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Abstract—In this paper, we revisit the framework for max-
imum likelihood estimation (MLE) as applied to parametric
models with an aim to estimate the parameter of interest in
a gridless manner. The approach has inherent connections to
the sparse Bayesian learning (SBL) formulation, and naturally
leads to the problem of structured matrix recovery (SMR). We
therefore pose the parameter estimation problem as a SMR
problem, and recover the parameter of interest by appealing to
the Carathéodory-Fejér result on decomposition of positive semi-
definite Toeplitz matrices. We propose an iterative algorithm to
estimate the structured covariance matrix; each iteration solves a
semi-definite program. We numerically compare the performance
with other gridless schemes in literature and demonstrate the
superior performance of the proposed technique.

Index Terms—Maximum likelihood, structured matrix re-
covery, sparse Bayesian learning, coarrays, direction-of-arrival
estimation, superresolution

I. INTRODUCTION

Consider the following parametric data model

yl = �✓xl + nl, 0  l < L, (1)

where yl 2 CM denotes the measurements, and L denotes
the total number of snapshots available. The kth column of
�✓ 2 CM⇥K is a known vector function of the parameter
✓k, k 2 {1, . . . ,K}, and the parameter itself lies in some
known continuous domain. K denotes the number of sources.
The sources’ signal xl 2 CK and noise nl 2 CM are
independent of each other, and i.i.d. over time. The noise, nl,
is distributed as CN (0,�2

n
I). In (1), the parameters (✓,xl,�2

n
)

are the unknowns. The model parameters affect the mea-
surements in a non-linear manner, which makes the inverse
problem extremely difficult to solve, even in the absence of
noise. The above problem is ubiquitous, with applications
including biomagnetic imaging [1], functional approximations
[2], and echo cancellation [3]. In this work we are concerned
with problems such as in line spectral estimation and direction-
of-arrival (DoA) estimation [4] for narrowband signals; we
emphasize the latter as means for exposition.

Approaches to solve (1) have rich history and can broadly be
classified as traditional vs. modern, both significant in insights
and contributions. Traditional approaches can be further clas-
sified into spectral based [5]–[7] and parametric methods [4].

This research was supported by NSF under Grant CCF-2124929 and Grant
CCF-2225617, and ONR under Grant No. N00014-18-1-2038.

The typical ingredients to solve (1) include geometrical1 and
statistical properties of the model in (1). Table-I summarizes

Methods Primary Bottleneck [4]

(a) i. Spatial filtering (beamforming)
ii. Subspace based methods

Aperture/ degrees of freedom
Number of snapshots

(b) Deterministic/ Stochastic MLE Model & computational complexity

(a) Spectral based methods (b) Parametric methods
TABLE I

these methods [4]. Most modern techniques to solve (1), under
the rubric of sparse signal recovery (SSR), explicitly impose
sparsity and recover the parameter of interest in either grid-
based or grid-less manner. The emphasis there is on optimizing
an appropriate fit to the measurements with an additional
(sparsity) regularizer [8]–[11]. These methods are therefore
sensitive to setting the regularization parameter properly. An
exception to the regularization based methods includes sparse
Bayesian learning (SBL) [12]–[14] which formulates the re-
covery problem under the MLE framework. The approach
recovers sparse solutions via implicit regularization [15].

In this work, we revisit the traditional and modern MLE
based approaches, with an aim to recover ✓ in a gridless
manner. We identify the following contributions: a) Reformu-
lating the SBL problem as a novel structured matrix recovery
(SMR) problem under the MLE framework; the structure is
influenced by appropriate geometry and prior b) Propose an
iterative algorithm to optimize the novel SBL cost function
using a semi-definite program (SDP) c) Providing perspectives
to understand the proposed approach and connect with the
traditional MLE framework and the modern SBL formula-
tion. We provide numerical results to further elucidate the
impact of the proposed reformulation, namely the ability to
go gridless, and compare the proposed technique with other
gridless approaches in literature. Notations: � denotes Khatri-
Rao product, (.)c denotes element-wise complex conjugate,
(.)T denotes transpose, (.)H denotes the Hermitian operation.

II. REFORMULATING SBL AS A SMR PROBLEM

We begin by highlighting a simple insight for SBL when
applied to (1) in applications such as line spectral or DoA
estimation. The goal is to take this insight further and enable
gridless DoA estimation. For the purpose of simplicity, we

1E.g., subspace orthogonality in MUltiple SIgnal Classification (MUSIC).
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focus on the Uniform Linear Array (ULA) geometry in this
section, and postpone the general case of ULAs with missing
sensors until next section. However, the insights presented here
are applicable to the general case as well.

Consider a ULA with M sensors and d = �̄/2 distance
between adjacent sensors to prevent ambiguity in DoA esti-
mation; �̄ denotes the wavelength of the incoming narrowband
source signals. The array manifold matrix for K source
signals incoming at angle ✓ = [✓1, . . . , ✓K ]T , ✓k 2 [�⇡

2 ,
⇡

2 ),
is given by �✓ = [�(✓1), . . . ,�(✓K)], where �(✓k) =
[1, exp (�j⇡ sin ✓k), . . . , exp (�j(M � 1)⇡ sin ✓k)]T .

For the problem at hand, SBL first discretizes the possible
values of ✓ 2 [�⇡

2 ,
⇡

2 ) and introduces the measurement matrix
� 2 CM⇥G, where G denotes the grid size. It further imposes
a parameterized Gaussian prior on the source signal x̄l 2
CG as x̄l ⇠ CN (0,�). Note that SBL explicitly imposes an
uncorrelated sources prior, and thus � is a diagonal matrix;
let diag(�) = �. Under the SBL formulation, the original
problem in (1) now becomes

yl = �x̄l + n̄l, 0  l < L, (2)

and yl ⇠ CN (0,���H + �I); � denotes the estimate for
noise variance. Under the MLE framework, the hyperparame-
ter � and � can be estimated as [14]

min
�⌫0,
��0

log det
⇣
���H + �I

⌘
+ tr

✓⇣
���H + �I

⌘�1
R̂y

◆
,

(3)
where R̂y = 1

L

P
L

l=1 ylyH

l
denotes the sample covariance

matrix (SCM). Choices for solving the above problem for SBL
include the Tipping iterations [12], EM iterations [13], etc.
Remark 1. Note that if the number of sources K is known
exactly in (1), such model order information is not used in the
SBL formulation. Instead, the log det penalty in (3) helps to
promote sparsity, and deal with small but unknown number of
sources. If there is prior knowledge on K, then k�k0 = K
would have to be imposed on the objective function.

We now present the following useful insight.
Proposition 1. 8� � 0 such that (� ��c)� = w, for some
fixed w 2 CM

2

, the SBL cost is a constant i.e.,

log det
⇣
���H + �I

⌘
+tr

✓⇣
���H + �I

⌘�1
R̂y

◆
= C(�),

where C(�) is some constant.
Proof. The proof follows simply by observing that (� �
�c)� = w implies ���H is a fixed structured matrix with
entries dictated by components of w.

The above result demonstrates that, the hyperparameter �
affects the SBL cost function only through the entries of the
structured covariance matrix of the measurements.

The structure for ���H in the case of ULA is a Toeplitz
matrix, and is informed by the array geometry and the
uncorrelated sources’ correlation prior. In other words, SBL
attempts to find the ‘best’ positive semidefinite (PSD) Toeplitz
matrix approximation to the SCM R̂y. We use this insight and

reparameterize the SBL cost function to directly estimate the
entries of the Toeplitz covariance matrix. Let v denote the
first row of such a Toeplitz matrix, denoted by Toep(v). We
reformulate the SBL optimization problem to get

min
v2CM s.t.

Toep(v)⌫0,��0

log det (Toep (v) + �I)

+tr
⇣
(Toep(v) + �I)�1R̂y

⌘
. (4)

Once the solution v⇤ is obtained, we estimate the DoAs by de-
composing the Toeplitz matrix, Toep(v⇤). In our simulations
we use root-MUSIC to estimate the DoAs [16].
Remark 2. It is known that a low rank (D < M ) PSD Toeplitz
matrix such as Toep(v⇤) can be uniquely decomposed as
Toep(v⇤) =

P
D

i=1 pi�(✓i)�(✓i)
H , pi > 0 and ✓i are distinct

[17]. In (4), a low-rank solution is encouraged by the log det
term [18], while its effect is being moderated by the additional
noise variance term, ‘+�I’.

Note that the SBL formulation in (3) not only finds a
structured matrix fit to the measurements, it also factorizes it.
The same is true with the classical MLE approach as well, and
is discussed in Section IV. The structured matrix factorization
is a crucial step. In the proposed approach, we find a structured
matrix in the MLE sense. The factorization, if unique, yields
the MLE estimate of ✓ under the invariance property of the
MLE. We therefore refer to the proposed approach in this
paper as ‘StructCovMLE’. The problem in (4) is non-convex.
We discuss an iterative algorithm to solve (4) and extension
to allow ULAs with missing sensors, in the next section.

III. PROPOSED ALGORITHM

We assume that the noise variance is known and set � = �2
n

in (4), but it can be estimated as well, similar to v in this
section.

A. Uniform Linear Array Geometry
We majorize the log det term in (4) and replace it with a

linear term using its Taylor expansion

log det ( Toep(v) + �I)  log det
⇣
Toep(v(k)) + �I

⌘

+tr
⇣
(Toep(v(k)) + �I)�1Toep(v � v(k))

⌘
, (5)

where v(k) denotes the iterate value at the kth iteration.
Note that the linear term from Taylor expansion provides
a supporting hyperplane to the hypograph {(v, t) : t <=
log det(Toep(v)+�I))}. We ignore the constant terms above
and get the following majorized objective function

tr
⇣
(Toep(v(k)) + �I)�1 Toep(v))

+tr
⇣
(Toep(v) + �I)�1R̂y

⌘
. (6)

The resulting optimization problem is convex and can be
formulated as a SDP using Schur complement lemma as

min
v2CM

,

U2CM⇥M

tr
⇣
(Toep(v(k)) + �I)�1Toep(v)

⌘
+ tr

⇣
U R̂y

⌘

subject to


U IM
IM Toep(v) + �I

�
⌫ 0,Toep(v) ⌫ 0, (7)
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and can be solved using any standard solvers (e.g. CVX solvers
such as SDPT3, SeDuMi). It can be solved iteratively and we
summarize the proposed steps in Algorithm 1.

Algorithm 1: Proposed ‘StructCovMLE’ Algorithm
Result: v⇤

Input: Y = [y0, . . . ,yL�1],� = �2
n
, ITER

1 Initialize: R̂y = YYH/L,v⇤ = e1 = [1, 0, . . . , 0]T

2 for k := 1 to ITER do
3 v(k)  v⇤

4 v⇤  Solve the problem in (7)
5 end

B. ULA with Missing Sensors
We begin by identifying the relevant structure for the

more general case of ULAs with missing sensors. Con-
sider a linear array with M sensors on a grid with min-
imum inter-element spacing d = �̄/2. Let P = {pi |
pi 2 Z, 0  i < M} denote the set of normalized
(w.r.t. d) sensor positions. We assume p0 = 0 without
loss of generality. The array manifold vector is given by
�(✓) = [1, exp (�jp1⇡ sin ✓), . . . , exp (�jpM�1⇡ sin ✓)]T .
The difference coarray is given by D = {z | z = r �
s, r, s 2 P}. The concept of difference coarray influences
the structure we seek to identify, and also arises naturally
when computing the received signal covariance matrix. The
latter under the SBL formulation is given by ���H + �I,
as discussed previously. The (m,n) entry in ���H is
given by [���H ]m,n =

P
G

i=1 �i exp (�j(pm � pn)⇡ sin ✓i),
and [���H ]m,n = [���H ]c

n,m
. Thus, [���H ]m,n =

[���H ]m0,n0 , 8 tuples (m,n) and (m0, n0) such that pm �
pn = pm0 � pn0 . In other words, the entries in ���H can be
distinct only corresponding to distinct elements in D. ���H

is Hermitian symmetric, which further restricts the number of
distinct entries. This reveals the underlying structure that the
model ���H satisfies, and we formalize it below.

Let Mapt denote the aperture of the array. We can write
Mapt = maxd2D d + 1. We define a linear mapping T(v) :
CMapt ! CM⇥M given by

[T(v)]i,j=

⇢
v|pi�pj | j � i
vc|pi�pj | otherwise , 0  i, j < M. (8)

Note that the mapping T(v) in general is many-to-one. It is
only when the difference coarray has no holes, the mapping is
one-to-one. For such cases we define T�1(R) : CM⇥M !
CMapt as a function that extracts the entries of a given
structured matrix R, formed using (8), to form a column
vector. For the ULA with no missing sensors’ case, we have
T(v) = Toep(v).

Thus, for the general case, (3) can be reformulated as:

min
v2CMapt s.t.

Toep(v)⌫0,��0

log det (T(v) + �I)+tr
⇣
(T(v) + �I)�1R̂y

⌘
.

(9)
Remark 3. We would like to highlight a non-trivial choice
made above of imposing Toep(v) ⌫ 0, instead of only

requiring T(v) ⌫ 0. Note that the former constraint ensures
that the latter is satisfied. The choice imposes a relevant
constraint and is an important aspect of the model we wish
to fit to the data in MLE sense. It also helps to connect the
proposed reformulation to the traditional and modern MLE
approaches, and is discussed in Section IV.
Remark 4. As in the case for SBL, if the number of sources,
K, is known, a rank constraint rank(Toep(v)) = K should
be imposed. Since imposing a rank constraint is difficult,
surrogate measures like in compressed sensing may be used,
such as ‘+� log det(Toep(v) + ✏I)’ as a regularizer in (9)
to further promote sparse solutions. In this work, we do not
exploit knowledge of K to solve (9).

Like in the previous case, we majorize the cost function
in (9) to get a convex function and rewrite it as a SDP,
assuming knowledge of noise variance and setting � = �2

n
.

The majorized objective is given by

tr
⇣
(T(v(k)) + �I)�1T(v)

⌘
+ tr

⇣
(T(v) + �I)�1R̂y

⌘
.

(10)
The resulting SDP is given below

min
v2CMapt ,

U2CM⇥M

tr
⇣
(T(v(k)) + �I)�1T(v)

⌘
+ tr

⇣
U R̂y

⌘
(11)

subject to


U IM
IM T(v) + �I

�
⌫ 0,Toep(v) ⌫ 0,

where v(k) denotes the value at the kth iteration. Steps similar
to Algorithm 1 can be followed to find the optimal point v⇤.
To estimate the DoAs we perform root-MUSIC on T(v⇤).
Remark 5. It was shown in [19] that sparse arrays with a
larger number of consecutive lags than the number of sensors,
M , can identify more sources than M . Under the proposed
approach, a similar higher identifiability can be achieved
by instead performing root-MUSIC on Toep(v⇤), and we
numerically verify this in section V.

IV. ON PROPOSED METHOD: FROM MLE TO SPARSE
BAYESIAN LEARNING

In this section, we aim at connecting the classical MLE
framework and the grid SBL formulation with the proposed
technique. The hope is to answer the following question: how
has the reparameterization affected the original problem in (1)
of solving for ✓?

A. Connection with the classical MLE formulation
We begin by first stating the traditional MLE formulation. In

this approach, we impose a parametrized Gaussian prior on xl

i.e., xl ⇠ CN (0,P). Note that an explicit knowledge of model
order information is a requisite here. We further assume that
the sources are uncorrelated, and thus P is a diagonal matrix.
The resulting optimization problem is given by

min
✓2[�⇡

2 ,
⇡
2 )K ,P� 0,
��0

log det
⇣
�✓P�H

✓ + �I
⌘

+tr
⇣
(�✓P�H

✓ + �I)�1R̂y

⌘
, (12)
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(a) StructCovMLE (b) RAM
Fig. 1. Nested Array: Sensor locations, P = {0, 1, 2, 3, 4, 5, 11, 17, 23, 29}.

The model is also referred to as the unconditional model in the
DoA literature [20], compared to the conditional model where
xl is assumed deterministic. Consider the following updated
MLE optimization problem:

min
K2Z+

0<K<Mapt

min
✓2[�⇡

2 ,
⇡
2 )K ,

P� 0,��0

logdet
⇣
�✓P�H

✓ + �I
⌘

+tr
⇣
(�✓P�H

✓ + �I)�1R̂y

⌘
. (13)

The difference with the traditional MLE formulation is that,
in the above we consider all non-zero model orders such that
K < Mapt, to optimize the cost function. We then have the
following result.
Theorem 1. The problem in (9) and in (13) are equivalent, in
that they achieve the same globally minimum cost.

Proof. Proof is provided in the appendix.
B. Connection with SBL in (3)

Consider the following updated SBL optimization problem:

min
�

min
�⌫0,��0

log det
⇣
���H + �I

⌘

+ tr

✓⇣
���H + �I

⌘�1
R̂y

◆
. (14)

Like in the MLE case, here for SBL we allow all possible
dictionaries � with array manifold vectors as columns, to op-
timize the cost function. The following result follows similarly.
Theorem 2. The problem in (9) and in (14) are equivalent, in
that they achieve the same globally minimum cost.
Proof. The proof follows similarly as for Theorem 1.

The above results help to understand the proposed approach
in (9): (9) estimates a structured covariance matrix fit to the
measurements in the MLE sense over all model orders for
classical MLE or all appropriate dictionaries for SBL.

The entries of a structured matrix and noise variance may be
combined as presented in [21]. However, the choice of explic-
itly involving � parameter has two important consequences: a)
In the case when �2

n
is known, the proposed approach allows

a mechanism to feed this information which is not presented
in [21] b) In the absence of such knowledge, a better learning
strategy to estimate the noise variance and then feeding it as
part of the model may result in better DoA estimates than
jointly estimating ✓ and �2

n
. Finally, note also that, although

the optimization problem in [21] and the proposed are similar,
an algorithm for solving it is missing in [21].
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(a) StructCovMLE (b) RAM
Fig. 2. Nested Array: M = 6,K = 8, L = 4, SNR= 20 dB, 15 realizations

V. SIMULATION RESULTS

We compare the proposed technique with other gridless
schemes in literature, namely ANM [8], RAM [10], gridless
SPARROW [9], and gridless SPICE [11]. Since RAM is an
iterative algorithm as well, we compare with it in the first two
experiments. We run 20 iterations for the proposed algorithm
and RAM. We also provide the noise variance, �2

n
, to these

algorithms, and set � = �2
n

for the proposed algorithm.
Note that except gridless SPICE, all other algorithms use the
knowledge of the noise variance, �2

n
.

Experiment 1: We evaluate the performance of the proposed
technique for resolution and compare it with RAM. We
also compare the two algorithms for the case when sources
have different SNRs. We consider a nested array [22] with
M = 10 sensors, and allow K = 4 sources incoming at angles
{�0.5,�1/2Mapt, 1/2Mapt, 0.6} in u-space (u = sin ✓),
where Mapt = 30. The corresponding SNR for sources is
{5, 20, 20, 10} dB and only a single snapshot (L = 1) is
available. The two sources near broadside are 1/Mapt apart, or
equivalently 0.5/Mapt apart in normalized frequencies, which
is a challenging scenario. As seen in Fig. 1, both the proposed
algorithm and RAM are able to resolve the two sources. The
proposed algorithm is able to identify all 4 sources, but RAM
misses the weakest source. This behavior for RAM comes
from the fact that the model is matched to an estimate of
noiseless data. In an attempt to construct such a noiseless
estimate of measurement, the algorithm effectively suppressed
the weakest source. It was observed that setting ⌘ = 0 helped
to identify all sources for RAM. This indicates that RAM is
highly sensitive to setting the parameter ⌘ appropriately.
Experiment 2: We compare the proposed algorithm with
RAM when the number of sources is greater than the number
of sensors. We consider a nested array with M = 6 sensors
at locations {0, 1, 2, 3, 7, 11}, and K = 8 sources incoming
at angles uniformly in u-space. Their locations in MATLAB
notation are {�1+1/K : 2/K : 1�1/K}. As seen in Fig. 2,
the proposed algorithm is able to localize all the 8 sources,
whereas the RAM algorithm suffers from poor identifiability.
Experiment 3: We focus on ULA, and compare the per-
formance of StructCovMLE with other gridless techniques,
including performance using the sample covariance matrix
(SCM) directly, and the Cramér-Rao lower bound (CRLB).
We plot the RMSE in degrees (averaged over 50 realizations)
as a function of L in Fig. 3. It is observed that the pro-
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Fig. 3. M = 6,K = 3, uk = sin ✓k = {�2/3, 0, 2/3}, SNR=20 dB

posed technique outperforms other techniques. With a single
snapshot it identifies the three sources, whereas SCM requires
three snapshots to satisfy the rank condition. Moreover, as L
increases, the performance of the proposed algorithm coincides
with using SCM directly. This is expected as with large
number of snapshots, the SCM is approximately a structured
matrix and the proposed technique converges to it.

VI. CONCLUSION
We proposed a novel reformulation of the SBL optimization

problem and recover the underlying parameter of interest (e.g.,
DoAs, source frequencies) in a gridless manner. This approach
naturally leads to estimating a structured covariance matrix in
the MLE sense. We optimize the cost function iteratively; each
iteration involving a SDP. We also provide perspectives to re-
late the new approach with the traditional MLE framework and
the modern SBL formulation. Future directions include more
theoretical analysis and lower complexity implementations to
solve the proposed optimization problem.

VII. APPENDIX: PROOF OF THEOREM 1
Proof. It is clear that the cost functions in (9) and (13)
are identical, except for the model for the received signal
covariance matrix. The optimization variables for the two
respective problems affect their cost only through the final
covariance matrix. Thus, the two problems are equivalent
if the effective matrix search domains, up to an additional
‘+�̃I’ (�̃ � 0) term, are same. Let D1 denote the matrix
search space spanned by T(K,✓,P) = �✓P�H

✓ in (13),
and D2 for T(v) in (9), where the domain for the pa-
rameters are indicated in the respective problems. To prove
D1 ✓ D2: Let T(K 0,✓0,P0) 2 D1 for some (K 0,✓0,P0),
then the construction v0 = T�1(�✓0,ULAP0�H

✓0,ULA)
2 en-

sures that Toep(v0) ⌫ 0 and T(v0) = T(K 0,✓0,P0), i.e.,
T(K 0,✓0,P0) 2 D2. This concludes D1 ✓ D2. To prove
D2 ✓ D1: Let T(v00) 2 D2 for some v00, then we have
Toep(v00) ⌫ 0. We skip the case when Toep(v00) is low rank
as it follows simply from unique Vandermonde decomposition.
If Toep(v00) is full rank, then it uniquely decomposes as
�✓00,ULAP00�H

✓00,ULA + �00I, for some (✓00,P00,�00 > 0),
where the corresponding K 00 < Mapt [23]. This ensures that

2�✓0,ULA denotes the array manifold matrix for a ULA of size Mapt.

�✓00P00�H

✓00 + �00I = T(v00), which are equal up to the
additional ‘+�00I’ term. This concludes that D2 ✓ D1.
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