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ABSTRACT

Interference could result in significant performance degradation
in WiFi networks. Most existing solutions to interference cancel-
lation require extra RF hardware, which is usually infeasible in
many low-power wireless scenarios. In this paper, we present AiFi,
a new interference cancellation technique that can be applied to
commodity WiFi devices without using any extra RF hardware. The
key idea of AiFi is to retrieve knowledge about interference from
the locally available physical-layer (PHY) information at the WiFi
receiver, including the pilot information (PI) and the channel state
information (CSI). AiFi leverages the power of Al to address the
possible ambiguity when estimating interference from these PHY
information, and incorporates the domain knowledge about WiFi
PHY to minimize the neural network complexity. Experiment re-
sults show that AiFi can correct 80% of bit errors due to interference
and improves the MAC frame reception rate by 18x, with <Ims
latency for interference cancellation in each frame.
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1 INTRODUCTION

Wireless interference widely exists in today’s WiFi networks when
multiple devices simultaneously transmit in the same unlicensed
WiFi band, and can cause serious network performance degradation
with the growth of wireless device population and contention of
the limited wireless spectrum.

Commodity WiFi networks combat interference using CSMA/CA
[11, 23, 75], which detects channel occupancy via carrier sensing
and avoids interference by postponing transmissions (i.e., backoff) if
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Figure 1: Interference cancellation with commodity PHY in-
formation

the channel is occupied, but introduce a significant delay due to the
long backoff period [50, 61, 77]. Other schemes extend interference
avoidance to different wireless technologies [62, 84], and recent
cross-technology communication techniques reduce the backoff
time by enabling explicit coordination among wireless transmitters
[33, 40, 52, 54]. However, these existing schemes based on clear
channel assessment cannot fully eliminate the extra delay caused
by interference, especially in heavily occupied channels where
many embedded devices concurrently transmit.

Instead, interference cancellation [28, 49, 63] uses additional RF
hardware to probe the interference signal, which is then removed
from the received signal. Similar techniques have also been adopted
for full-duplex radios [6, 10, 17-19, 35]. Such extra RF hardware,
in most cases, involves multiple RF antennas, RF frontends and
PHY-layer controllers. Therefore, adding these extra RF hardware
to wireless devices is expensive and infeasible in many wireless sce-
narios that have strict constraints on the wireless devices’ cost, form
factor and energy consumption, such as ultra-low-power wireless
networks [42, 55, 56, 83], body area networks [7, 58] and industry
ToT networks [3, 46]. Commodity MIMO systems, on the other hand,
cannot be used to provide such extra hardware, because the differ-
ent MIMO antennas are controlled by the same MIMO controller
and can only be all set as Tx or Rx mode at one time. As a result,
most existing schemes use custom RF hardware, which however,
cannot be applied to commodity WiFi devices.

To address this limitation, we envision that a fundamental shift
on the design methodology of interference cancellation is needed:
instead of probing the interference signal on the air using extra RF
hardware, knowledge about interference should be retrieved from
the local PHY information available at commodity WiFi devices.
Such retrieval is possible because the available PHY information,
including the pilot information (PI) [1, 4, 70] and channel state
information (CSI) [1, 48], exhibit identifiable patterns in both time
and frequency domains when interference is present. In particular,
in each pilot subcarrier being used in an OFDM-based WiFi system!,

'OFDM has been used in all mainstream WiFi networks from 802.11a/g to 802.11ac/ax
[9]. Old standards (e.g., 802.11b), instead, are obsolete and less used in practice [27].
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interference changes the pilot signal’s phase over time from linear to
non-linear. Interference in each data subcarrier, on the other hand,
affects the frequency-domain channel estimation in the subcarrier,
which is represented by CSI in the subcarrier’s frequency band.

Based on this insight, in this paper we present AiFi, a new tech-
nique that only uses commodity WiFi devices’ locally available PHY
information for interference cancellation. As shown in Figure 1, AiFi
first calculates the interference in pilot subcarriers by comparing
the interfered pilot signal’s phase with that of non-interfered pilot
signal. Then, it applies such knowledge about pilot subcarriers’ in-
terference into regression, to estimate and remove the interference
in other data subcarriers. Since the number of WiFi data subcar-
riers is much larger than that of pilot subcarriers?, to ensure the
estimation accuracy, we further use the CSI in data subcarriers to
provide extra frequency-domain information about interference,
and use such information to refine the regression.

The major challenge, however, is the possible ambiguity when
estimating interference from WiFi PHY information. For example,
the phase variation in pilot subcarriers may not uniquely corre-
spond to the interference signal that may have variant amplitudes
over time, and channel estimation provided by CSI could be affected
by channel distortions caused by random noise or device mobility.
Our basic solution to this challenge is to leverage the power of Ar-
tificial Intelligence (AI) and use a neural network (NN) to precisely
identify and eliminate any ambiguity or inaccuracy in interference
estimation and removal. To minimize the NN complexity and meet
the timing constraint at WiFi PHY, we explicitly incorporate the
domain knowledge about WiFi PHY functionality, such as chan-
nel equalization and encoding, as the building blocks in the NN
structure. In this way, we can ensure the quality of NN training by
avoiding redundant NN structures and training confusions.

More specifically, the WiFi PHY operations ensure continuity
across the PI information of different pilot subcarriers, and AiFi uti-
lizes such continuity to perform regression with a deconvolutional
NN. After the interference has been estimated from regression, AiFi
uses fully-connected NNs to mimic the channel equalization pro-
cess in the feature space, to remove the estimated interference from
the received signal. Furthermore, the accuracy of such removal
may be limited when interference is strong and results in very low
signal-to-interference-plus-noise ratio (SINR). In this case, we use a
long short-term memory (LSTM) network to mimic the commodity
WiFi encoder, and further correct data coding errors by restoring
the correlation between data payloads in consecutive data symbols.

In practice, although the required PI and CSI information may
not be accessible on all commodity WiFi devices, they can be made
available on most commodity device models with manageable engi-
neering tweaks or updates on WiFi device drivers or firmware>. As
aresult, AiFi can be applied to many WiFi applications to reduce the
lowest SINR requirement for supporting various modulations un-
der interference, especially low-power wireless applications where
the power-constrained WiFi devices are incapable of combating
interference with increased transmit signal power. Our detailed
contributions are as follows:

In a 20 MHz channel, 802.11g uses 48 data subcarriers and 4 pilot subcarriers, and
recent 802.11ax uses 234 data subcarriers and 12 pilot subcarriers [9].

3For example, Intel provided a custom driver that allows accessing CSI in the Intel
5300 WiFi chipset [34]. Researchers provided drivers for CSI access on Qualcomm
Atheros WiFi chipsets from hardware registers [80].
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e We designed unique NN structures that can precisely esti-
mate interference in each data subcarrier, by only using the
local PHY information at the WiFi receiver.

e Our NN designs can effectively remove interference from
the received WiFi PHY signal, by reflecting WiFi system’s
domain knowledge in NN models.

e Our design of the LSTM network can correct bit errors across
multiple data symbols due to interference, by learning and
restoring the long-term correlation among data payloads in
these symbols.

We implemented AiFi in an 802.11g network and evaluated AiFi
with different interference sources including WiFi, ZigBee, baby
monitors and microwave ovens. The performance of AiFi is also
evaluated over multiple practical wireless applications, including
1) wireless sensing, 2) webpage loading and 3) online gaming. Our
experiment results have the following conclusions:

o AiFi is accurate. AiFi is the first system that achieves the
performance of the best existing interference cancellation
schemes but does not use any extra RF hardware. It can cor-
rect 80% of bit errors due to interference, and improves MAC
frame reception rate (FRR) by up to 18x under interference.
Such improvement reduces the minimally required SINR
for different WiFi data rates by >3dB and can potentially
improve the wireless network performance by >100%.

o AiFi is adaptive. AiFi can well adapt to interference from
different signal sources. Even under highly dynamic envi-
ronmental conditions, it can correct at least 70% of frame
reception errors.

o AijFiis lightweight. AiFi involves the minimal computation
overhead. Its average NN inference time is <1ms per frame,
and meets the timing constraints of many network applica-
tions. It can largely enhance the user’s Quality of Service
(QoS) in these applications.

2 BACKGROUND & MOTIVATION

To better understand the design of AiFi, we first introduce the
background of WiFi PHY information. We then motivate our design
by demonstrating the identifiable patterns of such PHY information
with interference, and the ineffectiveness of using a monolithic NN
to learn the relationship between these patterns and interference.
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Figure 2: Obtaining PHY information in a WiFi frame

2.1 WiFi PHY Information

As shown in Figure 2, when the channel is invariant within the
time duration of a data frame, a WiFi receiver uses the received
long-training-field (LTF) frame preamble to compute the CSI for
each subcarrier as its channel estimation H = Y /X, where X is the
predefined LTF signal and Y is the received LTF signal. Further,
since the channel may vary over time within the frame duration,
the WiFi network embeds a number of pilot subcarriers in each data
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symbol, and measures such time-domain channel variation from
the channel estimations in pilot subcarriers over different symbols.
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Figure 4: Non-linear phase variation in PI and CSI when in-
terference is present

Since the transmitted signals in each LTF preamble and pilot
subcarrier are pre-defined BPSK bit sequences and are transmitted
with a constant sampling rate, there is always a fixed phase differ-
ence between every two consecutive CSI samples or PI samples in
a clear channel. As a result, the PI's phase variation over time is
linear as shown in Figure 3(a), and the CSI’s phase variation over
different data subcarriers is also linear as shown in Figure 3(b).

However, when the interference signal I is present, the channel
estimation in PI or CSI is changed as

Hy=Y;/X =HX+1)/X =H+1I/X, (1)

where H is the channel estimation without interference. The in-
terference’s impact, characterized by I/X, then distorts the phase
variation of PI and CSI to be non-linear, as shown in Figure 4. Other
channel variations caused by practical factors, such as device mo-
bility or multi-path effect, can also introduce such non-linearity.
However, as we will describe later in Section 3, our NN design
in AiFi is able to distinguish between the non-linearity caused by
interference and other practical factors, by using the difference
between interfered and non-interfered WiFi channel estimations in
different environmental conditions as the input to NN models.
Such identifiable patterns in PI and CSI, when interference is
present, motivates our design of AiFi that utilizes these PHY infor-
mation to estimate and remove interference. To precisely estimate
and remove the interference in data subcarriers, AiFi uses neu-
ral networks to adaptively integrate the time-domain information
provided by PI and frequency-domain information provided by CSL

2.2 Estimating and Removing Interference
using Neural Network

To estimate interference using neural networks, the most straight-

forward approach is to use the available PI and CSI information as

the input to train a monolithic neural network, where the trans-
mitted data payload is being used as the output labels in training.

To verify the effectiveness of such training, we conducted prelimi-
nary experiments by using a 10-layer convolutional NN with the
increasing complexity from 16, 32, 64 to 65,536 layers to learn the
correlation between PI/CSI information and the transmitted signal,
when WiFi interference is present in the same 2.4 GHz band. Results
in Figure 5 show that, when being operated on a RTX A5000 GPU,
even when a highly complicated NN is being used and results in a
inference latency of >600ms, a very small amount of bit errors can
be corrected. The basic reason of such low performance of using
a monolithic NN is the high uncertainty of the interference signal
and the channel condition that jointly affect the received signal. As
a result, it is common that a monolithic NN is confused and even
does not converge during training.
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Figure 5: Learning interference using a monolithic NN
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Based on these results, we expect that a monolithic NN with
much higher representation power is needed to correctly address
the possible randomness and abruptness of interference, but using
such a complicated NN produces unacceptable computing delay
at WiFi devices. Such ineffectiveness of using a monolithic NN,
hence, motivates our design of AiFi that uses domain knowledge
about WiFi PHY to reduce the NN complexity and avoid possible
confusions in NN training.

3 SYSTEM OVERVIEW

As shown in Figure 6, interference cancellation in AiFi builds on the
NN design that is guided by the domain knowledge about WiFi PHY
functionality. More specifically, AiFi first extracts the interference
features from the PI and CSI information at WiFi PHY, and then
uses these features to estimate interference in each data subcarrier
via regression and refinement based on attention NNs [73, 74]. After
that, AiFi removes such interference from the received signal in
two steps. First, it removes the interference in each individual data
subcarrier by using a fully-connected NN to mimic the WiFi PHY’s
channel equalization process in the feature space. Second, it further
recovers data encoding errors across multiple data subcarriers, by
using a LSTM network to mimic WiFi data encoders and restore
the correlation between different subcarriers’ data payloads in the
encoding procedure.

In training, AiFi jointly trains all the involved NN modules in
an end-to-end manner with a unified cross-entropy loss function,
which aims to minimize the errors in the corrected data payloads
after interference cancellation. Its training data is a collection of
interfered WiFi signals with known data payloads: these signals
and their WiFi PHY information are used as model inputs, and
the known data payloads of these signals are be used as output
labels. The training includes interfered signals being collected with
different interference patterns and channel conditions, to ensure
generality and adaptability of the trained NN models.
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Figure 6: AiFi system overview

3.1 Interference Estimation

To estimate interference, we first extract features from PI and CSI
information provided by WiFi PHY. According to Eq. (1), the inter-
ference signal I in a channel is written as

I=(H - H)X, @)

where X is the transmitted signal, and Hy and H are channel esti-
mations with and without interference. Eq. (2) shows that when X
is known, the interference signal I can be uniquely identified by Hy
and H. Hence, for both PI and CSI, AiFi separately uses convolu-
tional NNs to extract features from interfered and non-interfered
channel estimations, and takes their difference as interference fea-
tures without requiring any prior knowledge about the patterns of
interference signals in different domains. These interference fea-
tures, then, reflect the information about the interference signal’s
amplitude and phase in the feature space.

In training, the non-interfered PI and CSI information will be col-
lected from WiFi frames that have a high SINR above 23dB, where
the channel is considered as clear without noticeable interference.
The interfered and non-interfered channel estimations used in train-
ing will be collected in different channel condition settings that are
varied by various practical factors, such as device mobility and the
surrounding environments. In each setting, the interfered and non-
interfered signal samples used in training will be always collected
in pairs, so that their only difference is the interference signal. In
this way, AiFi ensures that the NN models can remove the channel
estimation variations caused by other irrelevant factors from the
extraction of interference features.

Based on this design, even though the training data may not
cover all the possible domains of interference signals, AiFi can effi-
ciently extract interference features, as long as the NN models are
trained to correctly extract features from the non-interfered and in-
terfered channel estimations. Such correctness is ensured due to the
following two reasons. First, the variability of channel estimation is
constrained by WiFi PHY operations such as channel equalization
and is hence smaller than the heterogeneity of interference signals
across different domains. Second, using NN models with sufficient
representation power makes sure that AiFi can precisely capture the
non-linearity in channel estimations, compared to traditional signal
processing methods that are limited to extracting linear features
from channel estimations [41, 45, 66].
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Figure 7: Interference in data subcarriers

In online inference, we use the aggregate of non-interfered chan-
nel estimations collected in different channel conditions, which
were used in training, as the non-interfered CSI and PI information
for interference estimation. Since non-interfered channel estima-
tions mainly contain linear features as shown in Figure 3 and these
linear features have limited variability in different channel condi-
tions, using these features as the reference can still ensure accurate
interference estimation in new domains.

With the interference features extracted from PI, AiFi uses re-
gression to interpolate these interference features into each data
subcarrier. Standard linear regression, however, fails to correctly
capture the non-linear variation of interference over different fre-
quency bands. For example, when the interference’s phase exhibits
non-linear variation between data subcarriers 41 and 48 as shown
in Figure 7(a), using linear regression results in wrong estimation
of interference in these subcarriers, as shown in Figure 7(b).

Interference Output

features from PI

Intermediate grid

data subcarriers
Figure 8: Regression NN

Instead, AiFi uses a deconvolutional NN (Regression NN in
Figure 6) for such regression, which reverses the procedure of
convolutional feature extraction process and learns the generic
channel features at data subcarriers to precisely capture their non-
linearity. As shown in Figure 8, we first expand the interference
features to an intermediate grid via zero padding, and then slide
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an 1D filter with trainable parameters over the grid to weigh its
components and generate the output. We set the filter size to be
2, to exploit the continuity in the interference’s phases between
consecutive data subcarriers in commodity WiFi PHY.

However, such interference estimation may not be always accu-
rate, because interference features from PI do not provide frequency-
domain information about interference in data subcarriers. AiFi
uses interference features from CSI to further refine the interfer-
ence estimation, and details of such refinement (Refinement NNs
in Figure 6) are in Section 4.

3.2 Interference Removal

The estimated interference, then, is individually removed from the
received WiFi PHY signal in each data subcarrier. In AiFi, after
being converted to the feature space, the received signal with in-
terference is applied to a fully-connected NN, which mimics the
channel equalization in WiFi PHY for interference removal.

Commodity WiFi adopts Zero-Forcing (ZF) equalization [22, 45]
to address the received signal’s distortions that are produced during
channel propagation, by inversely applying the channel estimation
to the signal. Hence, when the interference is estimated from chan-
nel estimations in PI and CSI, using ZF equalization to remove the
interference is equivalent to subtracting the estimated interference
from the received signal in the frequency domain.

To mimic this equalization in the feature space, AiFi uses a fully-
connected NN to learn the frequency-domain subtraction of the
estimated interference (I) from the received signal (X7), by adding
learnable weights W to such subtraction. The signal after interfer-
ence removal can hence be written as

X=X;-1)-W. 3)

3.3 Data Payload Correction

Due to the limited signal resolution in PI and CSI information,
interference removal described above may not completely remove
the interference, when interference is strong and results in very
low SINR. In these cases, AiFi further mimics the encoding process
in commodity WiFi to correct the decoding errors in data payloads
due to interference.

The WiFi encoder correlates each input bit with the previous 6 in-
put bits and interleave the bits that are further modulated into data
signals. Similarly, AiFi uses a LSTM network (Payload Correction
NN in Figure 6) to learn the dependencies between consecutive sym-
bols. In this way, AiFi recovers data payload features from errors,
upon detecting contradictions with the learned dependencies.

0
—Regressed
—Groundtruth;

50

101

Phase(°)

o

-50

10 20 30 40
Subcarrier index

Figure 9: Interference estimation via regression from PI
Eventually, AiFi uses a Demodulation NN to replicate the demod-

ulation functionality in WiFi PHY: demodulation at a commodity
WiFi receiver transforms the encoded data signal to data payloads,
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Figure 10: Feature refinement NN

and AiFi’s Demodulation NN similarly transforms the encoded data
signal features from the Payload Correction NN to data payloads.
Details of such data payload correction are provided in Section 5.
In this way, by incorporating these domain knowledge about WiFi
PHY operations that are independent from the interference signal
into the design of NN models, we ensure that these NN models are
trained to learn how interference impacts WiFi data transmission
and decoding and further how to correctly remove interference
from the received WiFi signal, without assuming any prior knowl-
edge about the interference signal itself. AiFi, hence, can be widely
applied to different application scenarios with different interference
sources, interference signal patterns and strengths. Such generality
will be demonstrated in Section 7.
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Figure 11: Design choices in feature refinement NN

4 REFINING INTERFERENCE ESTIMATION
WITH CSI FEATURES

As shown in Figure 9, interference estimation solely from PI features
may be inaccurate, due to PI features’ limited resolution in the
frequency domain. To further refine such interference estimation
with interference features from CSI, our design in AiFi is inspired
by attention neural networks [73, 74], and aims to enhance the NN
model’s cognitive attention to the important interference features
that are highlighted in the CSI information.

Refined interference

M4 M, Key features

Figure 12: Stacking refinement NNs

To achieve this objective, we train the Refinement NN to learn
a weight matrix that captures the correlation between PI and CSI
interference features. More specifically, as shown in Figure 10, AiFi
takes the PI and CSI interference features as two input masks (M
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and M), and learns the weight matrix (W) by applying softmax
operation on the correlation of these two sets of features as

W = softmax(Mj - My /VScale), (4)

where the scaling constant prevents the correlation result grow
large in magnitude and hence pushes the softmax function to a
region that has very small gradient.

This weight matrix is applied to the key features that represent
the interference in the target data subcarrier to refine the estimation
of such interference. In practice, the key features can be either the
PI or CSI interference features, and we experimentally verified that
using PI interference features as the key features reduces 2% extra
bit errors, as shown in Figure 11(a) where Wifi data frames are
transmitted with 4dB SINR.

To ensure sufficient learning power in practice, as shown in Fig-
ure 12, we further stack multiple refinement NN to intentionally
introduce variation to the input interference features. The outputs
of stacked NNs are concatenated and densed to acquire the refined
interference features. To balance between the estimation accuracy
and NN complexity, we experimentally investigate different num-
bers of feature refinement NNs being stacked. Results in Figure
11(b) suggest that stacking 4 NNs achieves the highest reduction
of bit error rate (BER) from the estimated interference, without
unnecessarily incurring extra computing overhead.

5 CORRECTING DATA PAYLOAD ERRORS

In this section, we present how to correct the decoding errors in
data payloads due to interference, using a LSTM network to mimic
data encoding in commodity WiFi PHY.
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Figure 14: Correcting data payload errors by directly mim-
icking the commodity WiFi PHY encoder

5.1 Payload Correction NN

The PHY encoder in commodity WiFi correlates every input bit
with the previous 6 input bits to output one data payload of two
bits, which is then sent to the RF frontend for transmission onto
the air. Such encoding process can be modeled a state machine
where the payload output of each 6-bit state is jointly determined
by the previous state and current input to the state, as shown in
Figure 13. Then, an intuitive approach to correct bit errors in data
payloads due to interference is to mimic such commodity encoder,
by predicting every data bit from the previous 6 bits in data payload.
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However, directly mimicking the commodity WiFi encoder has
limited capabilities in such error correction. As shown in Figure
14, when the BER caused by interference exceeds 4%, the excessive
amount of bit errors caused by interference cannot be corrected and
quickly reduce the network throughput to 0. This is because the
range of dependency between data payloads in the WiFi encoder is
limited to 6 consecutive bits. The long-term dependencies in data
payloads are simply ignored, despite their importance in identifying
bit errors caused by interference.

Instead, AiFi uses a LSTM network [32, 81] that shares the simi-
lar structure as the state machine in encoder to mimic the encoding
process, as shown in Figure 15. Since a LSTM network memorizes
both the short-term and long-term dependencies between data pay-
loads with a memory cell, it can restore the errors in data payloads
by regression based on such dependencies.
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Figure 16: LSTM design choices

To ensure that the LSTM correctly mimics the WiFi encoding
process, the number of memory cells in the network should be a
multiple of 6. According to our experiment results in Figure 16(a),
the LSTM network achieves the highest BER reduction without in-
curring extra computing latency when memorizing 48 consecutive
bits in data payload.

Softmax Classification

Data payload

features Data payload

Figure 17: Demodulation NN design

5.2 Demodulation NN

The LSTM network outputs the corrected data payloads in the fea-
ture space, which needs to be transformed to data bits for WiFi
decoding. We use a Demodulation NN to mimic the WiFi demodu-
lator, which classifies the equalized PHY signal to the data payload
based on the signal’s phase and amplitude.

As shown in Figure 17 where BPSK demodulation is used as an
example, the demodulation NN first compresses the output features
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Figure 18: Evaluation setup
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from LSTM with convolution layers to acquire n representative
features, where n is the number of possible data payloads that is
determined by the current modulation scheme being used?. Then,
it computes the probability mapping from Softmax, and chooses
the output data payload with the highest probability.

Both the accuracy and computing complexity of data payload
correction depend on the dimension of data payload features. Our
experiment results in Figure 16(b) show that the NN computing
cost linearly increases with more features, but its performance of
BER reduction saturates when the number of features exceeds 300.

6 IMPLEMENTATION

We build NN models in AiFi with standard TensorFlow 2.8.0 [2]
Python APIs. The models are trained with cross-entropy loss func-
tion and ADAM optimizer [44] with the learning rate of 107 in
1000 epochs, and the details of NN models are described as follows.

o The feature extraction NN has 3 convolutional layers with
32, 64 and 128 features.

e The Regression NN has 3 convolutional layers with 64, 128
and 256 features, and the output are condensed into an array
of 96 features. Then, 3 deconvolution layers with 256, 128
and 64 features are used to generate output.

o We implement the Refinement NNs using matmul and softmax
functions with 128 features.

o The Interference Removal NN uses 128 features and subtracts
the interfered signal features with ReLu activation function.

o The Payload Correction NN is implemented with a single cell
LSTM network with 300 features.

e The Demodulation NN is implemented with 3 convolutional
layers with 64, 128 and 256 features. The output is passed to
a sof'tmax function, whose output probability is then used
by an argmax function for classification.

We deploy the trained NN models on a PC system running Linux
Ubuntu 18.04, by loading the NN models into the Linux kernel

4In commodity WiFi that uses QAM modulation, this number is 2 for BPSK, 4 for
QPSK, 16 for 16QAM and 64 for 64QAM.

(a) Zigbee

(b) Baby Monitor

(c) Microwave

Figure 20: Interference sources

through the TensorFlow C APIs. The PHY information and the
received signal from WiFi PHY, then, are transmitted through an
UDP socket in the Linux kernel and can be directly accessed by
AiFi’s NN models running on GPU, so as to minimize the end-to-end
latency of interference cancellation at runtime.

To enable interference cancellation for all modulation schemes
being used in WiFi, such as BPSK, QPSK, 16QAM and 64QAM, we
individually train four demodulation NNs with different sizes of
representative features, as described in Section 5.2, and preload
them for online inference.

In practice, the length of a WiFi PHY frame can vary based on
the specific size of data payload being transmitted. To accommodate
WiFi data frames with various lengths, our implementation builds
the NN models in the way that all the data symbols in a frame are
being processed in the NNs as a batch. For example, an 802.11g
frame that has n symbols over 48 data subcarriers is reorganized
into an input matrix with dimensions of nx 48, and a batch size of n
is then used.To further speed up the training, in our implementation
we simultaneously feed multiple frames as the input to NNs, with a
bigger batch size of m X n. Note that in practical TCP transmission,
a TCP receiver window is usually used with a buffer to temporarily
hold the received data. Such buffer is usually big enough to store
multiple received frames, and hence allows AiFi to process multiple
frames in a big batch.

7 PERFORMANCE EVALUATION

As shown in Figure 18, we evaluate AiFi in multiple environments
that result in significantly different interference patterns. Our NN
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Figure 21: BER reduction: the minimum SINR required to reach 1% BER is reduced by >4dB.
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Figure 22: FRR improvement: the minimum SINRs required for different modulations are reduced by >3dB.

models are trained based on data collected in a 20mx20m lab site
shown in Figure 18(a), where we place the wireless transceivers
and interference sources at different locations with variant levels of
transmit power to produce different channel conditions and levels of
SINR. In our evaluations, data collected in the lab site are randomly
split into a training dataset with 80% data and a testing dataset
with 20% data, and all evaluation results are averaged over 100
random splits. In all evaluations, the testing dataset is ensured to be
different from the training dataset. Further, we also evaluated the
performance of AiFi by applying the NN models being trained with
the lab site data to other test sites, including a 5mx3m residence
room shown in Figure 18(b), an outdoor yard shown in Figure 18(c),
and a 15mx1.2m corridor shown in Figure 18(d).

In our experiments, AiFi’s NN models are trained using 300k WiFi
data frames transmitted in the 2.4GHz band, when different inter-
ference sources are present and different WiFi modulation schemes
are used. Note that when interference is present, to mitigate its
impact and minimize data decoding errors, WiFi rate adaptation
always reduces the code rate in all transmissions to the lowest 1/2.
Thus, we use the code rate 1/2 in all experiments. NN inference is
then executed on a Dell Precision 7820 tower workstation. For ex-
perimental evaluation and analysis, we leverage the WiFi reference
design on WARP v3 SDR [20] to transmit and receive wireless sig-
nals for both training and testing. However, our evaluation results
can be fully applied to commodity WiFi devices by modifying their
firmware or drivers, without involving extra RF hardware.

We introduce interferences from 1) white Gaussian noise, 2) con-
current WiFi transmissions, 3) commodity Xbee S2C ZigBee trans-
mitters®, 4) an Anmeate SM24 baby monitor and 5) a Westinghouse
WMO009 microwave oven, as shown in Figure 20. The interference
patterns from these sources, as shown in Figure 19, are significantly

Shttps://www.digi.com/resources/documentation/Digidocs/90002002/. We use 4 Zigbee
transmitters with different center frequencies in the same WiFi band to introduce
interference to WiFi. These Zigbee transmitters can interfere 50% bandwidth of a WiFi
channel and hence greatly reduce WiFi performance.

different: interferences from WiFi and ZigBee transmitters cover
fixed bands, the baby monitor transmits a 4MHz Frequency-hopping
spread spectrum (FHSS) signal, and the microwave transmits a con-
tinuous wideband signal that covers >40MHz.

We evaluate AiFi’s performance of interference cancellation by
using bit error rate (BER) and frame reception rate (FRR) as metrics.
The performance of AiFi is compared with the following WiFi
interference cancellation schemes:

e OpenRF [49], which uses MIMO to compute an interference
matrix and avoids such interference by using this matrix to
instruct WiFi beamforming. OpenRF operates with extra
MIMO hardware.

e 802.11n" [53], which probes the WiFi interference with ex-
tra RF antennas and cancels such interference by computing
the difference in the channel coefficients between MIMO
antennas. 802.11n" requires additional MIMO antennas to
operate.

e Rodin [14], which detects the frequency-domain location of
narrowband interference and hops the wideband signals to
a new spectrum to avoid interference. Rodin adds additional
RF frontend circuits in order to mitigate the interference.

7.1 BER Reduction and FRR Improvement

First, we evaluate AiFi’s performance of reducing the BER in the
received data frames with interference. The results are averaged
from using all 5 types of interference sources. As shown in Figure
21, with different WiFi modulation schemes, using AiFi always
reduces the minimum SINR required to reach 1% BER by >4dB. In
particular, when higher-order modulations are used, the amount of
correctable bit errors reduces due to WiFi’s higher requirement on
channel quality. On the other hand, when the amount of bit errors
is very small, the percentage of BER reduction quickly drops to 0%.

Similarly, the amount of bit errors caused by interference grows
when interference becomes stronger and SINR correspondingly
becomes lower. Results in Figure 21 show that AiFi can significantly
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Figure 23: Correcting frame errors with different interfer-
ence sources

improve BER in cases of low SINR and strong interference. On
the other hand, when SINR is high, the data bit errors caused by
interference become fewer, but the percentage of corrected bit
errors, in these cases, always remains >50%.

We then evaluate AiFi’s performance in improving the FRR by
correcting frame errors, which is more difficult because a received
data frame is erroneous if any data bit is erroneous. As shown
in Figure 22, AiFi can improve the FRR by up to 18x, and such
FRR improvement reduces the minimally required SINR to achieve
90% FRR by >3dB with all modulation schemes. In practice, such
3dB difference allows using a higher-order modulation®, hence
potentially leading to 100% improvement of WiFi performance
(e.g., by using 16QAM instead of QPSK when SINR is 14-15dB).
In addition, with the FRR improvement, AiFi can also reduce the
MAC-layer delay by avoiding large TCP backoff window and long
DCEF backoff timer. Such latency reduction will be further evaluated
with practical applications in Section 8.

We also evaluted AiFi’s performance of correcting frame errors
with different interference sources. As shown in Figure 23(a), AiFi
can achieve similar FRR when different interference sources are
involved, demonstrating that NN designs in AiFi can well adapt to
different interference patterns.
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Figure 24: Comparison with existing schemes
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We compared AiFi with the existing interference cancellation
schemes. As shown in Figure 24(a), AiFi achieves the similar per-
formance with the existing schemes that use extra RF hardware,
and Figure 24(b) shows that AiFi reduces the minimally required
SINR to reach 1% BER by >10%. Since AiFi does not use any extra
RF hardware, it can be easily applied to commodity WiFi devices.

7.2 Generality of AiFi

Interference patterns and wireless channel conditions in different
application scenarios and environment settings could be hetero-
geneous. Once AiFi’s NN models have been trained, we expect
°In 802.11 standards, the minimum SINRs for using different modulation schemes are

mostly defined with 3dB intervals. For example, the minimum SINR to use BPSK and
QPSK is 7.7dB and 10.5dB, respectively [72].
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that they can be generically applied to different scenarios without
having to retrain the models. To verify such generality, we trained
AiFi’s NN models only using interference signals from concurrent
WiFi transmissions and Gaussian white noise in the lab site, and
then applied the trained NN models for interference cancellation
over other types of interference sources and on other test sites.
First, as shown in Figure 25, the trained model achieves similar
FRR when taking signals from different interference sources as
inputs. Second, when we transmit the same QPSK WiFi signal as
interference with a fixed distance of 2m and SINR at 4dB, Figure
26 shows that the interference signal patterns at different test sites
are significantly different. In these cases, as shown in Figure 27, the
trained model exhibits <7% difference in BER reduction at these

different test sites.
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Figure 26: The interference signal patterns, shown as I/Q sig-
nal samples, at different test sites

Based on these results, we conclude that AiFi’s NN designs have
sufficient representation power to learn the underlying invariant
correlation between PI/CSI information and the corresponding
interference signal, which is mainly determined by WiFi PHY oper-
ations instead of environmental conditions. Hence, AiFi has good
generality to be applicable to different wireless scenarios and envi-
ronment settings.

7.3 Performance with Multiple Types of
Co-Existing Interferences

Interference from multiple sources could possibly co-exist. We eval-
uated AiFi’s performance of interference cancellation with multiple
types of interference sources co-exist. Results in Figure 28(a) show
that AiFi can achieve a similar level of performance in such scenar-
ios with multiple types of interference sources, when the cumulative
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SINR of these interference sources varies from 5dB to 20dB. Fur-
thermore, as shown in figure 28(b), even when multiple types of
interference sources co-exist, the FRR improvement achieved by
AijFi can still be up to 390% when SINR is 10dB. Such improvement
is only 2.5% lower than that with a single interference source, as
shown in Figure 23(b). These results, hence, demonstrate that AiFi
can provide high performance of interference cancellation when
multiple types of interference sources co-exist.
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Figure 28: AiFi performance with multiple types of co-
existing interferences

7.4 Impact of Interference in Time and
Frequency Domains

Interferences with the same SINR may impact the WiFi network
in different ways, due to their different characteristics in time and
frequency domains. For example, the interference signal could be
short-time pulses that cover wide bands in the frequency domain,
or continuous waves at few carrier frequencies. To investigate the
impact of such interference’s heterogeneity, besides the practical
interference sources being used above, we train AiFi’s NN models
with completely interfered WiFi QPSK frames in both time and fre-
quency domains, and then test the trained NN models with partially
interfered frames in time and frequency domains, by retaining a
fixed 4dB SINR but varying the interference’s time duration and
bandwidth from 10% to 90%, respectively.
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Figure 29: Performance on interferences with heteroge-

neous time and frequency domain characteristics

Experiment results in Figure 29(a) show that when applied to
interferences with heterogeneous time-domain patterns, AiFi’s BER

Ruirong Chen, Kai Huang and Wei Gao

reduction only exhibits <10% variation. Similarly, low variation is
shown in Figure 29(b) for interference with different frequency-
domain variations. These results further demonstrate AiFi’s adapt-
ability and generality over different interference patterns.
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7.5 Impact of Different WiFi Frame Lengths

In practice, AiFi should be able to correct the errors in frames with
different lengths. We conducted experiments to verify this with
different levels of SINR. As shown in Figure 30, when the number
of data symbols in a frame varies from 10 to 100, the achieved FRR
in AiFi has less than 2% variation. Furthermore, Figure 30(b) shows
that AiFi’s performance in FRR improvement only drops by 5%
with the longest frame length, due to the higher chance of burst
interference in a longer data frame.
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Figure 31: Different NN modules’ contributions to bit error
correction

7.6 Contribution from Different NN Modules

To investigate the individual NN modules’ contributions to interfer-
ence cancellation, we calculate the percentage of bit errors corrected
by each individual NN module, by disabling all the other modules
during testing. As shown in Figure 31, the Payload Correction NN
makes the biggest contribution to bit error correction, especially
when high-order modulation (e.g., 64QAM) is used and more data
bits are encoded into one received signal symbol. In these cases,
correcting data bit errors needs more fine-grained investigation
into the interdependency across multiple data bits and this can
only be achieved by the Payload Correction NN. On the other hand,
although the Interference Estimation module only makes <20%
direct contribution to bit error correction, it is still essential to
other NN modules in interference cancellation, because the cor-
rectly extracted features help improve the accuracy of interference
cancellation in other NN modules.

7.7 Latency of NN Inference

To make AiFi applicable to practical WiFi scenarios, we expect that
the NN inference in AiFi is sufficiently lightweight to meet the
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Figure 32: Latency of NN inference

timing constraint in WiFi PHY. In our experiments, we evaluate
the latency of AiFi’s NN inference with different batch sizes and
frame lengths. As shown in Figure 32(a), when the batch size is 1,
it takes an average of 22ms for AiFi to process one data frame, but
when a large batch size of 100 is used, it takes AiFi 72ms to process
100 frames and reduces the per-frame inference latency to 0.72ms.

In practice, such batch frame processing is commonly used in
802.11g/n/ac networks with Automatic Repeat ReQuest (ARQ),
which reduces the network latency by only sending out one ACK
after a batch of buffered frames [5], and the ARQ window size is
usually set as 128 in most Linux systems. The recently proposed
Hybrid-ARQ Protocol (HARQ), on the other hand, disables batch
processing of frames but has only been adopted in cellular networks
[69]. Hence, AiFi’s per-frame processing latency in practical WiFi
systems can be well controlled within 1ms.

Further, we studied the total time for AiFi to correct a failed
frame with different lengths. As shown in Figure 32(b), even when
the frame length increased from 10 symbols to 100 symbols, the
total latency only increased less than 1ms.
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Figure 33: The impact of NN complexity
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7.8 Impact of NN Complexity

The complexity of AiFi’s NN models may impact their representa-
tion power and hence affect the accuracy of data payload correction
under dynamic channel conditions. To evaluate such impact of NN
complexity, we apply a scaling factor (SF) on the number of features
in each layer of the AiFi’s NN models’, to vary the NN complexity.

As shown in Figure 33, AiFi’s performance of BER reduction
exhibits 15%-20% reduction under different levels of SINR, when
the complexity of NN models is reduced to 25% (SF=0.25). However,
when SF is larger than 1, further increasing the NN complexity
only results in another 4% improvement on the performance of bit
"In our implementation, Feature Extraction NNs and Interference Removal NNs both

output 128 signal features, and Payload Correction NN and Demodulation NN process
data payloads with 300 features.

error correction. In practical applications, the network users can
flexibly adjust the NN complexity based on the application’s timing
constraint and resource conditions of wireless devices. When the
local computing resources are abundant, the users can opt to use
more complicated NNs for the optimal network performance. On
the other hand, in resource-constrained or delay-sensitive appli-
cations, more lightweight NNs can be used instead to reduce the
latency and resource consumption of AiFi’s NN inference.

8 REAL-WORLD EXPERIMENTATION

In this section, we further examine the applicability of AiFi in
improving the network performance in real-world applications. We
demonstrate that AiFi’s interference cancellation can significantly
enhance the Quality of Service (QoS) in the following applications:
1) wireless sensing; 2) webpage loading; 3) online gaming.

In all applications, our evaluations are performed at the ap-
plication layer by using transport-layer throughput and latency
as metrics. In Linux, we set the TCP window size as 416KB via
the net.ipv4.tcp_rmem command, and retransmission timeout as
200ms via the TCP_RTO_MIN variable.
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Figure 34: Throughput in wireless sensing

8.1 Wireless Sensing

In wireless sensing applications [14, 82], low-cost sensors with
small form factors are deployed in a distributed manner and stream
sensory data to the backend server. In our evaluations, we examined
how AiFi can improve the wireless throughput in sensing appli-
cations, by transmitting 10k images from a Raspberry Pi 4 to our
WiFi receiver under interference with various levels of SINR.

As shown in Figure 34(a), as long as SINR exceeds 6dB, AiFi
can remove the majority of interference and achieves 80% of the
maximum throughput (i.e., the throughput without interference).
Such throughput improvement, as shown in Figure 34(b), is up
to 15x even under strong interference. These results show that
AiFi can enable wireless sensing applications in severely interfered
wireless channels.

8.2 Webpage Loading

Web browsing is one of the most popular application scenarios
using WiFi, and has also become common on mobile and embedded
wireless devices. When the WiFi network transmits at 24Mbps, we
evaluate how AiFi can reduce the latency of webpage loading by
removing the impact of wireless interference. Our evaluation is
performed on multiple web pages with different contents and data
sizes as listed in Table 1.

As shown in Figure 35(a), when the interference is strong and
reduces the FRR to <30%, the HTTP link to the web server cannot
be established, resulting in an indefinitely long latency of webpage
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Figure 36: Performance of online gaming

loading. In these cases, interference cancellation in AiFi is able to
transform the webpage loading functionality from impossible to
usable, and the average loading latency is within 30s when FRR is
at 40%. Furthermore, in scenarios with weaker interference, AiFi’s
interference cancellation can reduce the latency of webpage loading
by at least 42%, as shown in Figure 35(b).

Webpage H Data size (MB)

Google.com 1.4
Delta.com 6.08

Twitter.com 8.21

Twitch.com 14.81

Table 1: Webpage size

In particular, when the FRR reaches 80%, AiFi can constrain the
latency of webpage loading within 3s, which ensures satisfiable
QoS of web browsing [8, 12, 31].

8.3 Online Gaming

In this section, AiFi takes wireless traffic during online gaming as
inputs, and we evaluate how AiFi reduces the packet loss and data
transmission latency in real-time online gaming. In our evaluations,
we collected the UDP data traffic from League of Legends® and
Dota2? via Wireshark, and transmit such UDP traffic under various
interference conditions that result in different levels of FRR.

As shown in Figure 36(a), when interference causes >10% packet
loss, AiFi can reduce such amount of packet loss by >63%. In general,
as long as the network FRR is higher than 80%, AiFi can effectively
restrain the packet loss rate within 10% and hence ensures satisfiable
user experience in gaming, according to existing studies about
online games’ requirements on network link stability [13, 15, 16].

Shttps://www.leagueoflegends.com/
“https://www.dota2.com/home

Meanwhile, the improved performance of frame reception also
leads to a significant reduction on the data transmission latency,
also known as the ping value in online gaming. As shown in Figure
36(b), even with very strong interference that reduces the FRR to
<30% and incurs unacceptable transmission latency, AiFi can always
reduce such latency to <50ms. On the other hand, when the FRR
improves, although using AiFi introduces some extra computing
latency for NN inference, it still provides significant packet loss
reduction, which is critical to good user experience.

9 RELATED WORK

Collision avoidance. Commodity WiFi implements MAC-layer
CSMA/CA for collision avoidance [11, 23, 75]. Advanced techniques
such as Q-CSMA [26, 60], slotted CSMA [47, 68] and distributed
CSMA [39, 67] reduce the network latency by adapting the backoff
timer, packet sizes and timing constraints. Other researchers insert
custom PHY preambles that can be sensed with a smaller latency,
to avoid interference from different wireless technologies such as
Zigbee [84] and LTE [62]. These approaches, however, introduce
significant delay when the channel is heavily congested. In con-
trast, AiFi completely avoids such delay by performing interference
cancellation in nearly real time.

Cross-technology communication (CTC) [33, 40, 52, 54], on the
other hand, advances collision avoidance by enabling explicit coor-
dination between wireless technologies, but still incurs extra delay
when waiting for an idle channel to exchange control messages,
especially if the channel is intensively occupied.

Interference cancellation. Interference cancellation [28, 49, 63]
removes interference from the received signal, by using RF hard-
ware to probe the interference signal on the air. Other backbone-
assisted networks [30, 53, 86] cancel interference between clients
and WiFi APs by coordinating multiple APs, and full-duplex radios
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[6, 10, 17-19, 35] cancel the transmitted signal as self-interference
from the simultaneously received signal in another antenna. How-
ever, all these techniques build on sensing interference with extra
RF hardware, and cannot be applied to commodity wireless devices.
In contrast, AiFi does not require any extra hardware in WiFi PHY,
allowing easy deployment in commodity WiFi devices.

Zigzag decoding [29], on the other hand, reduces the require-
ment of extra RF hardware, but still requires access to WiFi PHY
to obtain knowledge about the raw received signal. Furthermore,
Zigzag decoding is limited to removing interference signal from
another WiFi transmitter and utilizes the known patterns of the
interfering WiFi signal to achieve lightweight interference cancella-
tion, but it is incapable of canceling interferences from other types
of sources. Similarly, early research efforts on packet recovery are
mostly limited to specific types of networks [24, 38, 79], and exist-
ing successive interference cancellation (SIC) techniques [57, 76]
also build on the prior knowledge about both the transmitted data
signal and the interference signal. In contrast, the NN models in
ATFi are able to remove a large collection of interference signals
with heterogeneous signal patterns, without requiring any prior
knowledge about such patterns of interference signals.
Al-assisted wireless communication. In recent years, research
efforts have been made to utilize modern Al techniques to improve
the performance of wireless communication. In particular, deep
neural networks (DNNs) have been used to develop better encoders
and decoders [36, 37, 43, 78] as the replacement of those being
current used in wireless PHY, in order to better addressing the non-
linearity in channel conditions and the subsequent bit errors caused
by such non-linearity. In contrast, our design of Payload Correction
NN is not a new decoder design and does not modify the WiFi
PHY-layer in anyway, but instead aims to mimic the WiFi PHY’s
decoding operations for efficient bit error correction in software.
Some other techniques use Al tools for more accurate channel
estimation [25, 51, 59, 65, 71], which can contribute to correcting
bit errors caused by interference. Most of these techniques, however,
design custom neural networks based on specific wireless channel
models, and cannot well adapt to the dynamic channel conditions
caused by interference. In contrast, since the Payload Correction
NN in AiFi is trained with the extracted interference features, it can
well adapt to the heterogeneous and dynamic interference patterns
in different scenarios and environment settings.

Researchers have also developed and applied DNN-based en-
coders and decoders to different applications, such as respiration
monitoring [85] and jamming removal [21]. While AiFi similarly
uses the learning power of NN to better capture the non-linearity
of channel conditions and hence achieve generality across differ-
ent application domains and environment settings, its objective of
interference cancellation is different from the existing work and
it hence has a different requirement of the NN’s generalizability
compared to the existing work. For example, while respiration mon-
itoring requires highly accurate motion tracking to capture each
breath, interference estimation in WiFi does not need to be 100%
accurate, as the possible estimation errors can be further addressed
by Interference Removal and Payload Correction NNs.

10 DISCUSSIONS

Applicability to different WiFi hardware. On most WiFi de-
vices, the PI and CSI information at PHY are stored in hardware

registers for PHY channel equalization and demodulation, and can
hence be accessed from software via custom WiFi drivers that pro-
vide access to these registers. For example, on QualComm Atheros
WiFi chipsets, CSI is stored in the ar9003_hw_set_chain_masks
registers, and can be accessed by reversely engineering the WiFi
firmware [80] without any hardware modification. To that end,
AijFi can be widely deployed to a large collection of commodity
WiFi devices with manageable engineering efforts on WiFi driver
or firmware customization.

Impact of device mobility. As we discussed in Section 2.1, device
mobility could also cause non-linearity in the WiFi PHY informa-
tion, due to the Doppler effect being caused. However, even in
scenarios with very high mobility (e.g., >100 km per hour), the cor-
responding frequency shift caused by device mobility, with the WiFi
carrier frequency at 2.4 GHz, is capped at a few hundreds of hertz.
Such phase shift is much smaller than the smallest data subcarrier
spacing in WiFi (312.5 KHz). Therefore, the phase shift and ampli-
tude change caused by device mobility are relatively minor and can
be efficiently distinguished from those caused by interference by
the NN modules in AiFi.

Acceleration with hardware AI accelerators. In our current im-
plementation, the online inference of AiFi is only executed by CPU.
To meet the more strict timing constraint of delay-sensitive applica-
tions, such as AR/VR, we can leverage the hardware Al accelerators
that have been available on personal wireless devices. For example,
neural processing units (NPU) have been made available on smart-
phones such as Samsung Galaxy S20 and Google Pixel 6, and can
be used to further reduce the latency of AiFi’s online inference.
Applicability to different wireless technologies. In theory, AiFi
is applicable to any OFDM-based wireless systems, as long as the
required PHY information is available. However, some wireless
systems do not share the same PHY structure or do not provide the
PHY information in the same way. For example, LTE networks do
not use LTF preambles and have different pilot structures. Adopting
AiFi to these systems, hence, requires additional engineering efforts,
based on knowledge about PHY information in these systems.
Online model adaptation. In practice, the wireless channel and
interference signals may be highly variant over time. To better
adapt to such temporal variability, one solution is to adopt active
learning approaches [64] for online NN model adaptation, which
uses the up-to-date PHY information to re-calculate the NN model
weights. Such online model adaptation will be our future work.

11 CONCLUSION

In this paper, we present AiFi, a new wireless system that enables
WiFi interference cancellation at commodity WiFi devices without
requiring any extra RF hardware. The basic rationale of AiFi design
is to extract patterns of interference from the PHY-layer information
that is locally available at WiFi receivers. By levering the power of
AT and designing NNs from domain knowledge of WiFi PHY, AiFi
can reduce 80% of bit errors and improve the FRR by up to 18x.
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