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ABSTRACT
As scientific understanding of barrier morphodynamics has improved, so has the ability to
reproduce observed phenomena and predict future barrier states using mathematical models. In

order to use existing models effectively and improve them, it is important to understand the current
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state of morphodynamic modeling and the progress that has been made in the field. This manuscript
offers a review of the literature regarding advancements in morphodynamic modeling of coastal
barrier systems and summarizes current modeling abilities and limitations. Broadly, this review
covers both event-scale and long-term morphodynamics. Each of these sections begins with an
overview of commonly modeled phenomena and processes, followed by a review of modeling
developments. After summarizing the advancements toward the stated modeling goals, we identify
research gaps and suggestions for future research under the broad categories of improving our
abilities to acquire and access data, furthering our scientific understanding of relevant processes,

and advancing our modeling frameworks and approaches.

INTRODUCTION

Coastal barriers are narrow landforms that are separated from the continental mainland by a
shallow waterbody (see Figure 1). These barriers can be book-ended by inlets (i.e., barrier islands)
or they can be connected to the mainland at one end (i.e., barrier spits) or both (baymouth barriers).
The combination of backbarrier environment, subaerial island, and shoreface are often succinctly
referred to as the ‘barrier system’ or simply ‘barrier.” As of 2011, over 20,000 kilometers of
the world’s coasts were characterized by a barrier system, accounting for approximately 10% of
all coastlines (Stutz and Pilkey 2011). Barriers provide significant benefits during coastal storms
such as surge volume and wave energy reduction (Grzegorzewski et al. 2011), wetland protection
(Wamsley et al. 2009), sediment stabilization through the presence of subaerial or backbarrier
vegetation, and protection of aquatic habitat (Bridges et al. 2013). Additionally, barrier islands
have become popular as both vacation destinations (Pilkey et al. 2011) and permanent residential
areas, which has led to increases in population density (Zhang and Leatherman 2011).

Although many barriers have undergone rapid urban development since the mid-20th cen-
tury (Dolan and Lins 1986), Stutz and Pilkey (2011) described this development boom as being
“ironically” timed due to coastal hazard accelerations associated with current trends in sea level
rise (SLR). According to the Intergovernmental Panel on Climate Change, global mean sea level

(MSL) is predicted to rise between 0.25 and 1.0 meter by the end of the century (Oppenheimer
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et al. 2019). If these predictions hold true, the rates of barrier island morphological change and
associated flooding during storms and other events will most certainly increase (e.g., Gutierrez
et al. 2007). In addition to exacerbating coastal flooding, SLR also drives the evolution of the
barrier system itself, influencing processes that change both the island’s shape and location. Thus,
on many barrier coastlines, permanent structures have been constructed on land that was and is
expected to continue migrating toward the mainland (Pilkey et al. 2011). Changes in the location
and geometrical configuration of barrier systems are expected to alter the benefits that they provide
to neighboring mainland communities. Therefore, it is critically important for all who are involved
in coastal management to understand barrier island morphodynamics to produce the best possible
outcomes for coastal communities.

While the earliest literature tended to document observations and initial theories of barrier
morphodynamics, research has recently - in the last three or so decades - shifted toward the
development and intensified use of computational models. Based on this observation, we note that
where modeling often lagged behind or paralleled our advancements in scientific understanding,
it has recently been used to validate and advance it. Many models have been developed over the
last 3-4 decades. A review of these models may help new or future researchers survey the field of
barrier morphodynamic modeling.

A few notable review papers have recently been published related to barrier morphodynamics.
Some of these papers focus on a single, specific component of coastal change such as overwash (e.g.,
Donnelly et al. 2006) or storm sequencing and recovery (e.g., Eichentopf et al. 2019). Other reviews
capture the larger-scale morphological response of barrier systems, but their application is either
constrained to a particular location (e.g., Rosati and Stone 2009), focused on a particular driver
such as climate change (e.g., Toimil et al. 2020), or focused in-depth on a particular spatiotemporal
scale (e.g., Sherwood et al. (2022)). Table 1 provides a summary of these reviews and their focus
areas. These reviews provide a valuable synthesis of relevant work but are not sufficient to capture
the trends and advancements in barrier morphodynamic modeling.

The purpose of this manuscript is to fill that gap by providing a review of the literature
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regarding advancements in morphodynamic modeling of coastal barrier systems. Our review of
modeling advancements is divided in two broad categories: 1) event-scale morphodynamics, and 2)
long-term morphodynamics.! These sections begin with a brief description of commonly modeled
phenomena and processes, followed by a review of relevant modeling efforts, which are categorized
according to their primary intent. At the conclusion of these sections, we summarize the primary
contributions of the modeling developments and their limitations. Finally, we conclude with the
identification of research gaps that currently exist and suggest directions for future research.

A few items should be noted regarding this study. First, there are some relevant topics (e.g.,
anthropogenic impacts, influences of vegetation) which are only briefly discussed due to our focus on
morphodynamic modeling. Second, we have intentionally included many models and/or modeling
approaches from the early literature so that the current models might be understood in their proper
historical context, which requires knowledge of both previous and ongoing efforts. Additionally,
this review primarily focuses on models in wide use in the research community. Therefore, some
commonly used propriety models have only been briefly mentioned. Lastly, although our review
is focused on barrier morphodynamics, many of the relevant processes play an important role for
non-barrier coasts. Therefore, in order to fully understand the modeling advancements relevant to
barrier systems, we must consider some modeling efforts that are not barrier-specific.

Before starting this review, it may be helpful to orient the unfamiliar reader by defining our
modeling goals and our terms. In the next section we have attempted to summarize our modeling
goals with one overarching statement or Grand Challenge. This is followed by a brief discussion

of terminology used in this manuscript.

Grand Challenge

In theory, the ideal morphodynamic model would produce accurate predictions in a reasonable
time without significant computational expense. As we consider how these ideals translate into
reality, there are multiple modeling goals that we must work toward and important intermediate

steps that we must first achieve. However, rather than outlining each goal, we have attempted to

IRefer to the Terminology section for definitions of ‘event-scale’ and ‘long-term.’
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synthesize them into a single overarching goal, or Grand Challenge, as follows:

To predict barrier system morphodynamics in multiple spatiotemporal dimensions
(e.g., short to long time scales, transect to regional evolution) with a high degree of
confidence, under reasonable computational resources constraints, and considering
relevant factors such as event-driven morphological change, evolution during non-
stormy periods, biological processes (and other potential subsystem influences), and

anthropogenic impacts.

We intend the phrase “predicting... with a high degree of confidence” to mean predictions that have
at least been partially validated and are useful in planning and decision-making. Throughout this
review, the reader is encouraged to consider each development in light of the Grand Challenge.
At the conclusion of each major section, we summarize the modeling advancements and extant
limitations, offering our perspectives on progress toward this overarching goal. To maintain this
focus, it should be noted that some relevant topics such as biological processes and anthropogenic

impacts are given more of a cursory discussion.

Terminology

There are some inconsistencies in terminology in the body of work on barrier morphodynamics.
Thus for the purpose of this review, our aim here is to define terms that describe what is being
modeled (e.g., a phenomenon, a process), the types of mathematical representations that are used
(e.g., amodel, a formulation), and the spatiotemporal scales used throughout the paper.

When discussing phenomena, we are talking about observable characteristics, behaviors, or
events of a system. While the spatiotemporal scales of a system may vary (e.g., initiation of particle
movement vs. shoreline behavior), there are phenomena associated with each system that may
be mathematically represented via the development of a model. When we discuss processes, we
are referring to patterned events that systematically contribute to the observable phenomena of a
system. Based on these terms, we also distinguish between models and formulations. Whereas

models are developed to represent phenomena, specific formulations are developed to represent
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processes. Models, therefore, may contain one or more formulations of a process. For example,
consider the development and growth of a spit. The spit development and/or growth would be
the observed phenomenon that is systematically progressed by the process of longshore sediment
transport (LST). Thus, we might develop a model that predicts spit development and growth using
a specific LST formulation.

The last terms that need to be defined up front are related to the spatial and temporal scales at
which the relevant processes are typically resolved in coastal morphodynamic modeling. Herein,
we adopt the temporal scale classification of Rosati and Stone (2009), and adopt a slightly modified
version of the spatial scale classification of Cowell et al. (2003a). These scales are presented in
Table 2 and are used throughout this paper. Note, we also use the term ‘event scale’ throughout

this manuscript to refer to the combination of small spatial and short temporal scales.

EVENT-SCALE MORPHODYNAMICS
This section provides an overview of commonly modeled phenomena and processes associ-
ated with event-scale morphodynamics, a review of relevant modeling efforts, and a summary of

advancements toward the Grand Challenge.

Commonly Modeled Phenomena and Processes

Acute sediment transport processes, which are characterized by a sudden onset and short-term
duration, are initiated when a storm approaches the coast. Chronic transport processes, which are
characterized by gradual beginnings and mid- to long-term duration, are not initiated during storms
but are intensified by them. As these transport processes are initiated or intensified, the barrier
responds in the form of morphological adjustment. To frame the discussion on storm response, we
use the storm impact scale published by Sallenger (2000), wherein acute processes occur within
four regime classifications: swash, collision, overwash, and inundation (see Figure 2). Each regime
has certain morphological responses associated with runup levels.

In the swash and collision regimes, increased water levels by storm surge and wave runup lead
to increased erosion on the beach and dune, depositing the eroded material seaward of the beach.

Collision differs from swash in that the water level exceeds the dune toe, allowing waves to collide
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with and erode the lower parts of the dune slope, which can lead to avalanching of the upper dune.
Sallenger (2000) points out that while sediment transported offshore under this regime may return
to the beach, this sediment typically does not make it back to the dune structure, resulting in net
erosion of the dunes over time. In the overwash regime, water levels are high enough such that
incident wave runup intermittently flows over the dune peaks or antecedent low spots, carrying
mobilized sediment with it. Lastly, the inundation regime involves complete submergence of the
barrier which can lead to inlet formation (i.e., breaching) and significant increases in the cross-shore
sediment transport (XST) rates (Sallenger 2000). Inundation is associated with extreme levels of
erosion that pick up normally dry (subaerial) sediment.

One regime that Sallenger does not include is the outwash regime, following the terminology
proposed by Over et al. (2021), which describes seaward flows and associated offshore sediment
transport. Although it is possible to have initial seaward surge depending on the orientation of
the islands and the approach angle of the storm, initial surge levels are typically directed onshore.
Therefore, seaward flows associated with the outwash regime usually occur after storms make
landfall or pass by the area of interest, which reverses the predominant wind direction. Applied to
a typical barrier system, this reversed wind field can cause backbarrier water levels to surge above
receding ocean-side water levels. In this instance, breaching may be initiated from the backbarrier
by outwash flows that scour a new channel through the island, liquefaction of previously-weakened
dune structures, or a combination of both. Various studies including Shin (1996), McCall et al.
(2010), Smallegan and Irish (2017), Harter and Figlus (2017), and Over et al. (2021) highlight the
importance of considering this regime when modeling storm event morphodynamics.

The following sections offer an introductory discussion on commonly modeled phenomena and
processes associated with barrier response to storm events, namely profile erosion and shoreface

response, overwash, and breaching. This is followed by a review of relevant modeling efforts.

Beach Profile Erosion and Shoreface Response
While the term ‘profile’ can be used to describe a wide range of the barrier system, we use

the term ‘beach profile’ herein to describe the morphodynamic response of the barrier’s beach-
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dune complex and upper shoreface, which we loosely define as the morphologically ‘active zone’
following Stive and de Vriend (1995) and Cowell et al. (2003a). Generally, there are two primary
factors that contribute to erosion of the beach profile under storm conditions: 1) increased offshore-
directed currents and 2) increased total runup. As the waves intensify, the beach profile state turns
erosional (assuming a prior accretive state) as wave-driven sediment transport becomes dominated
by undertow and rip currents which are offshore-directed (Aagaard and Kroon 2017). Sediment
is eroded from the upper portions of the profile and deposited on the shoreface, typically in a
subaqueous bar, which is then delivered back to the profile once storm conditions subside (Quartel
et al. 2007). This cycle of erosion and subsequent recovery has been observed over seasonal wave-
climate changes (Shephard 1950) and event-scale changes (Ranasinghe et al. 2012b). Secondly, the
total runup, as produced by a combination of storm surge, astronomical tide, and wave runup, may
exceed the swash regime water level to collide with the dune and cause notching (i.e., erosion and
recession of the lower dune), followed by slumping or avalanching (Edelman 1968; Roelvink et al.
2009). For a more thorough review of sediment transport processes during storms and relevant
factors, including the role of infragravity waves and incident wave non-linearity, the reader is
referred to Aagaard and Kroon (2017) and references therein.

These two primary factors (i.e., increased offshore-directed currents and increased total runup)
contribute to barrier morphodynamics in significant ways. For example, in the collision regime
they lead to a net loss of sediment offshore to the lower (inactive) profile (Sallenger 2000). This
net loss effectively limits the ability of the beach and dunes to fully recover to pre-storm conditions
without requiring external sediment sources (i.e., from the shelf, erodable profile outcrops, or
LST gradients). Moreover, although much of the eroded sediment is brought back to the beach
and dunes after the storm, this natural renourishment of the profile is not instantaneous, but can
take days or weeks to recover (e.g., List et al. 2006; Quartel et al. 2007), leaving the barrier
system in a temporarily hyper-vulnerable state. Profile recovery between storm events, although
less studied than erosional events, is critically important to understanding barrier vulnerabilities to

storm sequences and long-term morphology (Eichentopf et al. 2019).
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Overwash

Overwash occurs when water flows over the dunes. Sediment is carried by the water and
deposited behind the dunes as washover. While overwash was associated with intermittent over-
topping in Sallenger’s overwash regime, it should be noted that by definition, overwash also occurs
during Sallenger’s inundation regime and the proposed outwash regime, as the landward or sea-
ward directed flows continue to transport sediment across the dunes. Donnelly et al. (2006) offered
distinct definitions for runup overwash and inundation overwash and discussed the differences and
implications of each process.

Three factors are the primary contributors to increased likelihood of barrier island overwash:
1) antecedent low spots in barrier topography, 2) high water levels driven primarily by storm surge,
and 3) large incident waves. Although it can be argued that this is self-evidently true, it is also
confirmed in the early literature on barrier island storm response (e.g., McCann 1979; Cleary and
Hosier 1979). In addition to these three main contributing factors, overwash occurrence has also
been associated with other variables including previous overwash activity, barrier island width, and
vegetation density (McCann 1972; Fisher and Simpson 1979; Cleary and Hosier 1979). However,
some of these factors can be indirectly related to antecedent topography. For example, areas that
have experienced previous overwash events are also locations where the dunes have been likely been
lowered; thus, previous overwash activity can be linked to pre-storm discontinuities in the dune
elevation. Similarly, since dune vegetation promotes sediment settling and dune growth, vegetation
density could generally be considered a proxy for pre-storm topography. Donnelly et al. (2006)
identified two other important factors including the direction of storm approach, which influences
incident wave heights, and nearshore bathymetry, which impacts wave transformation.

Storms have significant morphological impact on barrier islands, which in turn affect the
continued evolution and response to future storms. Observations from the early literature describe
both destructive and constructive effects of overwash: destructive in that overwash may lower or
destroy the dunes (e.g., Nichols and Marston 1939) and constructive in that overwash may contribute

to aggradation of the barrier islands over time (e.g., Rosen 1979). Both of these effects directly
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impact flood risk from future storms. Again, to avoid duplicating work, the reader is referred to
the review by Donnelly et al. (2006), which covers a variety of topics related to overwash including

field and laboratory studies, modeling efforts, and its impact on barrier morphodynamics.

Breaching

Breaching is the creation of an inlet in a barrier that establishes direct hydraulic connectivity
between the ocean and backbarrier water body (Kraus and Hayashi 2005). Breaches have been
shown to account for water level increases both during the storm event in the form of bay surge
(e.g., Canizares and Irish 2008) and after the storm event in the form of increased tidal range
(e.g., Conley 1999). Excess flooding, property damage, habitat loss, and decreased navigability are
possible negative outcomes from a breach; however, breaching is also desirable in some cases and
may be intentionally performed in order to increase habitat connectivity for certain estuarine wildlife
(Gerwing et al. 2020) or to prevent undesirable backbarrier conditions including low salinity, poor
water quality, and in some cases flooding (Kraus and Wamsley 2003).

From some of the earliest published observations of breaching, we know that multiple breaches,
of various widths and depths, may form and expand during a single storm event (e.g., Nichols and
Marston 1939). More recent studies have highlighted the dynamic nature of breaches, which can
significantly change dimensions over relatively short time periods and even migrate alongshore
(Kraus and Wamsley 2003; Wamsley and Kraus 2005). Timing of the initial breaching process
has received relatively little attention in the literature due to the difficult nature of collecting field
data. However, a study by Visser (1998) and a related modeling exercise by Roelvink et al. (2009)
estimated lateral growth rates of breaches between 1 and 2 cm/s during initial formation. During
the phases of breach growth, XST is much greater than LST; however, once flow in the breach
ceases, LST may cause closure of the breach (Kraus et al. 2002).

In exploring the causes of breaching, researchers have often wanted to know on which side of
the barrier breaching is initiated. Multiple theories of breach formation are present in the early
literature, as reviewed by Pierce (1970), including breaching from the backbarrier side through

the escape of impounded water (Shaler 1895) and ocean-side breaching by wave-driven erosion
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(Johnson 1919). Pierce (1970) determined that barriers are most likely to breach from the lagoon
side but stated that a narrow barrier could also be breached by erosion from the sea. Although
this perspective was published as early as 1970, it received little attention until recent years (e.g.,
McCall et al. 2010; Sherwood et al. 2014; Harter and Figlus 2017; Smallegan and Irish 2017).
Kraus et al. (2002) described two breaching processes and their association with lagoon-side
or ocean-side breaching. The two processes are 1) scouring and channelization and 2) seepage
and liquefaction. Scouring and channelization most commonly occur from the seaward side of
the barrier, when sustained storm surge allows for water to (semi)continuously inundate the island
with flow over the barrier; conversely, seepage and liquefaction typically initiate breaching from
the landward side of a narrow barrier (Kraus et al. 2002). However, recent modeling studies (e.g.,
Shin 1996; McCall et al. 2010; Sherwood et al. 2014; Smallegan and Irish 2017) have also shown
that seaward-sloping water level gradients that occur after the ocean-side’s peak storm surge have
the potential to scour channels across the barrier as well that can lead to seaward sediment transport

and breaching.

Modeling Efforts

As stated previously, modeling efforts are classified according to their primary intent. Most
event-scale morphodynamic models or formulations were developed to simulate a few key phe-
nomena or processes including: 1) beach and dune erosion, 2) shoreface response, 3) overwash,
4) breaching, and 5) combinations of categories 1 through 4. The following sections review the

relevant modeling efforts which are also graphically summarized in Figure 3.

Modeling Beach and Dune Erosion

Modeling work on storm-driven response of the beach-dune complex was initiated and signifi-
cantly advanced by researchers in the Netherlands in the 1960s and 70s. Edelman (1968) observed
that when storm surge levels exceeded the dune toe, the dune would undergo significant erosion
and partial avalanching. Based on these observations, Edelman published the first analytical for-
mulation (i.e., method with a closed-form solution) for predicting dune erosion and retreat, later

termed the ‘Provisional Method.” This method assumed the formation of a new dune toe at the peak
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storm surge elevation and balanced the volume of sediment eroded from the dunes with deposition
in the nearshore zone (see Figure 4b) using linear approximations of both the nearshore and dune
profiles. Four years later, Edelman used the same principles to publish a similar method which
considered more realistic (e.g., non-linear) profile shapes (Edelman 1972). In addition to sediment
conservation and the new dune toe location, Edelman’s work was based on other key assumptions
including a constant profile shape, rapid (or instantaneous) profile response, and the presence of
both storm and pre/post-storm equilibrium profiles.

Other analytical methods were developed to predict beach and dune erosion using similar
assumptions; these models included DUROS (Vellinga 1986), and those of Kobayashi (1987),
Dean (1991), and Kriebel and Dean (1993). Fundamentally, each of these models is similar in that
they are based on balancing eroded and deposited sediment volumes, while the main differences lie
in the factors that influence the new profile shape. For example, the profile depth in the non-linear
Provisional Method was considered only a function of distance from the shoreline (Edelman 1972),
while other methods allowed the depth to adjust based on factors such as wave height and sediment
characteristics (e.g., Vellinga 1986, Dean 1991). Komar et al. (1999) also developed a simple
method to predict dune retreat based on the foreshore slope and the height of the runup above the
dune toe; this approach was recommended by FEMA for United States Pacific Coast beaches as
of 2005 (Mull and Ruggiero 2014). Vellinga’s (1986) DUROS model continues to be used in the
Netherlands to assess the health and safety of the coastal dunes (Bosboom and Stive 2021).

One important limitation with these early models arises from the assumption of instantaneous
response. Because the duration of a storm is often much shorter than the time required for profiles to
erode to their new equilibrium states, they rather erode some fractional amount toward equilibrium
but never reach it. Komar and Moore (1983) put it succinctly, stating that these methods “should
be regarded as an upper limit or an erosion potential that would result if the storm conditions were
held constant indefinitely.” For conservative estimates and design standards, these methods may
prove reliable. However, for higher levels of modeling accuracy, it may be necessary to shift toward

time-dependent models or the combination of idealized models with a time-dependent function
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(e.g., Kriebel and Dean 1993).

Fisher and Overton (1984) proposed another type of modeling approach that focuses on the
impact of swash on the dune face. These are appropriately called ‘Swash Impact’ approaches. The
main idea undergirding this approach is that erosion of the dune is proportional to the impact force
of colliding waves, which can be related to the waves’ bore heights and approach velocities (see
Figure 4c). Through a series of laboratory experiments, linear relationships were found between
the amount of dune erosion and swash impact force, modulated by statistically significant factors
such as grain size and dune density (Overton et al. 1988; Overton et al. 1994). This relationship
was also identified in the field through a series of experiments at Duck, North Carolina (Fisher et al.
1987).

Other methods using this approach were developed by Nishi and Kraus (1996), Larson et al.
(2004a), and most recently by Palmsten and Holman (2012). Nishi and Kraus (1996) calculated the
swash impact force by multiplying the mass of water in the approaching wave by its deceleration
upon impact. Using large-scale wave tank experiments on compacted and uncompacted dunes,
they found linear relationships between the weight of eroded sediment and the impact force. They
also found uncompacted sediment to be more susceptible to swash impact erosion and suggested
artificially compacted dunes as a possible method of erosion control. Using the linear relationship
between erosion and swash impact force as an initial assumption, Larson et al. (2004a) derived
an analytical model that predicted dune recession as a function of bore speed, initial geometry,
empirical transport coefficients, and foreshore slope, which was assumed to linearly continue
landward of the dune toe. The authors used four previously published datasets to test their model
and to empirically derive an optimal transport coefficient. Lastly, Palmsten and Holman (2012)
improved on this formulation in two main ways: 1) they used a Gaussian distribution to model
variability in wave runup elevations, and 2) they tested various runup exceedance values and found
that using a runup exceedance value of 16% led to better dune erosion predictions in the laboratory

when compared to the 2% runup exceedance guidance recommended by Sallenger (2000).
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Modeling Shoreface Response

Paralleling these advancements was the development of more complex sediment transport
formulations. While these formulations may vary in approach, they are similar in that they relate
hydrodynamic parameters (e.g., velocity) to sediment transport rates. Thus, for the purposes of
this discussion, we refer to these more complex formulations as coupled hydrodynamics-sediment
transport (HD-ST) formulations. Since areview of each formulation would take considerable space,
we offer a cursory description the HD-ST formulations and refer interested readers to Larson and
Kraus (1989), Dean and Dalrymple (2002), Nielsen (2009), Aagaard and Hughes (2013), Bosboom
and Stive (2021), and references therein for additional details.

In highly resolved models, coupled HD-ST formulations use hydrodynamic parameters to
predict both bed load and suspended load transport rates. Bed load transport is typically estimated
as a function of the bed shear stress, sediment density, and average grain diameter (often using
Shields parameter), whereas the suspended sediment transport rate is calculated by integrating the
vertical velocity and concentration profiles, the latter of which can be based on functions such as
the Rouse profile or advection-diffusion calculations (Bosboom and Stive 2021).

Depending on the application, not all models can afford the computational burden associated
with coupled HD-ST formulations. Other approaches with less computational burden have gained
popularity, such as the equilibrium-based approach, originally developed by Kriebel and Dean
(1985), which assumes the existence of an equilibrium shoreface profile that controls how the
shoreface responds under specific hydrodynamic conditions. It is founded on the idea that if
hydrodynamic conditions remained constant, then the shoreface would respond until constructive
(landward) and destructive (seaward) forces along the profile were balanced, leading to a steady
profile with a XST rate of zero. Kriebel and Dean (1985) developed a formulation that calculates an
equilibrium profile based on depth-dependent energy dissipation rates. XST rates are then calculated
at a particular shoreface depth based on the difference between the actual energy dissipation rate
and the rate associated with the equilibrium profile (Dean and Dalrymple 2002).

Another popular approach is the energetics approach, which was originally developed by Bag-
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nold (1963) for fluvial sediment transport. This approach considers the hydrodynamic environment
as a machine that performs a certain amount of work (sediment transport) based on the available
power input (kinetic energy) modulated by some efficiency factor (resistance to transport) (Bagnold
1966). Bed load and suspended load transport rates are calculated separately based on the available
wave power, or the wave energy flux per unit width, which drives the transport (Dean and Dalrymple
2002). While the energetics approach has been successful in predicting offshore-directed sediment
transport rates during storm events, this approach has generally underpredicted onshore sediment

transport during recovery periods (Aagaard and Hughes 2013).

Modeling Overwash

Efforts to quantitatively understand and predict overwash have led to the development of various
formulations, which generally fall into one of two categories. Those in the first category may be
described as ‘Bulk’ approaches, as defined by Donnelly et al. (2006), since they relate certain
hydrodynamic parameters (e.g., wave height) to bulk washover volumes (see Figure 5a). Williams
(1978) published the earliest bulk formulation, which predicted the washover rate as a function of
excess runup (i.e., depth of runup over the dune crest) and wave period. Later bulk formulations (e.g.,
Tanaka et al. 2002) were based on laboratory experiments by Kobayashi et al. (1996), which showed
a linear relationship between overwash and washover rates. Formulations in the second category
apply coupled HD-ST formulations, which were discussed in the previous section. Donnelly
et al. (2006) reviewed at least three of these formulations and their results including Leatherman
(1976) who coupled the Einstein transport equation to velocity measurements, Sanchez-Arcilla and
Jiménez (1994) who combined the Van Rijn formulation with velocities calculated using the Chezy
equation, and Baldock et al. (2005) who applied a standard sheet flow model based on Shield’s
parameter to calculated swash velocities.

In the last fifteen years, most overwash modeling efforts have been directed toward developing,
improving, and applying the coupled HD-ST formulations, which are typically just one component
of event-scale morphodynamic models that resolve multiple sediment transport processes at small

spatial scales. At the time of Donnelly’s (2006) review, only one such model (i.e., SBEACH) was
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able to predict overwash. The original formulation, developed by Wise et al. (1996), predicted
sediment transport landward of the swash zone boundary based on the estimated wave bore velocity
at the dune crest, and interpolated the transport rate to both landward and seaward limits. This
formulation was later updated by Larson et al. (2004b) who modified landward flow dissipation by
including a lateral spreading component, and Donnelly et al. (2005, 2009) who used the Sallenger
(2000) regimes to model intermittent overwash by wave runup and quasi-steady overwash during
barrier inundation, the latter of which used a standard weir equation. Donnelly et al. (2005, 2009)
compared the updated model results to post-Hurricane field data at Assateague Island, Maryland,
Folly Beach, South Carolina, and Garden City Beach, South Carolina, showing good agreement
with the post-storm profiles. Additionally, Donnelly’s model was shown to outperform that of
Larson et al. (2004b) in predicting the post-storm profile at Assateague.

Recent work has also involved the incorporation of bulk overwash formulations into long-term
and large-scale barrier evolution models. The long-term model of Jiménez and Sanchez-Arcilla
(2004) employs a bulk formulation for modeling overwash rates based on empirically derived annual
overwash volumes. This formulations uses the critical length concept of Leatherman (1979), which
posits a theoretical threshold (i.e., critical barrier width and height) at which overwash is prevented.
Deviations from these critical thresholds are used to estimate accommodation space (or volume)
in the subaerial and backbarrier zones (see Figure 5 5b). Thus, event-driven overwash is modeled
continuously and quantified by the available accommodation space up to some predetermined
maximum annual overwash volume. More recent models (e.g., Lorenzo-Trueba and Ashton 2014,
Lorenzo-Trueba and Mariotti 2017) also use the critical length concept to model overwash in their
long-term models.

Larson et al. (2009) followed a different approach, developing an analytical method to simulate
the retreat of the barrier (or dune) based on landward (i.e., overwash) and seaward (i.e., profile
erosion) sediment fluxes. Using a triangular approximation for the island or dune, these flux values
were correlated with the ratio of dune crest to total runup elevations, and validation with field data

showed results could provide order-of-magnitude estimations of overwash flux.
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Modeling Breaching

In modeling a breach, there are a number of important components that one may wish to consider
including the location of breach occurrence, the timing of breach formation, breach dimensions
and its progression (i.e., expansion or contraction), and finally its ultimate state (e.g., natural
closure, stable inlet). While there has been some quantitative work on predicting systematic breach
occurrence (e.g., Kraus et al. 2008) and long-term inlet stability (see Kraus and Wamsley 2003 and
references therein), our focus will be limited to models with strong morphodynamic components
(i.e., breach formation, initial breach growth, and long-term progression).

Visser (1998) developed a conceptual model of breach formation and initial growth. Although
the model was originally developed for sand dikes, it can also be applied to barrier islands. The
conceptual model described five phases: 1) erosion and steepening of the inner slope of the scour
channel, 2) decreasing of the crest width, 3) crest lowering and breach widening, 4) breach widening
as flow changes from critical flow to subcritical flow, and 5) breach widening during subcritical
flow until the flow ceases. This conceptual model was translated into BRES, a numerical model that
predicts breach formation and initial growth based on discharge (calculated using the broad-crested
weir equation) through an initial trapezoidal cross-section (Visser 2000). Testing against multiple
laboratory and field studies, Visser (2000) found good agreement between predicted breach widths
over time and measured data.

Basco and Shin (1999) published a 1D numerical breaching model based on storm stages, in
a similar fashion to Sallenger’s (2000) regimes. Dune erosion was modeled in the first stage,
followed by a diffusion-based approach to overwash in the second stage. The third stage aligns with
Sallenger’s inundation regime, while the fourth stage aligns with the outwash regime. In these last
two regimes, barrier inundation and breaching were modeled by combining the 1D Saint-Venant
equations with the sediment transport formulation of Van Rijn (1984). This approach to breach
modeling has been included in more recent event-scale morphodynamic models (e.g., Delft3D,
XBeach), which combine hydrodynamic output with specific sediment transport formulations.

These models predict breach formation during barrier inundation, when flow velocities across the

17 Hoagland et al., May 24, 2023



452

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

island scour antecedent low spots into fully-formed channels. Additional details on these models
may be found in the following section.

Kraus (2003) developed an analytical breaching model that predicts the development of a
rectangular breach toward equilibrium dimensions using an exponential time function. The model
starts with some initial channel or non-uniformity in the dune or island and proceeds toward a full
breach based on flow through the channel which erodes the channel bed and sides. Kraus (2003)
found the breach response to be sensitive to initial channel dimensions. Kraus and Hayashi (2005)
later expanded the model to include a coupled HD-ST formulation, where breach progression was
based on calculated bottom and critical shear stresses. The model was shown to reproduce general
trends of an observed breach, yet it tended to underestimate the breach width and overestimate the
breach depth (Kraus and Hayashi 2005).

A more recent analytical breaching model was developed by Nienhuis et al. (2021) that is based
on the hypothesis that a breach develops when the volume of sediment transport by overwash exceeds
the sediment volume stored in the subaerial island. Overwash volume is calculated analytically
using a triangular storm surge time series and integrating an overwash flux equation that considers
surge height, width and depth of the dune gap, and a friction coefficient to account for vegetation
impacts. Nienhuis et al. (2021) compared their model results to Delft3D simulations and found
that it performed reasonably well, although the Delft3D simulations predictions varied across one
additional order of magnitude compared to the analytical model. Results were also compared
with observations from Hurricane Sandy which showed that the model performed much better for

undeveloped barriers as compared to developed barriers.

Multifaceted Event-Scale Modeling

A variety of morphodynamic models have been developed to simulate more than one event-scale
phenomena/process - we refer to these as ‘multifaceted’ models. Readers familiar with the literature
will recognize that many of these multifaceted models are commonly called ‘process-based’ models,
although we have intentionally avoided this term due to its inconsistent and ambiguous usage in the

literature, as well as its implication that more abstracted models are not based on processes. Below
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we present select event-scale models, followed by a brief discussion of multifaceted modeling
efforts related to storm sequencing and post-storm recovery, which has received less attention from

researchers until recently.

Event Scale Models

While a variety of multifaceted event-scale models exist, herein we focus on models that have
been thoroughly cited in the literature and are widely used by the coastal morphodynamics research
community. These include models such as SBEACH (Larson and Kraus 1989), which rely on
equilibrium concepts, and models such as DUROSTA (also known as Unibest-DE) (Steetzel 1993),
CShore (Kobayashi et al. 2008), Delft3D (Lesser et al. 2004), and XBeach (Roelvink et al. 2009),
which are based on coupled HD-ST formulations. Some of the primary differences between these
models are shown in Table 3, including model dimensionality, included processes, and process
formulations. Below we discuss the development of each model and highlight some significant
improvements. Readers are referred to the references provided with each model for additional
details.

SBEACH (Larson and Kraus 1989) was developed in the late 1980s to predict profile response
to storm events. The model employed the XST formula of Kriebel and Dean 1985, which is based
on the difference in energy dissipation between the actual profile and an equilibrium profile. The
model was originally calibrated using data from large wave tank experiments, showing its ability
to predict foreshore erosion and bar formation, and its inability to predict features landward of
the bar such as the trough and berm development during accretionary simulations (Larson and
Kraus 1989). The original model (which did not include overwash) was formally updated with the
overwash formulations of Wise et al. (1996) and again by Larson et al. (2004b), who showed good
agreement between model predictions and measured profile changes for observations at Ocean City
and Assateague, Maryland. SBEACH has more recently been incorporated in economic models
for evaluating beach nourishment projects (e.g., Gravens et al. 2007), probabilistic frameworks for
predicting erosion (e.g., Callaghan et al. 2013), and model comparison studies, where it produced

better morphological predictions than XBeach when using default parameters, but underperformed
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when calibration data were employed (e.g., Callaghan et al. 2013; Simmons et al. 2019).

DUROSTA, which is an acronym in Dutch for “dune erosion - time dependent,” was developed
in the early 1990s as an unsteady, numerical model upgrade to the analytical beach and dune
erosion models DUROS (Vellinga 1986) and DUROS+ (the ‘+’ representing the addition of wave
period to the original model parameterization). The model was initially validated by comparison
to laboratory data and various field experiments and showed good prediction capabilities on the
subaqueous profile while underestimating dune retreat (Steetzel 1993). DUROSTA was used by
Van Baaren (2007), who found that wave period, bed slope, and the location of transition between
the wet and dry profile zones were important model parameters. Hoonhout (2009) also used the
DUROSTA model to study the effects of shoreline curvature on dune erosion and retreat during
storm events, finding that consideration of shoreline curvature significantly impacted the model
results. Currently, DUROSTA and another cross-shore model Unibest-TC (Ruessink et al. 2007)
are optional modules that may be employed when using the one-line model Unibest-CL+.

De Goede (2020) presented a historical review of the development of Delft3D, from initial
2D shallow water code development in the late 1960s, to coupling of updated wave models (e.g.,
SWAN), to the addition of turbulence closure models for 3D flows in the 1990s, and finally
the incorporation of sediment transport formulations into the hydrodynamic module. Lesser et al.
(2004) presented details on the latter update, as well as the inclusion of a morphological acceleration
factor for long-term simulations and validation studies showing that the results compared well to
analytical solutions, laboratory data, and other accepted numerical model solutions. Delft3D is
widely used in both practice and research (De Goede 2020), including studies on event-scale
flooding (e.g., Caiizares and Irish 2008), storm sequence morphodynamics (e.g., Alfageme and
Caiizares 2005), breach stability and growth (e.g., Alfageme et al. 2007), and morphodynamic
changes between storm events (e.g., van Ormondt et al. 2020).

Johnson et al. (2012) presented a thorough summary of the historical development of CShore
from its initial goals in modeling non-linear wave transformation in the late 1990s, to aiding in

coastal structure design, and finally its development toward modeling nearshore morphodynamics
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in the late 2000s. Johnson et al. (2012) also provided results from a sensitivity analyses, model
calibration, and validation at nine field sites, which showed the model was capable of producing
reasonable estimates of event-driven morphological changes, while tending to under-predict dune
erosion and retreat. Work and improvement on the model has continued through at least 2015
(Kobayashi 2016), and the model has also been extended to two-dimensions (C2Shore), the latter
of which was validated through simulations of morphological response to Hurricane Katrina at
Ship Island, Louisiana (Grzegorzewski et al. 2013). CShore does not explicitly model sheet flow
or ebb currents, reducing its applicability during barrier inundation (Harter and Figlus 2017).

XBeach is considered the state-of-the-art event-scale model to predict barrier response to storm
events. Lead by Roelvink et al. (2009), XBeach was developed as an open source model to
predict all of the main morphological responses associated with storm events (i.e., beach and dune
erosion, overwash, and breaching) corresponding to the storm impact regimes of Sallenger (2000).
Model validation studies showed it was able to predict storm hydrodynamics and morphological
responses well (Roelvink et al. 2009), although subsequent studies have shown that high simulated
velocities in the swash zone consistently led to slight overpredictions of erosion near the dune
toe (e.g., van Dongeren et al. 2009, De Vet 2014). To correct these overpredictions, researchers
have attempted to artificially lower sediment mobilization (by modifying the critical Shield’s
number); however, while this led to more accurate predictions of dune toe erosion, it decreased
the accuracy of breaching simulations (De Vet 2014). Elsayed and Oumeraci (2017) found that
modifying suspended sediment concentrations based on the local bed slope helped to resolve this
issue. Some of the most recent work with XBeach has involved modifying roughness coefficients.
Passeri et al. (2018) implemented spatially varied roughness coefficients based on land cover, which
showed improved morphodynamic predictions over simulations with constant roughness values.
Alternatively, van der Lugt et al. (2019) implemented dynamic roughness values that vary during
the simulation according to erosion and deposition patterns, which showed improved results over
simulations with static roughness values.

Many of these event-scale models continue to be tested and applied today. Although XBeach has
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become the standard for modeling event-scale morphodynamics, recent comparison studies indicate
that other models (e.g., CSHORE, SBEACH, Delft3D) are also being used and evaluated for their
strengths (e.g., Harter and Figlus 2017; Simmons et al. 2019; Cho et al. 2019). Furthermore,
various studies have loosely coupled these event-scale models together to utilize the strengths of
each model. For example, Caiizares and Irish (2008) used SBEACH to simulate dune erosion and
lowering prior to inundation and breaching using Delft3D. XBeach and Delft3D have also been
loosely coupled in a recent breaching study by van Ormondt et al. (2020), who used XBeach to
simulate breaching development during the storm and Delft3D to simulate breach development and
growth after the storm event.

Model coupling has also been utilized in the development of new modeling systems. The
COAWST modeling system, which was developed by coupling a regional ocean model (i.e., ROMS),
a nearshore wave model (i.e., SWAN), and an open source sediment transport model (i.e., CSTMS)
(Warner et al. 2010), is appearing more frequently in the coastal morphodynamics literature,
including specific application to shoreline change modeling (e.g., Safak et al. 2017) and barrier
islands (e.g., Safak et al. 2016; Warner et al. 2018). Numerous other modeling systems have been
developed (see Kaveh et al. 2019), but have yet to gain a literature foothold in this particular field

of study.

Storm Sequences and Post-Storm Recovery

Some of these event-scale models have also been applied to the study of storm sequences,
which investigates the non-linear impact of sequential storms on beach and dune erosion, where
successive smaller storms have a cumulative effect that exceeds the impact of an independent event
(Senechal et al. 2017). Various modeling studies have been conducted to quantify this cumulative
impact and to determine the most important driving factors such as antecedent beach states (e.g.,
Splinter et al. 2014) and the order of the most severe storms within the sequence (e.g., Dissanayake
et al. 2015).

Based on a survey of the literature, Eichentopf et al. (2019) identified three primary conceptual

descriptions to aid in modeling the impact of storm sequences, and discussed evidence from
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published studies for each description. The three conceptual descriptions are: 1) initial storm
destabilization, where the first storm in the sequence erodes the beach, leaving it more vulnerable
to the next storm event, 2) extreme storm impact, where the largest storm event of the sequence
is of primary importance regardless of storm order, and 3) benchmark storm impact, where all
events in a storm sequence may be combined and modeled as a single large storm event, similar to
a benchmark or design storm approach in hydrologic analysis. Various types of models that have
been employed and/or developed to study storm sequences including statistical models (e.g., Pender
and Karunarathna 2013), long-term equilibrium-based models such as ShoreFor (Davidson et al.
2017) or PCR (Ranasinghe et al. 2012a), and multifaceted event-scale models such as XBeach and
Delft3D (e.g., Splinter et al. 2014; Dissanayake et al. 2015).

In addition to reviewing the literature on storm sequencing, Eichentopf et al. (2019) also
provide a brief section on recovery, which they indicate is much less studied than the impact
of storm sequences. They concluded with recommendations for future research, which broadly
included additional physical and numerical simulations, improved data collection efforts, and

stronger research emphasis on beach recovery processes.

Summary of Advancements and Limitations

The practice of modeling event-scale barrier morphodynamics has followed a natural progres-
sion from conceptualizing models based on observations, to the creation of simplified and efficient
rule-based models, to the development of more complex sediment transport formulations coupled
with hydrodynamic calculations at fine spatiotemporal scales. Reconsidering our Grand Challenge
statement, it is apparent that significant advancements have been made over the last fifty years. The
earliest and most basic models (e.g., analytical dune erosion models) were intuitive, easy to use,
and could provide conservative estimates for dune recession and likelihood of failure. Empirical
studies followed, which advanced our ability to quantify the impact of key processes based on hy-
drodynamic output (e.g., predicting notching/avalanching of the dune face based on swash impact,
predicting overwash volumes based on runup exceedance, predicting sediment transport rates based

on velocity and concentration profiles, etc.). This improvement in scientific understanding, along
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with the advancements in computing power, has allowed us to continue reducing the spatiotemporal
scales of our morphological predictions while maintaining or increasing accuracy.

However, there are still major limitations to our modeling capabilities. Although the accuracy
of simulations has improved, we are still a long way from high confidence predictions. This is
partially due to the scarcity of data to evaluate the predictive capability of models mid-storm.
Event-scale models are able to capture the general trends of erosion and deposition compared to
pre- and post-storm profile (or LiDAR) data; however, the small-scale predictive abilities of our
models during storm is largely unknown since there is little to no data to validate those predictions.
Our apparent distance from high-confidence predictions can also be attributed to both epistemic
uncertainty (i.e., that which arises from our lack of knowledge of the relevant processes) and
intrinsic uncertainty (i.e., that which arises from the inherent randomness of natural processes).
For example, we know that some factors - such as vegetation and anthropogenic impacts - play
an important role in event-scale morphodynamics, yet the modeling of such factors is (for various
reasons) still in its infancy. Additionally, the inherent randomness of forcing conditions (e.g., storm
characteristics, wave climates) and initial conditions (e.g., bathymetry, sediment characteristics) is

difficult to capture at smaller scales.

LONG-TERM MORPHODYNAMICS
This section provides an overview of commonly modeled phenomena and processes associ-
ated with long-term morphodynamics, a review of relevant modeling efforts, and a summary of

advancements toward the Grand Challenge.

Commonly Modeled Phenomena and Processes

During the periods of time in between storm events, chronic sediment transport processes
resume their work that contributes to gradual morphological change. The following sections discuss
commonly modeled long-term phenomena (i.e., shoreline change and barrier transgression) and

relevant morphodynamic processes.
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Shoreline Change

The shoreline can be smoothed or caused to vary in form depending on the angle of the incident
waves which drive LST (Ashton et al. 2001). Thus, shoreline change is observed as the local
shoreline is moved either landward or seaward by gradients in LST rates. These gradient-driven
changes can also manifest themselves in other ways including island migration, barrier elongation,
inlet migration, and island dimensional changes.

Although it is not as common, entire barrier islands can migrate in the direction of LST when
sediment is eroded from the updrift end, carried alongshore, and deposited at the downdrift end,
assuming no updrift sediment sources. Otvos Jr. (1970) noted this phenomenon in the northern
Gulf of Mexico by observing that barriers can migrate large distances (i.e., several kilometers) from
their location of origin. When the barriers are stable and not prone to migration, newly formed
inlets may migrate instead. This phenomenon results from a LST gradient across the inlet, where
sediment is deposited updrift of the inlet and eroded downdrift.

Dimensional changes may also be observed due to LST gradients and the placement of engi-
neering structures. McCann (1979) observed that most islands developed greater widths on the
downdrift end of the island as compared to the updrift end, which was attributed to a minimal
amount of updrift sediment available for transport. If a continuous source of updrift sediment is
present, and sediment is not removed from the barrier system, then barrier elongation could be
observed as sediment is continually added to the downdrift end. Penland and Boyd (1981) de-
scribed lateral migration of barrier islands and the influence of placing coastal structures at various
locations along the islands. For example, structures placed near the updrift end tended to reduce
the total island area while structures placed in the middle of the island tended to increase the total

area.

Barrier Transgression
In addition to shoreline change, most barrier islands are undergoing transgression (i.e., landward
migration) in accordance with SLR. However, this migration did not appear to be widely accepted

in some of the earliest literature (e.g., Schwartz 1973, Leatherman 1987). Nevertheless, once
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transgression was recognized by the research community, many studies sought to identify the
driving mechanisms that were primarily responsible for it. Otvos Jr. (1970) indicated that overwash
and aeolian processes were primarily responsible for the landward movement, which was supported
by others such as Moody (1964) and Godfrey (1970) (Leatherman 1987). Others found sediment
transport through tidal inlets and/or breaches to play a much larger role (e.g., Pierce 1969; Armon
and McCann 1979; Fisher and Simpson 1979; Leatherman 1979; USACE 1984).

SLR rate is also considered one of the primary drivers of barrier transgression through its inter-
action with storm processes such as overwash and breaching. Although not developed specifically
for barriers, the Bruun Rule (Bruun 1962) exemplifies the theorized direct relationship between
SLR and shoreline transgression. The interaction between rates of SLR and other transgressive
processes was published in an interesting study by Moslow and Heron Jr. (1979). They found that
previous high rates of SLR were correlated with dominating overwash processes and high rates of
transgression. Conversely, when the rate of SLR slowed, they found that transgression also slowed
and inlet dynamics became the dominant method of sediment transport between the ocean and
backbarrier environment.

During landward transgression, barrier islands may also maintain their elevation with respect
to SLR through the combination of overwash and inlet dynamics/breaching. As SLR effectively
reduces barrier island relief, barriers are more prone to overwash and inundation during storm
events, which deposit sediment on the island or behind it (i.e., washover deposits). This deposition
effectively translates the island landward and increases its elevation. As this process is sustained,
the barrier sediment may be conceptualized as ‘rolling’ over itself, which has led to the description
of this cycle as ‘barrier rollover’ (Moore and Murray 2018). Lorenzo-Trueba and Ashton (2014)
referred to this sustainable behavior as dynamic equilibrium.

Similarly, lagoonal washover deposits and flood tidal shoals have been shown to assist the barrier
in maintaining its elevation through the reduction of accommodation space for future washover
(Stolper et al. 2005). For example, consider a salt marsh that grows on top of washover deposited

in a lagoon during some initial storm event. When a subsequent storm arrives, sediment that would
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have been deposited in the lagoon is now deposited on top of the new salt marsh. Thus, the salt
marsh (and previous washover deposit) acts to reduce the available lagoon space for washover, and
elevation is increased in that location as a result. Recent modeling work has suggested that the
presence of backbarrier marsh not only increases island elevations, but actually reduces landward
transport by encouraging the subaerial deposition of sediments (Johnson et al. 2021). As the barrier
continues its rollover toward the mainland, those previously buried marsh and lagoonal sediments
may show up as shoreface outcrops which can affect the future morphodynamics through changes
in the sediment supply (i.e., the source of sediment that feeds the growing barrier).

Although sustained barrier transgression is associated with increases in subaerial elevations
with SLR, barriers may also lose elevation due to compaction of the underlying sediment. Hoyt
(1969) was possibly the first to mention the idea of vertical movement by compaction or isostatic
adjustment. He stated that “compaction or isostatic movement caused by weight of the sediment
deposited in the coastal area may result in formation of lakes or lagoons by depression of the
chenier plain below water level.” As the barrier rolls over previous marsh sediment, the marsh
sediment compacts under the load of the island, inducing an even higher local rate of SLR.

Barrier island transgression is also considered to be influenced by two other factors: 1) the slope
of the shelf over which it is migrating and 2) the sediment supply. If we only consider the geometry
of the system and assume that barriers maintain their dimensions, it is apparent that barriers must
migrate at higher rates over shallower slopes in order to keep pace with SLR (Pilkey and Davis
1987). Numerous studies have concluded that antecedent topography is extremely important to
the development and configuration of modern day barrier islands (e.g., Halsey 1979; Oertel 1979;
Belknap and Kraft 1985). Others have concluded that sediment supply is more important to the rate
of migration, with less sediment supply leading to increased migration (e.g., Swift 1975; Storms
et al. 2002; Moore et al. 2007; Ruggiero et al. 2010). Dillon (1970) commented on the cross-shore
migration of barriers through stratigraphy observations and concluded that barriers were not forced
to continue landward migration with SLR, but could drown if the sea level advanced too quickly or

if there was an insufficient supply of sand.
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Modeling Efforts

Perhaps the most challenging question related to barrier morphology is, “What will be the
state of a barrier system 10, 100, or even 1000 years from now?” Compared to analyzing and
predicting short-term responses, there is considerably less evidence available (that is, evidence
or data collected using our current era’s level of scientific certainty) to evaluate historical trends
and make long-term projections. Stratigraphic observation and analysis may provide a partial
glimpse of historical system states; however, it also requires assumptions and a hermeneutic to
make the evidence meaningful, thereby reducing the certainty of conclusions that may be drawn.
On the other hand, there are also problems when extrapolating small-scale processes to large
spatiotemporal scales (i.e., the problem of error propagation). Thus, the problem of long-term
morphological analysis and prediction is not a trivial one, especially since it is closely tied to
uncertainties surrounding climate change (e.g., future SLR and changes in storminess). Numerous
publications from the early 1990s into the early 2000s discuss the philosophy behind long-term
morphological prediction. The interested reader is referred to Stive et al. (1990), Terwindt and
Battjes (1990), De Vriend (1991b), Latteux (1995), and Cowell et al. (2003b) for further details on
this topic.

Similar to the previous section, the review of long-term morphodynamic modeling efforts is
broken down according to the primary intent of each model. Thus, modeling efforts are categorized
by those which model 1) shoreline change, 2) shoreface evolution, 3) barrier transgression, and
4) phenomena that are typically combinations of categories 1-3. To assist the reader in keeping
track of the models discussed, Figure 6 offers a graphical representation of long-term models, in
the chronology of their publication, that simulate some combination shoreface evolution, shoreline
change, dune growth/erosion, or overwash. Table 4 is a comprehensive summary of the long-term

models discussed in this review, which includes each model’s relevant processes.

Modeling Shoreline Change
Long-term modeling of shoreline change is often referred to as ‘shoreline evolution’ modeling

since the most observable impact of LST gradients is shoreline displacement, either landward
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or seaward. The first approach to modeling shoreline evolution stemmed from One-line Theory,
published by Pelnard-Considere (1956). Models derived from this theory, commonly called ‘one-
line models,” assume a constant equilibrium profile and calculate position changes in a single
contour line - the shoreline - over time considering only the gradients in the LST rate (see Figure
Ta).

Larson et al. (1987) published a review of one-line modeling theory and analytical solutions
that had been developed for various coast-specific and structure-specific situations. Two years later,
Hanson and Kraus (1989) presented the one-line model GENESIS, which would become one of the
most widely used one-line models for predicting shoreline evolution in practice, though not without
criticism (Young et al. 1995, Houston 1996). One-line models are still being developed and used
today, likely due to their simplicity, intuitiveness, and ease of calculation. The Coastal Evolution
Model (CEM) of Ashton et al. (2001) is a one-line model that predicts shoreline response due to
high-angle waves, assuming a constant linear shoreface out to an estimated closure depth. From
numerical experiments, they found that high-angle waves cause small shoreline perturbations to
grow into larger formations, such as cuspates and spits. Additionally, they found that shoreline
protrusions can shelter downdrift features from the high-angle waves, affecting the evolution of such
features. Thomas and Frey (2013) and Kim et al. (2020) reviewed other common one-line models
including UNIBEST-CL+ (Deltares 2021), GenCade (Frey et al. 2012), which is a combination
of GENESIS and the regional Cascade model (Larson et al. 2002), and the proprietary LITPACK
model. These models include advances such as coupling XST formulations, wave transformation,
and wave-current interaction. Notably, GenCade includes advances to model tidal inlet evolution
and inlet dynamics such as inlet bypassing and inlet feature (e.g., shoal) sediment balance.

Bakker (1968) was unsatisfied with the one-line theory’s assumption of parallel bathymetric
contour lines near engineered structures due to the apparent discontinuity it produced. In 1968,
Bakker published a two-line model whereby XST could be approximated between two profile zones
based on the profile’s deviation from an equilibrium state (see Figure 7b). Perlin and Dean (1979)

were the first to suggest expanding Bakker’s two-line approach to multiple lines, and followed up
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with publication of their n-line model six years later, which was named for its ability to handle a
user-defined ‘n’ number of contour lines (Perlin and Dean 1985). Although limited in their ability
to produce non-monotonically decreasing profiles, these models were the first to add elements of
cross-shore change to one-line models, paving the way for later n-line models that would attempt
to integrate both XST and LST (e.g., Steetzel et al. 1998).

Buijsman (1997) published the ASMITA model, which simulated interaction between the
adjacent shoreline and tidal inlets. The model consisted of five nodes that represented the tidal
channel, ebb shoal, flood shoal, and the adjacent shorelines. Sediment flux between these nodes was
calculated based on equilibrium formulations of each feature. A similar approach was incorporated
into the regional barrier island model called Cascade, presented by Larson et al. (2002). While
ASMITA focused on modeling the channel evolution, Cascade focused on modeling the regional
shoreline position over long time scales, but accounted for the dynamic inlet features in the form
of sediment source and sink terms. Larson et al. (2002) applied Cascade to a regional stretch of a
U.S. East Coast barrier island and found the model was able to satisfactorily predict the shoreline

position updrift and downdrift of two inlets.

Modeling Shoreface Evolution

Although long-term modeling of barrier transgression was well underway by the 1980s, most
models assumed a constant profile shape. It wasn’t until the mid-1990s that shoreface evolution
began to be modeled, with the publication of the Hinged Panel Model (HPM) (de Vriend et al.
1993) and the Advection-Diffusion Model (ADM) (Niedoroda et al. 1995).

A conceptualized model of the shoreface profile by de Vriend et al. (1993) discretized the
shoreface into 3 sections: 1) the upper shoreface, 2) the lower shoreface, and 3) the middle
shoreface, which acted as a transition zone between the upper and lower zones. On the lower
shoreface, profile movement was assumed to be negligible compared to the scales of interest, while
the upper shoreface was assumed to be highly active out to the depth of closure (i.e., the transition
point to the middle shoreface). The sections were considered to be rigid panels, which rotated

about hinge points at the panel intersections based on the net sediment transport into or out of
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the panel zone. This led Cowell et al. (2003b) to refer to this model as the Hinged-Panel Model
(HPM). Stive et al. (1995) published a full treatment on HPM, which used Bowen’s energetics
formulation for XST between the shoreface sections. They found that HPM produced reasonable
hindcast simulations, and that the effect of substrate slope on profile evolution was only relevant at
geologic timescales.

Niedoroda et al. (1995) published a similar model, the main difference being the continuous
formulation of XST as compared to the paneled formulation of Stive and de Vriend. The continuous
formulation is depth-dependent and breaks down the transport into a bed load (i.e., advective) term
and a suspended load (i.e., diffusive) term; thus, it was called the Advection-Diffusion Model
(ADM) by Cowell et al. (2003b). Although Stive et al. (1995) and Niedoroda et al. (1995) do not
apply their models to barrier coasts specifically, their work signifies advancement in cross-shore
shoreface modeling and the increased importance of including cross-shore processes in long-term
models.

Another class of models that simulate shoreface evolution are equilibrium shoreline models,
which have become increasingly popular for simulating event-based to interannual change. These
models combine equilibrium-based formulations of shoreface evolution with shoreline change
models (typically one-line models). The two most popular models include Yates et al. (2009) and
the Shoreline Forecast (ShoreFor) model of Davidson et al. (2013). Both models demonstrate that
beaches often respond directly to wave forcing (e.g., as quantified by wave energy or dimensionless
fall velocity); however, the equilibrium response time scale (which is often longer than a single
storm event) plays an exceedingly important role in the morphological evolution. Further, the
extensive observations and developed model of Yates et al. (2009) show that beaches become

increasingly resistant to erosion while in an eroded state.

Modeling Barrier Transgression

Models of shoreline change and shoreface evolution often produce a landward or seaward shift
in the shoreline and/or profile based on gradients in the sediment transport rates. However, these

models are not able to account for barrier transgression as an observed phenomenon. Thus, nu-
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merous models were developed to simulate long-term transgression based on cross-shore processes

(e.g., overwash, breaching, inlet dynamics) and long-term forcing conditions (e.g., SLR).

Translation Models

Bruun (1962) introduced what is perhaps the most popular hypothesis about cross-shore trans-
gression, which states that an equilibrium beach profile translates upward and landward with SLR
while conserving sediment volume. Years later this became known as the ‘Bruun Rule’ (Schwartz
1967). Because the profile is ‘translated,” these types of models are often called ‘translation models’
in the literature, and many them have been developed since publication of the Bruun Rule.

The Bruun Rule (1962) predicts profile recession distance based on the amount of SLR and the
average beach slope while conserving sediment. In subsequent examination of his theory, Bruun
(1983) revisited the assumptions behind the model development and cautioned modelers who might
attempt to apply the Bruun Rule in coupled alongshore models and progradational scenarios. Upon
further review of initial publications by Bruun (1962) and Schwartz (1967), several researchers have
offered criticism of the way that the Bruun Rule (and the underlying equilibrium profile concept)
is used in current models (e.g., Pilkey et al. 1993; Thieler et al. 2000). Conceding that some of
the criticisms of Pilkey et al. (1993) were valid, Dubois (1993) stated that such models can still
be useful in formulating research questions and site-specific equilibrium-based models. A more
recent study by Wolinsky and Murray (2009) highlighted additional limitations of the Bruun Rule
as applied to long-term simulations on the order of millennia.

Rosati et al. (2013) offered a review of field studies that attempted to validate the Bruun Rule
(or modified forms of it). More recently, the Bruun Rule has been used to model both barred and
bermed beach profiles in a laboratory setting (e.g., Atkinson et al. 2018). D’anna et al. (2021)
recently presented a reinterpretation of the Bruun Rule that explicitly partitions shoreline recession
into passive flooding of the beach profile and wave-driven reshaping components. Similarly, Troy
et al. (2021) assessed long-term profile submergence versus Bruunian recession of beaches on the
Great Lakes, a model environment to observe the effects of significant water-level variability, which

serves as a proxy for future SLR.
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The Bruun Rule has also been expanded since its initial publication. Dean and Maurmeyer
(1983) presented the Generalized Bruun Rule, which expanded the original model to include the
recession of barrier coasts specifically, and noted that greater recession rates were predicted due
to the additional sand volume being deposited on the subaerial island and in the lagoon. The
Bruun Rule was also expanded to include source and sink terms in the models of Everts (1985,
1987). Everts proposed that historical rates of SLR and shoreface retreat are preserved in the slope
of the seaward profile, assuming that the profile is not significantly reworked by LST or tectonic
deformation processes. Everts compared present and past ratios of SLR to shoreface retreat for
five U.S. East Coast barrier islands and found that some barriers are in a narrowing state. Everts
proposed that these barriers would continue to narrow until a critical width is reached, at which point
landward migration of the island would begin. This theory employed the previously mentioned
critical length concept, which was first proposed by Leatherman (1983) and has since been utilized
in other models (e.g., Lorenzo-Trueba and Ashton 2014). Further modifications of the Bruun Rule
were published by Rosati et al. (2013), who included an additional term representing XST in the
landward direction by overwash and/or aeolian processes, and Dean and Houston (2016), who
added a LST term and sediment source/sink terms to Rosati’s 2013 formulation.

Cowell et al. (1992) developed the Shoreface Translation Model (STM), which allowed modelers
to keep track of changes in stratigraphy, and was later used in conjunction with field observations
to perform hindcasting simulations (Cowell et al. 1995). The STM was later expanded using a
probabilistic framework to produce distributions of results that could be statistically evaluated in
risk management frameworks (Cowell et al. 2006).

Most recently, McCarroll et al. (2021) published the ShoreTrans model, which follows similar
profile translation methodology with a couple of distinctions and additions. First, the model
uses measured profiles instead of parametric representations. Second, in addition to the profile
translation, ShoreTrans also accounts for has been modified to incorporate dunes erosion and
accretion, sediment flux between the upper (active) and lower (inactive) shoreface, as well as

source and sink terms that can modify the sediment supply.
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Other Transgression Models

More recent transgression models can’t simply be described as ‘translation” models, since they
also simulate profile changes. For example, Storms et al. (2002) published an evolution model
called BARSIM, which was intended to preserve the simulation’s erosion and depositional time
history for comparison to observed shoreface stratigraphy. They describe BARSIM as a “process-
response’ model in which erosional and depositional mechanisms were modeled separately. Storms
et al. (2002) conducted multiple numerical experiments and found that their model successfully
captured several general observations: 1) increased grain sizes led to steeper shoreface slopes, 2)
higher sediment supply values decreased retrogradation and increased the likelihood of aggradation
or progradation, 3) higher SLR rates increased the likelihood of barrier overstepping, and 4) lower
substrate slopes allowed for greater landward rates of migration.

Stolper et al. (2005) published the GEOMBEST model, which allows for depth-dependent
shoreface adjustment toward a theoretical equilibrium profile, thus allowing the shoreface to
temporarily exist in disequilibrium. GEOMBEST is also able to simulate heterogeneous strati-
graphic units that can differ in erodability. Using the conceptual model of Cowell et al. (2003a),
GEOMBEST divides each simulated coastal tract into three cross-shore zones (i.e., shoreface,
backbarrier, and estuary). Stolper et al. (2005) used this model to estimate possible stratigraphic
histories in both steep and gentle sloping environments, showing that quantitative estimates may be
useful where historical data may be lost or otherwise unavailable. They also showed that substrate
slope plays an important role when non-erodable outcrops are present. Specifically, they found
that steep slopes lead to narrowing of the estuary and barrier drowning unless there is an external
increase in sediment supply.

Based on sensitivity analyses with GEOMBEST, Moore et al. (2007) found that increasing the
SLR rate and decreasing sediment supply led to increased barrier migration. Moore et al. (2010)
also studied the Holocene evolution of U.S. East Coast barrier islands and found that the most
vulnerable islands were large with less erodable substrates and gentle slopes. Brenner et al. (2015)

confirmed these findings and also found that positive and negative feedbacks occur based on the
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slope of the substrate and island trajectory, and the composition of the substrate and backbarrier
deposits; the negative feedback adjusts island trajectory to the substrate slope while the positive
feedback leads to barrier width adjustments.

In studying the effects of compaction on barrier island migration, Rosati et al. (2006) developed
the Migration, Consolidation, and Overwash (MCO) model to predict the response of barrier
systems to a series of storm events. The MCO model used the Convolution Method of Kriebel
and Dean (1993) to predict responses when there was no overwash, and the numerical method
of Donnelly et al. (2005) to estimate overwash volumes when water levels exceeded the berm
height. Rosati et al. (2006) found that when consolidation was considered, there was considerable
increases in migration distance and reduction of dune elevations. They found that increases in surge
heights and deep-water wave heights also led to significant increases in migration reduction of dune
elevations. Rosati et al. (2010) updated the 2006 model to include the overwash formulations
by Donnelly et al. (2009), and found that barriers on top of compressible substrates migrated
much faster than barriers on non-compressible substrates, assuming a sufficient sand supply. They
also found lower dune elevations and island volume loss to be more prevalent when compressible
substrates were present, the thickness of which was found to be non-linearly related to consolidation
rates.

Masetti et al. (2008) developed the Barrier Island Translation (BIT) model with separate
sediment transport formulations for shoreface evolution, inner shelf reworking, overwash, and
backbarrier infilling. They found barrier migration to undergo significant increases and decreases
in migration rate according to the substrate slope and sediment availability. Additionally, they
found that offshore subaqueous bodies of sediment were most likely due to barrier migration over
a non-uniform surface, rather than drowning of previous barrier islands.

Lorenzo-Trueba and Ashton (2014) developed a barrier island evolution model (hereafter
‘LTA14’ model) to evaluate long-term behavior of the system. The model tracked transect boundary
changes in the cross-shore direction based on sediment flux calculations. They found that barriers

evolved following one of four behaviors: height drowning, width drowning, constant transgression
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(or dynamic equilibrium), and periodic transgression. Most recently, Reeves et al. (2021) expanded
the LTA14 model domain to consider dune and subaerial island processes in a model called Bar-
rier3D. The Barrier3D model used the LTA 14 equations to simulate shoreline and nearshore profile
change, and included additional formulations for dune growth during non-stormy periods, dune
reduction by overwash, alongshore dune elevation changes, and sediment transport by overwash
and backbarrier overland flow. Barrier3D also used probability distributions to simulate synthetic

storm events and barrier recovery between storms (Reeves et al. 2021).

Multifaceted Evolution Models

Whereas most of the previously discussed long-term models were developed to simulate one
primary phenomenon (e.g., shoreline change, shoreface evolution, barrier transgression), other
recent models have been developed with the intent to simulate multiple long-term phenomena. We
discuss four categories of these multifaceted evolution models: 1) coupled backbarrier models, 2)
models that combine shoreline change and transgression, 3) models that combine shoreline change

and shoreface evolution (i.e., equilibrium shoreline models), and 4) extended event-scale models.

Coupled Barrier-Backbarrier Models

In the last decade, barrier island evolution models have been coupled with backbarrier models
to evaluate interactions or feedbacks between the systems. Walters et al. (2014) published GE-
OMBEST+, which coupled GEOMBEST with a backbarrier model from Mariotti and Fagherazzi
(2010). Using this model, they found that overwash played an important role in that it provided
a narrow platform for backbarrier marsh growth, which in turn reduced island migration rates by
decreasing accommodation space for sediment deposition. Lorenzo-Trueba and Mariotti (2017)
also developed a coupled model that combined the backbarrier marsh model of Mariotti and Carr
(2014) and Lorenzo-Trueba and Ashton (2014). They found that including processes such as im-
port/export of fine sediment to the barrier environment significantly impacted the accommodation
space for overwashed sediment, which ultimately led to either a sustained island that migrated or

one that drowned.
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Models that Couple Shoreline Change and Transgression

Noting that most of the previous modeling efforts focused on either shoreline change or trans-
gression, models are increasingly being developed to include both components. In 2006, the CEM
model was updated to include a function for barrier overwash (Ashton and Murray 2006) and
was later coupled with the LTA14 cross-shore barrier model (Ashton and Lorenzo-Trueba 2015).
The authors found that when alongshore coupling was less significant, large alongshore variations
persisted longer in the simulation; thus, alongshore coupling was found to act as a dampener on
barrier transgression (Ashton and Lorenzo-Trueba 2015).

Nienhuis and Lorenzo-Trueba (2019) published the BarrieR Inlet Environment (BRIE) model,
which modified and extended the combined model of Ashton and Lorenzo-Trueba (2015) to include
inlet dynamics. The model simulated inlet formation (i.e., breaching) and cross-sectional area
changes, and including alongshore sediment volume balancing between updrift and downdrift
sides of the inlet. BRIE also included a stratigraphic model that keeps track of how sediment
types (i.e., lagoonal, washover deposits, flood tidal shoals) are re-worked over time (Nienhuis and
Lorenzo-Trueba 2019).

Other models include that of Palalane and Larson (2020), ShorelineS (Roelvink et al. 2020), and
IH-LANS (Alvarez-Cuesta et al. 2021). The Cascade model, which simulates shoreline changes for
aregion of barrier islands, was updated by Palalane and Larson (2020) to include XST components
from Larson et al. (2016), which included overwash, beach and dune erosion, transport between
the beach and offshore bar, and aeolian transport. The ShorelineS model, developed by Roelvink
et al. (2020), models shoreline change, overwash, and includes the ability to split and merge barrier
islands or spits. It is also planned for ShorelineS to be coupled with XBeach or Delft3D to simulate
island and inlet migration in future work (Roelvink et al. 2020). Alvarez-Cuesta et al. (2021)
developed the IH-LANS model which combines LST (using a modified version of CERC based
on Hallermeier (1980)) and XST (following Toimil et al. (2017)), while also including specific

formulations for engineering structures such as groins, seawalls, and breakwaters.

Models that Couple Shoreline Change and Shoreface Evolution
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Although not limited to barrier island modeling, many long-term models now couple shoreline
change and shoreface evolution models. One of the earliest examples of this approach was the
3DBeach model, published by Larson et al. (1990), which was a combination of SBEACH and
GENESIS, and was capable of simulating dynamic profile features such as offshore bars.

Recently developed models incorporate equilibrium shoreline models as one aspect of their
predictive capabilities. These models include CoSMoS-COAST (Vitousek et al. 2017), LX-Shore
(Robinet et al. 2018), and COCOONED (Antolinez et al. 2019). CoSMoS-COAST combines the
one-line model of Vitousek and Barnard (2015), the equilibrium model of Yates et al. (2009), a
translation component similar to Bruun (1962), and a long-term residual shoreline trend following
Long and Plant (2012). LX-Shore combines the wave model SWAN with LST (e.g., CERC,
Kamphuis 1991) and XST (e.g., Davidson et al. 2013) formulations in a 2D horizontal grid,
similar to the CEM model setup (Robinet et al. 2018). Lastly, the COCOONED model (Antolinez
et al. 2019) couples a one-line approach similar to Vitousek and Barnard (2015), a cross-shore
equilibrium model similar to Miller and Dean (2004), and the analytical dune erosion method of
Kriebel and Dean (1993).

Notably, data assimilation techniques have been tried with many of these equilibrium shoreline
models. Long and Plant (2012) were one of the first to use data assimilation for shoreline evolution
predictions. They combined a modified version of the Yates et al. (2009) model, which predicts
long-term and short-term trends of shoreline position, with a joint extended Kalman Filter (eKF)
assimilation approach that updates the model predictions based on shoreline position observations.
Other models that have used Kalman filtering include CoSMos-COAST (Vitousek et al. 2017),

ShoreFor (Ibaceta et al. 2020), and IH-LANS (Alvarez-Cuesta et al. 2021).

Extended Event-Scale Models

Another common modeling approach that combines XST and LST is the extension of multi-
faceted event-scale models for use in long-term simulations. Due to computational constraints,
event-scale models have primarily been used to simulate short-term changes. However, recently

they have also been employed and extended to predict long-term changes where computational
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burden is reduced through hydrodynamic averaging or lengthening the morphological time step.

Vemulakonda et al. (1988) were among the first to utilize this approach with the Coastal Inlet
Processes (CIP) Model, which was originally developed to predict tidal inlet shoaling for ingress
and egress of U.S. submarines. Wave and circulation models were coupled together with a sediment
transport model, the latter of which required a user-defined time step that effectively extended the
hydrodynamic conditions. Comparing model results to a year’s worth of navigation channel survey
data, the model was shown to satisfactorily predict sediment transport rates (Vemulakonda et al.
1988).

A more recent and common approach is that of Lesser et al. (2004), who applied a morphological
acceleration factor (morfac) within Delft3D to effectively lengthen the sediment transport time step
for long-term simulations. Lesser et al. (2004) showed that using morfac in simplified cases did
not cause the results to significantly deviate from the full solution. This approach was extended by
Roelvink (2006), who proposed running multiple accelerated simulations in parallel for different
tidal phases and using a weighted average of morphological change to update the bathymetry for
the next time step.

Event-scale models are also used to model storm sequences and recovery periods between
storms. Ranasinghe et al. (2012a) developed the Probabilistic Coastline Recession (PCR) model,
which generates 100-year sequences of storm events and employs the event-scale swash impact
model of Larson et al. (2004a) (LEH04) to predict dune recession. The model also considered SLR
projections and used a constant, empirically derived rate of dune recovery between storm events
(Ranasinghe et al. 2012a). Long et al. (2020) developed a modeling framework for Breton Island,
Louisiana, to assess restoration design alternatives that used XBeach to model the island’s response
to successive storm events over a 15-year time period. Shoreface and bay-side erosion between
storm events were not modeled explicitly, but were accounted for through manual manipulation of

the pre-storm profiles (Long et al. 2020).
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Summary of Advancements and Limitations

The literature indicates that over the last fifty years significant advancements have been made in
long-term morphodynamic modeling of barrier systems. Again, model development has followed
a rather natural progression - from the simplified to the complex. The intuition behind some of
the earliest models (e.g., one-line and translation models) laid a foundation on which subsequent
model development has been steadily built. More complex formulations have been developed to
predict shoreface shape changes, rather than assuming a constant equilibrium profile. Additional
processes have been added (e.g., overwash representations, changes in sediment supply) to more
closely capture the underlying mechanics of barrier transgression. Models are also increasingly
being developed to incorporate other sub-systems (e.g., the backbarrier marsh-lagoon system) that
impact the long-term morphodynamics.

Yet there are still many limitations to be addressed, including (but not limited to) model val-
idation, uncertainty characterization, and the incorporation of relevant processes and important
factors. Although there is a wealth of satellite imagery available to coastal researchers, this dataset
is limited both in the information it contains (i.e., primarily shoreline and marsh positions) and its
temporal coverage for long-term model calibration and validation. This lack of long-term quanti-
tative data is one likely reason why many long-term models have not been thoroughly validated.
Other long-term models that were originally created to explore barrier island morphodynamics and
develop new hypotheses - what Murray (2003) calls ‘exploratory models’ - have largely remained
as such and have not yet shifted toward the prediction of real systems. Additionally, although
testing model sensitivity is common practice, most models are not developed to explicitly consider
input parameter uncertainty. Models typically receive averaged or representative input values and
produce a single-value output rather than a statistical range of predictions. Another limitation, sim-
ilar to event-scale modeling, is that most previous efforts have focused on evolution of the natural
barrier system and have neglected anthropogenic impacts. Other relevant processes such as barrier
subsidence, aeolian transport, backbarrier marsh growth/erosion, and factors that impact erosion

and deposition such as vegetation type and density, have mostly been excluded from long-term
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models with only a few exceptions.

One modeling challenge that has persisted over time is the extrapolation of small-scale sediment
transport predictions to large scale coastal behavior (LSCB) - a link which is certainly intuitive.
However, the problem of uncertainty or error propagation, where uncertainty or error at the small
scale compounds over time resulting in imprecise or inaccurate predictions, has stifled this type
of long-term modeling. De Vriend (1991a) indicates the extraordinary challenge of this unsolved
problem saying, “...it must even be doubted whether models formulated at a small scale will ever be
able to describe LSCB,” and reverently quips that “we may need another Ludwig Prandtl” before

we have a good answer.

RESEARCH GAPS AND NEEDS

Based on the advancements that have been made toward our Grand Challenge, and the lim-
itations that persist in our modeling efforts, we have identified critical gaps and future research
needs that might be addressed moving forward. The gaps and needs highlighted below are those we
believe are most critical for making progress toward the Grand Challenge. We acknowledge, how-
ever, that other gaps and needs exist. The research gaps and needs may be generally categorized as
follows: 1) Observations, data availability and accessibility, 2) Scientific understanding of relevant

processes, and 3) Modeling framework and approach. These categories are expounded below.

Observations, Data Availability, and Accessibility

One of major limitations of our current modeling efforts is the availability of data. While
technological advancements during the 20th century increased our ability to collect good data, the
timing of these advancements means the quantity of long-term data for validation is sparse. On the
other hand, event-scale data are not limited by time, but by the complexities and dangers associated
with collecting perishable data before, during, and immediately following storm events. However,
to improve our scientific understanding of the relevant processes and associated modeling efforts,
we must overcome these data limitations so that we can ground truth our theories and formulations in

observations. Herein we discuss a few high-level issues regarding data acquisition and accessibility,

41 Hoagland et al., May 24, 2023



1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

while assuming that some methodological advancements for data collection and analysis will be
required to further our understanding of the relevant processes discussed in the following section.

Long-term observations of coastal morphodynamics generally exist only at a limited number
of well-monitored sites (e.g., Duck, NC, Larson and Kraus 1994; Torrey Pines, CA, Ludka et al.
2019; Ocean Beach, CA, Barnard et al. 2012; Fire Island, NY, Lentz and Hapke 2011; Narrabeen-
collaroy, Australia, Turner et al. 2016; Truc Vert, France, Castelle et al. 2020; Hasaki, Japan, Banno
et al. 2020; South Holland, Netherlands, de Schipper et al. 2016), which are maintained by various
government agencies and academic institutions. It is vital that these long-term monitoring efforts
continue while new avenues of data at higher spatiotemporal resolutions are sought. As such, we
must be diligent to make the most of available datasets, develop new ones, and make them broadly
accessible. We must develop and promote centralized, open access databases (e.g., the Community
Surface Dynamics Modeling System - CSDMS) that contain both open access models and collected
data (e.g., the use of public archival in the National Science Foundation’s DesignSafe (Rathje et al.
2017), or post-event field data (Berman et al. 2020)). Increasing the amount and quality of available
data would also be useful for blind model comparisons, data assimilation, and machine learning
applications.

One way to push toward increased dataset availability is to continue to capitalize on technologies
that exist and are readily available. A perfect example of this is remote sensing data, such as publicly
available satellite imagery (e.g., Luijendijk et al. 2018; Vos et al. 2019; Turner et al. 2021). We also
expect that publicly accessible LiDaR datasets will become more widely available with continued
advancements in drone technology (Shaw et al. 2019). It might also require us to creatively enlist
the public’s help in data collection such as using public photos and photogrammetry (e.g., Harley
et al. 2019). A second way to advance this initiative is by developing new data collection methods
or technologies. Due to the perishable nature of pre- and post-storm data and the uncertainties
surrounding the timing and location of storm events, morphological data before, during, and after
storm events is difficult to obtain. Certain efforts are underway to help coordinate, collect, and

make available this perishable data, including the National Science Foundation’s NHERI RAPID
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Facility (Wartman et al. 2020; Berman et al. 2020) and Nearshore Extreme Events Reconnaissance

program (Raubenheimer 2020).

Scientific Understanding of Relevant Processes

Epistemic uncertainty and the exclusion of relevant factors are two important previously men-
tioned limitations. The epistemological issues discussed herein include both hydrodynamics and
sediment transport, and the relevant factors discussed include vegetation dynamics and anthro-
pogenic impacts.

Despite hydrodynamic simulation advancements, increased complexity in sediment transport
formulations has not always translated to increased accuracy. Quoting from a study by Davies
et al. (2002) in which multiple transport formulations were compared, Bosboom and Stive (2021)
noted that most sediment transport predictions are only accurate within an order of magnitude,
and that empirical calibration of these model formulations is still necessary in many cases. They
also remarked that the simpler formulations are still often the best available ones. This indicates
an obvious shortcoming in our ability to reproduce realistic hydrodynamic forcing conditions and
to model the relationship between forcing and sediment transport. Aagaard and Hughes (2013)
highlighted some of the latter shortcomings, stating that there is room for improvement in our
quantitative understanding of bed load and suspended load transport, as well as our knowledge of
which parameters (other than bed shear stress) can lead to better transport rate predictions. Notably,
while such improvements would certainly lead to advancements in event-scale modeling efforts,
the initial impact on long-term models would be minimal.

One of the greatest advancements in event-scale morphodynamic modeling in recent years
was the inclusion of infragravity waves in the hydrodynamic calculations (Sherwood et al. 2022).
While we still do not fully understand the mechanics of how these waves impact nearshore sediment
transport (Aagaard and Kroon 2017), we now recognize their importance in predicting event-scale
morphodynamic response. Other factors such as the non-linearity of incident waves, the interaction
of incident and infragravity waves, and swash zone dynamics, including turbulence and boundary

layer flows, may also prove to be key missing components in coupled hydrodynamics-sediment
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transport formulations that have a significant impact on event-scale morphodynamics. While
these factors may be key missing components, the small scales needed to resolve some of these
hydrodynamic and sediment transport processes would require computational resources that make
such modeling practically infeasible at present. Continued computational advancements may help
to alleviate such limitations.

In studying and developing formulations for event-scale processes such as overwash and breach-
ing, it is important to consider all of the contributions to total inundation height, including tides,
storm surge, and waves. The exclusion of one or more of these contributions can alter the total
inundation height and corresponding morphological response. Furthermore, special consideration
should be given to the timing of these contributions, as recent work has shown that time differences
between the bay peak surge and ocean peak surge can lead to bay-side breaching (e.g., Shin 1996;
McCall et al. 2010; Sherwood et al. 2014; Smallegan and Irish 2017).

Since data for event-scale morphodynamic response are sparse, future work should capitalize
on previously published studies or available data from historical events (e.g., van Ormondt et al.
2020), which may yield additional insights into the nature of overwash and breaching. Moreover,
since overwash and breach observations are difficult to obtain in the field, physical modeling that
leverages advancements in data collection methods and instrumentation may also help us better
understand and quantify these processes. Although these physical modeling studies would require
careful consideration of potential scaling issues, we believe that valuable insights into the overwash
and breaching processes remain to be gained from this method of study.

Another factor that may be prioritized for future studies is coastal vegetation. Currently,
we have a general understanding of how vegetation impacts barrier morphodynamics (e.g., dune
stabilization, subaerial accretion, increased flow roughness) and vice versa (e.g., van der Lugt
et al. 2019); however, our quantitative understanding, and field-verification of that understanding,
is further behind. Moving forward, beneficial research efforts would include the quantification
of vegetation impact for parameters such as vegetation type, location, density, and hydrodynamic

conditions for implementation in event-scale and long-term models. Recent studies (e.g., Ayat
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and Kobayashi 2015; Zinnert et al. 2019) indicated that this research is underway, and recent
modeling studies (e.g., Passeri et al. 2018; van der Lugt et al. 2019) exemplify the initial stages
of incorporating this information into event-scale morphodynamic analysis. Furthermore, with
the U.S. Army Corps of Engineers’ recent release of international guidelines on the design and
implementation of Natural and Nature-Based Features (NNBF) (Bridges et al. 2021), we expect
future studies to quantify the performance of NNBF in various coastal environments.

Many coastal barriers are no longer representative of a natural environment as they are either
developed or impacted by development and engineering structures on neighboring shorelines.
Although many early studies and models sought to quantify the impact of engineering structures on
littoral transport (e.g., one-line modeling of shoreline changes near groins), relatively few studies
have quantitatively addressed the morphological impact of human development and other large-
scale coastal restoration practices. Additionally, we would benefit from better understanding how
the coastal management process works holistically, including how policies are developed, how
individual restoration decisions are made, and how studies which quantify anthropogenic impacts
influence the management process, considering cultural, political, and socioeconomic differences
across localities. This type of analysis has largely been absent in the barrier morphodynamics
literature, with the exception of a few observational studies on the feedbacks between coastal
protection and real estate values (e.g., Keeler et al. 2018), and modeling studies that consider the
coupling of barrier morphodynamics with the incentives of developers and owners (e.g., McNamara
and Werner (2008)) and individuals in the coastal real estate market (e.g., McNamara and Keeler
(2013)). Moving forward, beneficial research topics would include understanding the quantitative
morphodynamic response between developed and natural barrier systems (e.g., Rogers et al. 2015),
and the incentives, behavior, and impacts of human agents in what is appropriately called a
‘coupled human-landscape’ or ‘coupled natural-human’ system (McNamara and Lazarus 2018;

NASEM 2018).
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Modeling Framework and Approach

There are several ways in which our modeling frameworks and overall approach may continue
to improve in order to further research and achieve higher-confidence predictions. First, since
modeling is inherently tied to the scientific understanding of the processes being studied, advance-
ments in how those processes are understood must be regularly incorporated into the improvement
of existing models and the development of new models. As research has naturally become more
focused and specialized, many recent studies have been published related to specific components of
barrier island morphodynamics (e.g., sediment transport between the inner shelf and active profile,
beach-dune interactions, backbarrier marsh dynamics, etc.). Therefore it is critically important
that holistic models of barrier morphodynamics incorporate the theory and formulations of more
focused models.

Second, although some of the recently published long-term morphodynamic models included
sensitivity analyses for various parameters, model results are still largely presented as single
simulation output. Modeling efforts would benefit by increasingly employing ensemble approaches
(e.g., Monte-Carlo techniques) that consider input parameter uncertainty. Rather than producing
a single output, a probabilistic range of results would be produced that can help characterize
uncertainty in the model predictions (Vitousek et al. 2021). Such an approach lends itself not only
to identifying expected values, but also to identifying extreme scenarios and the input parameter
combinations that cause them. Additionally, with the large number of models that have been
developed, modelers may consider a multiple-model ensemble approach to evaluate the range of
predictions across various models, as has been done with model comparison studies (e.g., Montafio
et al. 2020). Such an approach would emulate the current practice for forecasting hurricanes and
would also naturally facilitate model comparisons and identification of robust and accurate models.

Third, as we focus on expanding data accessibility and collection capabilities, we must be
diligent to incorporate the available data. In addition to model validation, data may be used to train
and/or reduce error in model predictions using machine learning and data assimilation methods,

respectively. There are many ways in which machine learning may be employed in morphodynamic
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modeling to improve predictions and fine-tune model parameters for a specific site (Goldstein et al.
2019). Machine learning may also be employed to reduce computational burden. As models include
relevant processes at smaller scales, the computational burden will naturally increase; however,
machine learning techniques can serve to abstract those computationally expensive processes,
effectively substituting arecognized or learned pattern for a more complex algorithm. One drawback
to these powerful data-driven approaches is that it is possible to ‘over-train’ a model with limited
data, which effectively reduces its predictive capability for conditions that have yet to be observed.
Despite the benefits and drawbacks of these methods, there are still relatively few models that
explicitly incorporate them, suggesting there is still much room for model improvement.

Fourth, many models still focus only on parts of the barrier system, without considering all
relevant processes. Such scientific focus up to this point was likely necessary to better understand
specific system components; however, our current knowledge of important processes should lead
to more complex, coupled, and fully representative models. For example, recent models (e.g.,
Walters et al. 2014; Lorenzo-Trueba and Mariotti 2017) have shown the importance of coupling the
backbarrier marsh-lagoon system to barrier evolution models; however, there are still relatively few
models that incorporate these as coupled systems. Barrier subsidence has received relatively little
attention in the literature and has been incorporated into a minority of barrier evolution models
(e.g., Rosati et al. 2006; Rosati et al. 2010). Yet, from these few studies, we see that consolidation
rates can significantly impact the future evolution of the system. The role of aeolian transport has
also largely been neglected in barrier island evolution models. Although a large body of work exists
regarding aeolian transport and its role in dune recovery (e.g., Brodie et al. 2017), few full-scale
barrier evolution models have integrated this research. This may be the case, at least in part,
because of the relatively recent focus on modeling storm sequences and post-storm beach and dune
recovery (Eichentopf et al. 2019). However, as various studies have indicated the importance of
these morphological components, modeling efforts would be most beneficial by driving toward the
incorporation of all relevant processes.

Finally, anthropogenic influences, such as urban development and its associated infrastructure,
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have changed and will continue to change the way many of the fundamental processes discussed in
this review affect barrier island morphology. This also includes coastal engineering infrastructure,
which is often intended to reduce inundation and erosion, or to support recreational and commer-
cial navigation. Thus, modeling paradigms shifted toward representing barrier islands as coupled
human-natural systems would provide important insights (McNamara and Lazarus 2018). Mod-
eling frameworks that included anthropogenic impacts such as the effects of human agents (e.g.,
McNamara and Werner 2008), urban development (e.g., Rogers et al. 2015), and coastal restoration
practices (e.g., Long et al. 2020), would help us explore and evaluate their impacts which would be

useful in coastal planning.

Summary

In closing, future research and development in the area of morphodynamic modeling of coastal
barrier systems would benefit by leveraging existing and new datasets, advancements in observation
technologies, and emerging data science approaches to better characterize morphological response
and its uncertainty. Continuing the research community shift toward open access models and
data would facilitate more rapid advancement in this area. Scientific advances are most needed
in understanding anthropogenic and ecological influences on barrier morphological change. Also
essential is advancing scientific understanding of observed morphological phenomena and the
underlying sediment transport processes, including the coupling between a barrier and its sub-
systems. Such advancements will bring us closer to achieving the overarching goal of high-

confidence predictions of barrier system morphodynamics in multiple spatiotemporal dimensions.
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TABLE 1. Recent Reviews

Citation

Focus

Donnelly et al. (2006)

Rosati and Stone (2009)
McBride et al. (2013)
Chardén-Maldonado et al. (2016)
Reeve et al. (2016)

Ciavola and Coco (2017)

Moore and Murray (2018)
Eichentopf et al. (2019)
Ranasinghe (2020)

Toimil et al. (2020)

Sherwood et al. (2022)

Laboratory work, field studies, and modeling efforts related
to coastal overwash.

Barrier evolution concepts from early literature; recent con-
cepts in Northern Gulf of Mexico.

Observations and conceptual models of barrier morphody-
namics for various coastlines and regional locations.

Recent advancements on hydrodynamics and sediment trans-
port modeling in the swash zone.

Long-term morphodynamic models that employ data-driven
and/or hybrid approaches.

Event-scale processes and their impact on specific coasts
(e.g., sandy beaches, barrier islands, tidal flats, etc.).
Compilation of recent work and synthesis of current under-
standing and state of research on barrier morphodynamics.
Laboratory studies, field work, and modeling exercises re-
lated to storm sequencing and beach recovery.

Commonly used morphodynamic models for sandy beaches
and ideas for future long-term models.

Coastal erosion modeling, climate change impacts, and ap-
proaches for evaluating uncertainty.

Advances in modeling event-driven morphodynamics on
sandy coasts.
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TABLE 2. Spatial and temporal scales of barrier island morphodynamics, respectively modified
from Cowell et al. (2003a) and from Rosati and Stone (2009).

Type Term Scale
Spatial Small-scale 10° — 10 meters
Spatial Moderate-scale ~ 10% — 10° meters
Spatial Large-scale > 103 meters
Temporal Short-term hours to days
Temporal Mid-term days to decades
Temporal Long-term decades to centuries
85
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TABLE 3. Multifaceted Morphodynamic Models

Model Name (Reference)

Dimensions

Process Formulations’

XST LS

T ow BR

Model Description

SBEACH
(Larson and Kraus 1989)

DUROSTA/Unibest-DE
(Steetzel 1993)

CShore/C2Shore
(Kobayashi and Farhadzadeh
2008)

(Grzegorzewski et al. 2013)

Delft3D

(Lesser et al. 2004)

XBeach
(Roelvink et al. 2009)

1D

1D/Q2D

1D/2D

2D

KD85

[...STZL93..

[...KBYO08..

.

WIS96

y

KBY10

XST rates estimated through
semi-empirical relationships in
shoreface regions; considers wave
and sediment characteristics, wave
shoaling, breaking, setup and
setdown, breaker decay and
reformation, sediment slump-
ing/avalanching.

Only considers suspended load
transport (bed load neglected);
considers wave set-up, energy dis-
sipation from bed friction after
breaking with a turbulence model;
employs a bed slope correction fac-
tor and extrapolates swash trans-
port rates based on calculated rates
at the wet/dry interface.
Hydrodynamic components in-
clude the combined action of in-
cident waves and currents, consid-
ering wave shoaling, breaking, and
roller energy; considers shoreface
(or structure) permeability and
overtopping using an empirically
based, probabilistic runup model.
Shallow water equations solved
in 2D (depth-averaged) or 3D;
allows coupling to HISWA or
SWAN wave models which con-
sider breaking, bed friction, and
streaming (near-bed currents); in-
cludes surface roller and infra-
gravity formulations; includes bed
slope correction and morphologi-
cal acceleration factor.
Depth-averaged shallow water
equations solved in Sallenger
(2000) storm impact regimes; in-
cludes wave breaking, swash dy-
namics (modeling wave groups, in-
fragravity waves, surface rollers,
and return flows), beach and dune
erosion (including avalanching),
overwash (using low-frequency
wave group forcing), and breach-
ing by channel scouring.

TOW: Overwash; BR: Breaching; KD85: Kriebel and Dean (1985); WIS96: Wise et al. (1996); STZL93: Steetzel
(1993); KBYO08: Kobayashi and Farhadzadeh (2008); KBY10: Kobayashi et al. (2010); VRN93*: van Rijn (1993) et
al.; SVR97*: Soulsby (1997) et al.
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TABLE 4. Long-Term Morphodynamic Models

Year

Model Name (Reference)

Modeled Phenomena/Processes’

SFC LSC TRN

ID DGE SUB OW MLP

1956
1962
1968
1979
1983
1985
1989
1990
1992
1993
1995
1997
1998
2001
2002
2002
2005
2006
2008
2009
2012
2013
2013
2014
2014
2015
2016
2017
2017
2018
2019
2019
2020
2020
2021
2021
2021
2021

PELS56 (Pelnard-Considere 1956)
Bruun Rule (Bruun 1962)

2-Line (Bakker 1968)

n-Line (Perlin and Dean 1979)

Gen. Bruun Rule (Dean and Maurmeyer 1983)

EVR&5 (Everts 1985)

GENESIS (Hanson and Kraus 1989)
3DBeach (Larson et al. 1990)

STM (Cowell et al. 1992)

HPM (de Vriend et al. 1993)

ADM (Niedoroda et al. 1995)

ASMITA (Buijsman 1997)

PonTos (Steetzel et al. 1998)

CEM (Ashton et al. 2001, 2006)

Cascade (Larson et al. 2002)

BARSIM (Storms et al. 2002)
GEOMBEST (Stolper et al. 2005)

MCO (Rosati et al. 2006, 2010)

BIT (Masetti et al. 2008)

YATO9 (Yates et al. 2009)

GenCade (Frey et al. 2012)

ShoreFor (Davidson et al. 2013)

Mod. Bruun Rule (Rosati et al. 2013)
LTA14 (Lorenzo-Trueba and Ashton 2014)
GEOMBEST+ (Walters et al. 2014)
ALT15 (Ashton and Lorenzo-Trueba 2015)
D&H16 (Dean and Houston 2016)

LTM17 (Lorenzo-Trueba and Mariotti 2017)
CoSMoS-COAST (Vitousek et al. 2017)
LX-Shore (Robinet et al. 2018)
COCOONED (Antolinez et al. 2019)
BRIE (Nienhuis and Lorenzo-Trueba 2019)
ShorelineS (Roelvink et al. 2020)

PAL20 (Palalane and Larson 2020)
UNIBEST-CL+ (Deltares 2021)
ShoreTrans (McCarroll et al. 2021)
IH-LANS (Alvarez-Cuesta et al. 2021)
Barrier3D (Reeves et al. 2021)
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TSFC: Shoreface Change; LSC: Longshore Shoreline Change; TRN: Transgression; ID: Inlet
Dynamics; DGE: Dune Growth or Erosion; SUB: Subsidence; OW: Overwash; MLP: Marsh
and Lagoon Processes
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