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Maximum Likelihood-Based Gridless DoA
Estimation Using Structured Covariance Matrix

Recovery and SBL With Grid Refinement
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Abstract—We consider the parametric measurement model em-
ployed in applications such as line spectral or direction-of-arrival
estimation with the goal to estimate the underlying parameter in a
gridless manner. We focus on the stochastic maximum likelihood es-
timation (MLE) framework and overcome the model complexities
of the past by reparameterization of the objective and exploiting
the sparse Bayesian learning (SBL) approach. SBL is shown to
be a correlation-aware method and, for the underlying problem, a
grid-based technique for recovering a structured covariance matrix
of the measurements. For the case when measurements are spatial
(or temporal) samples at regular intervals, the structured matrix
is expressible as a sampled Toeplitz matrix. In this case, additional
constraints and reparameterization of the SBL objective leads
to the proposed structured matrix recovery technique based on
MLE. The optimization problem is non-convex and a majorization-
minimization based iterative procedure is proposed to estimate the
structured matrix; each iteration solves a semidefinite program.
We recover the parameter of interest in a gridless manner by
appealing to the Carathéodory-Féjer result on decomposition of
positive semidefinite Toeplitz matrices. For the general case of
irregularly spaced samples, we propose an iterative SBL procedure
that refines grid points to increase resolution near potential source
locations, while maintaining a low per iteration complexity. We pro-
vide numerical results to compare the performance of the proposed
techniques with other gridless techniques, and the Cramér-Rao
bound. The proposed correlation-aware approach is more robust
to issues such as fewer snapshots, correlated or closely separated
sources, and improves sources identifiability.

Index Terms—Sparse signal recovery, maximum likelihood,
sparse Bayesian learning, gridless estimation, correlation-aware,
structured matrix recovery, correlated sources, grid refinement.

I. INTRODUCTION

CONSIDER the following parametric data model

yl = Φθxl + nl, 0 ≤ l < L, (1)

where yl ∈ CM denotes the measurements, and L denotes
the total number of snapshots available. The kth column of
Φθ ∈ CM×K is a vector function of the parameter θk i.e.,
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TABLE I
(A) SPECTRAL BASED METHODS (B) PARAMETRIC METHODS

[Φθ]k = φ(θk) for some known φ(.), k ∈ {1, . . . ,K}. θ =
[θ1, . . . , θK ]T and θk’s lie in some known continuous domain.
K denotes the number of sources. The sources’ signal xl ∈ CK
and noise nl ∈ CM are independent of each other, and i.i.d.
over time. The noise, nl, is distributed as CN(0,σ2

nI). In
(1), the parameters (θ,xl,σ2

n) are the unknowns. The model
parameters affect the measurements in a non-linear manner,
which makes the inverse problem extremely difficult to solve,
even in the absence of noise. The above problem is ubiquitous,
with applications including biomagnetic imaging [1], functional
approximations [2], and echo cancellation [3]. In this work
we are concerned with problems such as in line spectral es-
timation [4] and direction-of-arrival (DoA) estimation [5] for
narrowband signals; we emphasize the latter as means for ex-
position.Approaches to solve (1) have a rich history and can
broadly be classified as traditional vs. modern, both significant
in insights and contributions.

On traditional approaches: They can be further classified into
spectral based [6], [7], [8] and parametric methods [5]. The
typical ingredients to solve (1) include geometrical properties
(e.g., subspace orthogonality in MUltiple SIgnal Classification
(MUSIC) [7] or Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) [8]) and statistical properties
of the model in (1). A common thread that unites these methods
is the usage of the second order statistics of the data. A second
order statistic offers benefits such as a) compact representation of
the data when1 L ≥ M (also, sample covariance matrix serves
as a sufficient statistic when data is Gaussian distributed) b)
model based interpretation of data with much fewer parameters.
Parametric methods are particularly attractive as they do not
suffer from the bottlenecks faced by beamforming and subspace
based methods (summary in Table I). Parametric methods like
maximum likelihood estimation (MLE) allow one to introduce
meaningful parameters as a means to incorporate information

1This condition was rightfully pointed out by a reviewer.
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about geometry and prior, which may be inferred even with a
single snapshot. The main issues with MLE methods are the
model complexity, as the resulting cost function may be highly
non-linear in the parameters to solve, and often the model order
is unknown.

On modern approaches: These techniques, under the rubric
of sparse signal recovery (SSR), involve a) reparameterization
of the original problem in (1) b) explicit or implicit sparsity
regularization and corresponding optimization problem. They
recover the parameter of interest in either grid-based or grid-less
manner, and most often explicitly impose sparsity. Under the
grid-based reparameterization [9], [10], [11], [12], [13], [14], the
methods first discretize the possible values of θ and introduce
the measurement matrix Φ ∈ CM×G, G denotes the grid size.
The i-th column [Φ]i = φ(θi), i = 1, . . . , G, and M % G. The
original problem in (1) can be re-written as

yl = Φx̄l + n̄l, 0 ≤ l < L, (2)

where it is known that X̄ = [x̄0, . . . , x̄L−1] is row-sparse i.e.,
most of the rows are zero. The problem in (2) is known as the
multiple measurement vector or MMV problem when L > 1
[15], compared to the single measurement vector or SMV
problem when just a single snapshot is available i.e., L = 1.
The non-zero rows correspond to active sources, and one of
the key problems in SSR is to identify these non-zero rows.
For the gridless approach [16], [17], [18], [19] the reparam-
eterization involves Toeplitz matrix fitting of appropriate size.
Note that modern techniques are applicable more generally even
when there is no underlying parametric model, for example
Gaussian random entries in Φ. Sparsity can be explicitly en-
forced by adding suitable p-pseudo-mixed norm2 (p ∈ (0, 1]),
‖X̄‖2,p, regularizer for the grid case or atomic norm for the
gridless formulations. The core emphasis in these approaches
is on optimizing an appropriate fit to the measurements with
an additional (sparsity) regularizer [10], [12], [13], [16], [17],
[18], [19]. Such methods are therefore sensitive to setting the
regularization parameter properly. An exception to the explicit
regularization based methods includes sparse Bayesian learning
(SBL) [14], [20], [21] which recovers sparse solutions for (2)
via implicit regularization [22]. SBL formulates the recovery
problem under the MLE framework and therefore demonstrates
superior performance.
The question we seek to answer is: how can we enhance the
SBL formulation to overcome the model complexities faced by
MLE methods of the past, and solve (1) i.e., perform gridless
estimation of θ? We identify the following contributions:! It was shown in [23] that correlation-aware techniques

effectively utilize available geometry and prior information
and thus, can recover support as high as O(M2). In [24], it
was shown that SBL can indeed identifyO(M2) sources in
the noiseless case under certain sufficient conditions on the
dictionary and sources, and was shown empirically in the
noisy case. In this work we reexamine the SBL formulation
and show that it places a similar emphasis on available
structure i.e., geometry and prior information, and thus is
a correlation-aware technique!

2Note that for p = 1 we get a norm, as it satisfies all the required axioms.

! We reformulate the SBL problem as a novel structured
matrix recovery (SMR) problem under the MLE frame-
work. We will also show that the cost function employed
by the proposed method can be derived using the Kullback-
Leibler (KL) divergence between the true (data) distribu-
tion and the one assumed in this work. This insight pro-
vides a new perspective for understanding the underlying
strategy to handle the case when sources may be arbitrar-
ily correlated, extending the benefits of correlation-aware
methods.! A majorization-minimization (MM) procedure [25] to min-
imize the negative log-likelihood function is provided. One
of the advantages of such an approach over other algorithms
like sequential quadratic programming (SQP) is that more
information is retained as we only majorize the concave
terms in the cost. Thus, all information about third order
and higher, of the convex terms is retained, unlike in SQP.
Also, unlike SQPs where trust regions are required which
limit progress per iteration, such conservative measures
are prevented using convex-concave procedure (CCP) [26].
Thus, the linear MM procedure allows for more progress
per iteration. We further discuss how array geometry can
play an important role in identifying more sources than
sensors. We also provide perspectives to understand the
proposed approach and connect with the traditional MLE
framework and the modern SBL formulation.! Finally, we consider arbitrary geometries where it is dif-
ficult to identify simplifying structures, that are otherwise
possible for array geometries such as uniform linear arrays
(ULA) with potential missing sensors. For this case, we
propose adaptive grid-based strategies to extend SBL to
alleviate the initial grid limitation.

The proposed techniques set us apart from other family of
approaches in the literature that albeit put together a cost function
with a similar essence (i.e. Simple Model + Data Fitting), but
lack a (MLE) principled approach and hence the associated
insights, performance guarantees and rich options. We provide
numerical results to further elucidate the impact of the proposed
techniques and compare them with other gridless approaches
and the Cramér-Rao bound (CRB). Some of the work presented
here was also discussed in [27] by the authors. We will now
review some relevant prior work in this field.

A. Relevant Prior Work

Early works, primarily in the field of DoA estimation using the
MLE based cost function include [29], [30], [31], [32], [33], [34].
In [29], the authors proposed an iterative algorithm to solve the
necessary gradient equations for moderate sized problems. An
expectation-maximization (EM) based approach was proposed
in [31] wherein the incomplete observed data is assumed to
have a Toeplitz structured covariance, and where it is shown
that it is possible to embed the incomplete data into a larger
size periodic data series. A separable solution, consisting of
an optimization problem for recovering support and a closed
form expression for estimating the source covariance matrix
was proposed in [32], which was further extended to the case
when noise variance is unknown in [35]. The problem was later
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TABLE II
SUMMARY OF GRIDLESS SPARSE SIGNAL RECOVERY ALGORITHMS

considered in the presence of spatially correlated noise fields
in [36]. A closed-form formula for estimating Hermitian Toeplitz
covariance matrices using the extended invariance principle was
suggested in [34]. A covariance matching based estimation to
bypass the model complexity associated with the MLE based
cost function was proposed in [37]. The approach developed in
this paper can be viewed as a natural progression of this line
of work, benefiting from the developments in the field and in
optimization tools.

In [16], authors proposed a gridless scheme for estimating the
frequency components of a mixture of complex sinusoids based
on the concept of atomic norm [38]. They formulated a semidefi-
nite program (SDP) which recovered a low rank Toeplitz matrix.
Such a Toeplitz matrix can be further decomposed to identify
the DoAs. In our work we similarly break the task into two steps.
First, we recover a structured covariance matrix approximation
for the sample covariance matrix (SCM). This recovery is based
on the MLE cost function, unlike the work in [16]. The second
step is similar to that in [16]. At each step we process the SCM,
and do not process the received samples directly. As a result,
the problem dimension is bounded, and results into a compact
formulation. A similar compact reformulation, called SPARse
ROW-norm reconstruction (SPARROW), for the atomic norm
minimization problem was proposed in [17]. The atomic-norm
minimization (ANM) technique in [16] builds on the mathemati-
cal theory of super-resolution developed by Candés et al. [39], in
that it extends to the cases of partial/compressive samples and/or
multiple measurement vectors. ANM, however, requires sources
to be adequately separated, prohibiting true super-resolution. A
re-weighted ANM (RAM) strategy that potentially overcomes
the shortfalls of ANM was proposed in [18]. SParse Iterative
Covariance-based Estimation (SPICE) was proposed in [40] as
a grid-based sparse parameter estimation technique based on
covariance matching, as opposed to the MLE formulation, and
was later extended to the gridless case in [19]. It was shown
in [19] that gridless SPICE and atomic norm-based techniques
are equivalent, under varied assumptions of noise. LIKelihood-
based Estimation of Sparse parameters (LIKES) [41] was pro-
posed as a grid-based method following the MLE principle,
with the same application as SPICE. Table II summarizes recent
gridless SSR approaches.

B. Organization of the Paper and Notations

In Section II we begin with a simple insight into SBL formula-
tion, and demonstrate that SBL is a correlation-aware technique.
We further compare SBL with another line of correlation-aware

algorithms based on minimizing diversity measures. We take this
insight further and present the structured matrix recovery (SMR)
reformulation and highlight benefits of the proposed approach
when sources may be arbitrarily correlated. In Section III, we
propose an iterative algorithm to solve the SMR problem. We
consider both ULA without missing sensors and ULA wherein
some sensors may be missing, in this section. We also connect the
proposed SMR approach with the traditional MLE framework
and the modern SBL formulation. In Section IV, we discuss
the general case where sensors may be placed arbitrarily, and
may not lie on a uniform grid. We present numerical results in
Section V and conclude the work in Section VI.

We represent scalars, vectors, and matrices by lowercase,
boldface-lowercase, and boldface-uppercase letters, respec-
tively. Sets are represented using blackboard bold letters. (.)T

denotes transpose and (.)H denotes Hermitian of the operand
matrix, and (.)c denotes element-wise complex conjugate. (
denotes Khatri-Rao product between two matrices of appropriate
sizes.

II. SBL REVISITED: CORRELATION AWARE INTERPRETATION,
ROBUSTNESS, AND STRUCTURED MATRIX REFORMULATION

A correlation-aware technique [23], [42] satisfies the follow-
ing three general requirements3: a) it depends on the measure-
ments only through its second order statistics b) it assumes a
source correlation prior, usually that sources are uncorrelated,
and fits a resulting structured received signal covariance matrix
to the second order statistics of the measurements c) any further
inference is carried using the recovered parameters characteriz-
ing the estimated structured covariance matrix. In this work we
assume that the sources are uncorrelated. This assumption may
not always hold, and some sources may in fact be correlated.
The impact of this mismatch between assumed model and true
model is discussed at the end of this section. The discussion
highlights another aspect of the MLE framework, as it provides
interpretable and superior results even in the mismatched model
case.

For the purpose of simplicity, we focus on the ULA geometry
in this section, and postpone the general case of ULAs with miss-
ing sensors until next section. However, the insights presented
here are applicable to the general case as well.

3To our knowledge, a formal set of requirements to be a ‘correlation-aware’
technique is missing in literature. Thus, we propose these requirements based
on the conditions for superior source identifiability reported in [23], [24], [42].
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A. On the SBL Algorithm

SBL is a Bayesian technique to find a row-sparse decom-
position of the received measurements, Y = [y0, . . . ,yL−1],
(i.e., to solve the MMV problem in (2)) using an overcomplete
dictionary Φ ∈ CM×G consisting of G suitably chosen vectors
(may be non-parametric in general). In the DoA estimation
problem, these vectors are array manifold vectors evaluated
on a grid of angular space representing potential DoAs i.e.,
θ ∈ [−π

2 ,
π
2 ) oru ∈ [−1, 1) inu-space. Note that there is a bijec-

tive mapping u = sin θ in the domains of interest [43] and thus
we use the two notations interchangeably. Consider a ULA with
M sensors and d = λ̄/2 distance between adjacent sensors to
prevent ambiguity in DoA estimation; λ̄ denotes the wavelength
of the incoming narrowband source signals. The array manifold
vector for a source signal incoming at angleu ∈ [−1, 1), is given
by φ(u) = [1, exp (−jπu), . . . , exp (−j(M − 1)πu)]T .

SBL imposes a parameterized Gaussian prior on the source
signal x̄l ∈ CG as x̄l ∼ CN(0,Γ). Note that SBL explicitly im-
poses an uncorrelated sources prior, and thusΓ is a diagonal ma-
trix; let diag(Γ) = γ. Thus we haveyl ∼ CN(0,ΦΓΦH + λI),
λ denotes the estimate for noise variance. In the case with
uninformative prior for γ, the hyperparameter Γ and λ can be
estimated under the MLE framework [21] as

min
Γ*0,λ≥0

log det
(
ΦΓΦH + λI

)
+ tr

((
ΦΓΦH + λI

)−1
R̂y

)
,

(3)
where R̂y = 1

L

∑L−1
l=0 ylyH

l denotes the SCM. Choices for
solving the problem in (3) include the Tipping iterations [20],
EM iterations [14], sequential SBL [44], and generalized ap-
proximate message passing (GAMP) implementations [45],
[46]. A MM approach for solving (3) was introduced in [47].

Remark 1: Note that if the number of sources K is known
exactly in (1), such model order information is not used in the
SBL formulation. Instead, the log det penalty in (3) helps to
promote sparsity and to deal with small but unknown number
of sources. If there is prior knowledge on K, then ‖γ‖0 = K
would have to be imposed on the objective function.

We now present the following useful insight.
Proposition 1: ∀γ ≥ 0 such that (Φ(Φc)γ = w, for some

fixed w ∈ CM2
, the SBL cost is a constant i.e.,

log det
(
ΦΓΦH + λI

)
+ tr

((
ΦΓΦH + λI

)−1
R̂y

)
= C(λ),

where C(λ) is some constant.
Proof: The proof follows simply by observing that (Φ(

Φc)γ = w implies ΦΓΦH is a fixed structured matrix with
entries dictated by components of w. !

The above result demonstrates that, the hyperparameter γ
affects the SBL cost function only through the entries of the
structured covariance matrix of the measurements. The sources
are localized by peaks in the output γ pseudospectrum. This
procedure satisfies the general requirements for correlation-
aware algorithms. Thus, we conclude that SBL is indeed a
correlation-aware technique. The procedure also marks some
key requirements for superior sources’ identifiability (see The-
orem 1 and following remarks in [24]).

B. Connecting to Correlation-Aware SSR Techniques Based
on Minimizing Diversity Measures

Consider the class of problems given by

min
z≥0

f(z)

subject to ‖r̂y −ΦKRz‖2 ≤ ε, (4)

where, r̂y = vec(R̂y) and ΦKR = Φc (Φ denotes the Khatri-
Rao product ofΦwith its conjugate. f(z) is a sparsity promoting
objective function and choices include %1 norm, %0 or %1/2 as con-
sidered in [48]. The above problem satisfies the requirements for
being correlation-aware, namely a) it matches the model to the
second order statistics of the data b) uses uncorrelated sources’
correlation prior to fit a structured matrix to the measurements c)
further performs inference using the parameters of this estimated
structured matrix. Next, we reformulate SBL as a constrained
optimization problem to highlight the data-fitting term and to
compare with (4).

The MLE optimization problem in (3) can be reformulated as
a constrained optimization problem as follows:

min
Γ*0,λ≥0

log det
(
ΦΓΦH + λI

)

subject to tr
((

ΦΓΦH + λI
)−1

R̂y

)
≤ ε. (5)

Note that the constraint imposes a Mahalanobis distance-based
bound on the optimization variables. Another perspective to
understand the data-fitting term above based on regularized
least-squares fit to measurements can be found in [47].

Proposition 2: Let (Γ∗, λ∗) be a global minimizer of the
optimization problem in (3) such that λ∗ > 0. (Γ∗, λ∗) glob-
ally minimizes problem in (5) as well, if and only if ε =
tr((ΦΓ∗ΦH + λ∗I)−1R̂y).

Proof: Proof in Appendix Section A. !
The constraint in the formulation of (5) allows to match

the model to the observation (through the sample covariance
matrix) and the objective function promotes a simpler model
to be picked. Note that the constrained optimization problem
in (5) is exactly MLE only when ε is set appropriately. The
proposition indicates the difficulty in transforming the MLE to
a constrained problem, although the latter can be explored as
a viable option with ε set heuristically. This is not discussed
further and left as future work. The above outlook only tries to
highlight the two components of the SBL objective and allows
one to compare the constrained formulation in (5) to the other
correlation-aware technique in (4). The data fitting term in (4)
lacks the MLE framework for data fitting used in (5). This insight
highlights one of the key difference between our approach and
that used in many other works in the literature.

An alternative treatment of the SBL cost function that also
reveals connections to reweighted %1 and %2 methods for finding
sparse solutions to (2) can be found in [22], [47], [49].

C. Proposed SMR Approach: ULA With No Missing Sensors

The structure for ΦΓΦH in the case of ULA is a Toeplitz ma-
trix, and is informed by the array geometry and the uncorrelated
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sources prior. In other words, SBL attempts to find the ‘best’
positive semidefinite (PSD) Toeplitz matrix approximation to
the SCM R̂y. The grid-based formulation restricts the solution
to lie in the union of PSD cones. We use this insight and repa-
rameterize the SBL cost function to directly estimate the entries
of the Toeplitz covariance matrix. Let v denote the first row of
such a Toeplitz matrix, denoted by Toep(v). We reformulate the
SBL optimization problem as

min
v∈CM s.t.

Toep(v)*0,λ≥0

log det (Toep(v) + λI)

+ tr
(
(Toep(v) + λI)−1R̂y

)
. (6)

Once the solution v∗ is obtained, we estimate the DoAs by
decomposing the Toeplitz matrix, Toep(v∗). In our simulations
we use root-MUSIC to estimate the DoAs [50].

Remark 2: It is known that a low rank (D < M ) PSD
Toeplitz matrix such as Toep(v∗) can be uniquely decomposed
as Toep(v∗) =

∑D
i=1 piφ(θi)φ(θi)

H , pi > 0, and θi’s are dis-
tinct [51]. In (6), a low-rank solution is encouraged by the log det
term [52], while its effect is being moderated by the additional
noise variance term, ‘+λI’.

The SBL formulation in (3) not only finds a structured matrix
fit to the measurements, it also factorizes it. The same is true
with the classical MLE approach, and is briefly discussed in
Section III-C. The structured matrix factorization is a crucial
step. In the proposed approach, we find a structured matrix in
the MLE sense. We therefore refer to the proposed approach
as ‘StructCovMLE’. The problem in (6) is non-convex and we
discuss an iterative algorithm to solve it, along with an extension
to allow ULAs with missing sensors, in Section III.

Next, we briefly discuss an important aspect of the chosen
approach in (6) to solve the original problem in (1).

D. Performance Under a Correlation Prior Mismatch

We discuss the case when there is a prior misfit, between
the assumed model and the actual (data) model. This insight
is another feature resulting from the MLE formulation used by
SBL as opposed to a regularization framework. In particular,
we discuss the case when the sources may be arbitrarily corre-
lated. As briefly mentioned before, in the case of a ULA, the
structure SBL imposes by virtue of the array geometry and the
(uncorrelated) source correlation prior is a Toeplitz matrix. If
some of the sources are correlated, the approach fits Toeplitz
structured covariance to a non-Toeplitz structure obeyed by the
data. Our aim is not to correct but to quantify the model misfit.
In particular, we show that the recovered Toeplitz fit to the SCM
minimizes the KL divergence between the assumed and the true
distribution.

Let py and fy|Ψ denote the true probability density function
(pdf) and the pdf for the mismatched model, respectively, where
Ψ = (v, λ) s.t. Toep(v) * 0, λ ≥ 0. Since the source and noise
vectors are uncorrelated with each other, py is a zero mean
Gaussian pdf with covariance matrix Ry = ΦθRxΦ

H
θ + σ2

nI,
where Rx denotes the source covariance matrix. Similarly fy|Ψ
is zero mean Gaussian pdf with covarianceΣy = Toep(v) + λI.
The KL divergence between these two normal distributions is

well known and is given by

D(py‖fy|Ψ) = log detΣy−log detRy −M + tr(Σy
−1Ry).

(7)

The effective optimization problem to minimize the KL diver-
gence between the two distributions is given by

Ψ∗ = argmin
Ψ s.t. Toep(v)*0,λ≥0

log det
(
Σy

)
+ tr

(
Σy

−1Ry

)
. (8)

Note that this optimization problem is similar to (6) for the
proposed approach (or (3) used within SBL), where instead of
the actual received signal covariance matrix, Ry, we used the
SCM. Note that the SCM is the unconstrained/unstructured MLE
estimate of the received signal covariance matrix. In [53] it was
shown for SBL using the two sources example and when the
DoAs were known that, when sources are far apart, the estimate
for the source powers under the uncorrelated model matches the
true source power using the problem in (8). Such a mismatched
model was also used in [54] to propose more robust beamformers
that can resist source correlation.

III. MAXIMUM LIKELIHOOD STRUCTURED COVARIANCE

MATRIX RECOVERY

We focus on ULA, first on the case with no missing sensors,
and then on the case of ULA with missing sensors. We assume
that the noise variance is known and set λ = σ2

n in (6), but it can
be estimated as well, similar to v in this section.

A. Uniform Linear Array Geometry

Based on the concavity of the log det term, we majorize the
log det term in (6) and replace it with a linear term using its
Taylor expansion [25]

log det (Toep(v) +λI) ≤ log det
(

Toep
(
v(k)

)
+ λI

)

+ tr
((

Toep
(
v(k)

)
+λI

)−1
Toep

(
v−v(k)

))
,

(9)

where v(k) denotes the iterate value at the kth iteration. Note
that the linear term from Taylor expansion provides a supporting
hyperplane to the hypograph {(v, t) : t <= log det(Toep(v) +
λI))} [55]. We ignore the constant terms above and get the
following majorized objective function

tr
((

Toep
(
v(k)

)
+ λI

)−1
Toep(v)

)

+ tr
(
(Toep(v) + λI)−1R̂y

)
.

Rewriting second term above using Schur complement lemma:

tr
(
(Toep(v) + λI)−1R̂y

)
= min

U∈CM×M
tr
(
U R̂y

)

s.t.

[
U IM
IM Toep(v) + λI

]
* 0,

(10)
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Algorithm 1: Proposed ‘StructCovMLE’ Algorithm.

which is a SDP. The overall optimization problem is convex and
can be formulated as a SDP as follows

min
v∈CM ,U∈CM×M

tr
((

Toep
(
v(k)

)
+λI

)−1
Toep(v)

)
+tr

(
U R̂y

)

subject to

[
U IM
IM Toep(v) + λI

]
* 0,Toep(v) * 0, (11)

and can be solved using any standard solvers (e.g. CVX solvers
such as SDPT3, SeDuMi [56]). It can be solved iteratively and
we summarize the proposed steps in Algorithm 1. The following
remark briefly discusses the choice of initialization.

Remark 3: We initialize the proposed algorithm with the unit
vector v0 = e1, following the suggestion in [52] for effective
rank minimization. This initialization reduces the majorized
term to a trace function in the first iteration. It is known that
trace function is a convex envelope for the rank function for
matrices with spectral norm less than one [57]. Furthermore, the
iterative weighted trace minimization in the following iterations
helps to preserve relevant signal components.

A criterion such as stopping when the relative change
(‖v(k) − v(k−1)‖2/‖v(k−1)‖2) is small may be considered in
Algorithm 1, instead of a fixed number of iterations. The fixed
number of iterations approach is used to compare different
iterative algorithms in Section V.

B. ULA With Missing Sensors

We begin by identifying the relevant structure for the general
case of ULAs with missing sensors. Consider a linear array
with M sensors on a grid with minimum inter-element spacing
d = λ̄/2. Let P = {pi | pi ∈ Z, 0 ≤ i < M} denote the set
of normalized (w.r.t. d) sensor positions. We assume p0 = 0
without loss of generality. The array manifold vector is given
by φ(u) = [1, exp (−jp1πu), . . . , exp (−jpM−1πu)]T , u =
sin θ. The difference coarray is given by D = {z | z =
r − s, r, s ∈ P}. The concept of difference coarray influences
the structure we seek to identify, and also arises naturally
when computing the received signal covariance matrix.
It represents the set of unique lags experienced by the
physical array. The received signal covariance matrix
under the SBL formulation is given by ΦΓΦH + λI,
as discussed previously. The (m,n) entry in ΦΓΦH is
given by [ΦΓΦH ]m,n =

∑G
i=1 γi exp (−j(pm − pn)πui),

and [ΦΓΦH ]m,n = [ΦΓΦH ]cn,m. Thus, [ΦΓΦH ]m,n =

[ΦΓΦH ]m′,n′ , ∀ tuples (m,n) and (m′, n′) such that
pm − pn = pm′ − pn′ . In other words, the entries in ΦΓΦH

can be distinct only corresponding to distinct elements in D.

Fig. 1. Structured Covariance Matrix T(v).

ΦΓΦH is Hermitian symmetric, which further restricts the
number of distinct entries. This reveals the underlying structure
that the model ΦΓΦH satisfies, and we formalize it below. Let
Mapt denote the aperture of the array, Mapt = maxd∈D d+ 1.
We define a linear mapping T(v) : CMapt → CM×M as

[T(v)]i,j =

{
v|pi−pj | j ≥ i
vc|pi−pj | otherwise , 0 ≤ i, j < M. (12)

The mappingT(v) in general is many-to-one. It is only when the
difference coarray has no holes, the mapping is one-to-one. For
such cases we define T−1(R) : CM×M → CMapt as a function
that extracts the entries of a given structured matrix R, formed
using (12), to form a column vector. For the ULA with no missing
sensors’ case, we have T(v) = Toep(v).

Example 1: Consider P = {0, 1, 3}. This leads to D =
{−3,−2,−1, 0, 1, 2, 3} and Mapt = 4. We therefore define v ∈
C4, and the structured coavariance matrix as in Fig. 1(a). The
mapping T(v) is one-to-one here and consequently T−1 is
defined and we have T−1(T(v)) = [v0, v1, v2, v3]T .

Example 2: Consider P = {0, 1, 4}. This leads to D =
{−4,−3,−1, 0, 1, 3, 4} and Mapt = 5. We therefore define v ∈
C5, and the structured coavariance matrix as in Fig. 1(b). The
mapping T(v) is many-to-one here, as the component v2 is
missing in T(v). Consequently T−1 is not defined.

Thus, for the general case, (3) can be reformulated as:

min
v∈CMapt s.t.

Toep(v)*0,λ≥0

log det (T(v) + λI) + tr
(
(T(v) + λI)−1R̂y

)
.

(13)
Remark 4: We would like to highlight a non-trivial choice

made above of imposing Toep(v) * 0, instead of only requiring
T(v) * 0. Note that the former constraint ensures that the latter
is satisfied. The choice imposes a relevant constraint and is an
important aspect of the model we wish to fit to the data in MLE
sense. It also helps to connect the proposed reformulation to the
traditional and modern MLE approaches, and is discussed in
Section III-C.

Remark 5: As in the case for SBL, if the number of sources,
K, is known, a rank constraint rank(Toep(v)) = K should be
imposed. Since imposing a rank constraint is difficult, surrogate
measures like in compressed sensing may be used, such as
‘+β log det(Toep(v) + εI)’ as a regularizer in (13) to further
promote sparse solutions. In this work, we do not exploit knowl-
edge of K to solve (13).

Like in the previous case of ULA with no missing sensors,
we majorize the cost function in (13) to get a convex function
and rewrite it as a SDP, assuming knowledge of noise variance
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and setting λ = σ2
n. The majorized objective is given by

tr
((

T
(
v(k)

)
+ λI

)−1
T(v)

)
+ tr

(
(T(v) + λI)−1R̂y

)
.

(14)
The resulting SDP is given below

min
v∈CMapt ,U∈CM×M

tr
((

T
(
v(k)

)
+ λI

)−1
T(v)

)
+ tr

(
U R̂y

)

subject to

[
U IM
IM T(v) + λI

]
* 0,Toep(v) * 0, (15)

where v(k) denotes the value at the kth iteration. Steps similar
to Algorithm 1 can be followed to find the optimal point v∗. To
estimate the DoAs we perform root-MUSIC on T(v∗).

Remark 6: It was shown in [58] that sparse arrays with a larger
number of consecutive lags than the number of sensors, M , can
identify more sources than M . Under the proposed approach,
a similar higher identifiability can be achieved by instead per-
forming root-MUSIC on Toep(v∗), and we numerically verify
this in Section V-B.

C. On Proposed Method: From MLE to SBL

We connect the proposed technique with the classical MLE
framework and the grid SBL formulation. We hope to answer
the following question: how has the reparameterization affected
the original problem in (1) of solving for θ?

1) Connection with the classical MLE formulation: We be-
gin by first stating the traditional MLE formulation. In this
approach, we impose a parametrized Gaussian prior on xl i.e.,
xl ∼ CN(0,P). Note that an explicit knowledge of model order
information is a requisite here. We further assume that the
sources are uncorrelated, and thus P is a diagonal matrix. The
resulting optimization problem is given by

min
θ∈[−π

2 ,π2 )K ,P/ 0,λ≥0
log det

(
ΦθPΦH

θ + λI
)

+ tr
(
(ΦθPΦH

θ + λI)−1R̂y

)
. (16)

The model is also referred to as the unconditional model in the
DoA literature [59], compared to the conditional model wherexl

is assumed deterministic. Consider the following updated MLE
optimization problem:

min
K∈Z+

0<K<Mapt

min
θ∈[−π

2 ,π2 )K ,P/ 0,λ≥0
log det

(
ΦθPΦH

θ + λI
)

+ tr
(
(ΦθPΦH

θ + λI)−1R̂y

)
.

(17)

The difference with the traditional MLE formulation is that,
in the above we consider all model orders, 0 < K < Mapt, to
optimize the cost function. We then have the following result.

Theorem 1: The problem in (13) and in (17) are equivalent,
in that they achieve the same globally minimum cost.

Proof: Proof is provided in the Appendix Section A1. !

2) Connection With SBL in (3): Consider the following up-
dated SBL optimization problem:

min
Φ

min
Γ*0,λ≥0

log det
(
ΦΓΦH + λI

)

+ tr
((

ΦΓΦH + λI
)−1

R̂y

)
, (18)

where we also allow all possible dictionaries Φ with array
manifold vectors as columns, to optimize the cost function. The
following result follows similarly.

Theorem 2: The problem in (13) and in (18) are equivalent,
in that they achieve the same globally minimum cost.

Proof: The proof follows similarly as for Theorem 1, and we
present it it Appendix section A2 for completion. !

The above results help to understand the proposed approach
in (13): (13) estimates a structured covariance matrix fit to
the measurements in the MLE sense over all model orders for
classical MLE or all appropriate dictionaries for SBL.

The entries of a structured matrix and noise variance may be
combined as presented in [60]. However, the choice of explicitly
involving λ parameter has two important consequences: a) If σ2

n

is known, the proposed approach allows a mechanism to feed this
information, which is absent in [60] b) If σ2

n is unknown, a better
learning strategy to estimate the noise variance and then feeding
it as part of the model may result in better DoA estimates than
jointly estimating θ and σ2

n. Finally, although the optimization
problem in [60] and the proposed are similar, an algorithm for
solving it is missing in [60]. During the preparation of this
manuscript we came across another recent work in [61] which
derives from the classical MLE formulation. Consequently, it
involves the non-linear rank constraint which is implemented by
a truncated eigen-decomposition step. In contrast, the presented
algorithm builds on the success of SBL algorithm and relaxes
the rank constraint, similar to SBL. The presented approach also
guarantees that the likelihood increases over the iterations. K is
utilized for root-MUSIC. [61] focuses on sparse linear arrays i.e.,
sensors on grid. We, however, consider the general non-uniform
linear array case as well, and is discussed next.

IV. GRIDLESS SBL WITH LIKELIHOOD-BASED GRID

REFINEMENT

In this section, we consider the case when sensors may be
placed arbitrarily on a linear aperture. The presented ideas can
be extended to other shapes or higher dimensional (2D, 3D, etc.)
geometries. Note in both the sections we assume that the sensor
positions are known. Issues concerning calibration errors is not
the focus here, and we request interested readers to check the
relevant literature for tackling such issues [43].

Consider an array with sensor positions P = {0, 1, 2.1, 3.5,
4.7, 10}. The difference coarray for this geometry is
given by D = {0, 1, 1.1, 1.2, 1.4, 2.1, 2.5, 2.6, 3.5, 3.7, 4.7, 5.3,
6.5, 7.9, 9, 10}. The structured received signal covariance ma-
trix is neither Toeplitz, nor is sampled from a higher order
Toeplitz matrix. This implies that (13), where we enforced a
Toeplitz PSD constraint, is not applicable. Similarly, the second
step wherein we estimate DoAs in a gridless manner using
root-MUSIC is not applicable. Finally, the number of distinct
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lags is |D| = M(M + 1)/2− (M − 1) = 16 which essentially
enforces structure only on the diagonal entries, in that, they be
equal. This indicates poor availability of structural constraints
on the received signal covariance, compared to the geometries
where sensors are present on a uniform grid. Note that the
SBL formulation in (3) is devoid of such limitations. Using the
recoveredΓ∗ one can construct a Toeplitz matrix of order 0Mapt1,
where 0·1 indicates the floor function, and beyond although
the accuracy may not be reliable as the measurements lack
information about larger lags. This highlights the versatility with
which SBL can handle arbitrary array geometries. However, as
we already know that SBL does not quite solve (1) that we
ventured out to solve in the first place, because the DoAs may not
lie on the chosen grid. One can employ a very fine grid, but the
per iteration computational complexity increases linearly with
the grid size. We extend the SBL procedure to progressively
refine the initial uniform coarse grid by adding more points near
potential source locations. We achieve this in two steps: (a) Grid
point adjustment around peaks, in the solution γ∗ of (3) using
sequential SBL [44] to simultaneously update both grid point
and power estimate (b) Multi-resolution grid refinement. Note
that the latter builds on the former step by re-running SBL after
the local step (a), pruning, and increasing grid resolution near
top peaks in the γ pseudospectrum. As will be shown next,
the grid point adjustment around peaks in γ pseudospectrum
is a computationally simpler procedure to further increase the
likelihood after SBL iterations on a coarse grid.

A. Grid Point Adjustment Around Peaks in Solution γ∗ of (3)

We begin by rewriting the SBL objective function to sep-
arate out the i-th grid component characterized by the tuple
(γi, ui); u = sin θ is used here. Let C = ΦΓΦH + λI and
C−i = Φ−iΓ−iΦ

H
−i + λI, where Φ−i denotes the dictionary

without the i-th column inΦ, andΓ−i denotes the matrix without
the the i-th row and the i-th column in Γ. Then

L(γ) = log detC+ tr
(
C−1R̂y

)
= L(γ−i) + L(γi, ui),

(19)
where L(γ−i) = log detC−i + tr(C−1

−i R̂y) is devoid
of (γi, ui), and L(γi, ui) = log(1 + γiΦ

H
i C−1

−iΦi)−
ΦH

i C−1
−i R̂yC

−1
−iΦi

γ−1
i +ΦH

i C−1
−iΦi

(see eq. (18) in [44] for detailed derivation

of (19)). Let i(0)k , k ∈ {1, . . . ,K} denote the indices for
the K top peaks in the γ pseudospectrum. The index
superscript (.) in i(0)k indicates the iteration number of the
overall two step procedure, and will be discussed more in
the next subsection. The idea is to fix the first term in RHS
of (19) and minimize the objective L(γ, u) with respect to
(γ, u), u ∈ [u

i(0)k
− δ, u

i(0)k
+ δ], k = {1, . . . ,K}, one peak at

a time;4 the bound5 δ < 1/G is to avoid grid point overlap. In

4In general, solving for one grid point at a time (as done here) may lead to a
different solution compared to solving for all grid points simultaneously. This
is because the underlying cost function is non-convex. Since the objective is to
perform local grid refinement where new grid points in the neighborhood of a
support element are considered, a sequential SBL strategy of optimizing one
grid point at a time is more suited, as it leads to simple yet efficient updates.

5Note that future iterations may involve non-uniform grid, and a similar bound
on either directions is used to avoid grid point overlap.

other words, the aim is to solve

min
u∈[u

i
(0)
k

−δ,u
i
(0)
k

+δ]
min
γ≥0

L(γ, u)

= log(1 + γs(u))− q(u)

γ−1 + s(u)
(20)

where q(u) = φ(u)HC−1
−i R̂yC

−1
−iφ(u) and s(u) =

φ(u)HC−1
−iφ(u). The minimization with respect to γ for

a fixed u can be obtained in closed-form as

γopt(u) =

{
q(u)−s(u)

s(u)2 q(u) > s(u)

0 q(u) ≤ s(u)
. (21)

And thus we have

L(γopt(u), u) =

{
log

(
q(u)
s(u)

)
− q(u)

s(u) + 1 q(u) > s(u)

0 q(u) ≤ s(u)
.

(22)
Note that log( q(u)s(u) )−

q(u)
s(u) + 1 ≤ 0, ∀u, and is equal to zero

only when q(u) = s(u) for some u. Consequently, we are
interested in u ∈ [u

i(0)k
− δ, u

i(0)k
+ δ] such that q(u) > s(u).

For such points L(γopt(u), u) is a monotonic non-increasing
function of ‘ q(u)s(u) ,’ and thus the problem in (20) reduces to the
following problem

u∗ = argmax
u∈[u

i
(0)
k

−δ,u
i
(0)
k

+δ] s.t. q(u)>s(u)
R(u) =

q(u)

s(u)
. (23)

We provide the following perspective to understand the objective
we wish to locally maximize.

R(u) =
q(u)

s(u)
=

φ(u)HC−1
−i R̂yC

−1
−iφ(u)

φ(u)HC−1
−iφ(u)

=
φ(u)HC−1

−i R̂yC
−1
−iφ(u)/

(
φ(u)HC−1

−iφ(u)
)2

1/
(
φ(u)HC−1

−iφ(u)
) ,

(24)

which is the ratio of (numerator) actual beamforming total output
power and (denominator) expected beamforming interference
plus noise output power, where the model interference plus
noise signal covariance is given by C−i. The expression utilizes

the beamformer w =
C−1

−iφ(u)

(φ(u)HC−1
−iφ(u))

, which represents a min-
imum variance distortionless response (MVDR) beamformer
with C−i as the model interference plus noise signal covariance
matrix [43], [62]. Thus the criterion R(u) in (23) picks a u
in the neighbourhood of u

i(0)k
that most exceeds the expected

beamforming interference plus noise output power, guided by
C−i. At the true location, which is likely to be in the search
region, the model C−i expects low power but hopefully the
measurements indicate higher power than expected.

We solve (23) by implementing a fine grid of size G′ around
the peak and evaluating the criterion R(u). Once we find the
maximum point we replace the grid point (γ

i(0)k
, u

i(0)k
) with

(γopt(u∗), u∗). Note that by including the previous grid point
in the search region we ensure that the likelihood is steadily
increasing. We then repeat this procedure for the next peak, cor-
responding to another source, and so on. This procedure around
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a peak assumes that other peaks were reliably estimated, which
may hold only approximately. Therefore, we iterate over the K
peaks until convergence. In practice, the procedure converges
quickly over 20− 30 iterations.

The above procedure is quite different from that in [13], in that
it offers a means to improve the DoA estimate without requiring
to re-run the primary procedure (here: SBL, in [13]: %1-SVD)
on all grid points. As will be shown numerically in Section V-F,
this step alone improves the solution significantly.

B. Multi-Resolution Grid Refinement

In this subsection, we take the local grid point adjustment
step further by introducing a finer grid around the new peak
locations and by re-running the SBL procedure. Let r = 0 and
j(r)k , k ∈ {1, . . . ,K}, denote the indices for the K top peaks in
the solution γest after grid point adjustment around the peaks,
andG(0) = G denotes the current grid size. We run the following
procedure to further refine the solution:

1) Prune the grid points i for {i : γest(i) < γthresh} for some
γthresh. In the simulations we set γthresh = 10−3.

2) Introduce new grid points in the region [u
j(0)k

−
4

G(0) , uj(0)k
+ 4

G(0) ]with finer resolution 1
g

2
G(0) , g > 1. The

region includes two neighbouring grid points on each side.
‘g’ is chosen such that the total number of grid points does
not exceed G(0). This choice ensures that per iteration
complexity is contained. In the simulations, we choose
g = 3; in general the procedure adds (4g + 1) new points
per peak of interest.

3) Increment r : r + 1, and update the grid size G(r). Run
SBL from scratch, get new set of indices for K top peaks
i(r)k , k ∈ {1, . . . ,K}; perform grid point adjustment at
these peaks to get j(r)k , k ∈ {1, . . . ,K}, as updated peak
locations. Go to step 1).

This procedure is similar to that in [13]. We run these steps
a few times and report the peak points as DoA estimates in the
simulation section. A natural question that arises is: why is the
local grid point adjustment not enough for improved resolution
and separating two closely spaced sources? In other words, is a
SBL re-run necessary?

A re-run improves both, the SBL with coarse grid and the
grid point adjustment around peaks. For the SBL procedure,
a re-run in this manner provides a much more informed sam-
pling of the spatial coordinates with closely-spaced grid points
around locations of interest. For the grid point adjustment step
where the MVDR beamformer is employed, a finer grid helps
to further ensure that only a single source is present in the
search region of (23). This is important because the beamformer

w =
C−1

−iφ(u)

(φ(u)HC−1
−iφ(u))

engages its degrees of freedom and at-
tempts to null interference outside of this search region, and the
criterion R(u) works best only if a single source is present in
the search region. A block diagram summarizing the high level
steps suggested in this section for the general case of sensors
being placed arbitrarily is shown in Fig. 2.

Fig. 2. Proposed SBL with likelihood-based grid refinement procedure. At
r = 0, SBL is run with a uniform grid.

V. SIMULATION RESULTS

We present numerical results to evaluate the performance of
the proposed algorithms in Section III and IV in different scenar-
ios. We also compare the proposed ‘StructCovMLE’ algorithm
with MUSIC using SCM, MUSIC using forward-backward (FB)
averaged SCM [43], reweighted ANM (RAM), GridLess (GL)-
SPICE, GL-SPARROW and Cramér-Rao bound (CRB) [63].
We initialize all the iterative techniques (i.e. the proposed Algo-
rithm 1 and RAM) with the unit vectorv0 = e1 for reasons stated
in remark 3, and run 20 iterations unless otherwise specified.
We provide the number of sources, K, to identify to all the
algorithms. We set λ = σ2

n for the proposed algorithm. The
RAM implementation follows its description in [18], and we
also adopt the dimension reduction mechanism suggested in the
paper. We set η = σn

√
ML+ 2

√
ML as suggested for DoA es-

timation in [18]. For GL-SPARROW, we set λ = σn
√
M logM

as suggested in [17], [28]. GL-SPICE does not require or utilize
the knowledge of the noise variance, σ2

n. We compute root mean
squared error (RMSE) in u-space (u = sin θ) as

RMSE =

√
1

T

1

K

∑T

t=1

∑K

k=1
(ûk,t − uk)

2, (25)

where T denotes the total number of random trials.

A. Performance in Single Snapshot Case i.e., L = 1

We consider a ULA with M = 10 sensors, and two sources at
angles {−1/Mapt, 1/Mapt},Mapt = 10, in u-space. The sources
have signal-to-noise ratio (SNR) = 20 dB. In Fig. 3 we plot
the normalized (with respect to maximum value) MUSIC pseu-
dospectrum for different estimates of the structured covariance
matrix, for 10 random realizations. The true DoAs are marked
in vertical red dashed curve. As expected, the SCM provides the
worst performance as it does not satisfy the rank requirement to
identify two sources. It is observed that the forward-backward
averaging helps to improve the performance by ensuring the
rank requirement is satisfied. Still the overall performance is
poor, as evident from the high noise floor compared to that for
‘StructCovMLE’ in Fig. 3(c), and from its inability to resolve
the two sources for some realizations. The proposed method
is able to resolve both the sources. This is also true for RAM,
GL-SPARROW, and GL-SPICE methods although we skip the
plots in the interest of space.

B. More Sources Than Sensors’ Case

We consider a nested array [64] with M = 6 sensors at
locations {0, 1, 2, 3, 7, 11}, and K = 8 sources at angles uni-
formly in u-space. Their locations in MATLAB notation are
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Fig. 3. Single snapshot scenario.

Fig. 4. More sources than sensors’ case.

{−1 + 1/K : 2/K : 1− 1/K}. The SNR for each source is
20 dB andL = 4. In Fig. 4, we plot 20 random realizations of the
normalized MUSIC pseudospectrum for the different estimates
of the structured covariance matrix. As seen in Fig. 4(a), the
proposed algorithm is able to localize all the 8 sources, whereas
the rest of the algorithms suffer from poor identifiability for some
realizations. The superior performance is also evident from the
lower RMSE value (in u-space) for the proposed algorithm, as
compared to the other techniques.

C. Effect of Correlation: An Empirical Bias Study

We consider a ULA with M = 6 sensors and two sources in-
coming at angles {−1/4, 1/4}. The SNR is 20 dB and L = 500.
In Fig. 5(a) and (b) we plot the empirical bias for the two
sources, respectively i.e., 1

T

∑T
t=1(ûk,t − u∗

k), k = {1, 2}, as
a function of the absolute value of correlation coefficient, |ρ|.
For computing the bias, we average over T = 50 realizations.
As observed in the plots, there is an increasing empirical bias
in the angular estimates for the RAM and the GL-SPARROW
techniques. This is evident as the curves drift away from the
x-axis as |ρ| increases. The proposed approach (shown in green
curve with circular markers) has low empirical bias even when
|ρ| is as high as 0.99. This demonstrates the superiority of the
MLE based proposed approach over the other algorithms when
there may be sources that are arbitrarily correlated.

Next, we provide RMSE vs. SNR curves for uncorrelated and
correlated sources’ case, and compare the performance with

CRB. Note that in certain scenarios the algorithms may be
biased, for example in extremely low SNR regime, or as evident
in Fig. 5(a) and (b) for RAM and GL SPARROW even in the
high SNR scenario when the sources are correlated. We provide
the curves for completion, but note that the CRB may not be a
valid bound for such extreme cases.

D. Performance as a Function of SNR

We consider ULA with M = 6 sensors and two sources at
angles {−1/2, 1/2}.L = 500 and we run 30 iterations for RAM
and the proposed ‘StructCovMLE’ algorithm. In Fig. 5(c) and (d)
we plot the RMSE (averaged over T = 50 realizations) for the
uncorrelated sources and correlated sources’ cases, respectively,
as a function of SNR. As observed in Fig. 5(c), when the sources
are uncorrelated, all the algorithms approach CRB as the SNR
increases. When the sources are highly correlated and the SNR
is high, |ρ| = 0.9 in Fig. 5(d), we observed that the performance
curve for the proposed algorithm is the closest to CRB, followed
by GL-SPICE. The performance curves are worse for RAM and
GL-SPARROW indicating the effect of empirical bias present
in the estimates.

E. Resolution Study and Regularization-Free Proposed
Approach vs RAM Study

We evaluate the performance of the proposed technique for
resolution and compare it with RAM. We also compare the two
algorithms for the case when sources have different SNRs. We
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Fig. 5. (a) & (b): Effect of correlation (ρ/|ρ| = 0.5010 + j0.8654) on empirical bias. (c) & (d): RMSE as a function of SNR. (e) & (f): Nested array with sensor
locations, P = {0, 1, 2, 3, 4, 5, 11, 17, 23, 29}.

Fig. 6. Non-uniform linear array: Performance of the proposed SBL with likelihood-based grid refinement procedure.

consider a nested array with M = 10 sensors, and allow K = 4
sources incoming at angles {−0.5,−1/2Mapt, 1/2Mapt, 0.6} in
u-space, where Mapt = 30. The corresponding SNR for sources
is {5, 20, 20, 10} dB and only a single snapshot (L = 1) is
available. The two sources near broadside are 1/Mapt apart, or
equivalently 0.5/Mapt apart in normalized frequencies, which
is a challenging scenario. As seen in Fig. 5(e) and (f) for the
proposed algorithm and RAM, respectively, both are able to
resolve the two sources. The proposed algorithm is able to
identify all 4 sources, but RAM misses the weakest source. This
behavior for RAM comes from the fact that the model is matched
to an estimate of noiseless data. In an attempt to construct such
a noiseless estimate of measurement, the algorithm effectively
suppressed the weakest source. It was observed that setting
η = 0 helped to identify all sources for RAM here. This indicates

that RAM is sensitive to setting the parameter η appropriately.
Note also that the noise floor for the proposed algorithm is higher
than that for RAM. This is expected because for the case of
K = 4 sources and M = 10 sensors i.e., fewer sources than
sensors, MUSIC is applied on the smaller T(v∗) ∈ C10×10 in
the proposed algorithm, compared to MUSIC on Toep(v∗) ∈
C30×30 in RAM.

F. Performance of the Proposed SBL With Likelihood-Based
Grid Refinement Procedure

We consider the array geometry mentioned in Section IV
with M = 6 sensors at positions P = {0, 1, 2.1, 3.5, 4.7, 10},
two sources at approximately {−0.5400, 0.4802} in u-space,
and L = 500. In Fig. 6(a) and (b), we analyse the performance
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of the proposed algorithm at SNR = 20 dB, while in (c) we
consider a range of SNRs. We run 5000 SBL iterations each
time SBL is called, and the initial grid size is G = 150. We plot
the average results of T = 50 random realizations in Fig. 6(a)
and (b) and T = 25 random realizations in Fig. 6(c).

In Fig. 6(a), we plot the RMSE over the iterations (r =
0, 1, . . .) described in Fig. 2 for the proposed algorithm. As
observed here the RMSE decreases over iterations. Within each
iteration (compare dashed vs. solid curve), it can be seen that
the grid point adjustment step at peaks helps to reduce the error
further, and thus establishes a simple way to further increase the
likelihood. After 5 iterations, it can be seen the error is very close
to the CRB. In Fig. 6(b), we plot the grid size (in solid blue curve)
for running SBL at every iteration of the proposed procedure. In
dashed blue curve, we plot a simple upper bound on the grid size
by only counting the number of new grid points added around
top peaks. This helps to compute the number of points pruned at
every iteration. For reaching CRB at SNR = 20 dB with a single
SBL run and a uniform grid, we need a grid size ofG = 7632. In
comparison, the proposed procedure only requires a maximum
grid size ofG = 150. Note that the grid resolution around the top
peaks, after 5 iterations, is comparable to an initial grid size of
G× g(5−1) = 150× 34 = 12150, which is more than enough
to achieve CRB. In Fig. 6(c), we plot the RMSE as a function
of SNR. We set the maximum iterations (<7) of the proposed
procedure so as to allow for sufficiently small grid spacing at
high SNR as required to reach CRB. As seen in the plot, the
RMSE approaches CRB as the SNR increases. Note that for a
fixed grid size i.e., for a standard SBL procedure the RMSE is
expected to saturate beyond a certain SNR.

VI. CONCLUSION

In this work we revisited the problem of gridless sparse
signal recovery using MLE framework. We showed that SBL
performs a structured covariance matrix estimation, where the
structure is governed by the geometry of the measurement
collection system (e.g. antenna array) and the (uncorrelated)
source correlation prior. We further established that SBL is
a correlation-aware technique and compared it with another
class of correlation-aware techniques. Both are able to identify
O(M2) sources given sparse linear array with M sensors, like
minimum-redundancy linear array [43], [58], [65] and nested
array. The noteworthy aspect about SBL is the underlying objec-
tive it uses, which is MLE. In the event that some of the sources
are correlated, the model misfit is characterized in terms of the
KL divergence between the distribution SBL assumes and the
true data distribution. We reparametrized the SBL cost function
to enable gridless support recovery when the sensors are placed
on uniform grid and some sensors may be switched off. We
provided an iterative algorithm based on linear MM to minimize
the cost function and to estimate the structured covariance matrix
of measurements. The DoAs can be recovered by using any
off-the-shelf root-finding technique such as root-MUSIC. In this
work, we also consider geometries when the sensors may be
placed off the grid, and extend the SBL procedure to include a
peak adjustment and grid refinement steps. Finally we compared

the proposed algorithms numerically with other state-of-the-art
algorithms from the literature and demonstrated the superior
performance showcased by the cost function motivated by first
principles, that is maximum likelihood estimation.

Several directions are open for future work. This includes,
for all sensors on grid case, developing faster methods to solve
the proposed ‘StructCovMLE’ optimization problem. For the
arbitrarily placed sensors’ case, we feel the grid refinement based
iterative SBL procedure is an important first step and opens up
many interesting avenues of inquiry. For dictionaries parameter-
ized by a few parameters, there is hope that discretization (grid)
may not be necessary upfront except as a practical computational
method as in Equation (23).

APPENDIX A
PROOF OF PROPOSITION 2

Proof: The ‘if’ part can be proved simply using contradiction
and follows by noting that if (Γ∗, λ∗) is not the global minimizer
of (5), then the solution for (3) can be further improved. We
now prove the ‘only if’ part. If ε < tr((ΦΓ∗ΦH + λ∗I)−1R̂y),
then (Γ∗, λ∗) is infeasible, and the assertion holds trivially. If
ε > tr((ΦΓ∗ΦH + λ∗I)−1R̂y), then (Γ∗, λ∗) lies in the feasible
region. We prove that the point (Γ∗, λ∗) can be further improved.
For any two matrices B,C / 0 such that B / C, the following
holds

tr
(
(B−C)−1R̂y

)
≥ tr

(
B−1R̂y

)
(26)

log detB > log det(B−C). (27)

Inserting B = ΦΓ∗ΦH + λ∗I and C = αI, for some α ∈
(0, λ∗) in the above ensures that the conditions B,C / 0 such
that B / C are satisfied. We choose α sufficiently small to
ensure that the constraint tr((B−C)−1R̂y) ≤ ε is satisfied and
consequently (Γ∗, λ∗ + α) is feasible. Such an α exists because
tr((B−C)−1R̂y) is a) continuous w.r.t.α in (0, λ∗) and b) right
continuous at α = 0 with tr(B−1R̂y) < ε as assumed. For such
an α, as evident from (27), (Γ∗, λ∗ + α) further improves the
solution, and thus (Γ∗, λ∗) does not globally minimize (5) if
ε > tr((ΦΓ∗ΦH + λ∗I)−1R̂y). This concludes the proof. !

APPENDIX B
PROOF OF THEOREM 1

Proof: The cost functions in (13) and (17) are identical,
except for the received signal covariance matrix model. The
optimization variables affect their cost only through the co-
variance matrix. Thus, the two problems are equivalent if the
effective matrix search domains, up to an additional ‘+λ̃I’
(λ̃ ≥ 0) term, are same. Let D1 denote the matrix search re-
gion spanned by T(K,θ,P) = ΦθPΦH

θ in (17), and D2 for
T(v) in (13), where the domain for the parameters are in-
dicated in the respective problems. To prove D1 ⊆ D2: Let
T(K ′,θ′,P′) ∈ D1 for some (K ′,θ′,P′), then the construc-
tion v′ = T−1(Φθ′,ULAP′ΦH

θ′,ULA)
6 ensures that Toep(v′) *

6Φθ′,ULA denotes the array manifold matrix for a ULA of size Mapt.
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0 and T(v′) = T(K ′,θ′,P′), i.e., T(K ′,θ′,P′) ∈ D2. This
concludes D1 ⊆ D2. To prove D2 ⊆ D1: Let T(v′′) ∈ D2

for some v′′, then we have Toep(v′′) * 0. We skip the case
when Toep(v′′) is low rank as it follows simply from unique
Vandermonde decomposition. If Toep(v′′) is full rank, then it
uniquely decomposes as Φθ,′′ULAP′′ΦH

θ,′′ULA + λ′′I, for some
(θ,′′ P,′′ λ′′ > 0), where the correspondingK ′′ < Mapt [4]. This
ensures that Φθ′′P′′ΦH

θ′′ + λ′′I = T(v′′), which are equal up to
the additional ‘+λ′′I’ term. This concludes thatD2 ⊆ D1. !

APPENDIX C
PROOF OF THEOREM 2

Proof: Similar to the proof for Theorem 1, we conclude
that the two problems in (13) and (18) are equivalent if the
effective matrix search domains, up to an additional ‘+λ̃I’
(λ̃ ≥ 0) term, are same. Let D1 denote the matrix search
region spanned by T(Φ,Γ) = ΦΓΦH in (18), and D2 for
T(v) in (13), where the domain for the parameters are in-
dicated in the respective problems. To prove D1 ⊆ D2: Let
T(Φ′,Γ′) ∈ D1 for some (Φ′,Γ′), then the construction v′ =
T−1(Φ′

ULAΓ
′Φ′H

ULA)
7 ensures that Toep(v′) * 0 and T(v′) =

T(Φ′,Γ′), i.e., T(Φ′,Γ′) ∈ D2. This concludes D1 ⊆ D2.
To prove D2 ⊆ D1: Let T(v′′) ∈ D2 for some v′′, then we
have Toep(v′′) * 0. Using Vandermonde decomposition we get
Toep(v′′) = Φθ,′′ULAP′′ΦH

θ,′′ULA for some (θ,′′ P′′ / 0) which
may not be unique. This decomposition leads to a valid dictio-
nary Φ′′ = Φθ′′ and diagonal source covariance matrix Γ′′ =
P′′. This concludes thatD2 ⊆ D1. !
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