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Abstract

Let f : S — B be a surface fibration of genus g > 2 over C. The semistable
reduction theorem asserts there is a finite base change 7 : B’ — B such that the
fibration S x g B’ — B’ admits a semistable model. An interesting invariant of f,
denoted by N(f), is the minimum of deg(w) for all such 7. In an early paper of
Xiao, he gives a uniform multiplicative upper bound N, for N(f) depending only
on the fibre genus g. However, it is not known whether Xiao’s bound is sharp or
not. In this paper, we give another uniform upper bound N, for N(f) when f
is hyperelliptic. Our N!; is optimal in the sense that for every g > 2 there is a
hyperelliptic fibration f of genus g so that N(f) = N, ;. In particular, Xiao’s upper
bound Ny is optimal when Ny, = N,. We show that this last equation N, = N,

g
holds for infinitely many g.

1 Introduction

We work over C throughout this paper. By a surface fibration f : S — B we mean a
flat proper morphism from a normal projective surface S to a smooth projective curve B
such that a general fibre of f is smooth and connected. We have the following well known

theorem.
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Theorem 1.1 (Semistable reduction theorem of curves, [1] or [6]). Assume the fibre genus
of [ is g > 2, then there is a finite morphism of smooth projective curves m : B' — B

such that the relative minimal model of f': S xg B" — B’ is semistable.

We call any such base change m : B — B in the above theorem a stabilizing base

change. The minimal degree of a stabilizing base change 7 is an interesting invariant of
f.
Definition 1.2 We define

N(f) := Min{ deg(w) | 7 : B' — B is stabilizing }.

We shall see in § 3.3 that N(f) is actually the G.C.D. of deg(r) for all stabilizing base
change 7. An interesting question associated is to figure out a uniform (multiplicative)

upper bound of N(f) in terms of g when f varies. In [10], Xiao gives such an upper
bound.

Theorem 1.3 ([10, Thm. 1]). For any g > 2 there is a constant N, such that N(f) | N,
for any surface fibration f : S — B of genus g.

The equivalence of the interpretation of [10, Thm. 1] there and here is explained in
§ 3.3. The explicit formula of N, (cf. [10, Thm. 2]) is

(1'1) Ng - H P,

prime p<2g+1

where p, is the largest integer such that
(1.2) 2g > phr — phr—L,

However, whether this uniform upper bound N, is optimal is not yet known. Xiao then

asked the following question in the same paper.

Question 1.4 ([10, pp 387, remark]) For any g > 2, is there a genus ¢ surface fibra-
tion f:S — B such that N(f) = N,7

Instead of considering all fibrations of genus g, in this paper we concentrate on the
upper bound of N(f) for a HYPERELLIPTIC fibration f.
We define

(1.3) N= 11 »~

prime p<2g+1

where v, is the largest integer such that

(1.4) 2g > p — 1.
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if p is odd and 1o = uo. It is clear that N; | N, and note that it is possible N; = N, for
some g > 2.

The main result of the paper is the following.

Theorem 1.5 (Main Theorem). (7). We have N(f) | N; for any hyperelliptic surface
fibration f : S — B of fibre genus g > 2.

(2). For each g > 2, there exists a hyperelliptic surface fibration h : X — P! of genus
g such that N(h) = Ng. In particular, the upper bound N, is optimal.

The first statement of this theorem is a direct consequence of Proposition 3.9 and
Theorem 4.4 below and the second statement of this theorem follows immediately from
Theorem 5.1, Example 4.5 and Example 4.6 (cf. Remark 5.2).

As a direct consequence of Theorem 1.5, we obtain an affirmative answer to Ques-
tion 1.4 for those g such that N, = N,. In Section 6, we prove that such g are in fact

abundant.
Theorem 1.6. There are infinitely many integers g > 2 such that Ny = Nj.

This theorem is proved using purely number theoretic methods and seems of indepen-
dent interest. We actually prove that the set of such g has a positive lower logarithmic

density.

2 Preliminaries

We shall use the following conventions in this paper:

e ¢(n),n € N, is Euler’s totient function, namely

prime p|n

o A := {t € C||t| < 1} is the unit disc, we always denote by ¢ the canonical parameter
of A and for a proper fibration f : 2" — A, the central fibre means the fibre f~1(0)

as a divisor.

2.1 Canonical resolution of flat double covers

We recall the theory of flat doubles, One can also consult [5, § 0] and [3, Ch.IIL,§ 6-7].
For simplicity, we will only mention the flat double cover theory for schemes and note
that parallel results also holds for complex manifolds (cf. [3, Ch.III,§ 6-7]).
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Let ¢ be a connected regular noetherian scheme of dimension 2 over C. A flat double
cover of % is a finite flat morphism p : & — % of degree 2. It is well known that such u
is given by data (£, s), where £ is an invertible sheaf on % and s € H*(#/, £?). In fact,
given data (L, s), we can first endow an Og-algebra structure on the locally free Og-sheaf
A= Oy @ L' by defining the multiplication map via £~ ® £ = £72 3 Oy. Then
w: X — % is taken as Spec(A) — #. When s # 0, the divisor B := div(s) C # is

called the branch divisor associated to this flat double cover.
Proposition 2.1 ([5, Chap. 0]). If # is regular, then:

(i) Z is reduced if and only if s # 0;

(i) when s # 0, Z is reqular if and only if B is reqular.

In the following, we consider the case where 2" is normal (we call such flat double
cover as a normal flat double cover in this paper). By Proposition 2.1, to resolve the
singularities of 2", it suffices to resolve the singularity of the branch divisor B. We
then recall the following so-called canonical resolution of singularity of 2 for normal flat
double. We start by taking puo = p: Zo = Z — %, := % . Blowing up a singular point
1 € By by p1 1 %1 — %, the normalisation pu; : 27 — % of %] in the fractional field
of 2 is again a flat double with branch divisor B; such that piBy = By + 2l; - F; for
a positive integer [;. Here FE is the exceptional divisor for p;. Continue this process by
keeping blowing up a singularity y; of the branch divisor B;_; of each p; 1 : Z;1 — %;_1,
we shall finally stop at some u,, : %2, — %, such that its branch divisor B, is regular. In
particular, 2, is regular by Proposition 2.1.

L Ty — = 2 —— 2
Yy e Y T Y Y

p

By abuse of language, starting from a normal flat double cover pu : 2" — %, we call the
map p : %, — % the canonical resolution of y and 2, the birational model obtained

from the canonical resolution. Note by construction, £, is regular.

2.2 Refined canonical resolution of flat double covers in fibration

Let us consider a special case of normal flat double cover y : Z° — % where % =
P! x A carrying a natural fibration onto A. After the canonical resolution p : %, — %/,
the branch divisor B,, C %, is regular. But B, can fail to perform well with respect to the
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fibration % — A. For example, let F}, be the central fibre of %;, — A, the divisor B,,+ F),
may not have simple normal crossings. As a result, some further blowing-ups are needed.
By a sequence of suitable further blowing-ups after the canonical resolution, we can find
some model p' : %, — % m > n so the divisor B,, + F,, has normal crossings and B,,
itself is regular. Here B,,, and F}, are the branch divisor and the central fibre of %;, — A
associated. The map p' : %, — % is then called the refined canonical resolution. And
we call the flat double model %, the birational model associated to the refined canonical

resolution.

Remark 2.2 In a particular case, where the horizontal part Bj, of the branch divisor B
is consisting of sections, then the canonical resolution %, is already the refined canon-
ical resolution. This follows from the fact the central fibre of %; has normal crossings
automatically since it has genus zero and each section of the fibration must intersect the

central fibre transversely.

Proposition 2.3. The birational model Z,, associated to the refined canonical resolution

has a normal crossing central fibre over A.

PRrROOF. Now take an arbitrary point z on the central fibre of 2, and write y =
tm () € Y.

e If y is not contained in the branch locus, then pu,, : Z,, — %, is locally étale at x
and therefore the central fibre of Z,, has normal crossing at = as %}, is so at y by

assumption.

e If y is contained in the horizontal branch locus, then there is only one irreducible
component F in the central fibre of %, passing through y. By assumption FE is
not contained in the branch locus. Then locally, we can find local parameters u, v
at y such that v = 0,v = 0 gives the divisor E' and the horizontal branch divisor
and t = u® for some s, recall here t is the canonical parameter of the base A. As a

result, the local functions defining x and the fibrations are

22 =

t=u’.
As a result, the local parameter of x can be chosen as u, z and t = u®. The central
fibre of %, has normal crossing at x.

e [f y is contained in a vertical branch irreducible divisor E}.

— If y is not the intersection of E; with another vertical irreducible component,

we can choose a local parameter u at y such that v = 0 gives £} and t = u*®
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for some s. Then the local functions defining x and the fibration are

22 =
t=u’.
As a result, the central fibre of 2, has normal crossing at x.
— If y is the intersection of E; with another vertical irreducible component Fs.
Then Es is not contained in the branch locus and Ey, Fs intersect transversely.

We can then choose a local parameter u,v at y such that u = 0,v = 0 gives

E1, E5 respectively and t = u®v” for some s, € N,. Then the local functions

22 =
t =u’v".

As a result, the local parameter of z can be chosen as z,v and t = 2%%v". So

defining x and the fibrations are

the central fibre of Z;, has normal crossing at x.

3 The Picard-Lefschetz Monodromy and Xiao’s up-
per bound

3.1 The Picard-Lefschetz monodromy and semistable reduction

By a local holomorphic surface fibration we mean a flat projective holomorphic map
p: X — A from a 2-dimensional irreducible and reduced complex analytic variety such
that ¢ is smooth over A* = A\{0}.

X* = xXpg NN T

N |

A*C A
By restricting to A*, the smooth fibration 2™* — A* is a fibre bundle of curves of genus

g and thus provides a monodromy representation
V(A% ) = GL(H(F,, 7)) ~ GLyy(Z)

for a fixed base point v € A*. This representation is known as the Picard-Lefschetz
monodromy representation. As m;(A*,7) is canonically identified with the cyclic group
Z, this representation is given by a matrix M(p) € GLyy(Z) unique up to conjugate:
M (¢p) is the image of the canonical generator of 7 (A*, ) under W. We also call this
M (¢) the Picard-Lefschetz monodromy matrix at 0 € A.
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Theorem 3.1 ([8, Appendix| & [7] and [6]). If the fibre genus of f is at least 2, then

(i) the matriz M(p) is quasi-unipotent, namely M (o)™ is a unipotent matriz for some
n e N+;

(i) the fibration 2™ — A* admits at worst semistable reduction at 0 € A if and only if
M () is unipotent.

In other words, the eigenvalues of M (p) are all roots of unity and f admits semi-stable

reduction at 0 if and only if the eigenvalues of M (yp) are all equal to 1.

Definition 3.2 We define §(p) := min{n € N | M (¢)" is unipotent}. We shall call this

number the local stabilizing index (L.s.i. for short) for .

Remark 3.3 By definition, this number () is a birational invariant: it depends only

on f*= flar : 7 — A*.

The name l.s.i. makes sense for the following reason. For a base change m, : A, =
z—2"

A —= A the associated monodromy matrix M (p,) of ¢, : X xa A, — A, is nothing
but M (p,) = M(p)". By Theorem 3.1, we immediately have the following.

Corollary 3.4. The base change m, is stabilizing if and only if 5(p) | n.

3.2 A characterization of the constant N,

Now for the Picard-Lefschetz monodromy matrix M () associated to a local fibration
o : X = A let &, -, &, be all the eigenvalues of M(y). Then by Definition 3.2, we
have 0(¢) = Min{n € N| &' = 1,Vi}. It then remains to study the eigenvalue of M (yp).

Lemma 3.5. Let a root of unity £ € p10(C) be an eigenvalue of a matriz M € GLy,(Z)
and let n be the order of £ € ps(C), then e(n) < 2g.

PrROOF. Note that M has integral coefficients, so any other primitive root of unity of
the same order n is also an eigenvalue of M. As there are exactly e(n) such primitive

roots of unity, we have e(n) < 2g. O

Lemma 3.6. Xiao’s constant N, (cf. (1.1) & (1.2)) is the least common multiple of all
positive integer n such that e(n) < 2g.

PROOF. Let N(g) be the least common multiple of all positive integer n such that
e(n) < 2g. We shall write N(g) = [] p'» . For a fixed p we need to show that I, = yu,

prime p
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(cf. (1.2)). By construction, there is some n € N, such that p» | n and e(n) < 2g. By

definition, we have

1
29 > e(n) > e(p') = po(1 — =) = plv — plr~!
p

So p, > 1, by (1.2). Conversely, we have e(p#r) = p#r — pt»~t < 2g and thus I, > p,. We

are done. []
As a consequence of Lemma 3.5 and Lemma 3.6, we have the next corollary.

Corollary 3.7. For any local holomorphic fibration ¢ : 2 — A of fibre genus g > 2, we
have §(p) | N,.

In [10], Xiao gives another proof of this corollary by a careful study of the configuration
the central fibres. Though our proof is simpler, his result is more powerful in the sense

that for a specific ¢, he can tell the precise value of d(y) as the following proposition.

Proposition 3.8 ([10, Prop. 1]). If the central fibre Fy of ¢ : & — A has simple normal
crossings, then the l.s.i. §(yp) is the least common multiple of the multiplicities of principal
components (cf. [10, pp. 383]) of Fy .

3.3 The value of N(f)

Now let f : S — C be a fibration of fibre genus g > 2 from a surface S onto a curve
C'. We have defined the constant N(f) as the minimal degree of a stabilizing base change
(cf. Definition 1.2). This constant is actually contributed by all local factors explained
below. Let by,--- ,bs be all the images of non-semistable singular fibres of f. At each b;,
we can choose a small open disc A C C containing b; as the origin and therefore obtain
a local fibration ¢; : Z; — A by base change for each i. As in § 3.1, we have the local
stabilizing index d(y;) for each ¢;. Let m: C" — C be a finite covering of curves and ¥/
be a point lying above b;. Then by Corollary 3.4, X xc C' — ' admits a semistable
reduction at b} if and only if the local multiplicity of = at b} is divided by §(p;). As a
consequence, if 7 : C" — C' is stabilizing, then 6(¢p;)| deg(m). Let

9 := least common multiple of all 6(¢;),

then ¢ | deg(m). Conversely, we can easily construct a cyclic cover 7y : Cf, — C' of order ¢
totally ramified at by, --- ,bs (and possibly other points). Such a morphism is stabilizing

as we have analysed and hence we have the following.

Proposition 3.9. The number N(f) is the least common multiple of all 6(p;). Moreover
N(f) | deg(m) for all stabilizing base change w: C" — C.
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By Corollary 3.7 and the above proposition, we have the next corollary.
Corollary 3.10 (Xiao’s bound). We have N(f) | N,.

Now let us return to Question 1.4. From the above explanation of N(f), Question 1.4

is difficult in two parts.

(i) It is not known whether there are local holomorphic fibrations ¢; : Z; — A,i =
1,---,s, such that the least common multiple of d(¢;) is equal to Nj.

(ii) It is not known how to glue local holomorphic fibrations ¢; : Z; — Aji=1,--- s,
into a single global surface fibration f : S — B without losing l.s.i..

In the next section, we shall overcome these two difficulties for hyperelliptic fibrations.

4 Upper bound for hyperelliptic fibrations

We study the optimal upper bound of N(f) for hyperelliptic fibrations.

4.1 Upper bound for l.s.i. of hyperelliptic fibrations

Let ¢ : & — A be a hyperelliptic local holomorphic surface fibration of genus g.
Besides the Picard-Lefschetz monodromy, we have another monodromy coming from the
Weierstrass multisection. In fact, denote by o the hyperelliptic involution ded on 2™ over
A*. Then we obtain a flat double cover: 7 : 2™* — 27* /o ~ P! x A*. The branch divisor
W* C P! x A* is a horizontal divisor of degree 2¢g + 2 finite étale over the base A*. So a
homomorphism & : 71 (A*,y) — Say42 is given to characterize this étale cover W* — A*.
We shall call this homomorphism the Weierstrass monodromy homomorphism. Again, as
m (A*,y) > Z canonically, we call the image M'(y) € Sy, of the canonical generator of

m1(A*,v) under @ the Weierstrass monodromy permutation.

Lemma 4.1. If the Weierstrass monodromy homomorphism ® is trivial, then 6(p) = 1

or 2.

PROOF. Since the invariant () is a birational invariant on 2", we may assume that
pw: 2 — P! x Ais a normal flat double cover(cf. § 2.1). Denote by B C P! x A the
associated branch divisor. Then B* := B xa A* is isomorphic to the Weierstrass multi-
section W*, which by assumption consists of 2g + 2 different sections (of A*) since the
Weierstrass monodromy is trivial. To resolve the singularity of 2, we run the canonical
resolution of the flat double u (cf. § 2.1). Denote by p : P — P! x A the canonical

resolution and 2" the birational model obtained from the canonical resolution (cf. § 2.1).
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Denote by ¢ : Z7 — A the associated fibration. By Remark 2.2 and Proposition 2.3,
Z" has a normal crossing central fibre. A key observation in this case is that since each
irreducible component in B is itself regular, the central fibre of the canonical resolution
model v : P — A is reduced. Namely, in each blowing-up step of the canonical resolu-
tion, the center is always a smooth point with respect to the fibration to A. Then we
immediately proved that 6(¢) = 6(¢') = 1 or 2 by Proposition 3.8 since the irreducible

components of the central fibre of 2~ can have multiplicity at most 2 times that of P. O
As a result, we have the next corollary.
Corollary 4.2. We have 6(p) | 2 - ord(M'(¢p)).

PROOF. Let n :=ord(M’'(p)), then the Weierstrass monodromy
M'(pn) = M'(p)" =1d € Szgs

for v, : Z xa A, = A,, here as before m, : A, := A — At — t". By Lemma 4.1,

we have 0(p,) = 1 or 2. As a result, by construction we have §(¢)|n - 6(¢,) and hence
6() | 2- ord(M'(p)). O

In fact, we have a partial strengthening of the above corollary:

Proposition 4.3. Suppose the hyperelliptic fibration ¢ : X — A admits potentially good
reduction, then ord(M'()) | 6(¢p).

PROOF. Let n := §(p). Then by assumption, ¢, : Z xa A, — A, admits a proper
birational model ¢, : Z,, — A, which is smooth. As a result, the Weierstrass monodromy

of ¢,,, which is nothing but M", is trivial. We are done. m

Theorem 4.4. We have 6(¢) | N, for any hyperelliptic local fibration ¢ : 2" — A of
genus g > 2.

PROOF. We need to show for each p, the largest integer I, such that p'» | 6(p) is
bounded above by v, (cf. (1.4)). If p is odd, we see that the largest I, such that P |
ord(M'(¢)) is bounded above by v, since M'(p) € Syy40. Corollary 4.2 then asserts that
[, > 1, and we are done for odd primes. For prime 2, since by definition v, = i, and we

already proved that 6(¢) | N, = 2#2 - an odd number, we are done. ]

This theorem then implies Theorem 1.5(1) by Proposition 3.9.
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4.2 Example of local hyperelliptic fibrations

For any fixed ¢ > 2 and prime p < 2g + 1, we present examples of hyperelliptic
fibrations ¢, : 2, — A with p*» | §(¢,).

Example 4.5 (Odd prime case). Fizing any odd prime p < 2g, we consider the local
hyperelliptic fibration ¢, : Z, = A given by the following equation:

v = (2 ) )~ ag) o (2 @) (2~ aaggnia)

where r is such that p*» = 2r + 1, t is the parameter of A and the numbers a; €
C\A,i=1,---.,2(g —r)+ 1, are all different. Then p*» | 6(pp).

PROOF. We see that the Weierstrass monodromy of ¢, is presented by a cyclic per-
mutation M'(p,) € Sag42 of order p» = 2r + 1. As a result, we have n := §(p,) | 4r + 2
by Corollary 4.2. We claim that

e the relative minimal model of Z,, XA Ao — Ay is either stable or smooth,
where
. _ 4r+4-2
Tars2  Dappo = A = At =t

is the cyclic cover of degree 4r + 2.

Once the claim is true, we have p*» = 2r+1 | 6(y,) if the relative minimal model is smooth
by Proposition 4.3. On the other hand, when ¢, admits potentially bad reduction, then
it is well known that relatively minimal model of 2, xa A,, is semi-stable but not stable
for all m divided by n but is not equal to n. This implies n = 4r 4+ 2 by our claim. So it
remains to prove our claim.

By construction the hyperelliptic defining equation of 2, XA Agryo = Agryo is:

2r
= (Lo = ) (o =)o =) (5 = ). o = (5l

).

With this hyperelliptic equation, we see that 2, xa Ay4o admits a flat double cover
Vi ZpXa Dyyo = Py = P& X Aygpyo, in which z is the standard affine coordinate of
Al C PL. To obtain the relative minimal model, we run the canonical resolution of the
hyperelliptic double covering (cf. § 2.1). We show the process of the canonical resolution

in the first row of Figure 1 below.

e In the first picture, we draw the configuration of the branch divisor and the central
fibre on Py = IP’}C X Ayrio. The bend lines are the branch divisors defined by
r — fgrﬂtz,j =0,---,2r and the horizontal ones below are defined by x — a;,7 =
1,--+,2(g —r) + 1, the central vertical dotted line is the central fibre of F.
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e Blowing up the unique intersection point )y in the first picture we obtain P, — F.
The configuration of branch divisors on P is shown in the second picture. Note
as the branch divisors has multiplicity 2r + 1 at )y, the exceptional divisor E is

contained in the branch locus.

e Then blowing up the unique multiple point ); in the second picture we obtain
P, — P;. The configuration of branch divisors on P; is shown in the third picture.

This time, the exceptional divisor F; is not contained in the branch locus.

Then in the second row of Figure 1, we present the configuration of the central fibre of

the canonical resolution.

e In middle we draw the configuration of the central fibre of the birational model
obtained from the canonical resolution, that is the flat double cover of P,. There
are three components of the central fibre: A, B, C are preimages of E, F and E, re-
spectively. The multiplicities of A, B, C' in the fibre are 2, 1, 1 as only E is contained
in the branch locus. Following [2, Prpostion 1.8], we have 44% = 9F° = —4. Then

note A — E is birational, A must be isomorphic to P and hence is an (—1)-curve.

e In the right picture, we contract the (—1)-curve A. As A has multiplicity 2 in the

fibre, the rest two components intersect transversely.

e In case g # r, we see from the last picture, the associated relatively minimal model
is stable. On the other hand, if ¢ = 7, then B’ is a (—1)-curve. A further contraction

show that the relative minimal model is in fact smooth.

As a result, the minimal model of Z;, XA Ayryo — Ayyyo is either stable (r < g) or
smooth (r = g). We are done. O
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d | NS | L (-2)

| | %\ E | . B

'F F (-1 Fr(=1) Ei'(-1)
configuration on Py configuration on Py configuration on P»

C/ genus=r

Central fibre ‘ ‘ (~1) contract (—1) curve A ><
on the double cover A

B/ genus=g —

Figure 1

Example 4.6 (Prime 2 case). Now, we consider the local hyperelliptic fibration o : %5 —
A given by the following equation:

v = 2@ —t)(r —a)(r —az) - (= a;) - (7 = asgpy1)

where k = 2! is the largest 2-power that is smaller or equal to g, t is the parameter of A
and a; € C\A,i=1,...,2(g — k) + 1, are all different. Then §(p2) = 4k.

PROOF. By construction, the Weierstrass monodromy of ¢ is represented by a cyclic
permutation M’'(p3) € Sagto of order 2k. As a result, we have §(p9) | 4k. It suffices to
show that 25 does not admit a semi-stable reduction after the cyclic cover mgy : Agp =
A — At — t*. In fact after this cyclic base change of degree 2k, the hyperelliptic

equation becomes:

2k—
H x—§2kt (x—ay) - (x—a;)-- (x—az(g k+1) Eop = exp(ﬁ\{{__l).

1=0

With this hyperelliptic equation, there defines a flat double cover 25 XA Aoy — Py :=

P! x Ayi,. The canonical resolution of this flat double cover is given in Figure 2 below.
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‘ ‘ . E1 By Eopn
| | |
P 1 [ D 0 | (2% -2)
| - el fewn E o . F
: : : | | |
‘ ‘ | L l
+ blowing up Qg : blowing up Q; %\77\ e
_— < | | |
! ! ! (=1)(-1) (=1)
| | |
| | |
| | |
| | |
| | |
| | |
F F(-1 F (-1
configuration on Py configuration on P; configuration on Ps
\ (=k—1)
2A
Cnetral fibre on
the double cover G C2it1
(=2)(-2) (=2)

Figure 2

Let us briefly explain this Figure 2.

e The first row is to show the configuration of the branch divisor and the central fibre.
In the first picture, the family of slashes are those branch divisors defined by x or
r— fgkt,j =0,1,---,2k —1. The rest part is similar to Figure 1, except that in the

second step, we have to blow up all the intersection points Q;,2 =1,--- ,2k 4+ 1.

In the second picture, we show the configuration of the central fibre of the birational
model obtained from the canonical resolution, that is the model obtained from the
flat double cover of P,. We see that all the components of the central fibre of this
model but A which lies above E has multiplicity 1. As a result, the components C;
above Ej,i = 1,---,2k + 1, all has self-intersection number 2 - (E?) = —2 and B
has even self intersection number B? = —2A - B and thus there is no (—1)-curve on
the fibre. So this model is already minimal, but as A has multiplicity 2, it is not

semi-stable.

We are done. 0

Remark 4.7 When the prime p ranges over all primes in [2,2g + 1], the 6(¢,) given in

Example 4.5 and Example 4.6 has a least common multiple equal to Ny.
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5 Global hyperelliptic fibration with large N(f)

We shall prove the following theorem in this section.

Theorem 5.1 (Gluing Theorem). Suppose ¢; : Z; — Aji = 1,--- s are finitely many
hyperelliptic local holomorphic surface fibrations of fibre genus g > 2, then there is a
hyperelliptic surface fibration f : S — P{ of genus g such that N(f) is divided by §(p;)

for each 1.

Remark 5.2 This theorem along Remark 4.7 proves Theorem 1.5(2).

5.1 Strictly hyperelliptic local fibrations

When studying hyperelliptic surface fibrations, we can always reduce to the study of
flat double cover of a P! bundle.

Definition 5.3 A local holomorphic surface fibration ¢ : Z° — A of genus g > 2 is
called strictly hyperelliptic if there is a normal flat double cover 7 : 2~ — P! x A relative
to A. A strictly hyperelliptic pair is the pair of the form (p, ) as above.

Note that

(i) every hyperelliptic local fibration ¢ : 2~ — A is birational to a strict hyperelliptic

local fibration. In particular their 1.s.i. are the same (cf. Remark 3.3);

(i) if (p: & — A, : 2 — P! x A) is a strictly hyperelliptic pair, we denote by
B(p,m) C P! x A the branch divisor of . This divisor can be uniquely written as

‘%<907 7T) = ‘%/(va 7T) + L(QO, 7T) ’ FO

with %'(¢, m) horizontal, t(p, ) = 0 or 1 and Fy is the central P! of P! x A. The
data %'(p, ) C P! x A induces a holomorphic map (¢, 7)* : A — Hilb;ffr2 to the
Hilbert scheme of points of degree 2g + 2 on P!.

Definition 5.4 Two strictly hyperelliptic pairs (¢, 7) and (¢, 7) are called equivalent

* *

up to level n if (o, 7) = (¢, 7) and (p,m)* is equivalent to (¢, 7)* up to n-th formal

neighbourhood at the origin. Namely,
(p,m)r : Spec(Cl[t]]/t") — A iy Hilb;gJr2
coincides with (¢, 7)* defined similarly. Equivalently, we have
B (0, )1 cspecefi)im) = B (9 7)1 xcspee(cia/in):

Two strictly hyperelliptic local fibrations ¢, ¢ are called equivalent up to level n if

there are strict hyperelliptic pairs (¢, 7) and (¢, 7) equivalent up to level n.
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Theorem 5.5. For any genus g > 2 strictly hyperelliptic local holomorphic surface fibra-
tion p : X — A, there is an integer n such that we have an equality of l.s.i. §(¢) = §(9)
for any other strictly hyperelliptic local holomorphic surface fibration ¢ : % — A equiva-

lent to ¢ up to level n.

PROOF. Fix an arbitrary strictly hyperelliptic pair (¢, 7) and take o : 7 — P! x A
to be the refined canonical resolution of the flat double cover 7(cf. § 2.2). Namely, we

can write

B, m) = %’70(@, )+ V1 + 2V,

where éo(go, ) is the strict transform of #'(p, ), V;,i = 1,2, are vertical effective divisors
and Zo(p, ) + F' has normal crossings, here F” is the central fibre of 7 — A. Let nq
be the largest multiplicity of irreducible components in a*%(p, 7) and n = max{ng, 2}.
We shall show that n is the desired one.

Let (¢, 7) be another strictly hyperelliptic pair equivalent to (¢, 7) up to level n.
Then by construction, for each irreducible central vertical component D of .7 — A its
coefficients in both a*#(p, m) and a* % (¢, ) are the same. In fact, for each exceptional
irreducible component D C .7, let y € P! x A be its image. Denote by fi, fo the local
functions defining %' (¢, ) and B'(¢p, T) at y respectively. Then up to a suitable choice,
we can assume f; — fo = t" - h for some h € O,. Denote by vp the associated normalized
valuation of D, then by construction we have vp(f;) < n and vp(t) > 1. As a result, we
have vp(fa) = vp(f1) and we are done for this claim.

So we have

O B(),7) = Bo(d,T) + Vi + 2V

In particular, by restricting both a*%(p, 7) and a*%(¢, 7) to the n-th formal neighbour-
hood of the central fibre of .7 — A, we obtain the same divisor %, = «*%B(p, )|z, =
a*B($,7)| 7. on T, := T x xSpec(C[[t] /t"). As a consequence, the divisor ZBo(e, )+ F’
also has normal crossings since n > 2.

It remains to show that we can work out the l.s.i. of both ¢ and ¢ from %,,. Denote
by ' X7 — T (resp. 7 : ¥ — ) the associated birational model obtained by
this refined resolution (cf. § 2.2). Then the local fibration ¢’ : Z7 — 7 — A (resp.
¢ %' — T — A)is birational to ¢ and hence it suffices to work out the l.s.i. for ¢’ (resp.
¢’). Note both central fibres of 2", %" have simple normal crossings by Proposition 2.3.
And since their branch divisors on .7 are equivalent up to level n > 2, Proposition 3.8
applies to give §(p) = (). O
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5.2 Proof of Theorem 5.1

Given finitely many hyperelliptic local surface fibrations ¢; : Z; — A. By replacing
each Z; by a suitable birational model (so the l.s.i. ¢§ is preserved), we can assume all
there fibrations are strictly hyperelliptic. Then we equip each ¢; with an associated flat
double cover 7; : Z; — P! x A. Denote by 0; := (¢;,m)* : A — HilbIQFﬁJr2 the associated
morphism induced by the horizontal branch divisor in ;.

We first note that HilbIZPf{Jr2 is actually isomorphic to a projective space ]P>(2Cg+2. We

2942 2942
p = P

AP C P29+2 (if necessary, shrinking ¢;). Fixing another point Q € AXY** C Hilb;ﬁ”r2
whose associated degree 2g + 2 point in P! is smooth, denote by 6y : A — A(ch+2 the

fix one such isomorphism Hilb so that all images of #; are contained in

constant map mapping all points to Q.
Fixing any s + 1 distinct points &y, &1, - -+ , & € C, we can then approximate the along
s+ 1maps 6; : A — AégH at their respective points &; simultaneously.

Proposition 5.6. For any n, there is a polynomial map

Hn - C— A(2Cg+2 CA (.fl()\)a o af2g+2<)‘>)afi € C[ﬂ

such that the associated maps A a o AFT2 s t + & = pa(t + &) approvimates 0;

up to to level n.

Proor. Forany j =1,---,2g + 2, we write h;; for the pull back of the j-th coordinate
function of AZ** by 6;. Then it suffices to find a polynomial f;(t) € C[t] such that
fi(t = &) — hi;(t) vanishes at 0 € C up to order at least n. The following lemma asserts
this fact. O

Lemma 5.7. For s + 1 distinct points &,&1, -+ ,& € C, s+ 1 arbitrary holomorphic
functions ho(t), -+, hs(t) on A and any positive integer n € N, there is a polynomial
f € C[t] such that f(t — &) — hi(t) has a zero of order at least n at the origin.

PrOOF. It is an easy exercise of interpolation. O

Proof of Theorem 5.1. Take n > 0 and let p,, : C — A(zcg“ be as above. It then extends

to a holomorphic map i, : P& — Hilb;ﬂ”. As a result, it gives a horizontal divisor

B=U X i+ Pt C P! x PL. Here U is the universal family of degree 2g + 2 points.
P "M

U P! x Hilb2{ ™
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We then construct a flat double cover 7 : S — P! x P{ with branch divisor % plus fibres
P! x & for those 7 such that ¢(¢;, m;) = 1 and plus another fibre P! x ¢ for a general £ if
the previous divisor is not an even divisor. Then via the second projection, we obtain a
fibration f: S = P! x PL 2 PL. By construction, we have:

e f has a connected smooth fibre over &, and hence all general fibres are connected

and smooth;

e for each i, the inclusion v; : A B C P}, gives a fibration ¢; : % := S xpé,viA — A.
We have §(¢;) = d(¢;) by our construction and Theorem 5.5.

So we are done by Proposition 3.9 and Corollary 3.7. O

6 An equidistribution theorem and the proof of The-

orem 1.6

We call a natural number number p-leading if the leftmost digit in its base p expansion
is p— 1. Thus, m is p-leading precisely when p* — p¥=! < m < p* for some positive integer
k. Tt is straightforward to check, by comparing (1.3) and (1.6), that Theorem 1.6 is
equivalent to the following proposition (where m plays the role of 2g + 1).

Proposition 6.1. There are infinitely many odd natural numbers m that are not p-leading
for any prime p > 3.

For the proof of Proposition 6.1, it is convenient to introduce the notion of logarithmic

density. If S is a set of natural numbers, by the logarithmic density of S we mean the

lim ZnSN,’nES 1/n
N—o0 ZnSN 1/n ’
if the limit exists. The upper and lower logarithmic densities are defined similarly, but

value of the limit

with lim sup and lim inf replacing lim, respectively. Since the difference

1
Z — —log N is a bounded function of N,
n

n<N

in all of these definitions the denominator ) _. 1/n can be replaced with log N without
any change in meaning. This explains the term “logarithmic density.”

Let {x,} be a sequence of a points in T¢ := R?/Z. We say {,} is logarithmically
equidistributed if

(6.1) lim Znzw @)/ _

N—o0 ZnSNl/n - Td

f(z)dz.
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for every Riemann integrable function f on T¢. Note that if f is the characteristic function
of a subset S of T?, then the left-hand side of (6.1) is precisely the logarithmic density of
those n for which z,, € S.

We require the following logarithmic variant of the well-known Weyl criterion for

equidistribution mod 1. For real numbers ¢, we use E(t) to denote exp(2mit).
Weyl!’s criterion for logarithmic equidistribution. Let {z,} be a sequence of points
in T¢. Then {x,} is logarithmically equidistributed if and only if

1im =
N—o00 ZnﬁN 1/n

for each nonzero k € Z°.

PROOF. The proof is nearly identical to that of the usual Weyl criterion (as given
in detail in Chapter 6 of [9], for example) and so we content ourselves with a sketch.
The “only if” half is immediate, taking f(z) = E(k - ) in our definition of logarithmic
equidistribution. So we need only discuss the “if” direction.

By assumption, the relation (6.1) holds for the functions E(k - ) when k # 0; it
also holds trivially when k& = 0. Since every continuous function on T¢ can be uniformly
approximated by a finite linear combination of the functions E(k - x) (see, for instance,
Theorem 6.13 of [9]), we easily deduce that (6.1) holds for all continuous functions f.

It remains to prove (6.1) for the wider class of Riemann integrable functions. If f is
an arbitrary Riemann integrable function, then for every ¢ > 0 one can find step functions
f~and fwith f~ < f < ffand [L(ff(2) — f~(2))de < e. Exploiting linearity, this
reduces the proof of (6.1) for integrable f to the proof of (6.1) for characteristic functions
of intervals x;. This in turn is easily reduced to the continuous case, established above:

We use that for any interval I of T, and any € > 0, there are continuous functions x;, x;
with X7 < x < x7 and [r.(x7 () — x7 (2)) dz <. O

The following result seems perhaps of independent interest (for instance, in the study

of Benford’s law).

Theorem 6.2. Suppose g1,g2 > 2 are integers for which log g, and log g, are linearly
independent over Q. Let q,a be integers with ¢ > 1 and 0 < a < q. The sequence of
ordered pairs (log(qn + a)/log g1, log(qn + a)/log g2), reduced mod Z?, is equidistributed
in T2.

PROOF. By our version of Weyl’s criterion, it is enough to show that if (0,0) #
(ki, ko) € Z?, then

log(qn—i-a) + k’ log(qn+a))
. log g1 log g2 _
(6.2) ]\}l—r}loo log N Z -

n<N
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For each natural number n, we can write

i log(qn + a) Lk log(gn +a) i logn ks logn

= + + K+ €e(n
log g1 > log g logg = loggs (),
where
1 1 log(1 + = log(1 + =
K=k oed ko qu, and e(n) =k ( 4 ) ko ( 4 )
log g1 log go log g1 log go

Notice that |e(n)| < C/n, where C' = |ki|/log g1 + |k2|/1og go. Since |E(t)| = 1 for all ¢,
while [E(t) — 1] = | [JE/(t) dt| < 2lt], it follows that

log(gn+a) log(gn+a) logn logn
E(kl log g1 + ko log g2 ) _E(K>E(k110gg1 +k210g92) < 2nC

n n n2 -’

As D 1/n% < oo, we deduce that to prove (6.2), it is enough to show that

logn logn
+ ko )
. 10gg1 2log g
(6:3) A logN Z =0

n<N

logn logn
E(k1 fog gy th2 tog gy)

n

Continuing, observe that = n"~1 where n = 27 (k;/log g1+k2/ log g2),
and that that n # 0 since loggi,loggs are Q-linearly independent. By the Euler—

Maclaurin summation formula,

Z n' = / "t dx + 5(]\7”7_1 +1)+ / (in — Da"2(z — |z] — 5) dx.
n<N 1

We now show that each of the three right-hand summands is bounded independently of
N, from which (6.3) follows immediately. We have

N
. 1 - 2
/ o1 da| = .—(N“?—l)’ <=
1 ) bl
1 mn—1
§(N” +1)| <1,
and
N . 1 N 1
/ (in — V2" 2(z — |z] — 1/2) da g§|m—1|/ e < glin-1. O
1 1

Corollary 6.3. The set of n for which 2n + 1 is neither 3-leading nor 5-leading has
log2  log4

logarithmic density Tos3 * los5 "
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ProOOF. Observe that n is p-leading in base p precisely when the fractional part of
logn/logp belongs to the interval [log(p — 1)/logp,1). To deduce Corollary 6.3 from
Theorem 6.2, we let ¢ = 2, a = 1, g1 = 3, go = 5, and we let f be the characteristic
function of [0,log2/log3) x [0,log4/log5) (mod Z?). Note that log3 and log5 are cer-
tainly linearly independent over Q: Otherwise, after clearing denominators, we would find

positive integers m,n with mlog3 — nlogb = 0; but then 3" = 5", which is absurd. [

Proof of Proposition 6.1. Let S be the set of n for which 2n + 1 is p-leading for some
prime p > 5. We will argue that S has upper logarithmic density smaller than 0.52. Since

log2 log4

- =0.543...
log3 logh 0543,

we deduce from Corollary 6.3 that the set of n for which 2n 4 1 is not p-leading for any
p > 3 has lower logarithmic density larger than 0.54 — 0.52 = 0.02. As a set of positive
lower logarithmic density is necessarily infinite, we obtain Proposition 6.1.

If 2n + 1 is p-leading, with p odd, then p*~!(p — 1) < 2n + 1 < p* for some positive

integer k. Given p and k, there are £ (pF~'—1) < $p*~!

integers n satisfying this inequality,
and each of these n has size at least %pk_l(p — 1). Hence, if we sum the reciprocals of all
solutions 7 to this inequality (for a given p, k), then

1 1, 1 1
Z_<§p Loh—1(p—1) »pn—1
n Pl p—1) p

Suppose that n < N and n € S. We can choose a prime p > 5 and a positive integer
k with p*~1(p — 1) < 2n+ 1 < p*. Then p* < 2p* 1(p — 1) < 4n < 4N, and therefore
k <log(4N)/logp. So by the result of the last paragraph,

1 log(4N)
DL DD ng(p—l)logp'

n<N, neS p>5 1<k<10g(4N) p>5
—"—= logp

SRS

Dividing by log NV and sending N to infinity reveals that S has upper logarithmic density

1
2 (p—1)logp

p>5

at most

H. Cohen [4] has shown that plggp = 1.6366163 ..., where the sum ranges over all

primes p, so that

1 1 1 1 1
= — < 0.488.
Zplogp Z]olog]z) <2log2+3log3+510g5)

p>5 p

Clearly,

1 1 1
2 (p—1)logp Zplogp - Zp(p —1)logp

p>5 p>5 p>5
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A short and direct computation with PARI/ GP shows that ) . <p<105 m < 0.02361.
1 1
AISO, Zp>105 m < Zm>105 m 105 Hence Zp>5 m < 0.024 and

1
Z £ 0.488+0.024 < 0.52.
(p—1)logp

p>5

This completes the proof. n

Remark. The argument given for Theorem 6.2 is easily adapted to prove the logarithmic
equidistribution of the d-tuples (log(gn + a)/loggi,...,log(qn + a)/log gs) mod Z< in
T?, under the hypothesis that 1/loggi,...,1/loggs are Q-linearly independent. (Note
that when d = 2, this condition reduces to the Q-linear independence of log g; and log g».)
Now suppose that the numbers 1/logp, for primes p > 3, were known to be Q-linearly
independent. Using this generalization of Theorem 6.2, we could modify our arguments to

show that the set of n for which 2n+1 is not p-leading for any prime p > 3 has logarithmic

log (p—1)
log p

the numbers 1/ log p, for primes p > 3, are Q-linearly independent appears to be an open

density given exactly by the infinite product Hp>3 . Unfortunately, whether or not

question. An affirmative answer would follow from Schanuel’s conjecture in transcendence
theory: If z1,...,2, € C are Q-linearly independent, then the transcendence degree of

Q215 -+ 2n,exp(21), ..., exp(z,)) over Q is at least n.
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