore and
1712 Cross-Shore Transport." *Journal of Coastal Research*, 36(2), 411–423.

1713 Palmsten, M. L. and Holman, R. A. (2012). "Laboratory investigation of dune erosion using stereo
1714 video." *Coastal Engineering*, 60(1), 123–135.

1715 Passeri, D. L., Long, J. W., Plant, N. G., Bilskie, M. V., and Hagen, S. C. (2018). "The influence
1716 of bed friction variability due to land cover on storm-driven barrier island morphodynamics."
1717 *Coastal Engineering*, 132(November 2017), 82–94.

1718 Pelnard-Considere, R. (1956). "Essai de theorie de l'evolution des formes de rivage en plages de
1719 sable et de galets.

1720 Pender, D. and Karunarathna, H. (2013). "A statistical-process based approach for modelling beach
1721 profile variability." *Coastal Engineering*, 81, 19–29.

1722 Penland, S. and Boyd, R. (1981). "Shoreline Changes on the Louisiana Barrier Coast." *Oceans*.

1723 Perlin, M. and Dean, R. G. (1979). "Prediction of Beach Planforms With Littoral Controls."
1724 *Proceedings of the Coastal Engineering Conference*, 2(1), 1818–1838.

1725 Perlin, M. and Dean, R. G. (1985). "3-D Model of Bathymetric Response to Structures." *J.
1726 Waterway, Port, Coastal, Ocean Eng.*, 111(2), 153–170.

1727 Pierce, J. (1969). "Sediment budget along a barrier island chain." *Sedimentary Geology*, 3, 5–16.

1728 Pierce, J. (1970). "Tidal Inlets and Washover Fans." *J. Geol.*, 78.

1729 Pilkey, O. H. and Davis, T. W. (1987). "An analysis of coastal recession models: North Carolina
1730 coast." *Sea-level fluctuation and coastal evolution*, 59–68.

1731 Pilkey, O. H., Neal, W. J., Kelley, J. T., and Cooper, J. A. G. (2011). *The World's Beaches: A Global
1732 Guide to the Science of the Shoreline*.

1733 Pilkey, O. H., Young, R. S., Riggs, S. R., Smith, A. W., and Pilkey, W. D. (1993). "The concept of
1734 shoreface profile of equilibrium: a critical review." *Journal of Coastal Research*, 9(1), 255–278.

1735 Quartel, S., Ruessink, B. G., and Kroon, A. (2007). "Daily to seasonal cross-shore behaviour
1736 of quasi-persistent intertidal beach morphology." *Earth Surface Processes and Landforms*, 32,
1737 1293–1307.

1738 Ranasinghe, R. (2020). "On the need for a new generation of coastal change models for the 21st
1739 century." *Scientific Reports*, 10(1), 1–6.

1740 Ranasinghe, R., Callaghan, D., and Stive, M. J. (2012a). "Estimating coastal recession due to sea
1741 level rise: Beyond the Bruun rule." *Climatic Change*, 110(3-4), 561–574.

1742 Ranasinghe, R., Holman, R., De Schipper, M., Lippmann, T., Wehof, J., Duong, T. M., Roelvink,
1743 D., and Stive, M. (2012b). "Quantifying nearshore morphological recovery time scales using
1744 argus video imaging: Palm Beach, Sydney and Duck, North Carolina." *Proceedings of the
1745 Coastal Engineering Conference*, 1–7.

1746 Rathje, E. M., Dawson, C., Padgett, J. E., Pinelli, J.-P., Stanzione, D., Adair, A., Arduino, P.,
1747 Brandenberg, S. J., Cockerill, T., Dey, C., Esteva, M., Haan, F. L., Hanlon, M., Kareem, A.,
1748 Lowes, L., Mock, S., and Mosqueda, G. (2017). "DesignSafe: New Cyberinfrastructure for
1749 Natural Hazards Engineering." *Natural Hazards Review*, 18(3), 06017001.

1750 Raubenheimer, B. (2020). "DEVELOPMENT OF A NEARSHORE EXTREME EVENTS RE-
1751 CONNAISSANCE COMMUNITY." *Coastal Engineering Proceedings*.

1752 Reeve, D. E., Karunarathna, H., Pan, S., Horrillo-Caraballo, J. M., Różyński, G., and Ranasinghe,
1753 R. (2016). "Data-driven and hybrid coastal morphological prediction methods for mesoscale
1754 forecasting." *Geomorphology*, 256, 49–67.

1755 Reeves, I. R., Moore, L. J., Murray, A. B., Anarde, K. A., and Goldstein, E. B. (2021). "Dune
1756 Dynamics Drive Discontinuous Barrier Retreat." *Geophysical Research Letters*, 48(13), 1–11.

1757 Robinet, A., Idier, D., Castelle, B., and Marieu, V. (2018). "A reduced-complexity shoreline change
1758 model combining longshore and cross-shore processes: The LX-Shore model." *Environmental
1759 Modelling and Software*, 109(August), 1–16.

1760 Roelvink, D., Huisman, B., Elghandour, A., Ghonim, M., and Reijns, J. (2020). "Efficient Modeling
1761 of Complex Sandy Coastal Evolution at Monthly to Century Time Scales." *Frontiers in Marine
1762 Science*, 7(July), 1–20.

1763 Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., and Lescinski, J.
1764 (2009). "Modelling storm impacts on beaches, dunes and barrier islands." *Coastal Engineering*,

1765 56(11-12), 1133–1152.

1766 1767 Roelvink, J. A. (2006). “Coastal morphodynamic evolution techniques.” *Coastal Engineering*, 53(2-3), 277–287.

1768 1769 1770 Rogers, L. J., Moore, L. J., Goldstein, E. B., Hein, C. J., Lorenzo-trueba, J., and Ashton, A. D. (2015). “Anthropogenic controls on overwash deposition: Evidence and consequences.” *Journal of Geophysical Research: Earth Surface*, 2609–2624.

1771 1772 1773 Rosati, J. D., Dean, R. G., Kraus, N. C., and Stone, G. W. (2006). “Morphologic Evolution of Subsiding Barrier Island Systems.” *Proc. 30th ICCE*, San Diego, California, American Society of Civil Engineers.

1774 1775 Rosati, J. D., Dean, R. G., and Stone, G. W. (2010). “A cross-shore model of barrier island migration over a compressible substrate.” *Marine Geology*, 271(1-2), 1–16.

1776 1777 Rosati, J. D., Dean, R. G., and Walton, T. L. (2013). “The modified Bruun Rule extended for landward transport.” *Marine Geology*, 340, 71–81.

1778 1779 1780 Rosati, J. D. and Stone, G. W. (2009). “Geomorphologic Evolution of Barrier Islands along the Northern U.S. Gulf of Mexico and Implications for Engineering Design in Barrier Restoration.” *Journal of Coastal Research*, 251, 8–22.

1781 1782 Rosen, P. S. (1979). “Aeolian Dynamics of a Barrier Island System.” *Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico*, S. P. Leatherman, ed., Academic Press.

1783 1784 1785 Ruessink, B. G., Kuriyama, Y., Reniers, A. J., Roelvink, J. A., and Walstra, D. J. R. (2007). “Modeling cross-shore sandbar behavior on the timescale of weeks.” *Journal of Geophysical Research: Earth Surface*, 112(3), 1–15.

1786 1787 1788 Ruggiero, P., Buijsman, M., Kaminsky, G. M., and Gelfenbaum, G. (2010). “Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change.” *Marine Geology*, 273(1-4), 127–140.

1789 1790 1791 Safak, I., List, J. H., Warner, J. C., and Schwab, W. C. (2017). “Persistent Shoreline Shape Induced From Offshore Geologic Framework: Effects of Shoreface Connected Ridges.” *Journal of Geophysical Research: Oceans*, 122(11), 8721–8738.

1792 Safak, I., Warner, J. C., and List, J. H. (2016). “Barrier island breach evolution: Alongshore trans-
1793 port and bay-ocean pressure gradient interactions.” *Journal of Geophysical Research: Oceans*,
1794 121, 8720–8730.

1795 Sallenger, A. H. (2000). “Storm impact scale for barrier islands.” *Journal of Coastal Research*,
1796 16(3), 890–895.

1797 Sánchez-Arcilla, A. and Jiménez, J. A. (1994). “Breaching in a wave-dominated barrier spit: The
1798 trabucador bar (north-eastern spanish coast).” *Earth Surface Processes and Landforms*, 19(6),
1799 483–498.

1800 Schwartz, M. L. (1967). “The Bruun Theory of Sea-Level Rise as a Cause of Shore Erosion.” *The
1801 Journal of Geology*, 75(1), 76–92.

1802 Schwartz, M. L. (1973). “Barrier Islands.” *Benchmark Papers in Geology*, Dowden, Hutchinson &
1803 Ross, Inc.

1804 Senechal, N., Castelle, B., and Bryan, K. R. (2017). “Storm Clustering and Beach Response.”
1805 *Coastal Storms: Processes and Impacts*, P. Ciavola and G. Coco, eds., John Wiley & Sons Ltd.,
1806 Chapter 8.

1807 Shaler, N. (1895). *Beaches and Tidal Marshes of the Atlantic Coast*. American Book Company.

1808 Shaw, L., Helmholz, P., Belton, D., and Addy, N. (2019). “Comparison of uav lidar and imagery for
1809 beach monitoring.” *International Archives of the Photogrammetry, Remote Sensing and Spatial
1810 Information Sciences - ISPRS Archives*, 42(2/W13), 589–596.

1811 Shephard, F. P. (1950). “Beach cycles in southern California.” *Report no.*, United States Army
1812 Corps of Engineers.

1813 Sherwood, C. R., Dongeren, A. v., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta,
1814 M., Penko, A. M., Rafati, Y., Roelvink, D., der Lught, M. v., Veeramony, J., and Warner, J. C.
1815 (2022). “Modeling the Morphodynamics of Coastal Responses to Extreme Events: What Shape
1816 Are We In?.” *Annual Review of Marine Science*, 14(1), 1–36.

1817 Sherwood, C. R., Long, J. W., Dickhudt, P. J., Dalyander, P. S., Thompson, D. M., and Plant, N. G.
1818 (2014). “Inundation of Barrier Islands during a Hurricane.” 1–18.

1819 Shin, C. S. (1996). "A One-Dimensional Model for Storm Breaching of Barrier Islands.

1820 Simmons, J. A., Splinter, K. D., Harley, M. D., and Turner, I. L. (2019). "Calibration data re-
1821 quirements for modelling subaerial beach storm erosion." *Coastal Engineering*, 152(November
1822 2018), 103507.

1823 Smallegan, S. M. and Irish, J. L. (2017). "Barrier Island Morphological Change by Bay-Side Storm
1824 Surge." *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 143(5), 04017025.

1825 Soulsby, R. L. (1997). *Dynamics of Marine Sands*. Thomas Telford, London.

1826 Splinter, K. D., Carley, J. T., Golshani, A., and Tomlinson, R. (2014). "A relationship to describe
1827 the cumulative impact of storm clusters on beach erosion." *Coastal Engineering*, 83, 49–55.

1828 Steetzel, H. J. (1993). *Cross-Shore Transport during Storm Surges*. Ph.D. Dissertation, Technische
1829 Universiteit Delft.

1830 Steetzel, H. J., de Vroege, H., van Rijn, L. C., and Stam, J. M. (1998). "Morphological modelling
1831 using a modified multi-layer approach." *Proceedings of the Coastal Engineering Conference*, 2,
1832 2368–2381.

1833 Stive, M. J. and de Vriend, H. J. (1995). "Modelling shoreface profile evolution." *Marine Geology*,
1834 126, 235–248.

1835 Stive, M. J., De Vriend, H. J., Cowell, P. J., and Niedoroda, A. W. (1995). "Behaviour-oriented
1836 models of shoreface evolution." *Coastal Dynamics - Proceedings of the International Conference*,
1837 (January), 998–1005.

1838 Stive, M. J., Roelvink, D. J., and de Vriend, H. (1990). "Large-Scale Coastal Evolution Concept."
1839 *Proc. 22nd ICCE*, 1962–1974.

1840 Stolper, D., List, J. H., and Thieler, E. R. (2005). "Simulating the evolution of coastal morphology
1841 and stratigraphy with a new morphological-behaviour model (GEOMBEST)." *Marine Geology*,
1842 218, 17–36.

1843 Storms, J. E., Weltje, G., van Dijke, J., Geel, C., and Kroonenberg, S. (2002). "Process-Response
1844 Modeling of Wave-Dominated Coastal Systems: Simulating Evolution and Stratigraphy on
1845 Geological Timescales." *Journal of Sedimentary Research*, 72(2), 226–239.

1846 Stutz, M. L. and Pilkey, O. H. (2011). "Open-Ocean Barrier Islands: Global Influence of Climatic,
1847 Oceanographic, and Depositional Settings." *Journal of Coastal Research*, 272, 207–222.

1848 Swift, D. J. (1975). "Barrier-island genesis: evidence from the central atlantic shelf, eastern
1849 U.S.A.." *Sedimentary Geology*, 14(1), 1–43.

1850 Tanaka, H., Suntoyo, and Nagasawa, T. (2002). "Sediment Intrusion Into Gamo Lagoon by Wave
1851 Overtopping." *Coastal Engineering 2002*, World Scientific Publishing Company, 823–835 (3).

1852 Terwindt, J. and Battjes, J. (1990). "Research on Large-Scale Coastal Behavior." *Proc. 22nd ICCE*,
1853 1975–1983, <<http://0-ovidsp.tx.ovid.com.library.lausys.georgetown.edu/sp-3.2.1/ovidweb.cgi>>.

1854 Thieler, E. R., Pilkey, O. H., Young, R. S., Bush, D. M., and Chai, F. (2000). "The use of
1855 mathematical models to predict beach behavior for U.S. coastal engineering: A critical review."
1856 *Journal of Coastal Research*, 16(1), 48–70.

1857 Thomas, R. C. and Frey, A. E. (2013). "Shoreline change modeling using one-line models: General
1858 model comparison and literature review." *ERDC/CHL CHETN-II-55. Vicksburg, MS: US Army
1859 Engineer Research and Development Center*, 1956(December).

1860 Toimil, A., Camus, P., Losada, I. J., Le Cozannet, G., Nicholls, R. J., Idier, D., and Maspataud, A.
1861 (2020). "Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods
1862 and uncertainty treatment." *Earth-Science Reviews*, 202(January), 103110.

1863 Toimil, A., Losada, I. J., Camus, P., and Díaz-Simal, P. (2017). "Managing coastal erosion under
1864 climate change at the regional scale." *Coastal Engineering*, 128(August), 106–122.

1865 Troy, C. D., Cheng, Y. T., Lin, Y. C., and Habib, A. (2021). "Rapid lake Michigan shoreline changes
1866 revealed by UAV LiDAR surveys." *Coastal Engineering*, 170(March), 104008.

1867 Turner, I. L., Harley, M. D., Almar, R., and Bergsma, E. W. (2021). "Satellite optical imagery in
1868 Coastal Engineering." *Coastal Engineering*, 167, 103919.

1869 Turner, I. L., Harley, M. D., Short, A. D., Simmons, J. A., Bracs, M. A., Phillips, M. S., and
1870 Splinter, K. D. (2016). "A multi-decade dataset of monthly beach profile surveys and inshore
1871 wave forcing at Narrabeen, Australia." *Scientific Data*, 3, 1–13.

1872 USACE (1984). "Shore Protection Manual: Vol. I." *Report no.*

1873 Van Baaren, P. F. (2007). "Influence of the wave period in the dune erosion model DUROSTA.

1874 van der Lught, M. A., Quataert, E., van Dongeren, A., van Ormondt, M., and Sherwood, C. R.

1875 (2019). "Morphodynamic modeling of the response of two barrier islands to Atlantic hurricane

1876 forcing." *Estuarine, Coastal and Shelf Science*, 229(May), 106404.

1877 van Dongeren, A., Bolle, A., Voudoukas, M. I., Plomaritis, T. A., Eftimova, P., Williams, J.,

1878 Armaroli, C., Idier, D., Geer, P. V., van Thiel de Vries, J., Haerens, P., Taborda, R., Benavente,

1879 J., Trifonova, E., Ciavola, P., Balouin, Y., and Roelvink, D. (2009). "MICORE: Dune Erosion

1880 and Overwash Model Validation with Data From Nine European Field Sites." *Coastal Dynamics*

1881 2009.

1882 van Ormondt, M., Nelson, T. R., Hapke, C. J., and Roelvink, D. (2020). "Morphodynamic modelling

1883 of the wilderness breach, Fire Island, New York. Part I: Model set-up and validation." *Coastal*

1884 *Engineering*, 157(December 2019), 103621.

1885 van Rijn, L. (1993). "Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas."

1886 *Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas*, 1–17.

1887 Van Rijn, L. C. (1984). "Sediment transport: bed load transport.." *Journal of Hydraulic Engineering*

1888 - ASCE, 110(10), 1431–1456.

1889 Vellinga, P. (1986). "Beach and dune erosion during storm surges." Ph.D. thesis, Bibliotheek

1890 Technische University, Delft, Netherlands.

1891 Vemulakonda, S. R., Scheffner, N. W., Earickson, J. A., and Chou, L. W. (1988). "Kings Bay Coastal

1892 Processes Numerical Model." *Technical Report - US Army Coastal Engineering Research Center*,

1893 88-3.

1894 VGIN (2021). "Virginia Base Mapping Program (VBMP) Orthoimagery,

1895 <<https://vgin.vdem.virginia.gov/pages/base-mapping>>.

1896 Visser, P. J. (1998). "Breach erosion in sand-dikes." *Proceedings of the Coastal Engineering*

1897 *Conference*, 3, 3516–3528.

1898 Visser, P. J. (2000). "A model for breach erosion in sand-dikes." *Coastal Engineering 2000 - Pro-*

1899 *ceedings of the 27th International Conference on Coastal Engineering, ICCE 2000*, 276(March

1900 2001), 3829–3842.

1901 Vitousek, S. and Barnard, P. L. (2015). “A Nonlinear, Implicit One-Line Model To Predict Long-
1902 Term Shoreline Change.” 1–14.

1903 Vitousek, S., Barnard, P. L., Limber, P., Erikson, L., and Cole, B. (2017). “A model integrating
1904 longshore and cross-shore processes for predicting long-term shoreline response to climate
1905 change.” *Journal of Geophysical Research: Earth Surface*, 782–806.

1906 Vitousek, S., Cagigal, L., Montaño, J., and Rueda, A. (2021). “The Application of Ensemble
1907 Wave Forcing to Quantify Uncertainty of Shoreline Change Predictions Journal of Geophysical
1908 Research : Earth Surface.” *Journal of Geophysical Research: Earth Surface*, 1–43.

1909 Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., and Turner, I. L. (2019). “Sub-annual to
1910 multi-decadal shoreline variability from publicly available satellite imagery.” *Coastal Engineer-
1911 ing*, 150(April), 160–174.

1912 Walters, D., Moore, L. J., Vinent, O. D., Fagherazzi, S., and Mariotti, G. (2014). “Interactions
1913 between barrier islands and backbarrier marshes affect island system response to sea level rise:
1914 Insights from a coupled model.” *Journal of Geophysical Research: Earth Surface*, 2013–2031.

1915 Wamsley, T. V., Cialone, M. A., Smith, J. M., Ebersole, B. A., and Grzegorzewski, A. S. (2009).
1916 “Influence of landscape restoration and degradation on storm surge and waves in southern
1917 Louisiana.” *Natural Hazards*, 51(1), 207–224.

1918 Wamsley, T. V. and Kraus, N. C. (2005). “Coastal Barrier Island Breaching, Part 2: Mechanical
1919 Breaching and Breach Closure.” *Erdc/Chl Chetn-Iv-65*, (August), 21.

1920 Warner, J. C., Armstrong, B., He, R., and Zambon, J. B. (2010). “Development of a Coupled Ocean-
1921 Atmosphere-Wave-Sediment Transport (COAWST) Modeling System.” *Ocean Modelling*, 35(3),
1922 230–244.

1923 Warner, J. C., Olabarrieta, M., Sherwood, C. R., Hegermiller, C., and Kalra, T. S. (2018). “In-
1924 vestigations of Morphological Changes During Hurricane Sandy Using a Coupled Modeling
1925 System.” *AGU Fall Meeting Abstracts*.

1926 Wartman, J., Berman, J. W., Bostrom, A., Miles, S., Olsen, M., Gurley, K., Irish, J., Lowes, L.,

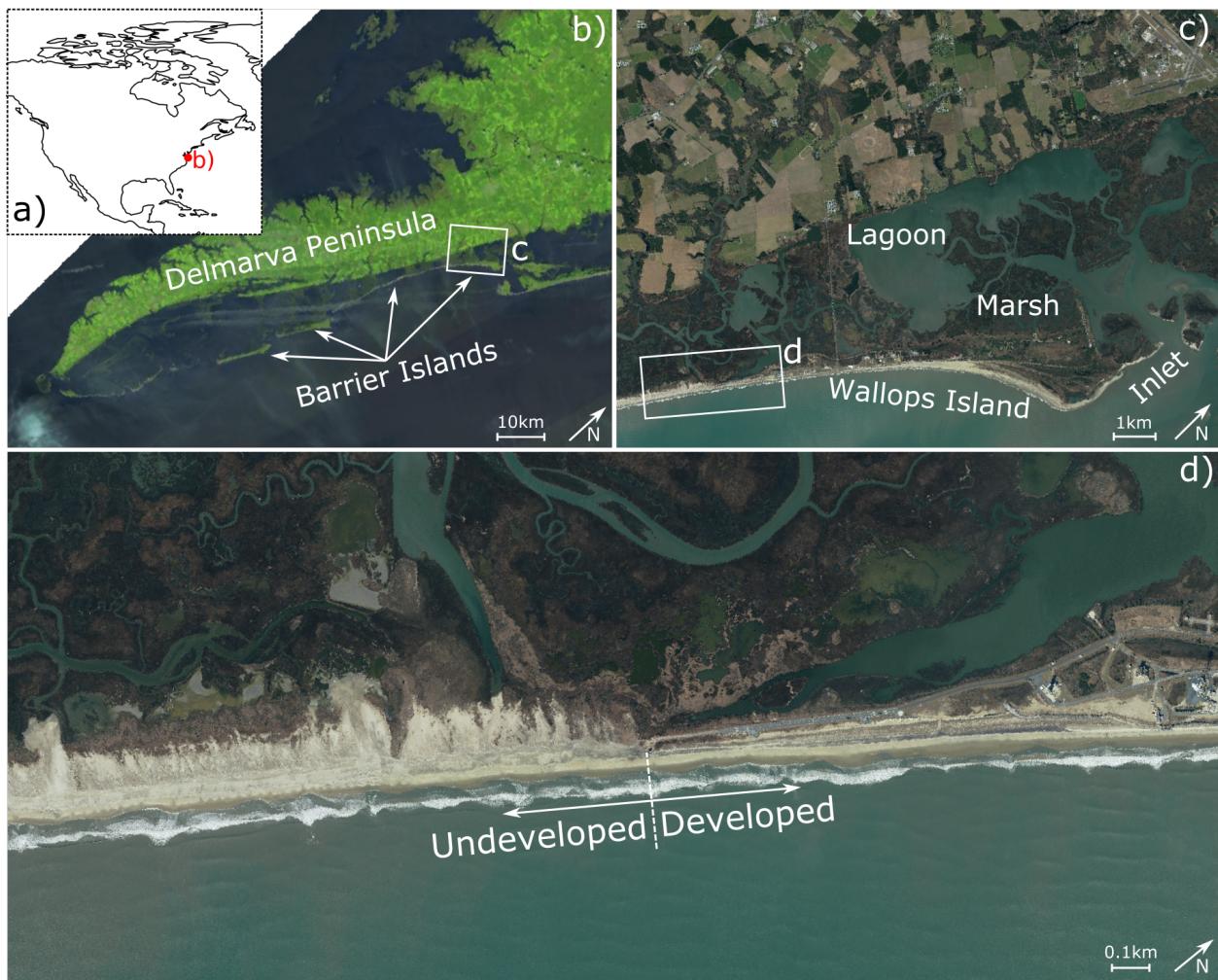
1927 Tanner, T., Dafni, J., Grilliot, M., Lyda, A., and Peltier, J. (2020). “Research Needs, Challenges,
1928 and Strategic Approaches for Natural Hazards and Disaster Reconnaissance.” *Frontiers in Built
1929 Environment*, 6(November), 1–17.

1930 Williams, P. (1978). “Laboratory development of a predictive relationship for washover volume on
1931 barrier island coastlines.” Ph.D. thesis, University of Delaware, Newark, Delaware.

1932 Wise, R. A., Smith, J., and Larson, M. (1996). “SBEACH: Report 4 - Cross-Shore Transport Under
1933 Random Waves and Model Validation with SUPERTANK and Field Data.” (April), 140.

1934 Wolinsky, M. A. and Murray, A. B. (2009). “A unifying framework for shoreline migration:
1935 2. Application to wave-dominated coasts.” *Journal of Geophysical Research: Earth Surface*,
1936 114(1), 1–13.

1937 Yates, M. L., Guza, R. T., and O'Reilly, W. C. (2009). “Equilibrium shoreline response: Observa-
1938 tions and modeling.” *Journal of Geophysical Research: Oceans*, 114(9), 1–16.


1939 Young, R., Pilkey, O. H., Bush, D., and Thieler, E. (1995). “A discussion of the generalized model
1940 for simulating shoreline change (GENESIS).” *Journal of Coastal Research*, 11(3), 875–886.

1941 Zhang, K. and Leatherman, S. (2011). “Barrier Island Population along the U.S. Atlantic and Gulf
1942 Coasts.” *Journal of Coastal Research*, 27(2), 356.

1943 Zinnert, J. C., Via, S. M., Nettleton, B. P., Tuley, P. A., Moore, L. J., and Stallins, J. A. (2019).
1944 “Connectivity in coastal systems: Barrier island vegetation influences upland migration in a
1945 changing climate.” *Global Change Biology*, 25(7), 2419–2430.

1946	List of Figures	
1947	1	Satellite and Aerial Images of a Virginia Barrier Island. <i>a) Location map. b) Delmarva Peninsula (ESA 2021). c) Wallops Island (VGIN 2021). d) Zoomed Section of Wallops Island (VGIN 2021)</i> 76
1948	2	Storm Impact Scale. <i>Figure modified from Sallenger (2000) with Outwash regime.</i> 77
1949	3	Event-Scale Models and Formulations. <i>Models are shown according to their publication chronology and are aligned with their respective processes. The color spectrum spans the range of modeled processes from beach and dune erosion (yellow-green), breaching (green-blue), and overwash (blue-violet).</i> 78
1950	4	Beach and Dune Erosion. <i>a) Image of beach and dune erosion from Hurricane Matthew (Brennan 2016). b) Volume balance approach that predicts dune recession (R) by equating the erosion volume (V_E) and deposition volume (V_D), modified from Edelman (1972). c) Swash impact approach that relates wave bore velocity (u_{bore}) to the swash impact force (F_{SI}) which creates notching (V_N) that leads to avalanching (V_A), modified from Nishi and Kraus (1996).</i> 79
1951	5	Overwash Modeling Approaches. <i>a) Traditional bulk approach that predicts washover volume (V_{WSH}) based on bulk parameters (e.g., excess runup height ΔR), modified from Donnelly et al. (2009). b) Annualized bulk approach that predicts V_{WSH} based on width (W) and height (H) deviations from equilibrium values (W_e & H_e) based on the storm surge level (SSL), modified from Lorenzo-Trueba and Ashton (2014).</i> 80
1952	6	Long-term Morphodynamic Models with a Coupled Approach. <i>Models are shown according to their publication chronology and are aligned with their respective processes. The color spectrum spans the range of modeled processes from shoreface erosion or shoreline change (yellow-green), to dune growth/erosion (green-blue), to overwash (blue-violet).</i> 81

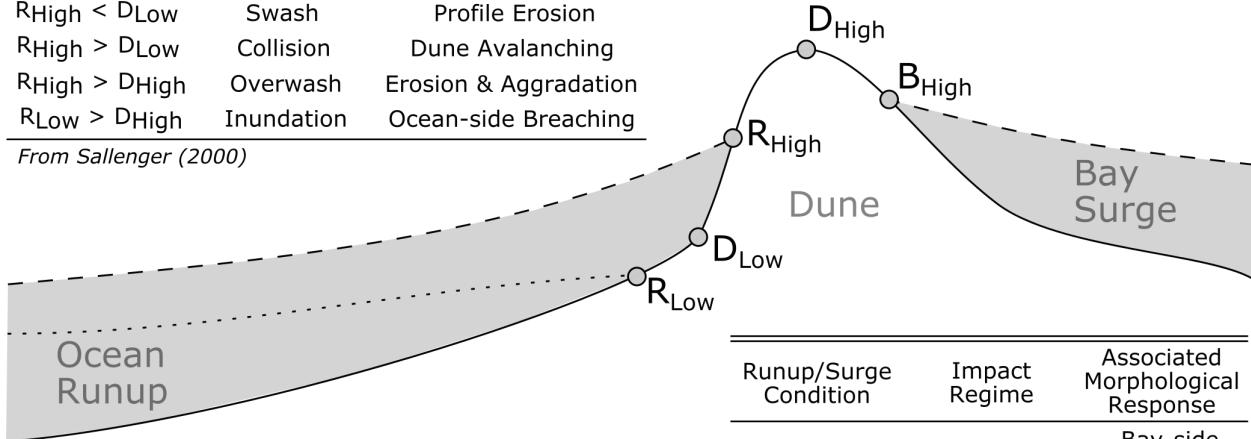
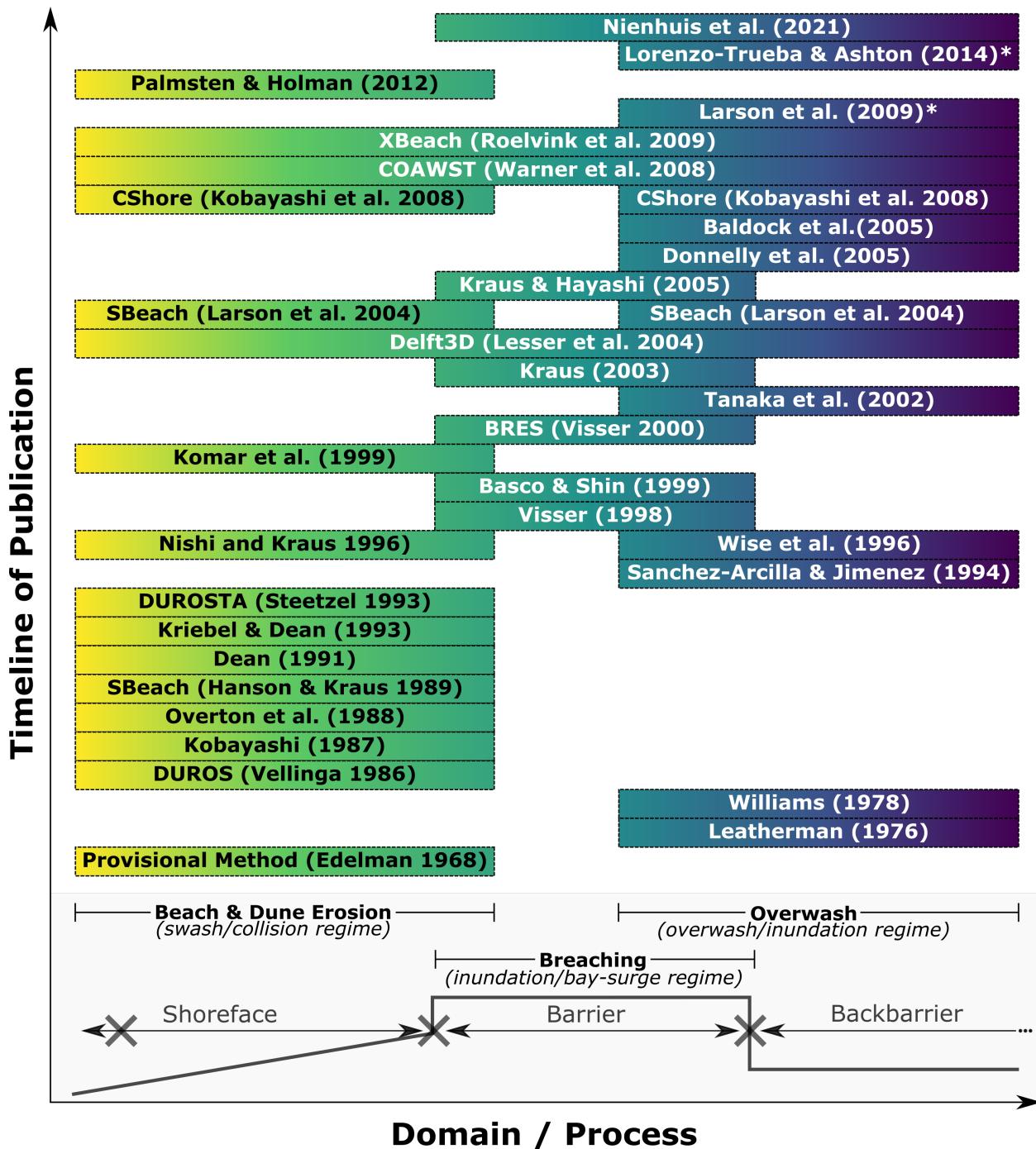
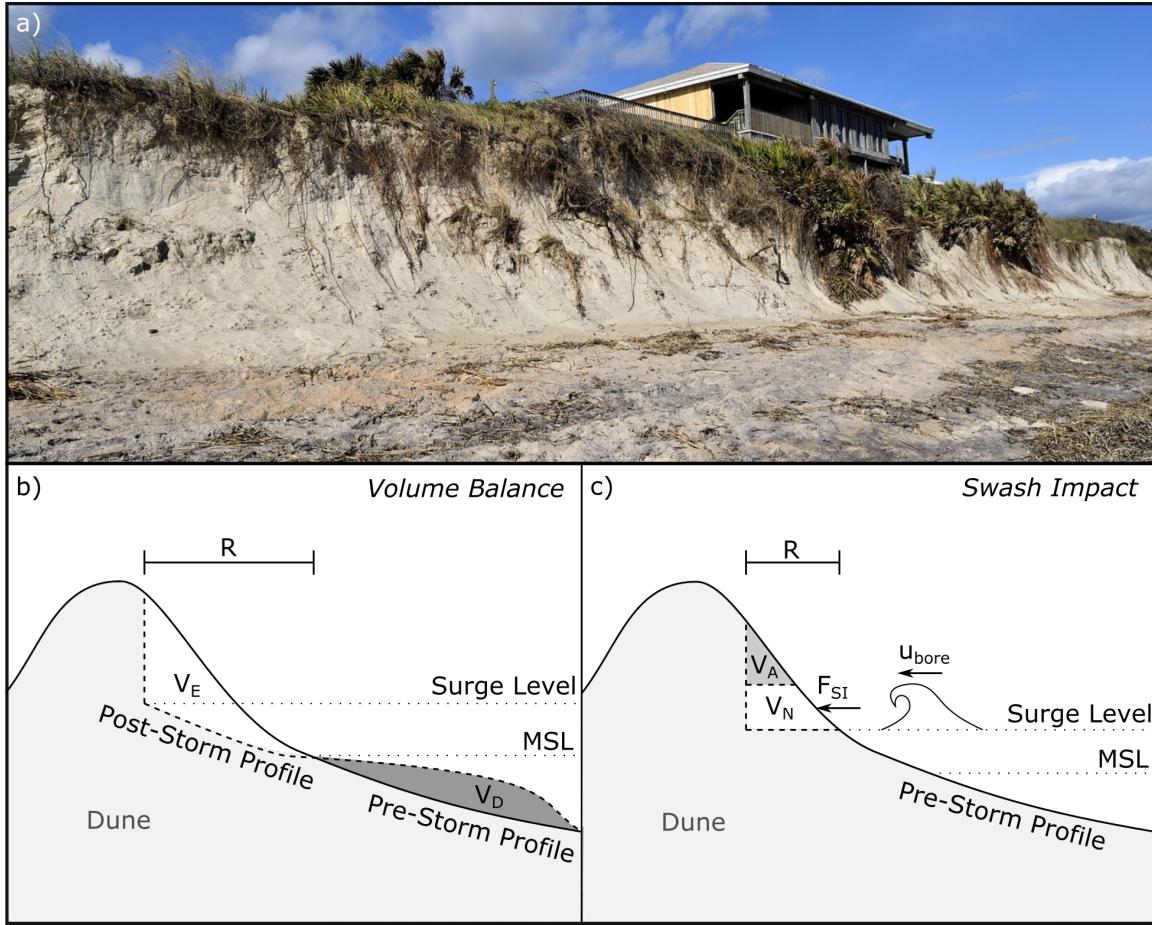

1972	7	One-Line and Two-Line Model Schematics. <i>a) One-line approach that predicts shoreline changes based on LST gradients ($q_{x(j+1)} - q_{x(j)}$). b) Two-line approach that predicts change at the shoreline and an offshore contour, considering LST gradients in each zone and rule-based XST. Figure modified from Perlin and Dean (1979).</i>	82
1973			
1974			
1975			
1976			

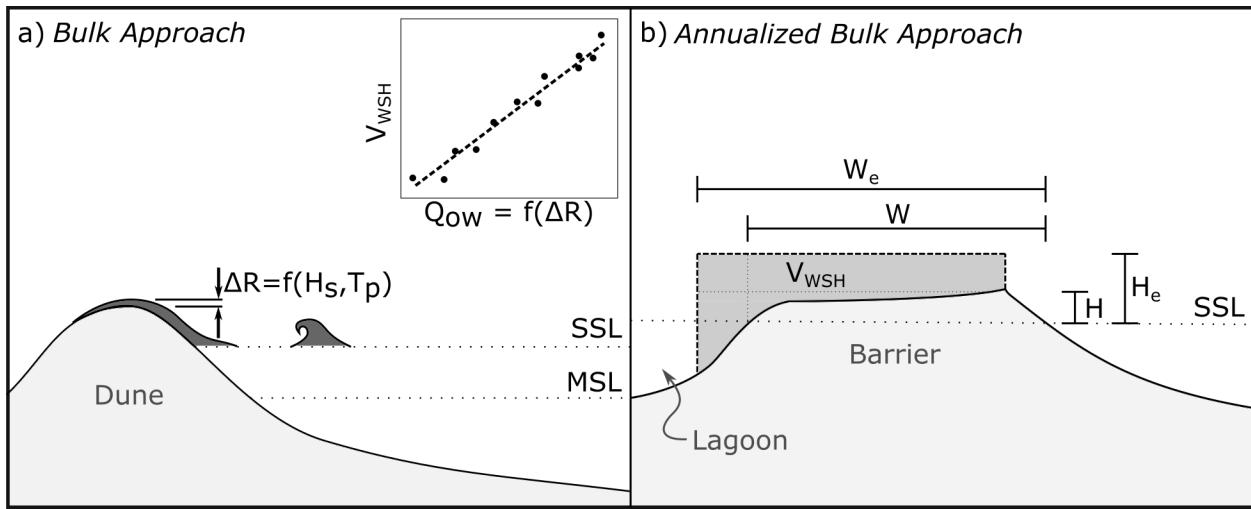
Fig. 1. Satellite and Aerial Images of a Virginia Barrier Island. *a)* Location map. *b)* Delmarva Peninsula (ESA 2021). *c)* Wallops Island (VGIN 2021). *d)* Zoomed Section of Wallops Island (VGIN 2021)

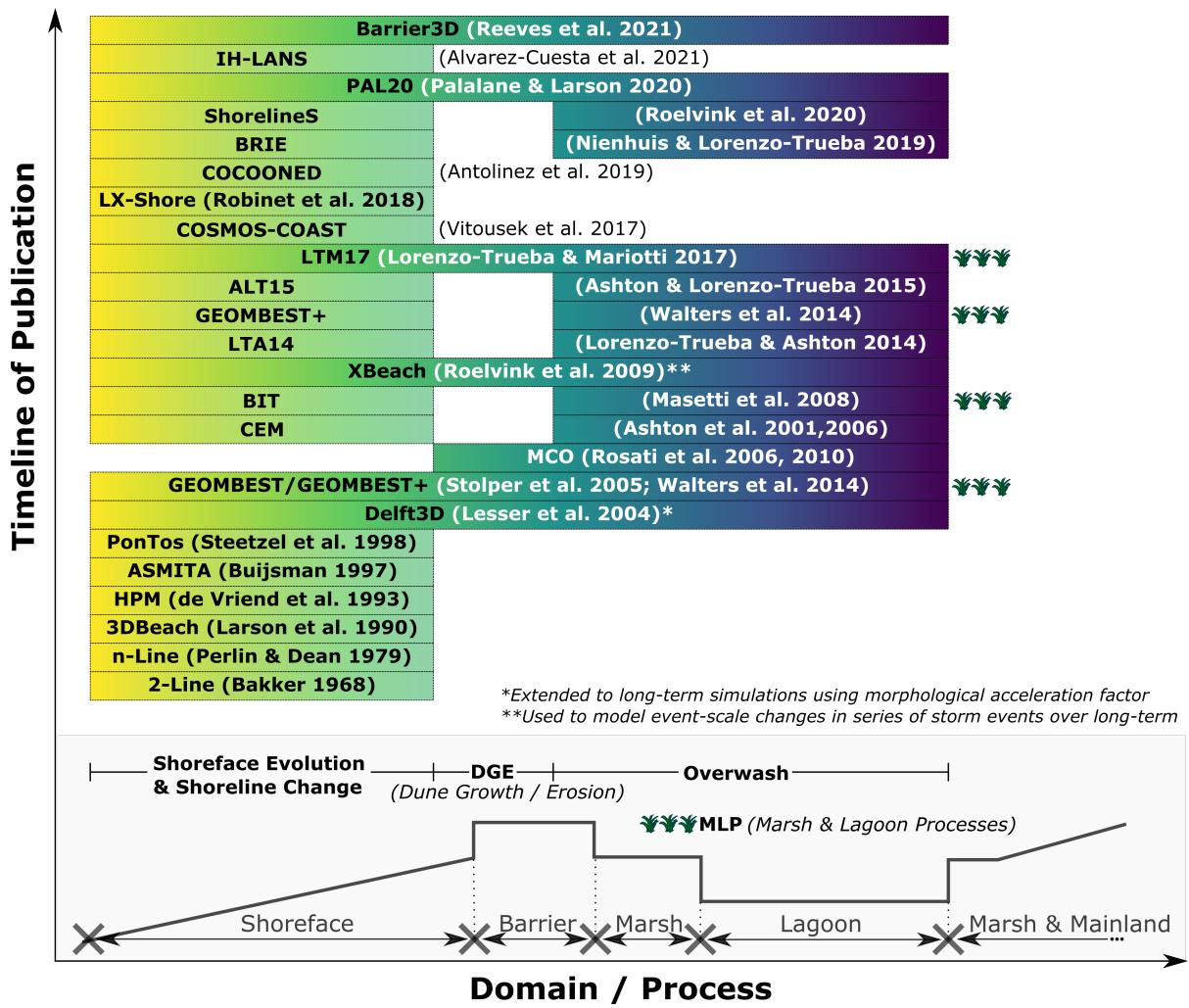
Runup/Surge Condition	Impact Regime	Associated Morphological Response
$R_{High} < D_{Low}$	Swash	Profile Erosion
$R_{High} > D_{Low}$	Collision	Dune Avalanching
$R_{High} > D_{High}$	Overwash	Erosion & Aggradation
$R_{Low} > D_{High}$	Inundation	Ocean-side Breaching


From Sallenger (2000)


Runup/Surge Condition	Impact Regime	Associated Morphological Response
$B_{High} > D_{High}$	Outwash	Bay-side Breaching

Following terminology proposed by Over et al. (2021)


Fig. 2. Storm Impact Scale. *Figure modified from Sallenger (2000) with Outwash regime.*


Fig. 3. Event-Scale Models and Formulations. *Models are shown according to their publication chronology and are aligned with their respective processes. The color spectrum spans the range of modeled processes from beach and dune erosion (yellow-green), breaching (green-blue), and overwash (blue-violet).*

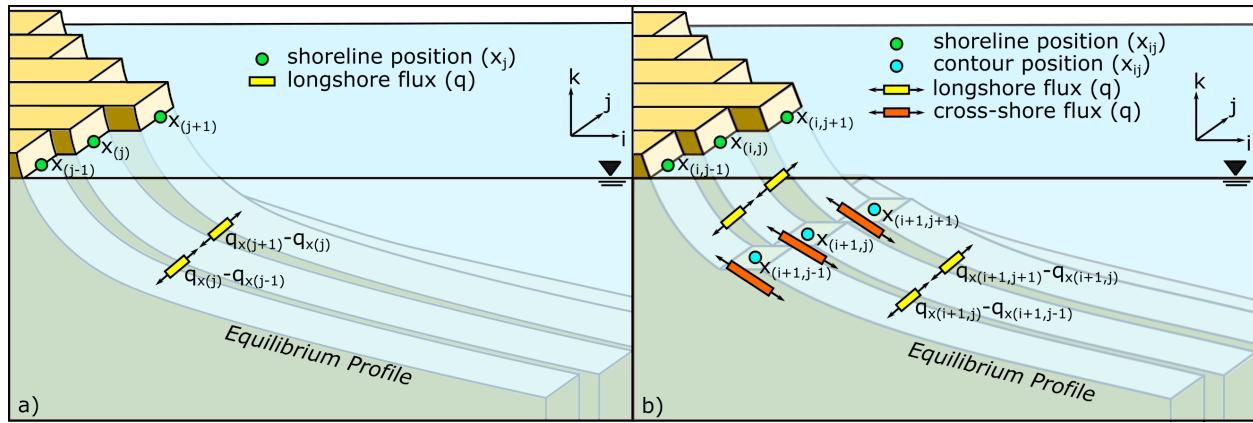

Fig. 4. Beach and Dune Erosion. *a)* Image of beach and dune erosion from Hurricane Matthew (Brennan 2016). *b)* Volume balance approach that predicts dune recession (R) by equating the erosion volume (V_E) and deposition volume (V_D), modified from Edelman (1972). *c)* Swash impact approach that relates wave bore velocity (u_{bore}) to the swash impact force (F_{SI}) which creates notching (V_N) that leads to avalanching (V_A), modified from Nishi and Kraus (1996).

Fig. 5. Overwash Modeling Approaches. *a) Traditional bulk approach that predicts washover volume (V_{WSH}) based on bulk parameters (e.g., excess runup height ΔR), modified from [Donnelly et al. \(2009\)](#). *b) Annualized bulk approach that predicts V_{WSH} based on width (W) and height (H) deviations from equilibrium values (W_e & H_e) based on the storm surge level (SSL), modified from [Lorenzo-Trueba and Ashton \(2014\)](#).**

Fig. 6. Long-term Morphodynamic Models with a Coupled Approach. Models are shown according to their publication chronology and are aligned with their respective processes. The color spectrum spans the range of modeled processes from shoreface erosion or shoreline change (yellow-green), to dune growth/erosion (green-blue), to overwash (blue-violet).

Fig. 7. One-Line and Two-Line Model Schematics. *a)* *One-line approach that predicts shoreline changes based on LST gradients ($q_{x(j+1)} - q_{x(j)}$).* *b)* *Two-line approach that predicts change at the shoreline and an offshore contour, considering LST gradients in each zone and rule-based XST. Figure modified from Perlin and Dean (1979).*

List of Tables

1978	1	Recent Reviews	84
1979	2	Spatial and temporal scales of barrier island morphodynamics	85
1980	3	Multifaceted Morphodynamic Models	86
1981	4	Long-Term Morphodynamic Models	87

TABLE 1. Recent Reviews

Citation	Focus
Donnelly et al. (2006)	Laboratory work, field studies, and modeling efforts related to coastal overwash.
Rosati and Stone (2009)	Barrier evolution concepts from early literature; recent concepts in Northern Gulf of Mexico.
McBride et al. (2013)	Observations and conceptual models of barrier morphodynamics for various coastlines and regional locations.
Chardón-Maldonado et al. (2016)	Recent advancements on hydrodynamics and sediment transport modeling in the swash zone.
Reeve et al. (2016)	Long-term morphodynamic models that employ data-driven and/or hybrid approaches.
Ciavola and Coco (2017)	Event-scale processes and their impact on specific coasts (e.g., sandy beaches, barrier islands, tidal flats, etc.).
Moore and Murray (2018)	Compilation of recent work and synthesis of current understanding and state of research on barrier morphodynamics.
Eichentopf et al. (2019)	Laboratory studies, field work, and modeling exercises related to storm sequencing and beach recovery.
Ranasinghe (2020)	Commonly used morphodynamic models for sandy beaches and ideas for future long-term models.
Toimil et al. (2020)	Coastal erosion modeling, climate change impacts, and approaches for evaluating uncertainty.
Sherwood et al. (2022)	Advances in modeling event-driven morphodynamics on sandy coasts.

TABLE 2. Spatial and temporal scales of barrier island morphodynamics, respectively modified from Cowell et al. (2003a) and from Rosati and Stone (2009).

Type	Term	Scale
Spatial	Small-scale	$10^0 - 10^2$ meters
Spatial	Moderate-scale	$10^2 - 10^3$ meters
Spatial	Large-scale	$> 10^3$ meters
Temporal	Short-term	hours to days
Temporal	Mid-term	days to decades
Temporal	Long-term	decades to centuries

TABLE 3. Multifaceted Morphodynamic Models

Model Name (Reference)	Dimensions	Process Formulations [†]				Model Description
		XST	LST	OW	BR	
SBEACH (Larson and Kraus 1989)	1D	KD85		WIS96		XST rates estimated through semi-empirical relationships in shoreface regions; considers wave and sediment characteristics, wave shoaling, breaking, setup and setdown, breaker decay and reformation, sediment slumping/avalanching.
DUROSTA/Unibest-DE (Steetzel 1993)	1D/Q2D		[...STZL93...]			Only considers suspended load transport (bed load neglected); considers wave set-up, energy dissipation from bed friction after breaking with a turbulence model; employs a bed slope correction factor and extrapolates swash transport rates based on calculated rates at the wet/dry interface.
CShore/C2Shore (Kobayashi and Farhadzadeh 2008) (Grzegorzewski et al. 2013)	1D/2D		[....KBY08....]	KBY10		Hydrodynamic components include the combined action of incident waves and currents, considering wave shoaling, breaking, and roller energy; considers shoreface (or structure) permeability and overtopping using an empirically based, probabilistic runup model.
Delft3D (Lesser et al. 2004)	2D/3D		[.....VRN93*.....]			Shallow water equations solved in 2D (depth-averaged) or 3D; allows coupling to HISWA or SWAN wave models which consider breaking, bed friction, and streaming (near-bed currents); includes surface roller and infragravity formulations; includes bed slope correction and morphological acceleration factor.
XBeach (Roelvink et al. 2009)	2D		[.....SVR97*.....]			Depth-averaged shallow water equations solved in Sallenger (2000) storm impact regimes; includes wave breaking, swash dynamics (modeling wave groups, infragravity waves, surface rollers, and return flows), beach and dune erosion (including avalanching), overwash (using low-frequency wave group forcing), and breaching by channel scouring.

[†]OW: Overwash; BR: Breaching; KD85: [Kriebel and Dean \(1985\)](#); WIS96: [Wise et al. \(1996\)](#); STZL93: [Steetzel \(1993\)](#); KBY08: [Kobayashi and Farhadzadeh \(2008\)](#); KBY10: [Kobayashi et al. \(2010\)](#); VRN93*: [van Rijn \(1993\)](#) et al.; SVR97*: [Soulsby \(1997\)](#) et al.

TABLE 4. Long-Term Morphodynamic Models

Year	Model Name (Reference)	Modeled Phenomena/Processes [†]							
		SFC	LSC	TRN	ID	DGE	SUB	OW	MLP
1956	PEL56 (Pelnard-Considere 1956)			X					
1962	Bruun Rule (Bruun 1962)					X			
1968	2-Line (Bakker 1968)	X	X						
1979	n-Line (Perlin and Dean 1979)	X	X						
1983	Gen. Bruun Rule (Dean and Maurmeyer 1983)				X				
1985	EVR85 (Everts 1985)					X			
1989	GENESIS (Hanson and Kraus 1989)			X					
1990	3DBeach (Larson et al. 1990)	X	X						
1992	STM (Cowell et al. 1992)					X			
1993	HPM (de Vriend et al. 1993)	X	X						
1995	ADM (Nedoroda et al. 1995)	X							
1997	ASMITA (Buijsman 1997)	X	X			X			
1998	PonTos (Steetzel et al. 1998)	X	X						
2001	CEM (Ashton et al. 2001, 2006)	X						X	
2002	Cascade (Larson et al. 2002)		X			X			
2002	BARSIM (Storms et al. 2002)			X				X	
2005	GEOMBEST (Stolper et al. 2005)	X		X				X	X
2006	MCO (Rosati et al. 2006, 2010)			X		X	X	X	
2008	BIT (Masetti et al. 2008)	X		X				X	X
2009	YAT09 (Yates et al. 2009)	X							
2012	GenCade (Frey et al. 2012)		X			X			
2013	ShoreFor (Davidson et al. 2013)	X							
2013	Mod. Bruun Rule (Rosati et al. 2013)				X				X
2014	LTA14 (Lorenzo-Trueba and Ashton 2014)	X		X					X
2014	GEOMBEST+ (Walters et al. 2014)	X		X				X	X
2015	ALT15 (Ashton and Lorenzo-Trueba 2015)	X	X	X					X
2016	D&H16 (Dean and Houston 2016)				X	X			X
2017	LTM17 (Lorenzo-Trueba and Mariotti 2017)	X		X				X	X
2017	CoSMoS-COAST (Vitousek et al. 2017)	X	X	X					
2018	LX-Shore (Robinet et al. 2018)	X	X						
2019	COCOONED (Antolínez et al. 2019)	X	X				X		
2019	BRIE (Nienhuis and Lorenzo-Trueba 2019)	X	X	X	X				X
2020	ShorelineS (Roelvink et al. 2020)			X					X
2020	PAL20 (Palalane and Larson 2020)	X	X	X	X	X			X
2021	UNIBEST-CL+ (Deltares 2021)	X	X						
2021	ShoreTrans (McCarroll et al. 2021)				X		X		
2021	IH-LANS (Alvarez-Cuesta et al. 2021)	X	X						
2021	Barrier3D (Reeves et al. 2021)	X		X		X		X	

[†]SFC: Shoreface Change; LSC: Longshore Shoreline Change; TRN: Transgression; ID: Inlet Dynamics; DGE: Dune Growth or Erosion; SUB: Subsidence; OW: Overwash; MLP: Marsh and Lagoon Processes