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ABSTRACT

With the wide adoption of AI applications, there is a pressing need
of enabling real-time neural network (NN) inference on small em-
bedded devices, but deploying NNs and achieving high performance
of NN inference on these small devices is challenging due to their ex-
tremely weak capabilities. Although NN partitioning and offloading
can contribute to such deployment, they are incapable of minimiz-
ing the local costs at embedded devices. Instead, we suggest to
address this challenge via agile NN offloading, which migrates the
required computations in NN offloading from online inference to
offline learning. In this paper, we present AgileNN, a new NN of-
floading technique that achieves real-time NN inference on weak
embedded devices by leveraging eXplainable Al techniques, so as
to explicitly enforce feature sparsity during the training phase and
minimize the online computation and communication costs. Exper-
iment results show that AgileNN’s inference latency is >6x lower
than the existing schemes, ensuring that sensory data on embedded
devices can be timely consumed. It also reduces the local device’s
resource consumption by >8x, without impairing the inference
accuracy.
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Figure 1: Existing work vs. AgileNN

1 INTRODUCTION

Neural networks (NNs) have been used to enable many new appli-
cations, such as face and speech recognition [6, 32], object tracking
[5, 15], and personal assistants for business [66] and health [69].
With the penetration of these applications into our daily life, there
is a pressing need of enabling real-time NN inference on small
embedded devices, to allow more intelligent and prompt decision
making on these weak devices. For example, on-device data process-
ing on home security sensors [70] and industry actuators [1] will
allow prompt response to sporadic events, and real-time analysis of
human activity data on wearables could timely identify potential
health risks [3, 13]. Deployment of NN models on small drones and
robots is the technical foundation of these devices’ autonomous nav-
igation [7, 23], which is useful in many environment surveillance,
disaster rescue and military scenarios. Furthermore, real-time NN
inference, if made possible on energy-harvesting-powered sensors
[24, 33] and RF-powered devices [35, 47], could expand the current
horizon of Al to another magnitude.

Deploying NNs on these small devices, however, is very challeng-
ing due to the disparity between these devices’ weak capabilities
and NNs’ high computing demands. For example, the ResNet50
model contains 23 million parameters and 50 convolutional lay-
ers [28], and requires at least 100MB memory and a processor of
>2GHz to achieve 60ms inference latency on a smartphone [52].
Such amount of computing resources, however, is >10 times higher
than what is available on a STM32 microcontroller (MCU)!.

To eliminate such disparity, researchers aimed to reduce the NN
complexity via compression [18, 25] or pruning [27, 51] (Figure
1 - top left), which remove redundant NN weights and structures.

!The STM32 MCUs have been widely used on embedded sensors and actuators. The
STM32F746 MCU, for example, is equipped with an ARM Cortex-M7 processor running
at 216 MHz and 320KB of local memory [2].
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Local comput. | Memory | Data Inference | Training
complexity cost trans. cost | accu. loss cost
Compression [18, 25] Very High High None High High
Local Inference | Pruning [27, 51] Very High High None High High
NAS [10, 44] High Medium | None Medium Very High
Remote Inference JPEG [62], MPEG [41] Low Low High Low Low
NN-favorable compression [45, 46] || Medium Low Medium Medium Medium
NN Partitioning [31, 34, 36, 39, 42, 65] High Medium | Low Low Medium
AgileNN H Very Low [ Low [ Very Low [ Very Low [ Medium ‘

Table 1: Comparison of the approaches to NN inference on weak devices

However, the existing schemes mainly target strong mobile devices
(e.g., smartphones) where a moderate reduction of NN complexity
is sufficient. When being tailored to the weak embedded devices’
extreme resource constraints, the over-simplified NNs will suffer
large reductions of inference accuracy. For example, when the size
of a ResNet50 model is reduced by 100 times, its inference accu-
racy could drop from 77% to 62% [22]. Even with the recent Neural
Architecture Search (NAS) technique that finds the best NN struc-
ture with the given complexity constraint [10, 44], the inference
accuracy loss could be still >10%.

Instead, a better solution to avoiding the inference accuracy loss
is to offload the NN computations to a cloud server. To minimize the
communication cost of offloading, one can compress the NN input
data [41, 45, 46, 62] before transmission (Figure 1 - top right), but
the compression ratio could be limited and result in high data trans-
mission latency, with the low-speed wireless radios (e.g., Bluetooth
and ZigBee) used on embedded devices for energy saving purposes.
Later research efforts suggest to partition the NN (Figure 1 - bottom
right), and use the Local NN? to transform the input data into a more
compressible form of feature representations before transmission.
Existing NN partitioning schemes [31, 34, 36, 39, 42, 65], however,
need to use an expensive Local NN to enforce feature sparsity and
incur unacceptable computing latency on the local device. The key
reason of this limitation is that these schemes regardlessly apply
the same learning approach to every input data, and hence need a
sufficient amount of representation power at the local NN for the
worst case of input data.

To address this limitation and practically enable NN inference
on extremely weak devices (e.g., MCUs) with the minimum latency,
in this paper we present AgileNN, a new technique that shifts the
rationale of NN partitioning and offloading from fixed to agile
and data-centric. Our basic idea is to incorporate the knowledge
about different input data’s heterogeneity in training, so that the
required computations to enforce feature sparsity are migrated from
online inference to offline training. More specifically, we interpret
such heterogeneity as different data features’ importance to NN
inference, and leverage the eXplainable AI (XAI) techniques [56, 59]
to explicitly evaluate such importance during training. In this way,
as shown in Figure 1 - bottom left, the online inference can enforce
feature sparsity by only compressing and transmitting the less
important features, without involving expensive NN computations.
The important features, on the other hand, are retained at the

%In this rest of this paper, we use Local NN to indicate the portion of partitioned NN
at the local device, and Remote NN to indicate the portion of partitioned NN at the
cloud server.
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local device and can be perceived by a lightweight NN with low
complexity. Predictions from Local NN and Remote NN, eventually,
are combined at the local device for inference.

The major challenge of using AgileNN in practice, however, is
that different data features may have similar importances to NN in-
ference. In this case, sparsity among less important features will be
reduced and result in lower data compressibility, and more features
also need to be retained at the local device, incurring extra comput-
ing latency. To address this challenge and simultaneously minimize
the local embedded device’s costs in computation and communica-
tion, AgileNN’s basic approach is to intentionally manipulate the
data features’ importance via non-linear transformation in the high-
dimensional feature space, so as to ensure that such importance’s
distribution over different features is skewed. In other words, only
few features make the majority of contributions to NN inference. In
our design, we realize such skewness manipulation with a highly
lightweight feature extractor, and jointly train the feature extractor
with Local and Remote NNs to ensure inference accuracy.

To our best knowledge, AgileNN is the first technique that
achieves real-time NN inference on embedded devices with ex-
tremely weak capabilities in computation and communication. Our
detailed contributions are as follows:

o We effectively migrate the required computations in NN
offloading from online inference to offline training, by lever-
aging XAI techniques that allow lightweight enforcement of
feature sparsity at runtime.

o We developed new AI techniques that use XAI to explicitly
manipulate the importances of different data features in NN
inference, so as to ensure the effectiveness of NN partitioning
and offloading.

e By enforcing skewness of such importance’s distribution
over different features, we allow flexible tradeoffs between
the accuracy and cost of NN inference on embedded devices,
without incurring any extra computing or storage cost.

We implemented AgileNN on a STM32F746 MCU board and a
server with an Nvidia RTX A6000 GPU, and evaluated the per-
formance of AgileNN on various popular datasets under different
system conditions. From our experiment results, we have the fol-
lowing conclusions:

e AgileNN is real-time. Compared to the existing schemes
[39, 44, 65], AgileNN reduces the NN inference latency by
up to 6x, and restrains such latency within 20ms on most
datasets. It hence supports real-time NN inference on weak



embedded devices, by ensuring that the sensory data can
always be timely consumed.

o AgileNN is accurate. Compared to the existing NN parti-
tioning schemes, AgileNN provides the similar inference
accuracy but achieves much higher feature sparsity. Such
high sparsity, then, reduces the amount of data transmission
in NN offloading by up to 70%.

o AgileNN is lightweight. Compared to the current NN infer-
ence schemes on embedded devices, AgileNN reduces the
local energy consumption by >8x, while consuming 1.2x less
memory and 5x less storage space.

e AgileNN is adaptive. It minimizes the performance degrada-
tion of NN inference in different embedded device settings
and system conditions, even with extremely low computing
power and wireless bandwidth.

2 BACKGROUND & MOTIVATION

To help better understand the AgileNN design, we first demonstrate
the limitations of the existing NN offloading schemes. Then, we
motivate our design by introducing XAI techniques that explicitly
evaluate the importance of different features, and highlighting the
necessity of having features with skewed importance distributions.
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Figure 2: Data compressibility in NN offloading

2.1 Data Compressibility in NN Offloading

To reduce the communication cost of NN offloading, an intuitive
method is to compress the raw data before transmission, but heavy
compression will distort the important information in data and
hence affect the NN inference accuracy. To verify such impact, we
apply both standard JPEG [62] and NN-favorable DeepN-JPEG [45]
compression methods to images in the ImageNet dataset [17], and
measure the inference accuracy loss on various NN models when
using different data compression rates [28, 55, 58]. As shown in
Figure 2(a), a moderate compression rate of 25x will reduce the NN
inference accuracy by >10%, and such accuracy loss will quickly
grow to >20% when the compression rate is >30x.

Instead, current NN partitioning approaches improve the data
compressibility by extracting more compressible forms of feature
representations from the raw input data. However, as shown in Fig-
ure 2(b) with two representative partitioning approaches (EHP [36]
and JALAD [42]), although these schemes can achieve the similar
compression rates with the minimum impact on the NN inference
accuracy?, their feature extraction is very computationally expen-
sive. For example, achieving a compression rate of 30x will require

3The loss of NN inference accuracy in these schemes can be effectively restrained
within 1%, for all the data compression rates being applied.
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a large Local NN with a model size of >3MB, which is unaffordable
on most weak embedded devices such as STM32 MCUs.

2.2 Explainable AI

The aforementioned limitation motivates our design that achieves
better data compressibility by evaluating different data features’
importance during offline training. Based on such knowledge about
feature importance, during online inference we can explicitly en-
force sparsity in the less important features with the minimum
local computing cost. To evaluate such feature importance, classic
perturbation-based approaches [12] measure how the NN inference
accuracy varies after injecting noise to features in all the training
data, but cannot precisely evaluate feature importance over individ-
ual data samples. Attention-based mechanisms [8, 61] support such
individualized evaluation by adding an extra weight generator in
NN training, but need to tailor the weight generator’s structure to
each NN model and could hence be inaccurate in some NN models.
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Recent research on eXplainable AI (XAI) improves the accu-
racy of feature importance evaluation by offering attribution tools
that quantitatively correlate each input variable to the NN outputs
during training [56, 59]. For example, typical XAI tools such as
Integrated Gradients (IG) [59], as shown in Figure 3, feed a number
of linear interpolations between the input variables and a naive
baseline to the NN. Then, for an input variable, they compute each
of its interpolation’s gradient with respect to the NN’s output (e.g.,
confidence scores), and accumulate these gradients to measure the
importance of this input variable?. In this way, these XAI tools are
robust and applicable to any Al model without extra modification.
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Figure 4: Skewness of feature importance. Skewness is mea-
sured as the normalized importance of the top 20% features,
using the MobileNetV2 model [55].

“In practice, such accumulation is used to approximate to the path integral of gradients.
The more interpolations are used, the better approximation will be.
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Figure 5: Overview of AgileNN design

However, one key limitation of the existing XAl tools is that its
accuracy of feature importance evaluation builds on accurate NN
inference in advance. If the NN’s output is ambiguous (e.g., due to
inadequate training), XAI could produce misleading evaluations
because the gradients computed from the NN’s output are highly
random. In the worst case, such randomness can cause all the fea-
tures to be misranked by their importance [54]. This limitation
motivates us to use a pre-trained reference NN model in AgileNN’s
training, to ensure correct XAl evaluation on feature importance.

2.3 Skewness of Feature Importance

Based on the feature importance evaluated by XAl the effective-
ness of AgileNN’s offloading depends on the skewness of such
importance’s distribution over different features. The higher such
skewness is, the fewer features are playing a dominant role in NN in-
ference and we can hence enforce higher sparsity in less important
features without impairing the NN inference accuracy. However, as
shown in Figure 4(a) that exemplifies such importance distribution
of different data samples in the CIFAR-10 dataset [38], skewness
may not always exist in every input data. Furthermore, as shown in
Figure 4(b), when we measure skewness as the ratio of normalized
importance of the top 20% features, such skewness in >40% of data
samples in the CIFAR-10 and CIFAR-100 datasets [38] is <50%.

Such low skewness in the input data motivates us to design
new NN structures that intentionally manipulate and enhance such
skewness in feature extraction, while minimizing the impact of
such skewness manipulation on the NN inference accuracy.

3 SYSTEM OVERVIEW

As shown in Figure 5, AgileNN partitions the neural network into a
Local NN and a Remote NN. In online inference, AgileNN runtime
uses a lightweight feature extractor at the local embedded device
to provide feature inputs: the top-k features with high importance
are retained by the Local NN to make a local prediction, which is
then combined with the Remote NN’s prediction from other less
important features for the final inference output. In this way, the
complexity of Local NN could be minimized without impairing
the inference accuracy, and high sparsity can be enforced when
compressing and transmitting less important features to the server.
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In offline training, AgileNN jointly trains the feature extractor,
Local NN and Remote NN with a unified loss function. In particular,
the feature extractor is trained to meet the user’s requirement of
feature importance skewness, such that the normalized importance
of top-k features should exceed a threshold p € [0, 1]. During the
training process, enforcing this requirement is equivalent to apply
non-linear transformations to the output feature vector in the high-
dimensional feature space.

Based on this design, AgileNN can flexibly balance between the
accuracy and cost of NN inference by adjusting the required feature
importance skewness. The higher the skewness is (i.e., smaller k
and larger p), the lower resource consumption will be at the local
device due to the higher compressibility of less important features
being transmitted, but the NN inference is more affected due to
the feature extractor’s non-linear transformation in the feature
space. In practice, with the same AgileNN runtime being trained
for the specific embedded device, the user can adaptively choose
different tradeoffs according to the application scenarios and local
resource conditions, without spending extra local computing or
storage resources to maintain multiple NN models [21] or adopt
different learning strategies [39].

3.1 Skewness Manipulation

In order to manipulate the importance of extracted features and
meet the skewness requirement, AgileNN’s basic approach is to
incorporate both the inference accuracy and current skewness of
feature importance into the unified loss function in training. More
specifically, in each training epoch, AgileNN feeds the current set of
features extracted by the feature extractor to the XAI tool module,
which evaluates and outputs the importance of each feature to NN
inference. The skewness of feature importance, then, is incorporated
into the loss function in the following two aspects.

1) The disorder loss, which mandates that the top-k features with
highest importance are always in the first k channels of the output
feature vector. It is calculated as

Ldisorder = max (07 maX(TZ) - min(fl)) , (1)



where I indicates the normalized importances of features in the
first k channels of the output feature vector and I, indicates the
normalized importances of other features.

This ordering is essential to online inference, where the XAI tool
is unavailable and the top-k features with high importance should
hence be always located in fixed channels of the extracted feature
vector. With such feature ordering, we can further instruct the
feature extractor to enhance the importance of the top-k features
and hence enforce the required skewness. The knowledge about
the fixed locations of top-k features in the feature vector, on the
other hand, will also enable prompt split of features for local and
remote inferences, without involving any extra computations or
manual efforts at run-time. More details of such feature ordering
are provided in Section 4.1.

2) The skewness loss, which measures the difference between the
current skewness of feature importance and the skewness require-
ment. It is calculated as

Lgkewness = max (0, p—II |) s (2

where | - | indicates the vector’s 1-norm.

These two loss components are then combined with the standard
prediction loss in AgileNN’s training. Details about such combined
training loss are provided in Section 4.2.

On the other hand, as described in Section 2.2, the accuracy of
XAT’s feature importance evaluation requires a well-trained NN
in advance to provide correct inference labels. Hence, to ensure
the quality of AgileNN’s training, we introduce a reference NN
model, which has been pre-trained for the same learning task with
sufficient representation power?, to provide inference outputs to
the XAI tool using the extracted features from AgileNN’s feature
extractor. To further avoid any possible ambiguity, we compare
each inference output made by the reference NN with the training
label, and only use it in XAI evaluation if the reference NN makes
correct predictions.
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Figure 6: Training stability with different numbers of con-
volutional layers in feature extractor

3.2 Pre-processing the Feature Extractor

AgileNN jointly trains the Local NN and Remote NN with the
feature extractor, so as to ensure that they can provide accurate
predictions from the extracted features with skewed distribution
of importance. However, since the feature extractor in AgileNN
needs to be deployed at the local device and hence has to be very
lightweight, it may not have sufficient representation power to
meet this learning objective in the initial phase of training, and the
°In practice, such reference models are widely available as public online. For example,

EfficientNet model is available online [60] and can achieve >90% inference accuracy
on large datasets such as ImageNet [17].
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joint training may hence encounter unexpectedly high learning
difficulty or even fail to converge. For example, as shown in Figure
6, such joint training on CIFAR-100 dataset, if starting from scatch,
is highly unstable unless a sufficient number of convolutional layers
(>6) is used in the feature extractor.

To avoid such learning difficulty, AgileNN’s approach is to pre-
process the feature extractor and initialize its network weights,
prior to the joint training with Local and Remote NNs. In this way,
the joint training will not start from scratch but instead from a
more established stage with less ambiguity, and hence has lower
requirement on the initial representation power of the feature ex-
tractor.

Output feature vector

g |
Y]
S — | Remote NN
(]
Feature 3
Extractor 5 ><
. Local NN

Figure 7: Pre-processing the feature extractor

More specifically, the feature ordering mandated by the disorder
loss in Section 3.1 may be hard to fulfill by the feature extractor
in the initial stage of training. Instead, as shown in Figure 7, we
select k initial channels in the output feature vector where the top-k
features with high importance are most likely to be located. We
then use the corresponding k features as the input to the Local NN.
More details of selecting these initial channels and integrating such
pre-processing into the training process are in Section 5.

3.3 Combining Local and Remote Predictions

AgileNN combines the predictions made by the Local and Remote
NNs via weighted summation, to produce the final inference output
at the local embedded device. Compared to other NN-based alter-
natives such as adding an extra NN layer for combination, we use
this solution because of the following two reasons. First, computing
such point-to-point weighted sums is much more lightweight than
NN operations and adds negligible computation overhead to the
local device. Second, the outputs of Local and Remote NNs always
correspond to the same number of aligned feature channels, and
the point-to-point summation retains such alignment. Using an
NN layer (e.g., a fully-connected or convolutional layer) to com-
bine these two outputs, on the other hand, could possibly entangle
them together and break such alignment, hence impairing the final
inference accuracy.

The main difficulty of such combination, however, is that the
outputs of Local NN and Remote NN may not be in the same scale
and may hence result in extra loss in inference accuracy, because
some small but important output values in one NN could be over-
whelmed by large values in another NN. To address this difficulty,
our solution is to incorporate the summation weight « into the joint
training procedure. Being the same as other NN parameters, « is
also trained with gradient-based feedback using stochastic gradient
descent (SGD) algorithms [11]. However, due to the big difference
between the complexities of Local NN and Remote NN, the training
is likely to be biased towards the Remote NN and ignore the Local
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NN’s contribution, by assigning near-zero values to a. Such bias
could possibly make the training to be highly unstable or signifi-
cantly reduce the inference accuracy, because the Local NN that
perceives the top-k important features may not be well trained.
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Figure 8: Prediction weighting with o

To avoid this bias, in AgileNN we introduce a soft constraint by

formulating « as a parameterized sigmoid function:

a(w;T) = p=—y

where w is a trainable parameter and T controls &’s sensitivity to w.
As shown in Figure 8(a), the higher T is, the slower a(w; T) varies
along with w, and hence the less likely that the value of o will
approach 0 or 1 during training. In practice, as shown in Figure
8(b), a moderate value of T between 4 and 8 can effectively avoid
biased values of « and ensure high inference accuracy.

The trained value of & is loaded to AgileNN runtime at the
local device. In real-world settings, when the feature extractor
does not correctly evaluate the importance of some features due
to the possible inaccuracy in XAl, the user could flexibly fine-tune
AgileNN’s strategy of NN partitioning at run-time by reconfiguring
the value of @, to mitigate the loss of inference accuracy.

4 SKEWNESS MANIPULATION

In this section, we provide technical details about how the training
loss function in AgileNN’s training is constructed based on the
feature importances evaluated by XA, so as to enforce the required
skewness of such importances among the extracted features.

4.1 Feature Ordering

Since XAl evaluation of feature importance builds on accumulat-
ing gradients in training and is hence unavailable during online
inference, AgileNN makes sure that its feature extractor always
generates the top-k features with highest importance in the first k
channels in the output feature vector, as shown in Figure 9(a) - top,
so that AgileNN runtime at the local embedded device can correctly
identify them for every input data during inference.

In training, a straightforward method to achieve this learning
objective is to adopt the following loss function:

s o 2
Lgescent = ”I - IsortedHZs

where I denotes the normalized importances of the currently ex-
tracted features and Tsorted denotes the sorted form of I in the
descending order. Minimizing this loss, hence, ensures that the ex-
tracted features are always sorted in the descending order of their
importances. However, strictly enforcing such descending order

Accuracy (%)
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Figure 9: Feature reordering

in the produced feature vector requires high representation power
in the feature extractor, or adds extra confusions in training if the
feature extractor being used is too lightweight. To demonstrate this,
we conduct preliminary experiments by using the feature extractor
of the MobileNetV2 model [55] on the CIFAR-100 dataset [38]. As
shown in Figure 9(b), enforcing such descending order in the output
feature vector reduces the inference accuracy by >10%.

Instead, we relax the learning objective by reducing the number
of features being repositioned. As shown in Figure 9(a) - bottom, we
do not require that all the features are sorted in the descending order
of their importance, but instead only require that any top-k feature’s
importance is higher than any other feature’s importance. If any
violation is found during training, a penalty will feedback to the
NN for parameter update. Based on this relaxed learning objective,
we construct our disorder loss as shown in Eq. (1), which will only
be non-zero if any violation of feature ordering occurs in training.
In theory, this loss function of feature disordering is almost always
differentiable [48] and can be seamlessly incorporated into the
regular training procedure®. As shown in Figure 9(b), Lgisorder can
reduce the percentage of disorder cases to <2% without impairing
the inference accuracy.
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Figure 10: Impact of 1 on CIFAR-100 dataset

4.2 Combined Training Loss

To enforce the skewness requirement, we want that the cumula-
tive normalized importance of top-k features exceeds the given
threshold p, and hence define the skewness loss as shown in Eq.
(2). Then, we combine the disorder loss and skewness loss together
to construct the training loss for skewness manipulation as:

L=24- Lprediction + (1= A) - (Lskewnss * Ldisorder)

where Lprediction 18 the standard prediction loss and A is a hyperpa-
rameter within (0, 1) to control the contributions of Lgyewnss and
Lgisorder in training feedback. In practice, according to our pre-
liminary results in Figure 10, aggressively reducing A, although

NN are typically trained by providing gradient-based feedback being calculated from
the loss function.



Algorithm 1 Selecting the k initial feature channels

Input: Dyp,iy: the training dataset with N samples;
Tx a1(-): XAl-enabled Feature Importance Evaluator;
&(+): Feature extractor that outputs C channels
Output: (ji,j2, ..., j): The k selected feature channels.
1: (pl,pz, ...,pc) «— 0
2: for each d; € Dyp,i, do
3 F« &(d;)
4 I« Txar(F)
50 Foorted < sorty(F)
descending order
6 Frop—k < Fsortedl[1 : k] //extract the top-k features with high

//initialize

// extract features
//evaluate feature importance
//sort features by their importance in

importance
7. forc=1,.,Cdo
8: if Flc] € Fyop— then
o pe < pe+1/N

10: R « argsort(py, p2, ..., pc) //get the ranking of channels
by their likelihood

11: (1, J2s - jic) < R[1 : K] //decide top-k channels

achieving higher skewness, could reduce the impact of prediction
loss in training feedback and hence impair the NN inference accu-
racy. In contrast, we observe that a moderate value of A between 0.2
and 0.4 could effectively approximate to the skewness requirement
with the minimum impact on NN inference accuracy. Alternatively,
one can also adopt the techniques on NN loss balancing [14, 26] for
adaptive adjustment of 1 at runtime.
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Figure 11: Effectiveness of Pre-processing

5 PRE-PROCESSING THE FEATURE
EXTRACTOR

In this section, we describe in detail how we pre-process the feature
extractor by selecting the initial k feature channels as the input to
the Local NN in joint training. Intuitively, we can randomly select
k feature channels and mandate the feature extractor to produce
the top important features in these channels using the disorder
loss described in Section 3.1. However, such arbitrary selection will
bring serious learning difficulty that leads to low training qual-
ity. We demonstrate this by doing preliminary experiments on the
CIFAR-100 dataset with such random channel selection. As shown
in Figure 11, the NN experiences learning difficulty from the begin-
ning epochs and it eventually causes poor convergence.

Instead, we make such channel selection based on the likelihood
that one of top-k features with high importance is located in a
channel, and compute such likelihood from the training data. More
specifically, as described in Algorithm 1, such likelihood of each
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channel is cumulatively computed from all the N data samples in
the training dataset, and increases by 1/N every time when a data
sample’s top-k features with high importance are located in the
channel. As shown in Figure 11, our pre-processing can largely
reduce the learning difficulty and ensure the quality of training.
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Figure 12: Training the mapping layer

After having selected these initial k channels, we expect the
joint training process will be able to gradually enforce the required
feature ordering, as described in Section 4.1, through the disorder
loss. To facilitate this, as shown in Figure 12, in AgileNN’s training
we add an extra mapping layer between the feature extractor and
the Local NN, and instruct the training process to ensure that the
top-k important features reside in the first k channels of the output
feature vector. After the training finishes, this mapping layer will
be discarded and only the feature extractor is used in inference.

STM32F746 board
=

ESP WiFi
module

Figure 13: Devices in our implementation

6 IMPLEMENTATION

As shown in Figure 13, we use a STM32F746NG MCU board” as the
local embedded device, which is widely used as the computing plat-
form in current tinyML and on-device Al research (e.g., MCUNet
[44]). It is equipped with an ARM 32-bit Cortex-M7 CPU at 216MHz,
320KB SRAM and 1MB flash storage, and supports flexible CPU fre-
quency scaling to provide different amounts of on-device computing
power. In addition, since neural network inference on the Cortex
M series of MCUs has been officially supported by the TensorFlow
community®, we believe that using these MCUs to implement and
evaluate AgileNN could better justify AgileNN’s practical merits,
compared to using other MCUs such as the MSP430 series.

The MCU board uses an ESP-WROOM-02D WiFi module to trans-
mit data to a server. The server is a Dell Precision 7820 workstation
that equips with a 3.6GHz 8-core Intel Xeon CPU, 128GB main
memory and an Nvidia RTX A6000 GPU with 48GB memory.

As shown in Figure 14, our offline training in AgileNN is imple-
mented using TensorFlow Python library, and we converted the
Local NN from a float32 model into an int8 model using Tensor-
Flow Lite Converter. This model is then casted to a static binary
array for better memory efficiency on the local device. We use TF
Micro runtime to execute the int8 model on the STM32 board. To
further reduce the Local NN’s computing latency, we merge the

https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng html
Shttps://www.tensorflow.org/lite/microcontrollers
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original TF Micro runtime with CMSIS-NN 5.0, which provides ex-
tra acceleration on several selected NN operations on ARM devices.
On the other hand, the Remote NN remains full precision and is
executed by TensorFlow Python runtime on the server.

NN implementation

I > Float32 remote NN :

i
i HH
[ (__TensorFlow Python ) il
i 1k

LZW decoder | yi-Fj :
: | Float32 model =1 || Dequantizer || socket Python General AP )

TensorFlow Lite

p

i Int8 local NN : i /NN Runtime Engine | Quantizer | | UART :
i HEEIT LZW encoder wiri || |

| socket 3
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(‘stmazcore ) ( Espcore ) |

Figure 14: AgileNN implementation

On the STM32F746 board, we use STM32CubelDE to implement
its software in C++ and configure the embedded hardware. To
compress the less important features before transmission, we first
adopt learning-based quantization [4] and then apply standard
LZW compression [49]. The compressed features are delivered to
the WiFi module through UART, and the WiFi module transmits
these features to the server through a UDP link at 6 Mbps.

On the server, we write a custom Python script to communicate
with the STM32F746 board via general socket APIs, and verifies
the integrity of the received features being applying them to the
Remote NN.

7 PERFORMANCE EVALUATION

In our evaluations, to meet the embedded device’s local resource
constraints, we construct AgileNN’s feature extractor with two
convolutional layers, each of which has 24 output channels. The
Local NN in AgileNN has the minimum complexity, and contains
one global-average pooling layer and one dense layer. The Remote
NN in AgileNN is constructed by removing the first convolutional
layer from the MobileNetV2 [55] model. In all the evaluations, the
sizes of feature extractor, Local NN and Remote NN in AgileNN
remain fixed, but we vary the compression rate when transmitting
the set of less important features from local to remote.

We evaluate AgileNN over multiple datasets listed below, and
scaled all images in datasets to 96x96 in our experiments. Due to the
low memory capacity of the embedded device, we focus on image
recognition tasks instead of memory-demanding learning tasks,
such as audio and video analytics [6, 64] that require expensive
preprocessing steps [43].

e CIFAR-10/100 [38]: This dataset contains 50k training im-
ages and 10k testing images that belong to 100 different
categories and 10 super categories.

e SVHN [50]: This dataset contains 73k training images and
26k testing images about street address numbers.

e ImageNet-200 [40]: This is a subset of ImageNet dataset
[17] that contains 100k training images and 10k testing im-
ages that are classified into 200 categories.

In training, AgileNN adopts an EfficientNetV2 CNN [60] that
is pre-trained on the ImageNet dataset as the reference network,
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and the training hyperparameters are configured the same as Mo-
bileNetV2’s setting [55]. We use the SGD optimizer with a learning
rate of 0.1, and the standard weight decay is set to 5 X 10~% and all
the training runs for 200 epochs. The batch size in training is set to
be 128 for the CIFAR-10 dataset and 64 for all other datasets.

In our evaluations, all the experiment results are averaged over
the entire testing dataset. We compare AgileNN with the baseline
of edge-only inference and three existing approach NN inference
approaches, which span both categories of local inference and NN
partitioning:

e Edge-only inference: The entire local data is compressed
by the LZW compressor and transmitted to the server for
inference.

e MCUNet [44]: The entire NN is running at the local embed-
ded device, and the NN structure is optimally discovered by
NAS according to the on-device resource constraint on the
NN complexity.

e DeepCOD [65]: A NN-based encoder is embedded on the
local device to transform the raw data or features into a more
compressible form. The encoder is trained with the sparsity
constraint in an end-to-end manner”.

e SPINN [39]: Besides NN partitioning, early-exit structures
are incorporated in the NN to adaptively adjust the NN com-
plexity for runtime inference.

In particular, since MCUNet’s NN design adopts different in-
put resolutions for different datasets, we make sure to always use
the same image resolution among all other approaches, including
AgileNN, to make fair comparisons among different approaches.
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Figure 15: AgileNN’s training performance on CIFAR-100
and SVHN datasets

7.1 Training Convergence and Cost

As a prerequisite, we first evaluate the quality and cost of AgileNN’s
training. As shown in Figure 15, during the training procedure,
AgileNN exhibits a very similar rate of training convergence, in
terms of test accuracy and loss, compared to regular training of
MobileNetV2 on CIFAR-100 and SVHN datasets. These results show
that, although the added feature ordering and skewness manipu-
lation increases the learning complexity, AgileNN can still ensure
fast training convergence with the appropriate loss function design
and preprocessing of the feature extractor.

On the other hand, with the extra computations of feature im-
portance using XAl and the corresponding involvement of extra

? AgileNN is equivalent to DeepCOD [65] if the top-k features with high importance
are also compressed and sent to the server.



training feedback, we observe 3x-4x wall-clock time increase for
each training epoch in AgileNN. However, since the training of
feature extractor, Local and Remote NNs is conducted offline, such
time increase will not affect AgileNN’s online performance on weak
embedded devices. Reduction of such training time can be done by
either using stronger computing hardware (e.g., stronger GPUs) or
more lightweight XAI tools [29, 57].

7.2 Accuracy and Latency of NN Inference

In general, the accuracy of NN inference can be improved by us-
ing more complicated NNs, which in turn result in longer infer-
ence latency. For easier comparisons, we configure the existing
approaches’ NN complexities so that the difference between their’s
and AgileNN’s inference accuracy is always within 10%. In these
cases, we compare the AgileNN’s end-to-end inference latency with
theirs. Note that for local inference approaches such as MCUNet,
the inference latency is only determined by the local NN computing
time. For NN partitioning approaches including DeepCOD, SPINN
and AgileNN, the inference latency consists of 1) the local NN com-
puting time, 2) the local computing time for data compression, 3)
the network transmission time and 4) the remote NN time for data
decompression and computing.
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Figure 16: Latency and accuracy of NN inference

Results in Figure 16 show that, AgileNN is able to reduce the
end-to-end inference latency by 2x-2.5x when compared to all the
existing approaches, while retaining similar inference accuracy with
DeepCOD and SPINN. In particular, such latency in most datasets
can be effectively controlled within 20ms, which is comparable to
the sampling interval of many embedded sensor devices!®. As a
result, AgileNN can effectively support real-time NN inference on
weak embedded devices, by ensuring sure that generated sensory
data can always be timely consumed.

19For example, most camera sensors on embedded devices have a sampling rate of 30Hz
during video capture. The sampling rate of environmental sensors (e.g., temperature
sensors) is usually <10Hz due to the slower changes of the physical environment [9].
The sampling rate of IMU sensors is usually capped at 100Hz, but a lower rate is used
more often in practice to save power [19].
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More specifically, Figure 16 shows that the AgileNN’s latency
reduction mainly comes from the lower local NN computing time,
which can be reduced by up to 10x. Compared to DeepCOD and
SPINN which have to use a complicated Local NN to ensure feature
sparsity, the adoption of XAI in AgileNN allows achieving higher
feature sparsity with a much more lightweight Local NN and feature
extractor. The inference latency of MCUNet is much higher (100-
500ms) than that of other approaches, due to the complicated NN
that is fully executed on the embedded device.

On the other hand, although edge-only inference incurs the
minimum local computing delay, it suffers from the low wireless
link rate at the local device!! that results in a significantly higher
wireless transmission latency due to the low data compressibility.
The overall end-to-end latency of edge-only inference, hence, is
higher than DeepCOD, SPINN and AgileNN.

Dataset || CIFAR-10 [ CIFAR-100 [ SVHN [ ImageNet
Reduction [[ 437% | 158% | 72.3% 20.8%

Table 2: Reduction of transmitted data size, compared to
DeepCOD [65]

Such higher feature sparsity, on the other hand, also results
in significant reduction on network transmission time. As shown
in Table 2, such reduction on some datasets such as SVHN could
exceed 70%. This reduction, even being lower than 20%, could be
important in some IoT scenarios, where [oT devices are wirelessly
connected to the 5G backbone network and will hence need to
make usage-based payments to the 5G service provider [63].
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Figure 17: Accuracy with different compression rates

The Impact of Compression Rate. Since DeepCOD performs
best among the three existing approaches for comparison, we fur-
ther compare its performance with AgileNN when we apply differ-
ent compression rates to transmit data features to the remote server.
Results in Figure 17 over the CIFAR-100 and SVHN datasets show
that, AgileNN can always achieve higher NN inference accuracy
with the same compression rate being applied, due to its more agile
and efficient enforcement of feature sparsity that results in better
compressibility. In particular, when very high compression rates
are applied, DeepCOD experiences significant accuracy reduction
due to the limited representation power of its encoder, but such
reduction in AgileNN is much lower.

The Impact of Prediction Reweighting. As described in Section
3.3, the predictions made by Local NN and Remote NN are combined
towards the inference output, using a tuneable parameter a. Results

Duye to the local resource constraint, the maximum WiFi data rate at the STM32F746
MCU’s WiFi module is capped at 6 Mbps.



ACM MobiCom 22, October 17-21, 2022, Sydney, NSW, Australia

in Figure 18 on the CIFAR-100 and SVHN datasets show that, the
NN inference accuracy will significantly drop if highly biased values
of a (e.g., close to 0 or 1) are being used. This is because using a
very small a reduces the contribution of important features and
could hence miss key information to inference. Increasing the value
of @, on the other hand, imposes majority of the inference task to
the Local NN, which may not be complicated enough to achieve
high inference accuracy.
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Figure 18: Applying different weights

Instead, we conclude that the maximum inference accuracy can
be achieved when @ =0.3 for CIFAR-100 dataset and @ =0.6 for
SVHN dataset. Note that the optimal value of « is dependent on
the data characteristics in the training dataset. In practice, this
value can either be jointly trained offline with the feature extractor
and NN, or be manually tuned online based on the specific data
characteristics for better inference accuracy.

7.3 Local Resource Consumption

In this section, we evaluate the amount of local resources at the
embedded device that are consumed by AgileNN’s inference. Such
local resources include 1) the local battery power and 2) the local
memory and flash storage. For fair comparison between different
schemes, being similar with the previous experiments, we keep the
gap between different schemes’ inference accuracy to be within 5%.
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Figure 19: Local energy consumption per NN inference run

Energy consumption. We measure the amount of local device’s
energy consumption per NN inference run as the average over
100 inference runs. Such energy consumption includes both the
local NN computing cost and data transmission cost via WiFi. As
shown in Figure 19, since AgileNN uses a very lightweight feature
extractor and local NN but achieves even higher feature sparsity
with these lightweight NN structures, its runtime consumes less
local energy in both computation and communication, leading to
significantly higher energy efficiency. Especially when being used
on smaller datasets such as CIFAR-100, its energy efficiency is at
least 2.5x higher than that of DeepCOD, and is >8x higher than
that of MCUNet.

Memory and storage usage. We measure the usage of on-board
memory (SRAM) and storage (FRAM) by using the STM32Cube
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debugging software. As shown in Figure 20, due to the low com-
plexity of feature extractor and NN, AgileNN’s consumptions of
the local device’s memory and storage are both below 20%. In par-
ticular, when being compared with MCUNet whose NN structures
are optimized via NAS, AgileNN occupies the similar amount of
memory but a much smaller amount of external storage. Such high
memory and storage efficiency is particularly important on weak
embedded devices with very limited storage resources, because it
allows deployment of much more powerful NN models on these
devices and hence provide solid support to more challenging NN
applications. On the other hand, the SRAM usages of DeepCOD
and SPINN are at the similar level to that of AgileNN.

7.4 Effectiveness of Skewness Manipulation

Skewness manipulation is the cornerstone of efficient NN offloading
in AgileNN. To investigate the effectiveness of AgileNN’s skewness
manipulation, we apply different requirements of feature impor-
tance skewness by varying the value of k between 3, 5 and 7, to
retain 10%, 20% and 30% of features with the highest importance at
the local NN. Correspondingly, we require the the normalized im-
portances of these features to reach 70%, 80% and 90%, respectively.

We first verify whether AgileNN’s skewness manipulation can
adequately achieve the required skewness in the extracted features.
Figure 21(a) and 21(d) show that AgileNN can always meet the
required skewness objective with minor difference. Especially on
the SVHN dataset, the achieved skewness is even 4-12% higher than
the objective. This demonstrates that our skewness loss function
described in Section 3.1 is highly effective.

Second, Figure21(c) and 21(f) show that, with the same amount of
important features being retained at the local NN, enforcing higher
skewness on these features can increase the feature sparsity on
the remaining less important features, hence reducing the network
transmission latency. At the same time, such higher skewness also
affects the NN inference accuracy as shown in Figure 21(b) and
21(e). The major reason is that, when the normalized importances
of locally retained features are too high, the lightweight Local NN
may not have sufficient representation power to correctly perceive
these features, hence leading to extra accuracy loss. However, since
the Local and Remote NN are jointly trained, such accuracy drop
can be always constrained within 3%.

These results demonstrate that AgileNN can effectively manipu-
late the skewness of feature importance in different settings, hence
allowing flexible tradeoffs between the accuracy and cost of NN
inference. Retaining more features at the local devices could help
mitigate such accuracy drop, at the expense of extra local NN com-
putations. In practice, the optimal choice of skewness requirement
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Figure 21: Effectiveness of skewness manipulation with different requirements of feature importance skewness

and split ratio will depend on the specific device’s computation
power and characteristics of the training dataset. We generally
suggest that the optimal design choice is to retain 20% important
features at the local device and require the normalized importance
of these features to be >80%. Such skewness requirement will be
used in all the following experiments.
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Figure 22: The impact of different CPU Frequencies

7.5 Impact of Local CPU Frequency

Embedded devices may have CPUs with different frequencies. For
example, the Arduino Nano uses an ATmega328 CPU at 16MHz and
the STM32H743 MCU uses a dual-core ARM Cortex-M7 CPU at
480MHz, and the CPU frequency can also be adaptively configured
at runtime. To study the impact of CPU frequency on AgileNN’s
performance, we adjust the CPU frequency of STM32F746 board by
tuning its clock scaling factor. Here, we assume that most embedded
devices, such as MCUs, will be exclusively used for NN inference
when undertaking related computing tasks. Hence, we consider
that the local device’s CPU can be fully utilized for NN inference.

As shown in Figure 22, although the inference latency increases
when the CPU frequency drops, such increase is always small
when the CPU frequency drops from 216MHz to 64MHz, due to its
lightweight feature exactor and Local NN. Comparatively, existing
schemes suffer much higher performance degradation by running
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an expensive Local NN at the embedded device. For example, infer-
ence latency of MCUNet, SPINN and DeepCOD increased by 250%,
200% and 210%, respectively.
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Figure 23: The impact of different wireless bandwidths

7.6 Impact of Network Bandwidth

Due to local constraints on power consumption and form factor,
not all the embedded devices are equipped with high-speed WiFi
modules. Instead, many of them have to use narrowband low-energy
radios such as Bluetooth. Results in Figure 23 show that even when
the available wireless network bandwidth is only 270kbps (95.5%
lower than that of WiFi), AgileNN’s high feature sparsity ensures
that it can still restrain the NN inference latency to be 50ms on the
SVHN dataset and 100ms on the CIFAR-100 dataset. In contrast, the
inference latency of DeepCOD and SPINN is largely dependent on
the wireless network bandwidth. These results imply that AgileNN
outperforms other existing approaches in dynamic conditions of
the wireless link connecting the local device and the server.

7.7 Choices of XAI techniques

The accuracy of importance evaluation varies with different XAI
tools being used. To study such impact, we use two popular XAI
tools: Gradient Saliency (GS) [16] and Integrated Gradients (IG)
[59] to construct AgileNN. As shown in Figure 24, the performance
of AgileNN remains stable with different XAI choices. IG makes
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Figure 24: Different XAI techniques

AgileNN perform slightly better because it aggregates more inter-
polations of NN outputs’ gradients as described in Section 2.2. On
the other hand, IG is more computationally expensive because it
usually requires 20-100 times of gradient computations to obtain
each importance measurement.

8 RELATED WORK

AT Attribution. AgileNN leverages current NN attribution tools
to evaluate feature importance. Traditional attribution approaches
apply random permutation [12] or zero masks [53] to specific in-
put variables, and use the induced output variation to empirically
indicate importance. Attention-based approaches [61, 68] embed
a learning-based weighting layer into the NN, and the learned
weights are used to indicate feature importance. However, these
measurements are sensitive to different NN structures and cannot
always ensure accurate evaluation.

Recent XAI techniques provide more accurate and robust at-

tribution tools [56, 59]. They adopt NN output’s gradients with
respect to the input variables to derive importance, which is more
fine-grained and can clearly tell in percentage how much each in-
put variable contributes to the output value. XAI techniques are
mainly used for analyzing data characteristics and understanding
NN behavior, but its usage for improving offloading efficiency is
rarely explored by the existing work.
On-device NN Inference. AgileNN is related to existing efforts
on building lightweight NN models. NN compression [18, 25] and
pruning [21, 27, 51] tailor complicated NNs by removing redun-
dant weights and structures. Neural Architecture Search (NAS)
[10, 44] pushes it to the theoretical limit by searching for the opti-
mal NN structure under the NN complexity constraint. In certain
circumstances where wireless connectivity is unavailable at the
local embedded device and local inference is hence the only option,
these techniques could be useful to support some simple NN infer-
ence tasks with low performance requirements. However, due to
the extreme resource constraints on weak embedded devices, these
techniques have limited capability in supporting more complicated
NN inferences or achieving real-time NN inference.

AgileNN is also related to recent work of NN offloading. Early
efforts transmit the compressed raw data to the server [45, 46]. To
improve data compressibility, later work adopts a local NN that
transforms the raw data into sparse features [20, 39, 42, 65], but the
local NN should be complicated to ensure feature sparsity. Being
orthogonal to AgileNN, there is work [30, 67] choosing to offload
data to multiple servers to explore the heterogeneity of servers’
computing power.
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9 DISCUSSIONS

Reducing the training overhead. Using XAI to evaluate the fea-
ture importance is computationally expensive, due to frequent com-
putation of gradients in every training iteration. A straightforward
mitigation is to reduce the amount of such gradient computations,
but this may affect the quality of skewness manipulation. Alterna-
tively, since standard NN training also involves gradient operations,
it’s possible to reuse these existing gradients to speed up XAl evalua-
tion. We also expect the AT community to develop more lightweight
XAl techniques in the near future.

Extreme network conditions. As shown in Figure 23, AgileNN
outperforms the existing schemes when the available network band-
width is low. If the network is unavailable or encounters strong
interference, AgileNN can still rely on the local predictor to make
basic decisions. Because the most important features are undertaken
by the local predictor, AgileNN makes the best effort to maintain
inference accuracy. It is also viable to deploy more complicated local
predictors to improve accuracy under such extreme conditions.
Other inference tasks. In evaluations of this paper, we mainly
target image recognition tasks, but AgileNN can also be applied to
other inference tasks such as video and audio analytics. In particular,
due to the limit memory capacity at weak embedded devices, it
may be difficult to take the entire video as one NN input (e.g., video
summarization) if the video size is large, but instead the video
could be split and analyzed in segments. Each video segment, then,
can be processed in a per-frame basis on the local device, and the
video analytic task hence falls back to an image recognition task.
Similarly, audio data can be converted into a 2D spectrum, which
can be treated as images for NN inference.

Offloading assisted training. Although AgileNN speeds up the
Al inference on weak devices, it is hard for static NN models to
adopt to new data and different application scenarios. Instead, the
NN model should be promptly retrained at run-time with the new
incoming data, while incurring the minimum computation costs.
AgileNN can be possibly extended to online training by incorporat-
ing a federated learning framework [37], where multiple clients talk
to a server without exposing local data. In this case, intermediate
training results are forwarded to the server, which will then under-
take majority of training overhead. Such extension of AgileNN will
be our future work.

10 CONCLUSION

In this paper, we present AgileNN, a new technique that shifts the
rationale of NN partitioning and offloading from fixed to agile and
data-centric by leveraging the XAI techniques. AgileNN ensures
real-time and accurate NN inference on extremely weak devices by
migrating the required computations in NN offloading from online
inference to offline training, and reduces the NN inference latency
by up to 6x with similar accuracy compared to existing schemes.
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