

1 **Trade-offs in muscle physiology in selectively bred High Runner**

2 **mice**

3 Alberto A. Castro, Theodore Garland, Jr., Saad Ahmed, Natalie C. Holt*

4

5 Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside,

6 Riverside, California 92521, USA

7

8

9 * To whom proofs, correspondence, and reprint requests should be addressed.

10 Telephone: (951) 827-2437

11 E-mail: natalieh@ucr.edu

12

13 Running title: Muscle trade-offs in High Runner mice

14

15 Key Words: Artificial selection, Endurance, Force-velocity, Locomotion, Muscle physiology,

16 Trade-offs

17

18

19

20

21 ***Summary Statement***

22 We demonstrate a muscle-level trade-off between speed and endurance across replicated lines of
23 mice experimentally selected for high levels of voluntary wheel running. However, this trade-off
24 does not appear to underpin a previously reported organismal-level trade-off.

25

26

27

28

29

30

31

32

33

34

35

36

37

38 **Abstract**

39 A trade-off between locomotor speed and endurance occurs in various taxa, and is thought to be
40 underpinned by a muscle-level trade off. Among four replicate High Runner (HR) lines of mice,
41 selectively bred for voluntary wheel-running behavior, a negative correlation between average
42 running speed and time spent running has evolved. We hypothesize that this trade-off is due to
43 changes in muscle physiology. We studied the HR lines at generation 90, at which time one line
44 (L3) is fixed for the mini-muscle phenotype, another is polymorphic (L6), and the others (L7,
45 L8) lack mini-muscle individuals. We used *in situ* preparations to quantify the contractile
46 properties of the triceps surae muscle complex. Maximal shortening velocity varied
47 significantly, being lowest in mini-muscle mice (L3 Mini=25.2, L6 Mini=25.5 mm s⁻¹), highest
48 in normal-muscle mice L6 and L8 (40.4 and 50.3 mm s⁻¹ respectively), and intermediate in
49 normal-muscle L7 mice (37.2 mm s⁻¹). Endurance, measured both as the slope of the decline in
50 force and the proportion of initial force that could be sustained, also varied significantly. The
51 slope was shallowest in mini-muscle mice (L3 Mini=-0.00348, L6 Mini=-0.00238), steepest in
52 lines L6 and L8 (-0.01676 and -0.01853), and intermediate in L7 (-0.01145). Normalized
53 sustained force was highest in mini-muscle mice (L3 Mini=0.98, L6 Mini =0.92) and lowest in
54 L8 (0.36). There were significant, negative correlations between velocity and endurance metrics,
55 indicating a muscle level trade-off. However, this muscle-level trade-off does not seem to
56 underpin the organismal-level speed and endurance trade-off previously reported as the ordering
57 of the lines is reversed; the lines that run the fastest for the least time have the lowest muscle
58 **complex** velocity and highest endurance.

59

60

61 **Introduction**

62 Trade-offs, limits to adaptation, and multiple solutions have long been held as
63 cornerstones in evolutionary biology, and in many sub-fields of organismal biology (Garland &
64 Carter, 1994; Ackerly *et al.*, 2000; Martin *et al.*, 2015; Agrawal, 2020). Multiple types of trade-
65 offs have been recognized (Cohen *et al.*, 2020; Mauro & Ghalambor, 2020; Garland *et al.*, 2022).
66 Perhaps the most common type involves allocation constraints. For example, if the energy
67 available to an organism is limited, then spending more on one function (e.g., disease resistance)
68 means less is available for other functions (e.g., reproduction). A different type of trade-off
69 occurs when features that enhance performance of one task decrease performance of another
70 (Garland *et al.*, 2022). Such functional conflicts are apparent in bone and muscle biomechanics,
71 for example, the relative lengths of in-levers and out-levers in the skeletal system (Santana,
72 2016), and force-velocity trade-offs in muscle (Herrel *et al.*, 2009; Schaeffer & Lindstedt, 2013).

73 In the locomotor system, the most commonly studied potential trade-off at the level of
74 organismal performance is the sometimes-negative relationship between speed and endurance.
75 For example, among 12 species of closely related lacertid lizards, speed and endurance
76 capabilities are negatively related after accounting for variation in body size (Vanhooydonck *et*
77 *al.*, 2001). However, this trade-off is not apparent among species of phrynosomatid lizards
78 (Albuquerque *et al.*, 2015; see also Toro *et al.*, 2004; Goodman *et al.*, 2007). Many studies have
79 also tested for trade-offs at the level of variation among individuals. For example, statistically
80 significant trade-offs were detected between speed-related and endurance-related events in a
81 study of 1,369 elite human athletes participating in heptathlon and decathlon events (Careau &
82 Wilson, 2017), and between terrestrial exertion capacity and aquatic burst performance in male
83 tropical clawed frogs (*Xenopus tropicalis*) (Herrel & Bonneaud, 2012). When present, the

84 organismal-level trade-off between speed and endurance is thought to be underpinned by a
85 muscle-level trade off, presumably caused by the co-variation of myosin isoform expression and
86 oxidative capacities across muscle fibers (e.g., see Garland, 1988).

87 Mammalian muscle fiber types vary along a continuum of contractile and metabolic
88 properties (for a review see Schiaffino & Reggiani, 2011). At one end of the spectrum, Type I
89 fibers contract slowly, use oxidative metabolism, have low power outputs, and are fatigue
90 resistant. At the other end, Type IIb fibers contract rapidly, use glycolysis, have high power
91 outputs, and fatigue rapidly. Type IIa fibers are intermediate, being fast-twitch, more fatigue
92 resistant than Type IIb fibers, and using both oxidative and glycolytic metabolisms (Komi, 1984;
93 Gleeson & Harrison, 1988; Rome *et al.*, 1988; Esbjörnsson *et al.*, 1993; Schiaffino & Reggiani,
94 2011). Muscle fiber type variation has clear links with locomotor diversity. For instance, the
95 predominance of Type I fibers in the forelimb muscles of slow-moving sloths (Spainhower *et al.*,
96 2018) contrasts with the predominance of Type IIb fibers in the hindlimb muscles of fast-
97 sprinting cheetahs (Williams *et al.*, 1997). The variation in locomotor performance among lizard
98 species also seems to relate to variation in muscle fiber types (Bonine *et al.*, 2005;
99 Vanhooydonck *et al.*, 2014; Albuquerque *et al.*, 2015; Scales & Butler, 2016).

100 Selection experiments and experimental evolutionary approaches (Garland & Rose, 2009)
101 present unique opportunities to study mechanisms underlying trade-offs (discussed in Garland *et*
102 *al.*, 2022). In the present study, we use 4 replicate lines (lab designated as lines 3, 6, 7 and 8,
103 henceforth referred to as L3, L6, L7 and L8) of high runner (HR) mice to explore the muscular
104 basis of organismal-level trade-offs between speed and endurance. These HR mice have been
105 selectively bred for 90 generations based on the average number of wheel revolutions on days 5
106 & 6 of wheel access when young adults (Swallow *et al.*, 1998). The HR lines evolved rapidly

107 and reached selection limits after ~17-27 generations (Careau *et al.*, 2013), at which point mice
108 from all 4 HR lines run approximately three-fold more than mice in the 4 non-selected Control
109 (C) lines. HR mice also have increased endurance and maximal aerobic capacity (VO₂ max)
110 during forced treadmill exercise, larger hearts, and larger brains, among various other phenotypic
111 and genetic differences (Garland, 2003; Meek *et al.*, 2009; Kolb *et al.*, 2010, 2013; Hillis *et al.*,
112 2020; Castro *et al.*, 2022).

113 One striking discovery in the HR selection experiment was the "mini-muscle" phenotype,
114 characterized by a 50% reduction in the mass of the triceps surae muscle complex (Garland *et*
115 *al.*, 2002), caused primarily by a dramatic reduction in type IIb muscle fibers (Guderley *et al.*,
116 2006; Talmadge *et al.*, 2014). The gastrocnemius muscle was considerably lighter in mini-
117 muscle individuals and *in vitro* studies of muscle properties showed some evidence of slower
118 twitches, altered curvature of the force-velocity relationship, reduced power production, and
119 improved endurance in this muscle (Syme *et al.*, 2005). In contrast, the soleus muscle was 30%
120 larger in mini-muscle mice, and its contractile properties were largely unaltered, other than the
121 observation of some faster twitch properties in one of the mini-muscle groups (Syme *et al.*,
122 2005). One of the HR lines (L3) became fixed for the mini-muscle phenotype sometime between
123 generations 22 and 36 (Garland *et al.*, 2002; Syme *et al.*, 2005), while another line (L6) remains
124 polymorphic after 95 generations (Hiramatsu *et al.*, 2017; Cadney *et al.*, 2021).

125 Across all 4 replicate HR lines, but not across the 4 Control lines, Garland *et al.* (2011)
126 reported a significant negative correlation between average running speed (wheel revolutions per
127 minute) and time spent running (minutes of wheel running per day) at generation 43. In the base
128 population, these two traits were positively correlated both phenotypically and genetically
129 (Swallow *et al.*, 1998), and we might expect that the evolution of an organismal speed and

130 endurance trade-off could be related to evolved changes in lower-level traits, specifically in
131 skeletal muscle. Therefore, the purpose of the present study was to examine muscle contractile
132 properties to determine whether a muscle-level trade-off underlies the negative relationship
133 between the duration of daily running and the average running speed that has evolved across the
134 replicate HR lines.

135 We quantified the speed and endurance properties of an important locomotor muscle
136 group in mice, the triceps surae complex, which contains the fast medial gastrocnemius, lateral
137 gastrocnemius, and plantaris muscles, along with the slow soleus muscle (Zhan *et al.*, 1999;
138 Houle-Leroy *et al.*, 2003; Guderley *et al.*, 2006; McGillivray *et al.*, 2009; Schaeffer & Lindstedt,
139 2013; Talmadge *et al.*, 2014). We studied this entire muscle **complex** *in situ*, as opposed to
140 studying individual muscles *in vitro*, as we believe this provides the best assessment of muscle
141 speed and endurance in the context of locomotion. In future studies, it would also be of interest
142 to examine the contractile properties of individual muscles.

143 In *in situ* preparations, the muscle **complex** remains connected to a functioning
144 circulatory system. This avoids the complication of diffusion limitations (Barclay, 2005) during
145 *in vitro* endurance tests, therefore allowing for more physiologically realistic measurements of
146 muscle endurance. In addition to retaining a connection to the circulatory system, *in situ* study
147 of the triceps surae muscle **complex** allows for simultaneous activation of all muscles within this
148 complex, and determination of its emergent contractile properties. This simultaneous activation
149 ignores physiological recruitment (Liddell and Sherrington 1925; Henneman *et al.*, 1957; Morris
150 and Askew, 2010; Holt *et al.*, 2014), **such as the increase in total activation of the triceps surae**
151 **complex, and particularly that of faster fibers, with increasing speed and incline in running rats**
152 **(Hodson-Tole and Wakeling, 2008)**. However, this phenomenon is also ignored *in vitro*

153 preparations in which muscles are typically maximally activated despite the variation in
154 activation that occurs within a single muscle across locomotor conditions (Hodson-Tole and
155 Wakeling, 2008; Morris and Askew, 2010). Perhaps more importantly than the somewhat
156 unrealistic activation patterns, this approach limits our ability to attribute aspects of performance
157 to individual muscles. However, locomotion is not powered by individual muscles, but rather
158 driven by torques around joints produced by synergistic muscles, such as the triceps surae
159 complex. Hence, the emergent properties of this muscle complex seem the most relevant to
160 locomotion. This is particularly important in the HR mice, as a previous comparison of just a
161 subset of HR lines showed that the mini-muscle phenotype has different effects on the various
162 muscles within the triceps surae **muscle complex** (Syme *et al.*, 2005). Hence, examination of any
163 single muscle would likely not be reflective of the cumulative effects of selection.

164 This study uses an *in situ* triceps surae **complex** preparation to determine the isometric
165 twitch times and isotonic force-velocity properties as metrics of **the speed of the muscle**
166 **complex**, and the changes in force over hundreds of isometric tetanic contractions as metrics of
167 the endurance **of the muscle complex**. Although not entirely representative of muscle function
168 during locomotion, these metrics were chosen as they provide good estimates of the bounds of
169 muscle speed and endurance, and can be reliably measured in a **multiple** muscle preparation.

170 Based on the assumption that muscle properties at least partly underpin the organismal-
171 level trade-off between speed and endurance, we hypothesized that muscle **complex** speed and
172 endurance metrics would trade-off in HR lines in a way that parallels the documented organismal
173 variation in wheel-running speed and duration (Garland *et al.*, 2011). At the organismal level,
174 L8 mice ran for the longest and had the slowest mean wheel-running speeds (Garland *et al.*,
175 2011), while L3 mice had the fastest mean speeds on wheels and ran for the shortest total

176 duration. Hence, we hypothesized that muscle **complexes** from L8 mice would have the highest
177 endurance and the lowest velocity, while muscle **complexes** from L3 mice would be the opposite.
178 However, these predictions seem to at odds with the findings of Syme *et al.* (2005) mentioned
179 previously, who found L3 and L6 mini-muscle mice to generally have slower, more fatigue-
180 resistant, medial gastrocnemius muscles, with only marginal evidence for faster soleus muscles
181 in L6 mini-muscle mice.

182 In contrast to Syme *et al* (2005), we compare muscle properties across all 4 replicate lines
183 of HR mice, and examine the speed and endurance properties of the entire triceps surae **complex**.
184 This allows us to compare any trade-offs in muscle **complex** properties to the organismal-level
185 trade-offs reported across all HR lines ~10 generations after Syme *et al.* (2005). Moreover, we
186 can use the knowledge gained from this prior study of a subset of HR lines (Syme *et al.*, 2005),
187 namely that the properties of individual muscles vary differently across lines, to inform the
188 design of this study in which we examine the emergent properties of the entire triceps surae
189 **complex**. We believe this provides novel insight into the muscle-level determinants of
190 organismal performance with particular reference to the role of the trade-off between speed and
191 endurance in the evolution of locomotor performance.

192

193 ***Materials and Methods***

194 **The High Runner Mouse Model**

195 Mice from the 4 High Runner (HR) lines are bred for voluntary wheel running during 6
196 days of wheel access as young adults, and are compared with 4 non-selected Control (C) lines
197 (Swallow *et al.*, 1998). Briefly, the founding population was 224 laboratory house mice (*Mus*

198 *domesticus*) of the outbred, genetically variable Hsd:ICR strain (Harlan-Sprague-Dawley,
199 Indianapolis, Indiana, USA). Mice were randomly bred for two generations and then separated
200 into 8 closed lines, which consist of 10 breeding pairs each generation. During the routine
201 selection protocol, mice are weaned at 21 days of age and housed in groups of 4 individuals of
202 the same sex until ~6-8 weeks of age. Mice are then housed individually in cages attached to
203 computer-monitored wheels (1.12 m circumference, 35.7 cm diameter, and 10 cm wide wire-
204 mesh running surface) with a recording sensor that counts wheel revolutions in 1-min intervals
205 over 6 days of wheel access (Swallow *et al.*, 1998; Careau *et al.*, 2013; Hiramatsu, 2017). In the
206 HR lines, the highest-running male and female from each family are chosen as breeders. The
207 selection criterion is total wheel revolutions on days 5 and 6 to avoid potential effects of
208 neophobia during the initial exposure to wheels. Sibling mating is not allowed. Mice are kept at
209 room temperatures of approximately 22°C, with ad lib access to food and water and a 12L:12D
210 photoperiod.

211

212 **Study Animals**

213 To examine whether trade-offs in muscle properties underlie the trade-off between
214 average running speed and duration that has evolved among the HR lines (Garland *et al.*, 2011),
215 we studied all four of the HR lines (L3, L6, L7, and L8). Female mice (N = 31) from generation
216 90 of the selection experiment were housed 4/cage beginning at weaning. We chose HR females
217 because they generally run greater daily distances, at higher average speeds, than HR males
218 (Garland *et al.*, 2011), thus making it more likely that muscle-based trade-offs might be relevant.

219 As noted in the Introduction, the “mini-muscle” phenotype presently occurs in a subset of
220 the HR mice. In our sample of 31 mice (not all of which had data for all traits), the number of

221 mini-muscle individuals was all of 6 in L3 and 5 of 11 in L6. The presence of the mini-muscle
222 phenotype means that rather than 4 lines, we instead have five total groups: L3 Mini (N=6), L6
223 Mini (N=5), L6 (N=6), L7 (N=8), and L8 (N=6). Based on previous studies (Syme et al., 2005),
224 we expected that these sample sizes will provide sufficient power to demonstrate any differences
225 between groups.

226 All mice were housed at room temperature with food and water ad libitum. All
227 experiments were approved by the University of California, Riverside Institutional Animal Care
228 and Use Committee. Given the time it takes to perform surgical experiments on individuals from
229 all 4 replicate lines of HR mice, the use of mice from a single generation, and because of
230 breeding constraints due to nature of the HR mouse selection experiment (see Swallow *et al.*,
231 1998), there was some necessary variation in age. Mice ranged from 46-107 days old. To account
232 for this variation, age was included as a covariate in all analyses.

233

234 **Surgical Procedure**

235 The twitch, tetanic, force-velocity, and endurance properties of the left triceps surae
236 muscle group, were determined *in situ*. Mice were anaesthetized (SomnoSuite Low-flow
237 Anesthesia System, Kent Scientific, Torrington, CT, USA) and maintained at 1.5-5% isoflurane
238 anesthesia. The depth of anesthesia was continually monitored, and the dosage adjusted to
239 maintain a sufficient depth. Body temperature was monitored using a thermometer inserted into
240 the rectum, and maintained throughout surgery *via* an integrated system that continuously
241 adjusted the temperature of the heat pad placed under the animal (RightTemp System, Kent
242 Scientific, Torrington, CT, USA). The sciatic nerve was surgically exposed, and a bipolar nerve
243 cuff for electrical stimulation of the triceps surae complex was placed around it. Mineral oil was

244 applied at the attachment site to keep the nerve moist, and the incision was closed. The proximal
245 end of femur was exposed and clamped into a custom-made stereotaxic frame. The Achilles
246 tendon was exposed distally, Kevlar thread tied tightly around it, and the calcaneus cut. The end
247 of the free tendon was attached to the lever arm of a servomotor (305C-LR Dual-Mode Lever
248 System, Aurora Scientific, Aurora, ON, CA), allowing for measurements of muscle force, length,
249 and velocity in the triceps surae **complex** (Ranatunga, 1984; Claflin & Faulkner, 1989; Zhan *et
250 al.*, 1999; Syme *et al.*, 2005; Holt *et al.*, 2016; Javidi *et al.*, 2020).

251

252 **Muscle Activation and Data logging**

253 All recordings and data processing were performed using data acquisition software
254 (IgorPro 7, WaveMetrics, Lake Oswego, OR, USA). Stimulation protocols were sent to the
255 muscle, and data logged, at a sampling frequency of 10,000 HZ using a DAQ AD board
256 (CompactDAQ, National Instruments, Austin, TX, USA). Supramaximal square wave pulses
257 (amplitude 1-2 mA, pulse duration 0.1 ms) were constructed (IgorPro 7, WaveMetric, Lake
258 Oswego, OR, USA) and applied to the sciatic nerve (CompactDAQ, National Instruments,
259 Austin, TX, USA; High-Power, Biphase Stimulator, Aurora Scientific, Aurora, ON, CA) (Holt &
260 Azizi, 2014). The brief pulse duration (0.1 ms) required to prevent damage to the sciatic nerve
261 necessitated the high frequency sampling used (10,000 Hz). Single pulses were used to elicit all
262 twitch contractions, while 350 ms trains of pulses delivered at 80 Hz were used to elicit all
263 tetanic contractions. The stimulus amplitude was adjusted, and elicited twitch force determined,
264 in every muscle **complex**. The lowest stimulus amplitude giving peak twitch force was used for
265 all subsequent contractions. Pulse frequency and train duration were varied for a subset of
266 muscle **complexes**, and the degree of fusion and force plateau examined. A stimulation

267 frequency of 80 Hz consistently produced a fused tetanic contraction in which force fluctuations
268 due to individual pulses were < 1% of total force, and a train duration of 350 ms gave a clear
269 force plateau during isometric tetani. Visual inspection of subsequent muscle **complexes**
270 confirmed that these stimulation parameters produced these effects across all individuals.

271

272 Muscle Isometric Properties

273 Isometric twitch and tetanic properties **of the triceps surae complex** were determined.
274 Initially a series of twitches were performed at a range of lengths. The length that yielded peak
275 twitch force was determined, and defined as optimum length (L_0). All subsequent contractions
276 were performed at this length, and all forces were corrected for passive force at this length

277 A subsequent twitch contraction was performed at optimum length. Peak twitch force
278 was determined and time series data were used to calculate the time from onset of activation to
279 peak twitch force (TP_{tw}), and the time from peak twitch force to 50% relaxation (TR_{50}) (Marsh &
280 Bennett, 1985, 1986; Bennett *et al.*, 1989; Askew & Marsh, 1997; Syme *et al.*, 2005; Nguyen *et*
281 *al.*, 2020) (Table 1).

282 Next, an isometric tetanic contraction was performed to determine peak isometric
283 tetanic force (F_0) (Table 1). Control isometric tetanic contractions were repeated at regular
284 intervals to monitor muscle **complex** performance (Holt & Azizi, 2014; Holt *et al.*, 2016). It was
285 pre-established that if force had dropped below 90% of its initial value by the first control
286 isometric tetani (~ 5th tetanic contraction), the experiment would be terminated. Large drops in
287 force between the 1st and ~5th tetanic contractions resulted in termination of the experiment in 11
288 mice. We found these HR mice to be particularly sensitive to the effects of both anesthesia and
289 nerve stimulation, hence requiring the exclusion of many mice. However, we believe that the

290 termination criteria used here allow for minimization of these effects without biasing our sample
291 towards more fatigue-resistant muscle **complexes**.

292 Following muscle experiments, muscle **complexes** were weighed, cross-sectional area
293 calculated (see below), and peak isometric stress calculated as peak isometric tetanic force
294 divided by cross-sectional area. Peak tetanic force (F_0) was also normalized to body mass (F_0
295 Mass) to assess the capacity of the muscle **complex** to support body weight during locomotion
296 (Table 1).

297

298 **Muscle Force-Velocity Properties and Curve Fitting**

299 To determine the relationship between muscle **complex** force and velocity, isotonic
300 tetanic contractions in which the muscle was allowed to shorten, were performed at a range of
301 relative forces (0.1-0.9 F_0). Peak shortening velocity was determined at each of these force levels
302 (Supplemental Material 1) and force-velocity curves constructed (Marsh & Bennett, 1985, 1986;
303 Bennett *et al.*, 1989; Askew & Marsh, 1997; Zhan *et al.*, 1999; Syme *et al.*, 2005; Holt *et al.*,
304 2016; Alcazar *et al.*, 2019; Javidi *et al.*, 2020). For each muscle **complex**, we performed 13 total
305 contractions, included isotonic shortening contractions and isometric controls, during the force-
306 velocity protocol. This consistency ensured that muscle **complexes** from all individuals were in
307 the same state at the beginning of the endurance protocol

308 The force-velocity data were normalized. Active forces in isotonic contractions were
309 divided by peak isometric tetanic force to determine relative force (F/F_0). Following muscle
310 experiments, the **length of the muscle complex** was measured and absolute shortening velocities
311 (V_{abs}) were divided by **this** length to calculate normalized shortening velocity (V_{norm}) (Table 1).
312 After plotting the force-velocity points for individual mice, we fitted force-velocity curves using

313 multiple equations. We initially chose not to rely on a single force-velocity curve fit as none of
314 the commonly used fits have a mechanistic basis, and the force-velocity curves characterized
315 here were relatively linear compared to previously observed curves (see Marsh & Bennett, 1986;
316 Alcazar *et al.*, 2019). We fitted using the Hill rectangular-hyperbola equation: $(P + a)(v + b) = b$
317 $(P_0 + a)$ (Hill, 1938), the Marsh-Bennett hyperbolic linear equation: $V = B(1 - F/F_0) / (A + F/F_0)$
318 $+ C(1 - F/F_0)$ (Marsh & Bennett, 1986; Askew & Marsh, 1997), and a second-order polynomials:
319 $V = Ax^2 + Bx + C$. Maximal shortening velocity values were determined (Table 1) for the 3 fits for
320 all mice (Supplemental Material 3), and curves were visually rendered to check for poor fits.
321 Force-velocity data for 4 mice were excluded due to poor curve fits. The force-velocity
322 relationships in these individuals showed negative quadratic fits, whereas the rest of the
323 individuals all had positive quadratic terms.

324

325 Muscle Endurance Properties

326 The force-generating capacity of the triceps surae muscle **complex** over repeated
327 isometric tetanic contractions was used to assess muscle endurance (Renaud & Kong, 1991;
328 Zhan *et al.*, 1999; James *et al.*, 2004; Syme *et al.*, 2005). The **use of an *in situ* muscle**
329 preparation eliminated the effects of the central nervous system while maintaining blood supply
330 and, therefore, provided an assessment of the muscular basis of endurance. The endurance
331 protocol consisted of a standard procedure of repeated isometric tetanic contractions (Allen *et*
332 *al.*, 2008) elicited using the same stimulation parameters as previous isometric tetanic
333 contractions. One contraction was performed every 5 seconds until force dropped below 50% of
334 its initial value, or for a maximum of 500 contractions. However, due to the high sampling

335 frequency required, these contractions had to be performed in 10-minute bouts. At the end of
336 each bout the data were saved, and a new bout immediately started.

337 Peak force in each individual contraction was calculated and plotted against contraction
338 number (~200-500 contractions) (Supplemental Material 2). Endurance (Endur₀₋₉₀) was
339 quantified as the linear fit (slope) of the decline in force over the first 90 tetanic contractions
340 (Table 1). It was not our intention that this linear descriptor would provide a precise fit to the
341 data. Instead, it provided a comprehensive and comparable way to capture the duration for which
342 initial force can be maintained, the rate of a decline in force, and the point at which force could
343 be sustained, thus allowing comparison across the HR lines. After the first 90 contractions, we
344 quantified the average force that was sustained (Sustained F) over a series of tetanic contractions
345 without a decrease in force (Table 1). We made sure to quantify Sustained F over areas in which
346 force traces were consistently flat and without any peaks (see Results). This sustained force was
347 normalized to peak isometric force measured at the beginning of the experiment (Sustained F/
348 F₀) to quantify the decline in active force given the different levels of initial force across the
349 lines.

350

351 **Dissections and Muscle Dimensions**

352 Once the endurance contraction protocol was completed, an overdose of isoflurane
353 anesthesia was administered. The lengths of the Achilles tendon, triceps surae muscle **complex**
354 (length from the knee joint to the origin of the common Achilles tendon), and muscle-tendon unit
355 were measured to the nearest 0.1 mm with digital calipers while the mouse was still in the
356 stereotaxic frame and the muscle was held at L₀. Mice were then removed from the frame,

357 decapitated, and weighed. The triceps surae **complex** was dissected free and weighed to the
358 nearest 0.0001 g.

359 Muscle **complex** anatomical cross-sectional area (Anatomical CSA) (not accounting for
360 pennation angle or fiber length) was determined from **muscle complex mass and length** assuming
361 a density of 1060 kg/m³ (Mendez & Keys, 1960) (Table 1). Subsequently, we calculated the
362 peak tetanic stress (stress = F_0/CSA) of the triceps surae muscle group (Askew & Marsh, 1997;
363 Zhan *et al.*, 1999; Syme *et al.*, 2005; Holt *et al.*, 2016) (Table 1). Muscle shortening velocities
364 were normalized to muscle length.

365

366 **Statistical Analysis**

367 ***Isometric Contractile Properties***

368 To compare the five groups (4 HR lines, with L6 divided into those with and without the
369 mini-muscle phenotype), we used the MIXED Procedure in SAS (SAS Institute, Cary, NC,
370 USA) to apply analysis of covariance models with age as the covariate. This inclusion of age is
371 necessary due to the large range of ages included in this study (46-107 days old). Analyses of
372 muscle dimensions (except for variables that were normalized) also included body mass as a
373 covariate. We calculated an *a priori* contrast comparing L3 mini and L6 mini with L6, L7, and
374 L8. For post-hoc comparisons within the mini- and within the normal-muscled groups, we
375 examined Differences of Least Squares Means from SAS Procedure MIXED, with adjustment
376 for multiple comparisons. Specifically, we employed Scheffe's procedure because this is the
377 most conservative multiple-range comparison for unequal sample sizes. No data were excluded
378 from isometric contractions, except for F_0 Mass for which one low outlier was removed from the
379 analyses. In the endurance protocol we were missing some values of sustained force because

380 during early experiments, the duration of the endurance protocol required to achieve a reliable
381 value of sustained force was not clear and in a small number of cases, the protocol was stopped
382 prematurely.

383 ***Force-Velocity Repeated Measures***

384 Multiple force-velocity points were obtained for each individual mouse, so we used
385 repeated-measures models in SAS Procedure MIXED to test for effects of group on both
386 absolute shortening velocity (V_{abs}) and normalized velocity (V_{norm}) (Table 2). Covariates were
387 age, relative force (F/F_0), and z-transformed relative force squared (orthogonal polynomial used
388 to describe the curvature of the relationship). Individual was treated as a random effect nested
389 within line. Furthermore, we included the interaction between force (F/F_0) and group
390 ($F/F_0 * group$) to test for differences in slopes. Initially, we also included the interaction between
391 ($Zfnorm2$) and group ($Zfnorm2 * group$) to test for differences in curvature, but this interaction
392 was not significant, so it was removed from the final model we present.

393 Least-square means generated from the repeated-measures analyses were estimated at
394 $F/F_0 = 0$ to estimate maximal shortening velocity ($mm\ s^{-1}$) values from the 2nd degree
395 polynomials for both absolute (V_{max}) and normalized velocity (V_{normax}) (Table 2).

396 ***Correlations of Muscle Traits***

397 To examine covariation of muscle **complex** performance metrics among the five groups,
398 we examined bivariate scatterplots and calculated Pearson pairwise correlation coefficients for
399 V_{normax} , Endur₀₋₉₀, stress, TP_{tw}, TR₅₀, and Sustained F/F_0 . We also attempted to calculate
400 correlations while accounting for within-group variation, as indicated by the standard errors,
401 using procedures outlined in Ives et al. (2007), but the data set was too small to achieve
402 reasonable estimates.

403

404 **Results**

405 Significance levels from ANCOVAs of body mass, muscle **complex** dimensions, and
406 isometric (tetanic and twitch) properties of the triceps surae complex in HR mice (using body
407 mass and age as a covariate when appropriate) are shown in Figs 1 and 2. Table 2 and Fig. 3
408 illustrate the results of force-velocity analysis, including representative traces from all groups.
409 Fig. 4 depicts the significance values from the endurance metrics, including representative traces.
410 Table 3 shows the pairwise correlation for the primary muscle contractile characteristics, and
411 Fig. 5 illustrates the significant, negative correlations between velocity and endurance metrics.

412

413 **Body Size and Muscle dimensions**

414 Average body mass varied significantly among groups ($P=0.0014$) (Fig. 1A). With body
415 mass as a covariate, muscle **complex** length (Fig. 1B), tendon length, and muscle-tendon unit
416 (MTU) length were not significantly different among groups. As expected, relative triceps surae
417 **complex** mass varied among groups ($P<<0.0001$) (Fig. 1C), with the mini-muscle mice (L3 Mini
418 and L6 Mini) having significantly lighter muscle **complexes** (LS Means of 0.052 g and 0.046 g,
419 respectively) when compared with normal-muscled mice (L6=0.105 g, L7=0.095 g, L8=0.114 g)
420 (*a priori* contrast $P<<0.0001$). *Post hoc* comparisons indicated no statistically significant
421 differences between the two mini-muscle groups or among the three normal-muscle groups. The
422 pattern for anatomical cross-sectional area was similar to that of muscle **complex** mass (Fig. 1D).

423

424 **Isometric Properties**

425 Isometric tetanic stress was not significantly different among groups (Fig. 2A).
426 However, F_0 Mass (peak tetanic force normalized to body mass) was significantly different
427 among groups ($P<0.0001$) (Fig. 2B), with the main difference being that mini-muscle mice (L3
428 Mini and L6 Mini) had significantly lower values (both 0.046 N/g) when compared with the
429 other groups (0.082 N/g for L6, 0.087 N/g for L7, and 0.100 N/g for L8) (*a priori* $P<<0.0001$).

430 TP_{tw} (s), time from onset of muscle activation to peak twitch force (Table 1), ranged from
431 an average of 0.021 (s) for L3 Mini to 0.025 (s) for L6 Mini but was not significantly different
432 among groups (Fig. 2C). TR_{50} , time from peak twitch force to half relaxation (Table 1) also did
433 not differ among groups (Fig. 2D).

434

435 **Force-Velocity Properties**

436 Fig. 3 depicts force-velocity traces from a representative mouse from each group, along
437 with the second order polynomial curve-fits (see Methods). This curve fit was deemed to
438 provide the most reliable fit for the force-velocity points and estimation of maximal shortening
439 velocity (V_{max}) (Fig. 3A-3E). The Hill equation forced a curve when none existed, and the
440 Marsh-Bennett equation often generated convex shapes (Supplemental Material 3).

441 For absolute velocity (V_{abs}), the effect of group was highly significant (both $P<<0.0001$),
442 as was the effect of relative force (F/F_0) (both $P<<0.0001$), the z-transformation of force (F/F_0)
443 ($ZFnorm2$) ($P<<0.0001$), and the interaction between F/F_0 and group ($P<<0.0001$) (Table 2).
444 The interaction between F/F_0 and group indicates differences in slope of the F-V curve among
445 the groups. The *a priori* contrast between V_{max} for mini- and normal-muscled groups was highly
446 significant ($P<<0.0001$). In addition, the post hoc comparisons indicated that V_{max} in L8 was

447 significantly higher than L6 ($P=0.0005$) and L7 ($P<<0.0001$). Results were similar for
448 normalized velocity (V_{norm}) (Table 2).

449

450 Endurance Properties

451 Fig. 4 illustrates the endurance protocol for representative mice from each of the five
452 groups. The slight recovery in active force every 100 contractions is due to the need to save data
453 and restart the protocol, thus giving the muscle a slightly longer recovery time. In L3 Mini and
454 L6 Mini individuals there was a minimal drop in active force over the entire endurance protocol
455 as compared with the other three groups (e.g., Fig. 4A and 4B versus Fig. 4C, 4D, 4E). Endur_{0-90}
456 (the slope of the decline in force over the first 90 tetanic contractions) was significantly different
457 among groups ($P<<0.0001$), being shallowest in the mini-muscle mice ($\text{L3 Mini}=-0.00348$, L6
458 $\text{Mini}=-0.00238$), steepest in normal lines L6 and L8 (-0.01676 and -0.01853, respectively), and
459 intermediate in L7 (-0.01145) (Fig. 4F). The *a priori* contrast between mini- and normal-
460 muscled groups was highly significant ($P<<0.0001$). Sustained F/F_0 also differed among groups
461 ($P<0.0001$), with mini-muscle groups having higher values (0.98 for L3 Mini and 0.92 for L6
462 Mini) when compared with L6 (0.44), L7 (0.47), and L8 (0.36) groups (Fig. 4G). The *a priori*
463 contrast between mini- and normal-muscled groups was also highly significant ($P<<0.0001$).

464

465 Pairwise Pearson's Correlations

466 Table 3 provides correlations for the five groups Least Squares Means for normalized
467 maximum shortening velocity (V_{normax}), endurance (Endur_{0-90} , Sustained F/F_0), and isometric
468 properties (stress, TP_{tw} , TR_{50}). Of the 15 correlations, the correlations between V_{normax} and
469 Endur_{0-90} ($r = -0.993$), V_{normax} and Sustained F/F_0 (-0.971), and Sustained F/F_0 and Endur_{0-90}

470 (0.961) were statistically significant ($P<0.01$) (Table 3, Fig. 5). Mini-muscle mice (L3 Mini and
471 L6 Mini) have the highest endurance ($\text{Endur}_{0.90}$ and Sust. F/F_0) but slowest muscle **complexes**
472 (V_{normax}), L6 and L8 have the lowest endurance but fastest muscle **complexes**, and L7 is
473 intermediate.

474

475 **Discussion**

476 The purpose of the present study was to test whether a muscle-level trade-off underlies
477 the negative relationship between the duration of daily wheel running and the average running
478 speed, that was previously observed to have evolved among four replicate lines of High Runner
479 (HR) mice (Garland *et al.*, 2011). We used an *in situ* preparation of the triceps surae complex to
480 determine muscle isometric, force-velocity, and endurance properties. Although we found a
481 negative relationship between muscle **complex** speed and endurance (Fig. 5A+B), indicative of a
482 muscle-level trade-off, the ordering among lines (groups) was reversed as compared with wheel-
483 running behavior (Garland *et al.*, 2011).

484

485 **Muscle Dimensions**

486 The only reported difference in muscle dimensions across our HR groups was the
487 previously reported ~50% reduction in triceps surae muscle **complex** mass in mini-muscle mice
488 when compared with normal-muscled individuals (Fig. 1C) (Garland *et al.*, 2002; Houle-Leroy *et*
489 *al.*, 2003; Syme *et al.*, 2005). Given that there was no statistical difference in muscle length
490 across all groups, anatomical cross-section area was therefore also significantly reduced in the
491 mini-muscle groups (Fig. 1).

492

493 **Isometric Properties**

494 Isometric tetanic stress ranged from an average of 25.9 N/cm² for L6 to 36.6 N/cm² for
495 L8, but was not significantly different among groups. This calculation of stress (Table 1, Fig.
496 2A) was based on the anatomical CSA of the triceps surae complex. The lower value of
497 anatomical, as opposed to physiological, cross-sectional area, will lead to higher estimates of
498 stress. Previous studies of isolated muscles from HR mice have reported values of 16.7-17.8
499 N/cm² for the medial gastrocnemius muscle (Zhan *et al.*, 1999), and 16.7-29.5 N/cm² and 33.3-
500 38.1 N/cm² for isolated medial gastrocnemius and soleus muscles respectively (Syme *et al.*,
501 2005). Studies of isolated calf muscles (soleus and extensor digitorium longus) in CD-1 mice
502 reported variable stress values that depended on age and fatigue (James *et al.*, 2004; Hill *et al.*,
503 2020), but were on average lower than stress values for the triceps surae complex reported here.
504 Although our study of the entire triceps surae complex best allows us to examine muscle
505 properties as they pertain to locomotion, it also means that we cannot attribute force
506 contributions to individual muscles, calculate physiological cross-sectional areas of each of these
507 morphological distinct muscles, nor determine stress in each **individual** muscle.

508 In addition to normalizing isometric tetanic force of the triceps surae complex to its
509 anatomical cross-sectional area, we also normalized it to body mass to enable us to assess the
510 capacity of this muscle group to support body weight during locomotion. Muscle force relative to
511 body mass was significantly lower in mini-muscle mice than normal-muscle mice (Fig. 1B),
512 which may contribute to the reduced maximal sprint speed previously observed in these groups
513 (Dlugosz *et al.*, 2009).

514 Rates of force development and relaxation were determined from isometric twitches.
515 Time from muscle **complex** activation to peak twitch force ranged from an average of 0.021 (s)
516 for L3 Mini to 0.025 (s) for L6 Mini, but was not significantly different among groups (Fig. 2C).
517 TR₅₀ ranged from 0.012 s for L7 to 0.013 s for L8, and was also not significantly different among
518 groups. Force rise times are a little slower than the 0.016 s measured in isolated soleus muscles
519 from ICR outbred mice, while the half relaxation times are slightly faster (0.023 s reported
520 previously) (Askew and Marsh, 1997). The lack of difference between our 5 groups is somewhat
521 in contrast with a previous study comparing only mini-muscle and normal-muscle groups of
522 mice. Syme *et al.* (2005) showed a shorter entire twitch duration (measured at 50% of peak
523 force) and relaxation time (measured from 90% to 10% of peak force) in the soleus from L6
524 Mini compared to the soleus from either L3 Mini or L6 Normal, and a shorter relaxation time
525 (measured from 90% to 10% of peak force) in the medial gastrocnemius muscle from L6 Normal
526 mice compared to either of the mini-muscle groups.

527 Faster relaxation times are not surprising given that we examined not only the slow
528 soleus, but also the plantaris and medial and lateral gastrocnemius muscles, which are known to
529 have a larger proportion of faster fibers (Zhan *et al.*, 1999; Houle-Leroy *et al.*, 2003; Guderley *et*
530 *al.*, 2006; McGillivray *et al.*, 2009; Schaeffer & Lindstedt, 2013; Talmadge *et al.*, 2014). The
531 slower rate of force development, and the lack of difference across our 5 groups, are harder to
532 explain. However, they may be a consequence of using the entire triceps surae complex
533 containing multiple muscles, and significant series compliance in the Achilles tendon and
534 aponeuroses. The use of multiple muscles **within this complex** may mean that any effects, such
535 as loss of type IIb fibers in the gastrocnemius muscles of mini-muscle mice (Guderley *et al.*,
536 2006; Talmadge *et al.*, 2014) and the slower relaxation this presumably caused (Syme *et al.*,

537 2005), are obscured or counteracted by the effects of the mini-muscle phenotype on other
538 muscles, such as the faster twitch kinetics in the soleus (Syme *et al.*, 2005). In addition, the
539 presence of series compliance will have slowed the time course of force generation (Hill, 1951;
540 Mayfield *et al.*, 2016), and may potentially have obscured any differences in rate of fiber force
541 generation across the groups. Hence, the use of the entire triceps surae complex limits our ability
542 to identify changes in individual muscles. However, it demonstrates that any variation in the
543 properties of individual muscles across HR lines will likely not have affected the rate of force
544 generation at the ankle during locomotion, and that this rate may be lower than that predicted by
545 isolated muscle kinetics.

546

547 **Force-Velocity Properties**

548 Estimated maximum shortening velocity (V_{max}) and slope, but not curvature, of the force-
549 velocity relationship varied across our 5 groups of HR mice. V_{max} was lowest in mini-muscle
550 mice (L3 Mini=25.2, L6 Mini=25.5 mm s⁻¹), highest in L8 (50.3 mm s⁻¹), and intermediate in L6
551 and L7 (40.4 and 37.2 mm s⁻¹ respectively) (Fig. 3). The values of V_{max} reported here are
552 somewhat lower than have previous been documented in both isolated muscles from a subset of
553 HR groups, ~62-65 mm s⁻¹ and ~60-70 mm s⁻¹ in isolated soleus and medial gastrocnemius
554 muscles respectively (Syme *et al.*, 2005), and in other non-HR soleus muscles where values ~60-
555 65 mm s⁻¹ have been reported (Asmussen & Maréchal, 1989; Maréchal & Beckers-Bleukx, 1993;
556 Askew & Marsh, 1997). In addition, we report significant differences in V_{max} , without any
557 difference in the curvature of the force-velocity relationship. This is in contrast to a previous
558 study on a subset of HR groups that showed a difference in curvature, in the absence of a

559 difference in V_{max} , between medial gastrocnemius muscles from mini-muscle and normal-muscle
560 mice (Syme *et al.*, 2005).

561 The overall lower values of V_{max} reported here may have several explanations. It may be
562 partially a consequence of our force-velocity curve fitting; the relatively flat force-velocity
563 relationships measured here were fit better by a second-order polynomial, than by traditional
564 curve fitting equations. This approach may have reduced the estimate of V_{max} compared to other
565 curve-fitting methods (Supplementary Materials 3). However, it is possible that the relatively
566 low value of V_{max} also reflects a shift in contractile properties in all HR lines compared to non-
567 HR mice, and potentially a greater shift than earlier generations of HR mice (Syme *et al.*, 2005),
568 due to prolonged selection for high levels of voluntary wheel running.

569 It is unclear why the data presented here show different values of V_{max} between muscle
570 **complexes** from mini-muscle and normal-muscle lines, in addition to differences between
571 normal-muscle HR lines, when Syme *et al.*, (2005) did not find any such differences. It seems
572 unlikely that using the whole triceps surae complex as opposed to individual muscles would lead
573 to this finding - different effects of the mini-muscle phenotype on the various muscles in the
574 complex would be more likely to cancel out than lead to difference between groups. Possibly
575 these effects are also a consequence of differences in curve fitting procedure, or potentially
576 continued responses to ongoing selective breeding over tens of generations.

577 Syme *et al.* (2005) also demonstrated a greater curvature in the medial gastrocnemius
578 muscles of mini-muscle groups compared to normal-muscle groups. The curvature of the force-
579 velocity relationship varies from linear to double-hyperbolic, with the reasons for these
580 differences being poorly understood (Alcazar *et al.*, 2019). Hence, it is conceivable than the

581 linearity of the curves measured in this study is a consequence of measuring only the summed
582 output of multiple muscles with different fiber type compositions and morphologies.

583 Any difference in V_{max} and curvature of the force-velocity relationship that are not simply
584 a consequence of curve-fitting procedures, **or the measurement of the properties of the entire**
585 **muscle complex**, are likely a reflection of changes in muscle fiber type composition (Schiaffino
586 & Reggiani, 2011). The only study to date that has investigated differences in myosin isoform
587 composition amongst HR lines was at generation 46, and compared soleus, plantaris, and
588 gastrocnemius muscles in L3 Mini, L7 and L8 mice. That study reported the soleus had a slightly
589 higher proportion of faster myosin isoforms in the L3 mini-muscle mice, whereas the
590 gastrocnemius and plantaris muscles had a marked reduction in faster myosin isoforms
591 (McGillivray *et al.*, 2009). The large losses of faster fiber types in the mini-muscle lines are
592 consistent with the lower V_{max} values reported in these groups here. However, the lack of
593 difference in myosin isoforms between L7 and L8 at generation 46 (McGillivray *et al.*, 2009) are
594 not consistent with the difference in V_{max} between these lines reported here (Fig. 3). This may
595 reflect subtle changes not detectable by myosin isoform analysis, or ongoing changes in these
596 groups since generation 46.

597

598 **Endurance Properties**

599 The soleus and medial gastrocnemius muscles in mice generally fatigue within the first
600 100 tetanic contractions (Brooks *et al.*, 2018; Cabelka *et al.*, 2019) or within 100-500 seconds
601 (e.g., see Pagala *et al.*, 1998; Zhao *et al.*, 2005), with the soleus generally being more fatigue-
602 resistant. Such differences in muscle fatigue are, at least in part, attributed to muscle fiber type
603 composition, with Type I fiber abundance being positively correlated with fatigue resistance (see

604 references in Garland, 1988; Schiaffino & Reggiani, 2011). The first study examining endurance
605 properties in muscles from HR mice was at generation 10, and while voluntary exercise on
606 wheels for 2 months improved muscle fatigue-resistance, no significant differences were found
607 between HR and C mice (mini-muscle individuals were not present in the sample) (Zhan *et al.*,
608 1999). Subsequently, Syme *et al.* (2005) reported that the medial gastrocnemius muscle in mini-
609 muscle individuals had significantly slower rates of fatigue for both isometric force and cyclic
610 net work.

611 In the present study we determined endurance *in situ*, in the presence of a functioning
612 circulatory system, across 5 groups of HR mice. Endurance, measured as the slope of the decline
613 in force over the first 90 tetanic contractions (Endur₀₋₉₀), varied significantly in the triceps surae
614 muscle **complex**, being shallowest in the mini-muscle mice (L3 Mini=-0.00348, L6 Mini=-
615 0.00238), steepest in lines L6 and L8 (-0.01676 and -0.01853), and intermediate in L7 (-0.01145)
616 (Fig. 4F). Sustained F/ F₀ (sustained isometric force normalized to peak tetanic force) was
617 higher in mini-muscle mice (Fig. 4G), likely due to the higher prevalence of fatigue-resistant
618 muscle fibers (McGillivray *et al.*, 2009; Talmadge *et al.*, 2014). Although the mini-muscle
619 phenotype has drastic effects on muscular endurance, L7 mice also have evolved to have greater
620 endurance as compared to the other normal-muscled HR lines (Fig. 4). As with changes to the
621 force-velocity properties of this line, this was not reflected in fiber type composition at
622 generation 46, and likely represents either subtle changes that could not be detected using the
623 study of myosin isoforms or subsequent changes since generation 46.

624

625 **Trade-offs and Experimental Studies**

626 Despite the clear rationale for, and evolutionary importance of, organismal-level speed-
627 endurance trade-offs underpinned by muscle-level trade-offs, experimental evidence is
628 inconsistent. On one hand, trade-offs at the muscle level can sometimes be related to
629 organismal-level performance trade-offs. For example, organismal level trade-offs in the “roll-
630 snap” behavior (the rapid snapping of their wings together above their back) of bearded
631 manakins can be partly explained by contraction-relaxation cycling kinetics in the skeletal
632 muscle that actuates the display (Miles *et al.*, 2018). On the other hand, trade-offs at the level of
633 subordinate traits, such as muscles, can be at odds with speed and endurance metrics at the
634 organismal level. For example, at the organismal-level, one study reported an absence of a trade-
635 off between burst swimming performance and endurance capacity in African clawed frogs
636 (Wilson *et al.*, 2002), and another found only marginal evidence for a trade-off between burst
637 (speed and acceleration) and sustained locomotion in lacertid lizards (Vanhooijdonck *et al.*,
638 2014). At the muscle-level, studies of these same specimens have revealed highly significant
639 trade-offs between muscular power output and fatigue resistance (Wilson *et al.*, 2002;
640 Vanhooijdonck *et al.*, 2014). Selection experiments, in which conditions are tightly controlled,
641 may help to resolve the extent to which these trade-offs could exist and be evolutionarily
642 important.

643

644 **Experimental Evolution and Trade-offs in HR mice**

645 Selection experiments and experimental evolution can be used to study evolution in real time by
646 determining the sequence of phenotypic and behavioral changes that occur during adaptation to a
647 defined selective regime (Garland, 2003; Garland & Rose, 2009; Marchini *et al.*, 2014;
648 Biesiadecki *et al.*, 2020). For example, functional trade-offs involving both muscle and bone

649 underlie trade-offs between running and fighting ability that emerged as greyhounds and pit bulls
650 were developed by artificial selection (Pasi & Carrier, 2003; Kemp *et al.*, 2005). However, few
651 studies have used these approaches to elucidate mechanisms that underlie trade-offs, or examine
652 discrepancies between trade-offs at the organismal level and those found among lower-level
653 traits.

654 A significant negative correlation between average running speed and time spent running
655 on wheels among the four replicate HR lines was reported at generation 43 (Garland *et al.*,
656 2011). L3 mini-muscle mice (mini-muscle status was unknown for L6) ran for the fewest
657 minutes per day on wheels, but at the highest average speeds. Mice from L8 ran for the longest
658 durations, but at the slowest average speeds. Line 7 was intermediate for both speed and
659 duration of wheel running.

660 The muscle **complex** data presented here for the HR lines from this selection experiment
661 demonstrate a trade-off between muscle speed and endurance across groups (Table 3; Fig. 5).
662 However, this muscle-level trade-off is the opposite of that seen at the organismal-level (Garland
663 *et al.*, 2011). Mini-muscle mice (L3 Mini and L6 Mini) had the highest endurance ($\text{Endur}_{0.90}$,
664 Sustained F/F_0) but slowest muscle **complexes** (V_{norm}), L6 and L8 had the lowest endurance but
665 fastest muscles, and L7 was intermediate. Hence, although both muscle (Fig. 5) and organismal
666 (Garland *et al.*, 2011) level trade-offs between speed and endurance have been observed across
667 HR lines, the former may not underpin the latter.

668 Muscle and organismal level trade-offs might not reflect one another for various reasons.
669 Firstly, it is important to note that the apparent reversal of the ordering in muscle and organismal
670 level trade-offs (Fig. 5; Garland *et al.*, 2011) may not actually be as much of a discrepancy as it
671 initially appears. Maximal running speeds on wheels (Roach *et al.*, 2012) are well below

672 maximal sprint speeds (Dohm *et al.*, 1996; Girard *et al.*, 2001; Dlugosz *et al.*, 2009; Claghorn *et*
673 *al.*, 2017), and maximal sprint speed is reduced in L3 Mini individuals as compared with L7 and
674 L8 individuals (Dlugosz *et al.*, 2009). Hence, if we had measured sprint speed (Dlugosz *et al.*,
675 2009) and running endurance (Meek *et al.*, 2009) as metrics of organismal-level speed and
676 endurance in this generation, we may not have found any evidence of a trade-off. This would be
677 more in line with previous studies that show evidence of muscle-level trade-off, but no, or
678 marginal, trade-offs at the organismal-level (Wilson *et al.*, 2002; Vanhooydonck *et al.*, 2014).
679 However, the potential to draw different conclusions regarding trade-offs at submaximal and
680 maximal activity levels highlights the complexity of trade-off studies (for a general review of
681 this, see Garland *et al.*, 2022), and calls into question the relationship between muscle properties
682 and organismal performance during submaximal tasks.

683 Hence, there is potential for there not to be a complete reversal of muscle and organismal
684 level trade-offs if different organismal-level metrics were used. However, it does still seem likely
685 that there is some degree of discrepancy. An obvious potential cause of differences between
686 muscle and organismal level traits is that muscle properties are only one of many lower-level
687 traits that contribute to whole-animal locomotor abilities. Although metrics of maximal sprint
688 speed are relatively closely related to aspects of muscle properties among human athletes (e.g.,
689 see Komi, 1984), other morphological, neural, and biomechanical traits are also important. And
690 measures of endurance encompass many additional lower-level traits besides muscle physiology,
691 including biomechanics, oxygen transport and delivery, thermoregulatory abilities, and
692 additional cellular biochemical processes (discussed in Garland, 1988; Jones & Lindstedt, 1993;
693 Schiaffino & Reggiani, 2011; Vanhooydonck *et al.*, 2014; Thompson, 2017). Higher-level
694 factors, such as differences in motivation, are also likely to have major effects on running speed

695 and duration (e.g., see Rhodes *et al.*, 2005; Claghorn *et al.*, 2016; Garland *et al.*, 2016; Roberts *et*
696 *al.*, 2017; Saul *et al.*, 2017 and references therein).

697 Although many of the factors mentioned above are beyond the scope of this study, here
698 we consider in more detail the potential for muscle and biomechanical factors to obscure the
699 effects of muscle-level trade-offs, as a significant amount of literature exists on these topics in
700 the HR mice. Individuals may, at least in part, compensate for the functional constraints that
701 particular muscles impose by activating additional agonistic muscles (discussed in Wilson &
702 James, 2004), and changing their gait. HR mice have evolved narrower stance width than C
703 mice lines, mini-muscle mice have increased duty factor and larger paw contact areas (Claghorn
704 *et al.*, 2017), and female HR mice run more intermittently than C mice (Girard *et al.*, 2001).

705 One specific example of how the intersection of muscle and biomechanical factors could
706 potentially contribute to discrepancies between muscle (Fig. 5) and organismal level (Garland *et*
707 *al.*, 2011) trade-offs is the reduced capacity of the triceps surae to support body weight in mini-
708 muscle lines (Fig. 2B). Locomotor endurance is determined not only by the fatigue resistance of
709 the muscle fibers, but also the total force capacity of the muscle relative locomotor demands.
710 The reduced capacity of the triceps surae of mini-muscle mice to support body weight likely
711 reduces the reserve capacity of the muscular system, meaning that any fatigue of the individual
712 fibers will likely have a greater contribution to organismal fatigue. However, this effect may be
713 offset by further biomechanical changes in mini-muscle mice, such as higher duty factors
714 (Claghorn *et al.*, 2017), which reduce peak force demands during running. Hence, while reduced
715 muscle reserve certainly isn't a definitive explanation for the discrepancies seen between muscle
716 and organismal levels, but it does highlight the emergent nature of organismal performance, and

717 the limited role that any given tissue-level trade-offs may play, particularly during submaximal
718 activities.

719

720 ***Acknowledgements***

721 We thank members of the Garland lab for helping to obtain the animals used here, Allyn
722 Nguyen for helpful discussions, and Anthony R. Ives and David A. Hillis for help with statistical
723 analyses. Supported by U.S. National Science Foundation grant IOS-1121273 to T.G. and N.H.

724

725

726

727 ***Competing Interests***

728 The authors declare no competing or financial interests.

729

730

731 ***Author Contributions***

732 A.A.C., T.G., and N.C.H designed the experiments. A.A.C, S.A., and N.C.H. conducted the
733 experiments and collected data. A.A.C. T.G., and S.A. analyzed the data. A.A.C. drafted the
734 manuscript. A.A.C., T.G., and N.C.H revised and edited the manuscript. All authors approved
735 the final version of the manuscript.

736

737 ***Funding***

738 Supported by National Science Foundation grant IOS-2038528 to T.G. and N.C.H.

739

740 ***Data Availability***

741 Data are available on request from the authors.

742

743 **References**

744 **Ackerly, D.D., Dudley, S.A., Sultan, S.E., Schmitt, J., Coleman, J.S., Linder, C.R.,**
745 **Sandquist, D.R., Geber, M.A., Evans, A.S., Dawson, T.E. and Lechowicz, M.J.** (2000). The
746 evolution of plant ecophysiological traits: Recent advances and future directions. *BioScience* **50**,
747 979.

748 **Agrawal, A.A.** (2020). A scale-dependent framework for trade-offs, syndromes, and
749 specialization in organismal biology. *Ecology* **101**, e02924.

750 **Albuquerque, R.L., Bonine, K.E. and Garland Jr., T.** (2015). Speed and endurance do not
751 trade off in Phrynosomatid lizards. *Physiol. Biochem. Zool.* **88**, 634–647.

752 **Alcazar, J., Csapo, R., Ara, I. and Alegre, L.M.** (2019). On the shape of the force-velocity
753 relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic. *Front.*
754 *Physiol.* **10**, 769

755 **Allen, D.G., Lamb, G.D. and Westerblad, H.** (2008). Skeletal muscle fatigue: Cellular
756 mechanisms. *Physiol. Rev.* **88**, 287–332.

757 **Askew, G.N. and Marsh, R.L.** (1997). The effects of length trajectory on the mechanical power
758 output of mouse skeletal muscles. *J. Exp. Biol.* **200**, 3119–3131.

759 **Asmussen, G. and Maréchal, G.** (1989). Maximal shortening velocities, isomyosins and fibre
760 types in soleus muscle of mice, rats and guinea-pigs. *J. Physiol.* **416**, 245–254.

761 **Barclay, C.J.** (2005) Modelling diffusive O₂ supply to isolated preparations of mammalian
762 skeletal and cardiac muscle. *J. Mus. Res. Cell Mot.* **26**, 225–235

763

764 **Bennett, A.F., Garland Jr., T. and Else, P.L.** (1989). Individual correlation of morphology,
765 muscle mechanics, and locomotion in a salamander. *Am. J. Physiol.-Regul. Integr. Comp.*
766 *Physiol.* **256**, R1200–R1208.

767 **Biesiadecki, B.J., Brotto, M.A., Brotto, L.S., Koch, L.G., Britton, S.L., Nosek, T.M. and**
768 **Lin, J-P.** (2020). Rats genetically selected for low and high aerobic capacity exhibit altered
769 soleus muscle myofilament functions. *Am. J. Physiol. Cell Physiol.* **318**, C422–C429.

770 **Bonine, K.E., Gleeson, T.T. and Garland Jr., T.** (2005). Muscle fiber-type variation in lizards
771 (Squamata) and phylogenetic reconstruction of hypothesized ancestral states. *J. Exp. Biol.* **208**,
772 4529–4547.

773 **Brooks, M.J., Hajira, A., Mohamed, J.S. and Alway, S.E.** (2018). Voluntary wheel running
774 increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles
775 from mice. *J. Appl. Physiol.* **124**, 1616–1628.

776 **Cabelka, C.A., Baumann, C.W., Collins, B.C., Nash, N., Le, G., Lindsay, A., Spangenberg,**
777 **E.E. and Lowe, D.A.** (2019). Effects of ovarian hormones and estrogen receptor α on physical
778 activity and skeletal muscle fatigue in female mice. *Exp. Gerontol.* **115**, 155–164.

779 **Cadney, M.D., Hiramatsu, L., Thompson, Z., Zhao, M., Kay, J.C., Singleton, J.M.,**
780 **Alburqueque, R.L., Schmill, M.P., Saltzman, W. and Garland Jr., T.** (2021). Effects of
781 early-life exposure to Western diet and voluntary exercise on adult activity levels, exercise
782 physiology, and associated traits in selectively bred High Runner mice. *Physiol. Behav.* **234**,
783 113389.

784 **Careau, V. and Wilson, R.S.** (2017). Performance trade-offs and ageing in the ‘world’s greatest
785 athletes.’ *Proc. R. Soc. B Biol. Sci.* **284**, 20171048.

786 **Careau, V., Wolak, M.E., Carter, P.A. and Garland Jr., T.** (2013). Limits to behavioral
787 evolution: The quantitative genetics of a complex trait under directional selection. *Evolution* **67**,
788 3102–3119.

789 **Castro, A. A., F. A. Karakostis, L. E. Copes, H. E. McCleod, A. P. Trivedi, N. E.**
790 **Schwartz, and T. Garland, Jr.** (2022). Effects of selective breeding for voluntary exercise,
791 chronic exercise, and their interaction on muscle attachment site morphology in house mice. *J.*
792 *Anat.* **240**, 279–295.

793

794 **Claflin, D.R. and Faulkner, J.A.** (1989). The force-velocity relationship at high shortening
795 velocities in the soleus muscle of the rat. *J. Physiol.* **411**, 627–637.

796 **Claghorn, G.C., Fonseca, I.A.T., Thompson, Z., Barber, C. and Garland Jr., T.** (2016).
797 Serotonin-mediated central fatigue underlies increased endurance capacity in mice from lines
798 selectively bred for high voluntary wheel running. *Physiol. Behav.* **161**, 145–154.

799 **Claghorn, G.C., Thompson, Z., Kay, J.C., Ordonez, G., Hampton, T.G. and Garland Jr., T.** (2017).
800 Selective breeding and short-term access to a running wheel alter stride characteristics in
801 house mice. *Physiol. Biochem. Zool.* **90**, 533–545.

802 **Cohen, A.A., Coste, C.F.D., Li, X., Bourg, S. and Pavard, S.** (2020). Are trade-offs really the
803 key drivers of ageing and life span? *Funct. Ecol.* **34**, 153–166.

804 **Drugosz, E.M., Chappell, M.A., McGillivray, D.G., Syme, D.A. and Garland Jr., T.** (2009).
805 Locomotor trade-offs in mice selectively bred for high voluntary wheel running. *J. Exp. Biol.*
806 **212**, 2612–2618.

807 **Dohm, M.R., Hayes, J.P. and Garland Jr., T.** (1996). Quantitative genetics of sprint running
808 speed and swimming endurance in laboratory house mice *Mus domesticus*. *Evolution* **42**, 355–
809 350.

810 **Esbjörnsson, M., Sylvén, C., Holm, I. and Jansson, E.** (1993). Fast twitch fibres may predict
811 anaerobic performance in both females and males. *Int. J. Sports Med.* **14**, 257–263.

812 **Garland Jr., T.** (1988). Genetic basis of activity metabolism. I. Inheritance of speed, stamina,
813 and antipredator displays in the Garter Snake *Thamnophis Sirtalis*. *Evolution* **42**, 335-350

814 **Garland Jr., T.** (2003). Selection experiments: An under-utilized tool in biomechanics and
815 organismal biology. In: *Vertebrate Biomechanics and Evolution*. Oxford, UK: Bios Scientific
816 Publisher,.

817 **Garland Jr., T. and Carter, P.A.** (1994). Evolutionary Physiology. *Annu. Rev. Physiol.* **56**,
818 579–621.

819 **Garland Jr., T., Downs, C. and Ives, A.R.** (2022). Invited Perspective: Trade-offs (and
820 constraints) in organismal biology. *Physiol. Biochem. Zool.* **95**, 82–112.

821 **Garland Jr., T., Kelly, S.A., Malisch, J.L., Kolb, E.M., Hannon, R.M., Keeney, B.K., Van**
822 **Cleave, S.L. and Middleton, K.M.** (2011). How to run far: Multiple solutions and sex-specific
823 responses to selective breeding for high voluntary activity levels. *Proc. R. Soc. B Biol. Sci.* **278**,
824 574–581.

825 **Garland Jr., T., Morgan, M.T., Swallow, J.G., Rhodes, J.S., Girard, I., Belter, J.G. and**
826 **Carter, P.A.** (2002). Evolution of a small-muscle polymorphism in lines of house mice selected
827 for high activity levels. *Evolution* **56**, 1267–1275.

828 **Garland Jr., T. and Rose, M.R.** (eds). (2009). *Experimental evolution: Concepts, methods, and*
829 *applications of selection experiments*. Berkeley, CA: University of California Press,.

830 **Garland Jr., T., Zhao, M. and Saltzman, W.** (2016). Hormones and the evolution of complex
831 traits: Insights from artificial selection on behavior. *Integr. Comp. Biol.* **56**, 207–224.

832 **Girard, I., McAleer, M.W., Rhodes, J.S. and Garland Jr., T.** (2001). Selection for high
833 voluntary wheel-running increases speed and intermittency in house mice (*Mus domesticus*). *J.*
834 *Exp. Biol.* **204**, 4311–4320.

835 **Gleeson, T.T. and Harrison, J.M.** (1988). Muscle composition and its relation to sprint running
836 in the lizard *Dipsosaurus dorsalis*. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **255**, R470–
837 R477.

838 **Goodman, B.A., Krockenberger, A.K. and Schwarzkopf, L.** (2007). Master of them all:
839 Performance specialization does not result in trade-offs in tropical lizards. *Evol. Ecol. Res.* **9**,
840 527–546.

841 **Guderley, H., Houle-Leroy, P., Diffee, G.M., Camp, D.M. and Garland Jr., T.** (2006).
842 Morphometry, ultrastructure, myosin isoforms, and metabolic capacities of the “mini muscles”
843 favoured by selection for high activity in house mice. *Comp. Biochem. Physiol. B Biochem. Mol.*
844 *Biol.* **144**, 271–282.

845 **Henneman, E.** (1957) Relation between size of neurons and their susceptibility to discharge.
846 *Science* **126**, 1345–1347.

847

848 **Herrel, A. and Bonneaud, C.** (2012). Trade-offs between burst performance and maximal
849 exertion capacity in a wild amphibian, *Xenopus tropicalis*. *J. Exp. Biol.* **215**, 3106–3111

850 **Herrel, A., Podos, J., Vanhooydonck, B. and Hendry, A.P.** (2009). Force-velocity trade-off in
851 Darwin's finch jaw function: A biomechanical basis for ecological speciation? *Funct. Ecol.* **23**,
852 119–125.

853 **Hill, A.V.** (1951). The effect of series compliance on the tension developed in a muscle twitch.
854 *Proc. R. Soc. Lond. B Biol. Sci.* **138**, 325–329.

855 **Hill, A.V.** (1938). The heat of shortening and the dynamic constants of muscle. *Proc. R. Soc.
856 Lond. B Biol. Sci.* **126**, 136–195.

857 **Hill, C., James, R.S., Cox, V.M., Seebacher, F. and Tallis, J.** (2020). Age-related changes in
858 isolated mouse skeletal muscle function are dependent on sex, muscle, and contractility mode.
859 *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **319**, R296–R314.

860 **Hillis, D., Yadgary, L., Weinstock, G. M., Pardo-Manuel de Villena, F., Pomp, D., Fowler,
861 A., Xu, S., Chan, F., and Garland, Jr, T.** (2020). Genetic basis of aerobically supported
862 voluntary exercise: results from a selection experiment with house mice. *Genetics* **216**, 781–804.

863

864 **Hiramatsu, L.** (2017). Physiological and genetic causes of a selection limit for voluntary wheel-
865 running in mice. *PhD thesis*, University of California, Riverside, CA.

866 **Hiramatsu, L., Kay, J.C., Thompson, Z., Singleton, J.M., Claghorn, G.C., Albuquerque,
867 R.L., Ho, B., Ho, B., Sanchez, G. and Garland Jr., T.** (2017). Maternal exposure to Western
868 diet affects adult body composition and voluntary wheel running in a genotype-specific manner
869 in mice. *Physiol. Behav.* **179**, 235–245.

870 **Hodson-Tole, E.F. and Wakeling, J.M.** (2008) Motor unit recruitment patterns 1: responses to
871 changes in locomotor velocity and incline. *J. Exp. Biol.* **211**, 1882–1892

872

873 **Holt, N.C. and Azizi, E.** (2014). What drives activation-dependent shifts in the force–length
874 curve? *Biol. Lett.* **10**, 20140651.

875 **Holt, N.C., Danos, N., Roberts, T.J. and Azizi, E.** (2016). Stuck in gear: Age-related loss of
876 variable gearing in skeletal muscle. *J. Exp. Biol.* **219**, 998–1003.

877 **Houle-Leroy, P., Guderley, H., Swallow, J.G. and Garland Jr., T.** (2003). Artificial selection
878 for high activity favors mighty mini-muscles in house mice. *Am. J. Physiol. Regul. Integr. Comp.
879 Physiol.* **284**, R433–R443.

880 **Ives, A.R., Midford, P.E. and Garland Jr., T.** (2007). Within-species variation and
881 measurement error in phylogenetic comparative methods. *Syst. Biol.* **56**, 252–270.

882 **James, R.S., Wilson, R.S. and Askew, G.N.** (2004). Effects of caffeine on mouse skeletal
883 muscle power output during recovery from fatigue. *J. Appl. Physiol.* **96**, 545–552.

884 **Javidi, M., McGowan, C.P. and Lin, D.C.** (2020). Estimation of the force-velocity properties
885 of individual muscles from measurement of the combined plantar flexor properties. *J. Exp. Biol.*
886 **223**, jeb.219980.

887 **Jones, J.H. and Lindstedt, S.L.** (1993). Limits to maximal performance. *Annu. Rev. Physiol.*
888 **55**, 547–569.

889 **Kemp, T.J., Bachus, K.N., Nairn, J.A. and Carrier, D.R.** (2005). Functional trade-offs in the
890 limb bones of dogs selected for running versus fighting. *J. Exp. Biol.* **208**, 3475–3482.

891 **Kolb, E.M., Kelly, S.A. and Garland Jr., T.** (2013). Mice from lines selectively bred for high
892 voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access.
893 *Physiol. Behav.* **112–113**, 49–55.

894 **Kolb, E.M., Kelly, S.A., Middleton, K.M., Sermsakdi, L.S., Chappell, M.A. & Garland Jr.,**
895 **T.** (2010). Erythropoietin elevates $VO_{2\text{max}}$ but not voluntary wheel running in mice. *J. Exp. Biol.*
896 **213**, 510–519.

897 **Komi, P.V.** (1984). Physiological and biomechanical correlates of muscle function: effects of
898 muscle structure and stretch-shortening cycle on force and speed. *Exerc. Sport Sci. Rev.* **12**, 81–
899 121.

900 **Liddell, E.G.T., Sherrington, C.S.** (1925) Recruitment and some other factors of reflex
901 inhibition. *Proc. R. Soc. Lond. B* **97**, 488–518

902

903 **Marchini, M., Sparrow, L.M., Cosman, M.N., Dowhanik, A., Krueger, C.B., Hallgrímsson, B. and Rolian, C.** (2014). Impacts of genetic correlation on the independent evolution of body
904 mass and skeletal size in mammals. *BMC Evol. Biol.* **14**, 258.

905

906 **Maréchal, G. and Beckers-Bleukx, G.** (1993). Force-velocity relation and isomyosins in soleus
907 muscles from two strains of mice (C57 and NMRI). *Eur. J. Physiol.* **424**, 478–487.

908

909 **Marsh, R.L. and Bennett, A.F.** (1986). Thermal dependence of contractile properties of skeletal
910 muscle from the lizard *Sceloporus occidentalis* with comments on methods for fitting and
comparing force-velocity curves. *J. Exp. Biol.* **126**, 63–77.

911

912 **Marsh, R.L. and Bennett, A.F.** (1985). Thermal dependence of isotonic contractile properties
913 of skeletal muscle and sprint performance of the lizard *Dipsosaurus dorsalis*. *J. Comp. Physiol. B* **155**, 541–551.

914

915 **Martin, L.B., Ghalambor, C.K. and Woods, H.A.** (2015). *Integrative organismal biology*.
Hoboken, New Jersey: Wiley Blackwell.

916

917 **Mauro, A.A. and Ghalambor, C.K.** (2020). Trade-offs, pleiotropy, and shared molecular
pathways: A unified view of constraints on adaptation. *Integr. Comp. Biol.* **60**, 332–347.

918

919 **Mayfield, D.L., Cresswell, A.G. and Lichtwark, G.A.** (2016). Effects of series elastic
compliance on muscle force summation and the rate of force rise. *J. Exp. Biol.* **219**, 3261–3270.

920 **McGillivray, D.G., Garland Jr., T., Dlugosz, E.M., Chappell, M.A. and Syme, D.A.** (2009).
921 Changes in efficiency and myosin expression in the small-muscle phenotype of mice selectively
922 bred for high voluntary running activity. *J. Exp. Biol.* **212**, 977–985.

923 **Meek, T.H., Lonquich, B.P., Hannon, R.M. and Garland Jr., T.** (2009). Endurance capacity
924 of mice selectively bred for high voluntary wheel running. *J. Exp. Biol.* **212**, 2908–2917.

925 **Mendez, J. and Keys, A.** (1960). Density and composition of mammalian muscle. *Metabolism*
926 **9**, 184–188.

927 **Miles, M.C., Goller, F. and Fuxjager, M.J.** (2018). Physiological constraint on acrobatic
928 courtship behavior underlies rapid sympatric speciation in bearded manakins. *eLife* **7**, e40630.

929 **Morris, C.R. and Askew, G.N.** (2010) The mechanical power output of the pectoralis muscle of
930 cockatiel (*Nymphicus hollandicus*): The *in vivo* muscle length trajectory and activity patterns and
931 their implications for power modulation. *J. Exp. Biol.* **213**, 2770–2780

932

933 **Nguyen, A., Balaban, J.P., Azizi, E., Talmadge, R.J. and Lappin, A.K.** (2020). Fatigue
934 resistant jaw muscles facilitate long-lasting courtship behaviour in the southern alligator lizard
935 (*Elgaria multicarinata*). *Proc. R. Soc. B Biol. Sci.* **287**, 20201578.

936 **Pagala, M.K., Ravindran, K., Namba, T. and Grob, D.** (1998). Skeletal muscle fatigue and
937 physical endurance of young and old mice. *Muscle Nerve* **21**, 1729–1739.

938 **Pasi, B.M. and Carrier, D.R.** (2003). Functional trade-offs in the limb muscles of dogs selected
939 for running vs. fighting: Functional trade-offs of running vs. fighting. *J. Evol. Biol.* **16**, 324–332.

940 **Ranatunga, K.W.** (1984). The force-velocity relation of rat fast- and slow-twitch muscles
941 examined at different temperatures. *J. Physiol.* **351**, 517–529.

942 **Renaud, J.M. & Kong, M.** (1991). The effects of isotonic contractions on the rate of fatigue
943 development and the resting membrane potential in the sartorius muscle of the frog, *Rana*
944 *pipiens*. *Can. J. Physiol. Pharmacol.* **69**, 1754–1759.

945 **Rhodes, J.S., Gammie, S.C. & Garland Jr., T.** (2005). Neurobiology of mice selected for high
946 voluntary wheel-running activity. *Integr. Comp. Biol.* **45**, 438–455.

947 **Roach, G.C., Edke, M. and Griffin, T.M.** (2012). A novel mouse running wheel that senses
948 individual limb forces: biomechanical validation and *in vivo* testing. *J. Appl. Physiol.* **113**, 627–
949 635.

950 **Roberts, M.D., Ruegsegger, G.N., Brown, J.D. and Booth, F.W.** (2017). Mechanisms
951 associated with physical activity behavior: Insights from rodent experiments. *Exerc. Sport Sci.*
952 *Rev.* **45**, 217–222.

953 **Rome, L.C., Funke, R.P., Alexander, R.M., Lutz, G., Aldridge, H., Scott, F. and Freedman,**
954 **M.** (1988). Why animals have different muscle fibre types. *Nature* **335**, 824–827.

955 **Santana, S.E.** (2016). Quantifying the effect of gape and morphology on bite force:
956 Biomechanical modelling and *in vivo* measurements in bats. *Funct. Ecol.* **30**, 557–565.

957 **Saul, M.C., Majdak, P., Perez, S., Reilly, M., Garland Jr., T. and Rhodes, J.S.** (2017). High
958 motivation for exercise is associated with altered chromatin regulators of monoamine receptor
959 gene expression in the striatum of selectively bred mice. *Genes Brain Behav.* **16**, 328–341.

960 **Scales, J.A. and Butler, M.A.** (2016). Adaptive evolution in locomotor performance: How
961 selective pressures and functional relationships produce diversity. *Evolution* **70**: 48–61.

962 **Schaeffer, P.J. and Lindstedt, S.L.** (2013). How animals move: Comparative lessons on animal
963 locomotion. In: *Comprehensive Physiology*. Hoboken, NJ: John Wiley & Sons, Inc.

964 **Schiaffino, S. and Reggiani, C.** (2011). Fiber types in mammalian skeletal muscles. *Physiol.*
965 *Rev.* **91**, 1447–1531.

966 **Spainhower, K.B., Cliffe, R.N., Metz, A.K., Barkett, E.M., Kiraly, P.M., Thomas, D.R.,**
967 **Kennedy, S.J., Avey-Arroyo, J.A. and Butcher, M.T.** (2018). Cheap labor: Myosin fiber type
968 expression and enzyme activity in the forelimb musculature of sloths (*Pilosa: Xenarthra*). *J.*
969 *Appl. Physiol.* **125**, 799–811.

970 **Swallow, J.G., Carter, P.A. and Garland Jr., T.** (1998). Artificial selection for increased
971 wheel-running behavior in house mice. *Behav. Genet.* **28**, 227–237.

972 **Syme, D.A., Evashuk, K., Grintuch, B., Rezende, E.L. & Garland Jr., T.** (2005). Contractile
973 abilities of normal and “mini” triceps surae muscles from mice (*Mus domesticus*) selectively
974 bred for high voluntary wheel running. *J. Appl. Physiol.* **99**, 1308–1316.

975 **Talmadge, R.J., Acosta, W. & Garland, Jr., T.** (2014). Myosin heavy chain isoform
976 expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running. *Mech.*
977 *Dev.* **134**, 16–30.

978 **Thompson, M.A.** (2017). Physiological and biomechanical mechanisms of distance specific
979 human running performance. *Integr. Comp. Biol.* **57**, 293–300.

980 **Toro, E., Herrel, A. and Irschick, D.** (2004). The evolution of jumping performance in
981 Caribbean *Anolis* lizards: Solutions to biomechanical trade-offs. *Am. Nat.* **163**, 844–856.

982 **Vanhooydonck, B., James, R.S., Tallis, J., Aerts, P., Tadic, Z., Tolley, K.A., Measey, G.J.**
983 **and Herrel, A.** (2014). Is the whole more than the sum of its parts? Evolutionary trade-offs
984 between burst and sustained locomotion in lacertid lizards. *Proc. R. Soc. B Biol. Sci.* **281**,
985 20132677.

986 **Vanhooydonck, B., Van Damme, R. and Aerts, P.** (2001). Speed and stamina trade-off in
987 lacertid lizards. *Evolution* **55**, 1040–1048.

988 **Williams, T.M., Dobson, G.P., Mathieu-Costello, O., Morsbach, D., Worley, M.B. and**
989 **Phillips, J.A.** (1997). Skeletal muscle histology and biochemistry of an elite sprinter, the African
990 cheetah. *J. Comp. Physiol.* **167**, 527–535.

991 **Wilson, R.S. and James, R.S.** (2004). Constraints on muscular performance: trade-offs between
992 power output and fatigue resistance. *Proc. R. Soc. Lond. B Biol. Sci.* **271**, S222–S225

993 **Wilson, R.S., James, R.S. and Damme, R.V.** (2002). Trade-offs between speed and endurance.
994 *J. Exp. Biol.* **205**, 1145–1152.

995 **Zhan, W.Z., Swallow, J.G., Garland, T., Proctor, D.N., Carter, P.A. & Sieck, G.C.** (1999).
996 Effects of genetic selection and voluntary activity on the medial gastrocnemius muscle in house
997 mice. *J. Appl. Physiol.* **87**, 2326–2333.

998 **Zhao, X., Yoshida, M., Brotto, L., Takeshima, H., Weisleder, N., Hirata, Y., Nosek, T.M.,**
999 **Ma, J. and Brotto, M.** (2005). Enhanced resistance to fatigue and altered calcium handling
1000 properties of sarcalumenin knockout mice. *Physiol. Genomics* **23**, 72–78.

1001

1002 **Tables**

1003 **Table 1.** Definitions of muscle dimensions and contractile properties of the triceps surae
 1004 complex in HR mice.

1005

Abbreviations	Definition and Functional Significance
F_0 (N)	Peak isometric, tetanic force of the triceps surae complex
Anatomical CSA (cm ²)	Anatomical cross-sectional area of the triceps surae complex [((Triceps surae mass (g)/1000)/1060)/ (Triceps surae length (mm)/1000) *10000] (Mendez & Keys, 1960)
Stress (N/cm ²)	Peak isometric, tetanic stress of the triceps surae complex [(F_0 /'Anatomical CSA')] (Askew & Marsh, 1997; Zhan <i>et al.</i> , 1999; Syme <i>et al.</i> , 2005; Holt <i>et al.</i> , 2016)
F_0 Mass (N/g)	Peak tetanic force of the triceps surae complex normalized to body mass [(F_0 /'Body Mass')]
TP_{tw} (ms)	Time from muscle activation to peak twitch force (Marsh & Bennett, 1985, 1986; Bennett <i>et al.</i> , 1989; Askew & Marsh, 1997; Syme <i>et al.</i> , 2005)
TR₅₀ (ms)	Time from peak twitch force to 50% relaxation (Marsh & Bennett, 1985, 1986; Bennett <i>et al.</i> , 1989; Askew & Marsh, 1997; Syme <i>et al.</i> , 2005)
F/F_0 (N)	Active force of isotonic contractions divided by F_0 (0.1-0.9 F_0) (Marsh & Bennett, 1985, 1986; Bennett <i>et al.</i> , 1989; Askew & Marsh, 1997; Syme <i>et al.</i> , 2005; Holt <i>et al.</i> , 2016; Alcazar <i>et al.</i> , 2019)
V_{norm}	Shortening velocity in isotonic contractions (0.1-0.9 F_0) divided by muscle length (Marsh & Bennett, 1985, 1986; Bennett <i>et al.</i> , 1989; Askew & Marsh, 1997; Syme <i>et al.</i> , 2005; Holt <i>et al.</i> , 2016; Alcazar <i>et al.</i> , 2019)
V_{abs}	Absolute shortening velocity in isotonic contractions (Marsh & Bennett, 1985, 1986; Bennett <i>et al.</i> , 1989; Askew & Marsh, 1997; Syme <i>et al.</i> , 2005; Holt <i>et al.</i> , 2016; Alcazar <i>et al.</i> , 2019)
V_{normax} (mm s ⁻¹)	Maximal shortening velocity normalized by muscle length (Marsh & Bennett, 1985, 1986; Askew & Marsh, 1997; Zhan <i>et al.</i> , 1999; Syme <i>et al.</i> , 2005; Holt <i>et al.</i> , 2016; Alcazar <i>et al.</i> , 2019)
V_{max} (mm s ⁻¹)	Absolute maximal shortening velocity (Marsh & Bennett, 1985, 1986; Askew & Marsh, 1997; Zhan <i>et al.</i> , 1999; Syme <i>et al.</i> , 2005; Holt <i>et al.</i> , 2016; Alcazar <i>et al.</i> , 2019)
Endur₀₋₉₀	Linear fit (slope) of the first 90 isometric contractions of the triceps surae complex

Sustained F (N)	Sustained isometric force of the muscle after first 90 contractions of the fatigue protocol and after tetanic force stops declining
Sustained F/ F₀ (N)	Sustained isometric force normalized to peak tetanic force

1006

1007

1008 **Table 2.** Repeated-measures analyses for force-velocity measurements based on second-order
 1009 polynomial fits for absolute velocity (V_{abs}) and normalized velocity (V_{norm}). For both dependent
 1010 variables, the parameter estimates were negative for F/F_0 , positive for $Z(F/F_0)^2$, and positive for
 1011 age.

1012

V_{abs} N=192				V_{norm} N=184			
	F	d.f.	P		F	d.f.	P
Group	102.44	4,180	<0.0001		56.48	4,172	<0.0001
F/F₀	995.63	1,180	<0.0001		722.36	1,172	<0.0001
Z(F/F₀)²	39.67	1,180	<0.0001		24.18	1,172	<0.0001
Age	85.85	1,180	<0.0001		101.71	1,172	<0.0001
F/F₀ * Group	19.52	4,180	<0.0001		9.01	4,172	<0.0001

V_{abs}	Least Squares Means	SE	V_{norm}	Least Squares Means	SE	
L3 Mini	25.18	0.52		1.831	0.054	
L6 Mini	25.53	0.85		1.905	0.074	
L6	40.44	1.68		3.139	0.158	
L7	37.17	1.61		2.727	0.097	
L8	50.28	1.30		3.482	0.128	

1013

1014

1015 **Table 3.** Pairwise Pearson correlations for Least Squares Means of force-velocity, endurance
 1016 properties, and isometric contractile properties (N = 5), showing statistically significant
 1017 correlations between V_{normax} and Endur_{0-90} , V_{normax} and Sustained F/F₀, and Endur_{0-90} and
 1018 Sustained F/F₀ (see Fig. 5).

	V_{normax}	Endur_{0-90}	Stress	TP_{tw}	TR_{50}	Sust. F/F ₀
V_{normax}	Correlation	-.993	-.266	.143	-.148	-.971
	Sig. (2-tailed)	.001	.666	.818	.812	0.006
Endur_{0-90}	Correlation		.340	-.040	.111	.961**
	Sig. (2-tailed)		.576	.949	.859	0.009
Stress	Correlation			.341	.466	0.397
	Sig. (2-tailed)			.574	.429	0.508
TP_{tw}	Correlation				-.261	-0.146
	Sig. (2-tailed)				.672	0.815
TR_{50}	Correlation					0.375
	Sig. (2-tailed)					0.534

1019

1020

1021 **Fig. Legends**

1022 Fig. 1. Fig. 1A: Least square means and standard errors of body mass for each line (L3 Mini, L6
1023 Mini, L6, L7 and L8). Age was positively associated with body size and both L6 Mini and L7
1024 mice were significantly lighter when compared with the other lines. Fig. 1B: Least square
1025 means and standard errors of triceps surae muscle length for each line. Neither age or body mass
1026 was associated with muscle length, and the lines did not differ significantly. Fig. 1C: Least
1027 square means and standard errors of triceps surae muscle mass for each line. Triceps surae
1028 muscle mass was positively associated with body mass, and mini-muscle mice (L3 Mini and L6
1029 Mini) had significantly lighter muscles when compared with the other lines (L6, L7 and L8),
1030 with L7 having intermediate values. Fig. 1D: Least square means and standard errors of
1031 Anatomical CSA for each line. Mini-muscle mice (L3 Mini and L6 Mini) had significantly
1032 lower Anatomical CSA values when compared with the other lines. L3 Mini N=6, L6 Mini N=5,
1033 L6 N=6, L7 N=8, and L8 N=6 for all traits presented in this figure.

1034

1035 Fig. 2. Fig. 2A: Least square means and standard errors of Stress for each line (L3 Mini, L6
1036 Mini, L6, L7 and L8). Neither age or body mass was associated with Stress and the lines did not
1037 differ significantly. Fig. 2B: Least square means and standard errors of F_0 Mass for each line.
1038 Mini-muscle mice (L3 Mini and L6 Mini) had significantly lower F_0 Mass values when
1039 compared with the other lines (L6, L7, and L8). Fig. 2C: Least square means and standard errors
1040 of TP_{tw} for each line. Neither age or body mass was associated with TP_{tw} , and the lines did not
1041 differ significantly. Fig. 2D: Least square means and standard errors of TR_{50} for each line.
1042 Neither age or body mass was associated with TR_{50} , and the lines did not differ significantly. L3

1043 Mini N=6, L6 Mini N=5, L6 N=6, L7 N=8, and L8 N=6 for all traits presented in this figure with
1044 the exception of F_0 Mass where L7 N=7.

1045

1046 Fig. 3. Fig. 3A: Representative force-velocity trace for L3 Mini, with (F/F_0) on the x-axis and
1047 absolute shortening velocity on the y-axis. The force-velocity points were curve-fitted using the
1048 second-order polynomials and maximal shortening velocity mm s^{-1} estimates using this fit are
1049 visually rendered. Fig. 3B: Representative force-velocity trace for L6 Mini. Fig. 3C:
1050 Representative force-velocity trace for L6. Fig. 3D: Representative force-velocity trace for L7.
1051 Fig. 3E: Representative force-velocity trace for L8. Fig. 3F: Least square means and standard
1052 errors of V_{\max} F_0 Mass for each line based on second-order polynomials. V_{\max} was positively
1053 associated with age, and mini-muscle mice (L3 Mini and L6 Mini) had significantly lower V_{\max}
1054 values when compared with the other lines (L6, L7 and L8). Of the normal-muscle lines, L8 had
1055 the highest V_{\max} value and L6 and L7 were intermediate. The repeated measured design of the
1056 force-velocity experiment meant there were a total of 192 total data points. Of these there were
1057 44 data points from 6 individuals in L3 Mini, 33 data points from 5 individuals in L6 Mini, 30
1058 data points from 4 individuals in L6, 53 data points from 7 individuals in L7, and 32 data points
1059 from 5 individuals in L8.

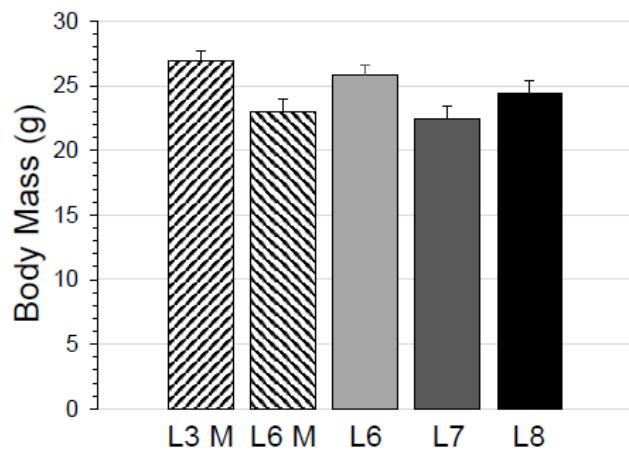
1060

1061 Fig. 4. Fig. 4A: Representative endurance trace wave profile for L3 Mini, with Contraction # on
1062 the x-axis and isometric force on the y-axis. The linear fit (Endur_{0-90}) of the decline in force over
1063 the first 90 tetanic contractions and the average sustained force (Sustained F) are visually
1064 rendered. Fig. 4B: Representative endurance trace wave profile for L6 Mini. Fig. 4C:
1065 Representative endurance trace wave profile for L6. Fig. 4D: Representative endurance trace

1066 wave profile for L7. Fig. 4E: Representative endurance trace wave profile for L8. L8 mice all
1067 fatigued within the first 200 contractions. Fig. 4F: Least square means and standard errors of
1068 Endur₀₋₉₀ for each line. L3 Mini N=6, L6 Mini N=5, L6 N=6, L7 N=8, and L8 N=5. Endur₀₋₉₀
1069 was positively associated with age, and mini-muscle mice (L3 Mini and L6 Mini) had
1070 significantly lower Endur₀₋₉₀ values when compared with the other lines (L6, L7 and L8), with
1071 L7 having intermediate Endur₀₋₉₀ values. Fig. 4F: Least square means and standard errors of
1072 Sustained F/ F₀ for each line. L3 Mini N=6, L6 Mini N=5, L6 N=5, L7 N=6, and L8 N=3 Mini-
1073 muscle mice (L3 Mini and L6 Mini) had significantly lower Sustained F/ F₀ values when
1074 compared with the other lines.

1075

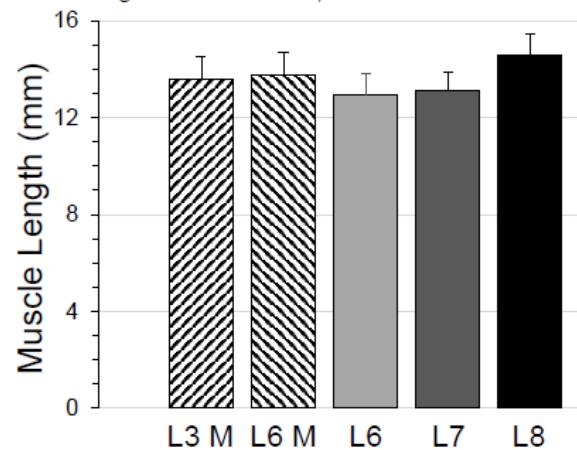
1076 Fig. 5. Fig. 5A: Scatterplot of least squares means and standard errors for V_{normax} (normalized
1077 maximal shortening velocity) and Endur₀₋₉₀ (linear slope of the first 90 contractions). V_{normax} and
1078 Endur₀₋₉₀ have a negative relationship. Mini-muscle mice (L3 Mini and L6 Mini) have the
1079 highest endurance (Endur₀₋₉₀) but slowest muscles (V_{normax}), L6 and L8 have the lowest
1080 endurance but fastest muscles, and L7 is intermediate. Fig. 5B: Scatterplot of least squares means
1081 and standard errors for V_{normax} (normalized maximal shortening velocity) and Sustained F/F₀
1082 (normalized force that can be sustained). V_{normax} and Sustained F/F₀ have a negative
1083 relationship. Mini-muscle mice (L3 Mini and L6 Mini) have the highest sustained force (Sust.
1084 F/F₀) but slowest muscles (V_{normax}), L8 has the lowest sustained force but the highest V_{normax}.
1085 Fig. 5C: Scatterplot of least squares means and standard errors for Sustained F/F₀ and Endur₀₋₉₀.
1086 Sustained F/F₀ and Endur₀₋₉₀ have a positive relationship as would be expected given that they are
1087 both metrics of muscle endurance. N values are as for Fig. 3 and Fig. 4.


1088

1089 Figure 1

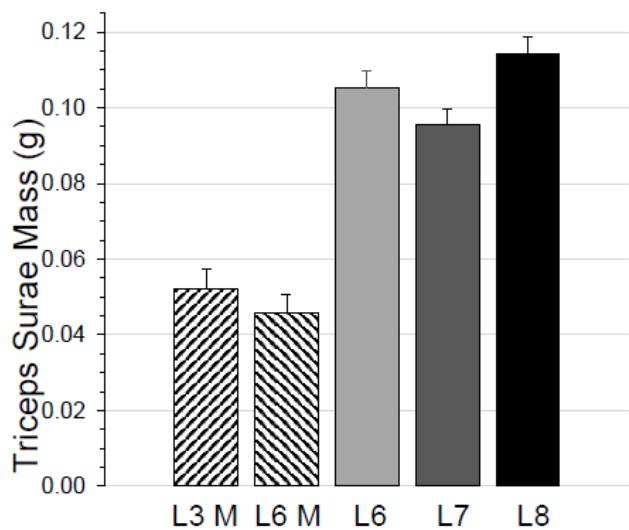
A.

Type 3 Tests of Fixed Effects


Effect	d.f.	F	P
Group	4, 25	6.16	0.0014
Age	1, 25	12.22	0.0018

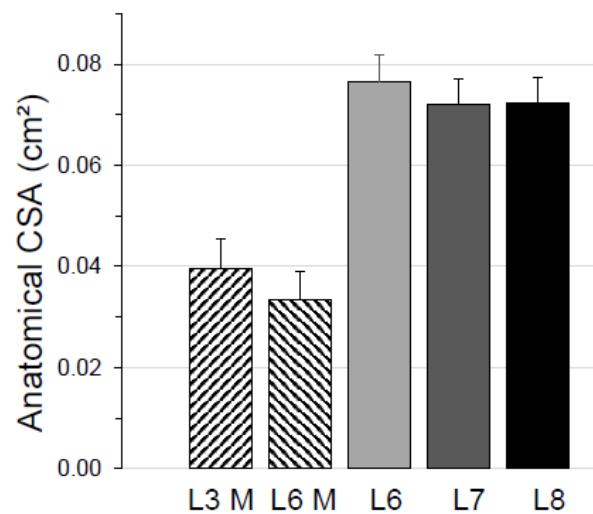
B.

Type 3 Tests of Fixed Effects


Effect	d.f.	F	P
Group	4, 24	0.69	0.6064
Body Mass	1, 24	0.65	0.4284
Age	1, 24	0.20	0.6553

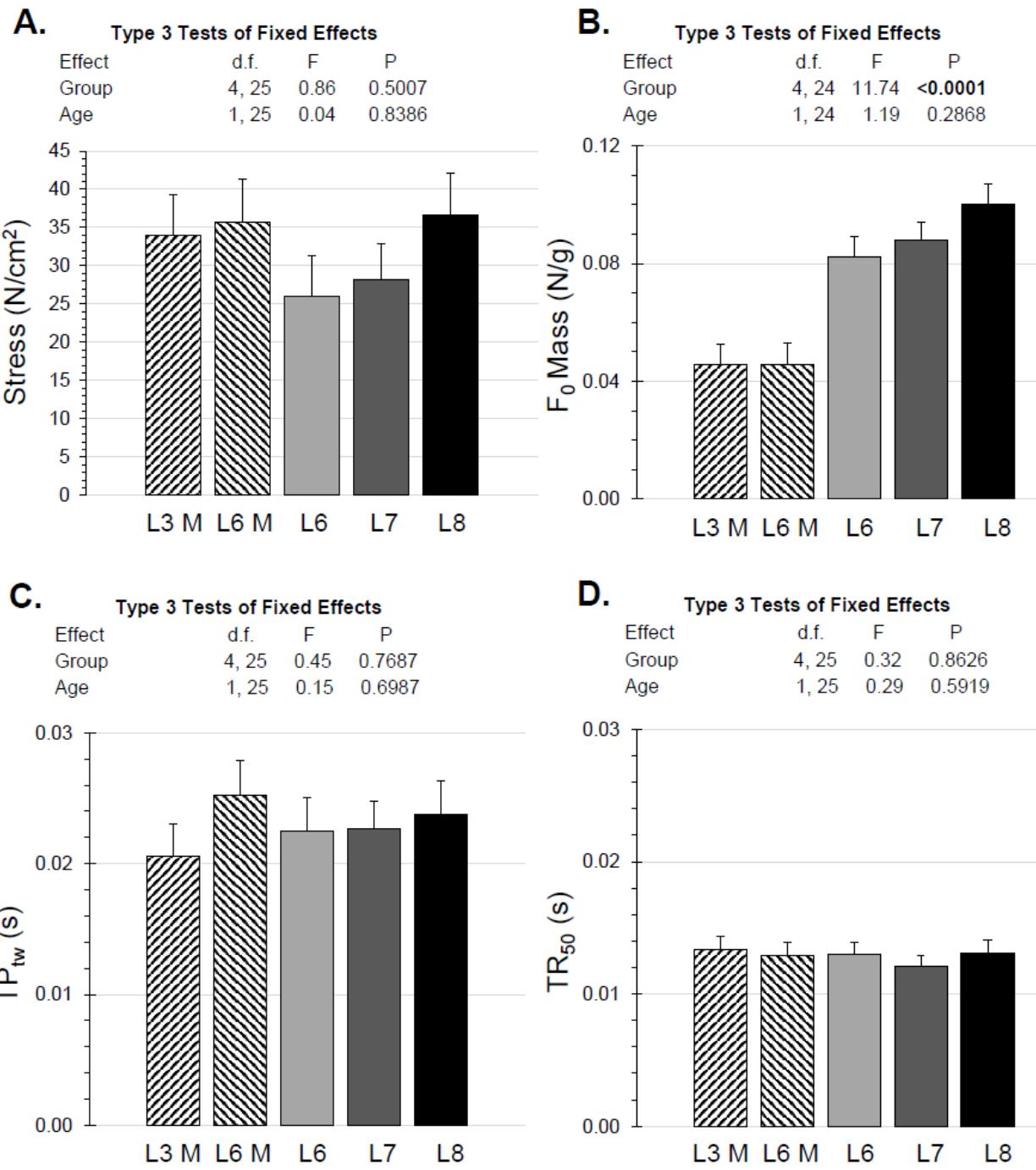
C.

Type 3 Tests of Fixed Effects


Effect	d.f.	F	P
Group	4, 24	50.67	<0.0001
Body Mass	1, 24	2.91	0.1007
Age	1, 24	0.00	0.9735

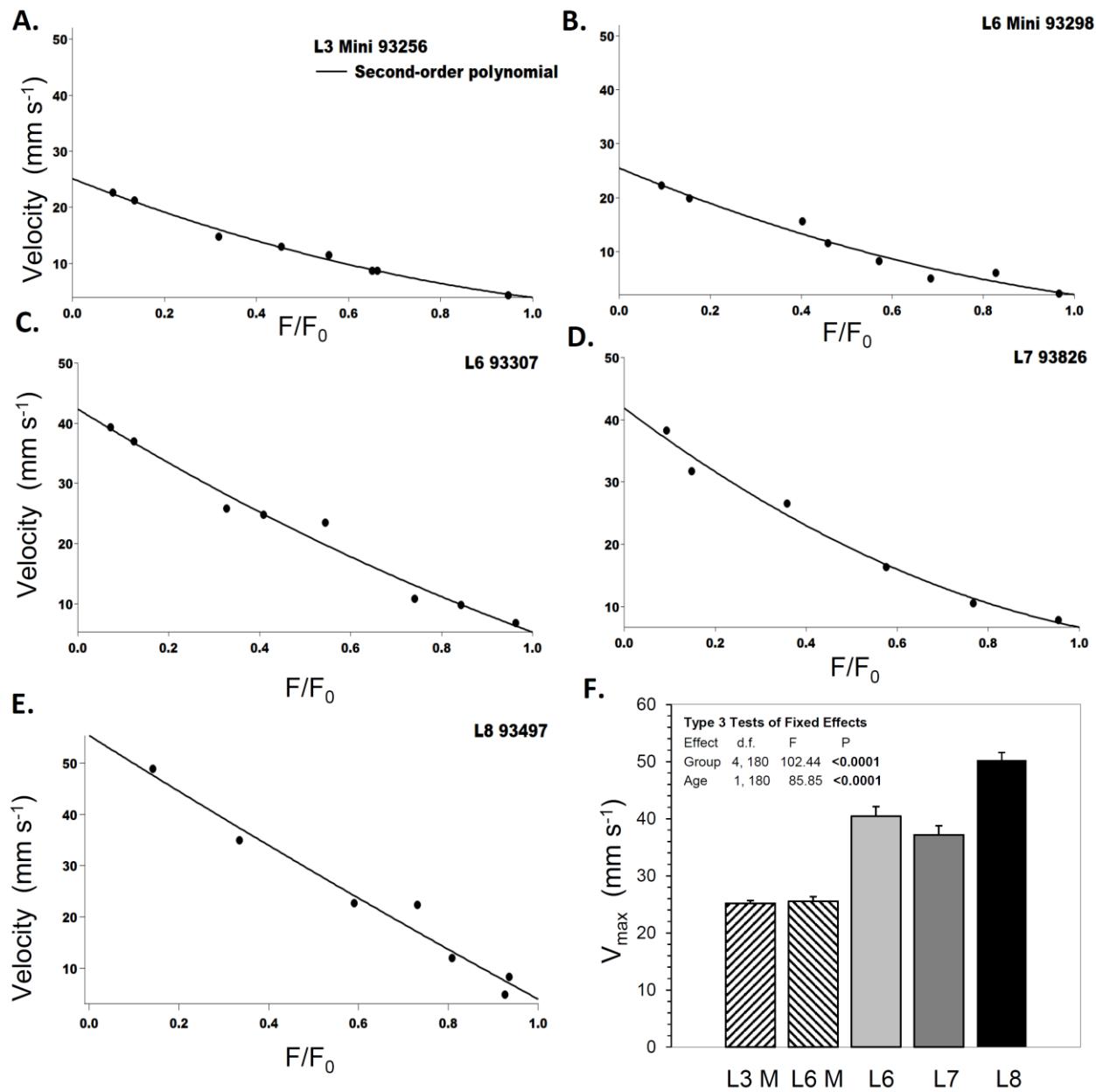
D.

Type 3 Tests of Fixed Effects


Effect	d.f.	F	P
Group	4, 24	16.72	<0.0001
Body Mass	1, 24	2.01	0.1696
Age	1, 24	0.88	0.3585

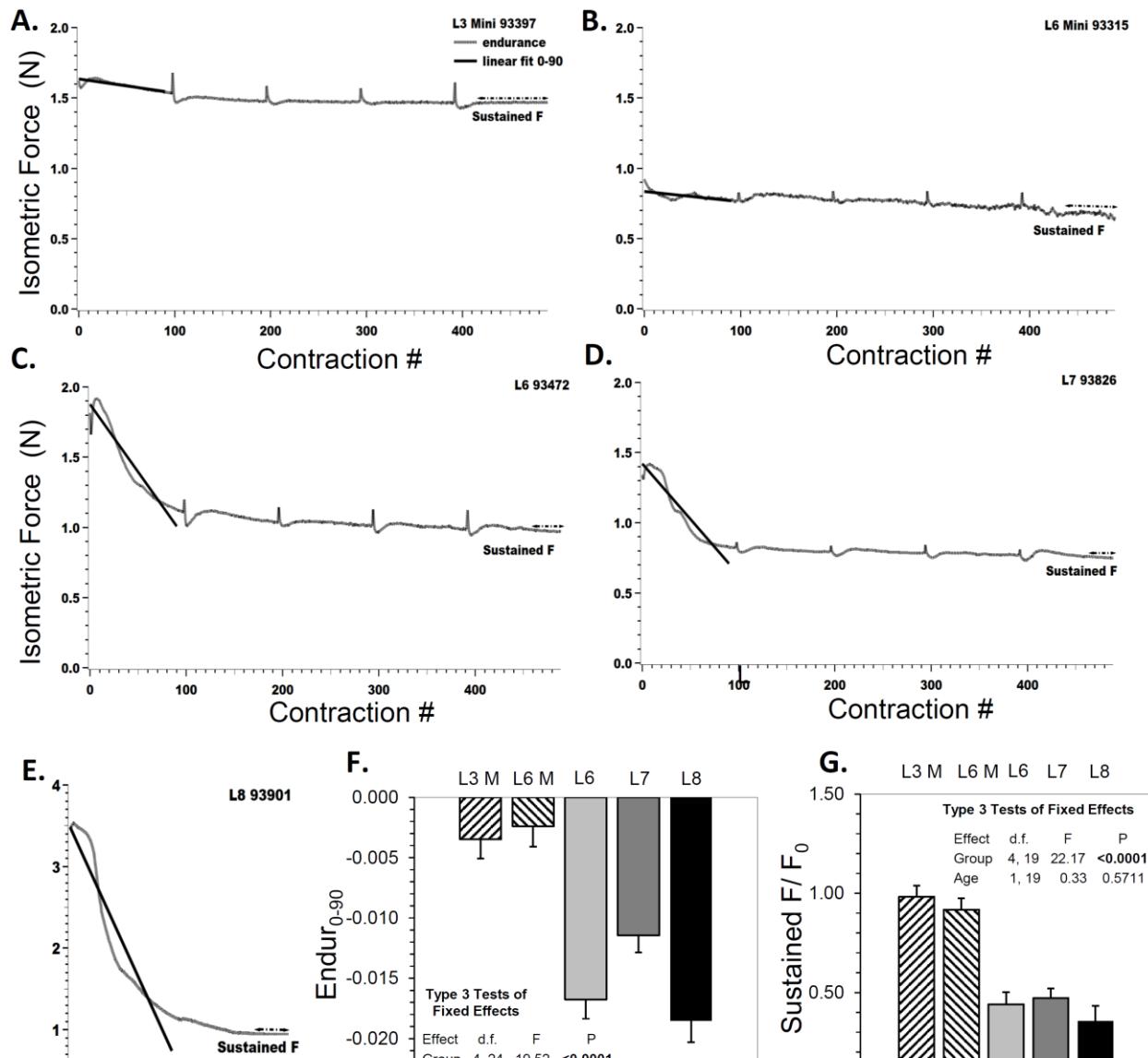
1090

1091


1092 Figure 2

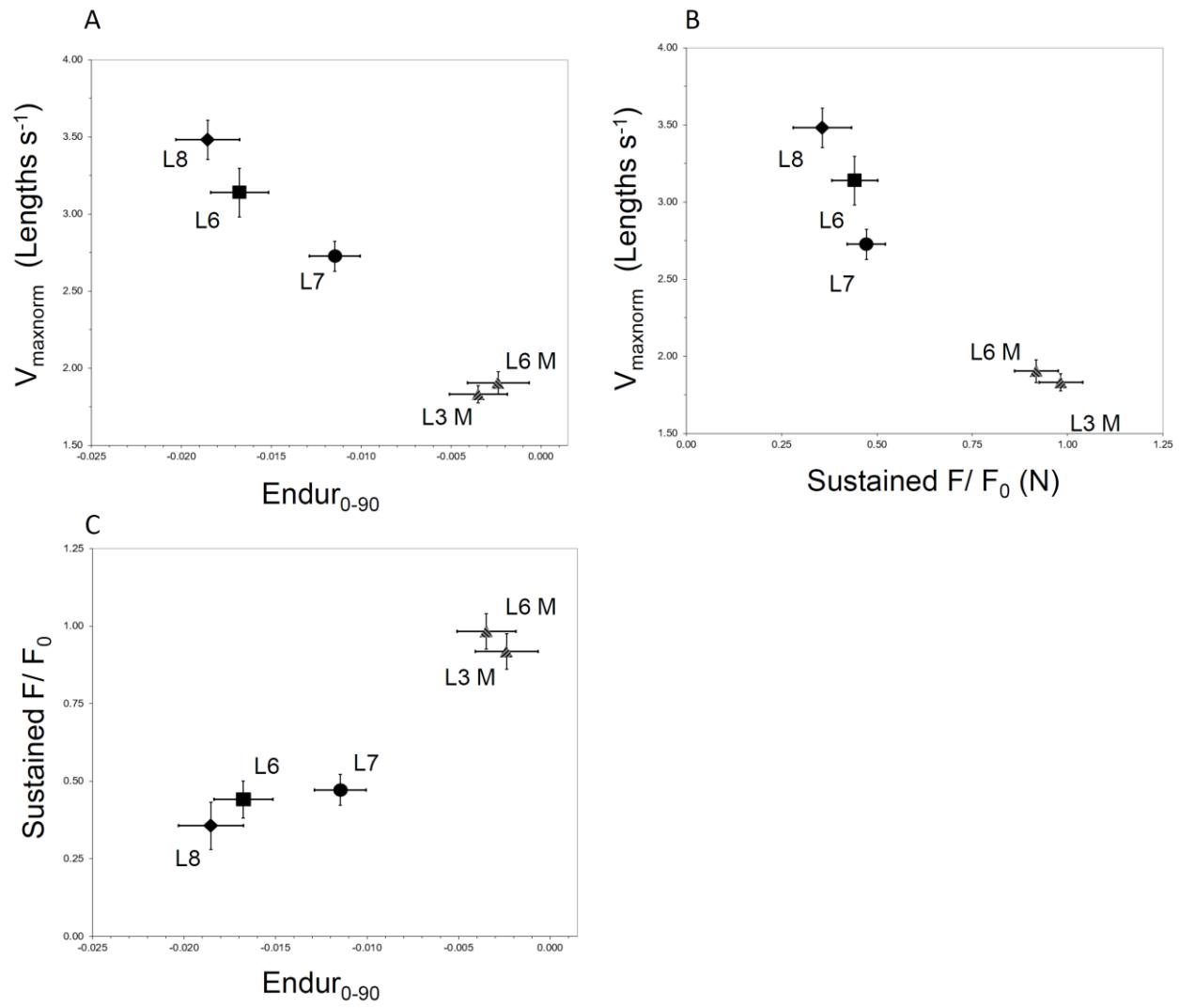
1093

1094


1095 Figure 3

1096

1097


1098 Figure 4

1099

1100

1101 Figure 5

1102

1103

1104