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ABSTRACT

We present a Light-Weight Sequential Sparse Bayesian Learning
(LWS-SBL) algorithm as an alternative to the orthogonal matching
pursuit (OMP) algorithm for the general sparse signal recovery prob-
lem. The proposed approach formulates the recovery problem under
the Type-II estimation framework and the stochastic maximum like-
lihood objective. We compare the computational complexity for the
proposed algorithm with OMP and highlight the main differences.
For the case of parametric dictionaries, a gridless version is devel-
oped by extending the proposed sequential SBL algorithm to locally
optimize grid points near potential source locations and it is empir-
ically shown that the performance approaches Cramér-Rao bound.
Numerical results using the proposed approach demonstrate the sup-
port recovery performance improvements in different scenarios at a
small computational price when compared to the OMP algorithm.

Index Terms— Sparse signal recovery, compressed sensing,
sparse Bayesian learning, orthogonal matching pursuit, computa-
tional complexity, gridless estimation

1. INTRODUCTION

Sparse signal recovery (SSR) has witnessed numerous applications
over the past several decades [1-6]. Consequently, many algorithms
have been proposed that offer favourable tradeoffs between recovery
performance, speed, and storage [7-14]. The underlying problem
in SSR can be stated as follows: Given a measurement matrix ® €
C™*™(m < n) and measurement vector y € C™ such that

y=®x+n, (1)

may be corrupted by noise vector n € C™, the goal is to recover
the vector x € C™ which is known to be sparse i.e., ||x|lo < n.
The noise, n, is distributed as CN (0, UZI). x and n are indepen-
dent of each other. On the computationally favourable paradigm,
greedy algorithms (e.g. pursuit algorithms like matching pursuit
(MP) [7], orthogonal MP (OMP) [15-18], compressive sampling MP
(CoSaMP) [19] etc.) are well-studied algorithms that offer faster re-
covery at the cost of slight degradation in performance. OMP is a
widely employed [20,21] iterative technique in this category that re-
covers X deterministically and improves over MP by ensuring that
the residual error is orthogonal to already selected columns of ®.

In this work, we offer a stochastic alternative to the OMP algorithm
with a similar complexity while improving support recovery perfor-
mance. The following contributions are identified:

* A Light-Weight Sequential Sparse Bayesian Learning (LWS-
SBL) algorithm is proposed along with recursive update strategies
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based on the Type-II estimation framework and stochastic maxi-
mum likelihood objective.

* The computational complexity of LWS-SBL is analyzed and com-
pared to that for the OMP algorithm. Computationally efficient
steps are derived that help to develop a low complexity algorithm
that can compete favorably with the widely used OMP algorithm.

* For measurement matrices, ®, with a parametric representation
(e.g., line spectral estimation, direction-of-arrival (DoA) estima-
tion), a grid-/ess extension of the proposed algorithm is provided.

We provide numerical results to quantify the performance improve-
ment over OMP. The ideas presented in this work can be easily ex-
tended to the multiple measurement vector problem [22] and we
demonstrate this in the numerical section. Notations: We denote
vector of components from vector v indexed by set S as vs. Sim-
ilarly, we denote the matrix resulting from matrix M after keeping
columns with indices in set Q as Mg, unless stated otherwise.

2. LIGHT-WEIGHT SEQUENTIAL SBL ALGORITHM

In contrast to the OMP algorithm [14, 15], where x is implicitly
modeled as a deterministic unknown, SBL models x as a ran-
dom variable. More specifically, a parameterized Gaussian prior
is imposed on x with mean zero and uncorrelated components. In
other words, x ~ CAN(0,T') where I is a diagonal matrix; let
diag(I') = ~. Under the zero mean Gaussian noise assumption,
y ~ CN(0,oT®H + AI), where A\ denotes the noise variance
estimate. The SBL approach is to solve (1) in the hyperparameter
~v-space, post marginalization with respect to x. This approach is
known as Type-II estimation framework, compared to Type-I where
the problem is solved in x space after marginalization with respect to
~ [23] (e.g., Lasso algorithm [24]). Note that the Gaussian density
imposition on X is not a limitation, and the method generalizes well
to the case when x was in fact drawn from a non-Gaussian density
(e.g., see Section VI.A. in [12]). The hyperparameter ~y is estimated
by minimizing the negative marginal log-likelihood function [12,25]

min  L(v,\) == logdet 3y + yHE;ly. 2)

v¥20,A20
where, 2, = ®T'®" + AL (2) is a non-convex problem in (7, \).

Similar to OMP, sequential SBL algorithm [13] selects one column
per iteration. However, in contrast to OMP, each iteration in sequen-
tial SBL optimizes the maximum likelihood based cost function in
(2). We initialize with v; = 0,Vj € {1,...,n}, and add a column [
that minimizes the negative log-likelihood, the most. The sequential
SBL approach in [13] is a framework and does not provide a specific
algorithm, but rather suggestions (see Section 4 in [13]) for devel-
oping variants with different options, e.g. adding/deleting selected
columns, modifying the variances of the columns already selected,
etc. To ensure a computational complexity comparable to OMP, we
develop a specific algorithm, which like OMP, runs the sequential
steps for K iterations only; K denotes the desired support size.



2.1. LWS-SBL Algorithm

We focus on estimating -y for a fixed A. The latter may be estimated
[13] but is not discussed in this paper. We begin by separating out
the contribution of the j-th column to the cost function, £(-y), in (2).
Let T C {1,...,n} denote the set of column indices of ® already
selected and C = ®1I'y ‘iﬁ? + AL, where I't denotes the diagonal
matrix with rows and columns in T. For j ¢ T, we can write

L(y10153) = L(y1) + L(75, C), 3)

where L(v;, C) = log(1+~,;®;'C™'®;) — @ C'y|*/(+; "
<I>JHC’1<I>J-) (see eq. (18) in [13] for detailed derivation of (3)). Let
us introduce the following quantities for ease of presentation:

s; = ®C '®;and ¢; = ®;'C'y. )
Since y; is initialized with zero i.e., Yprev,; = 0, we have Vj ¢ T
L(75, C) = L(Yprev,, €) = L(75, C). (5)

In other words, the change in negative log-likelihood due to updat-
ing y; is simply its contribution to the cost function. This helps to
simplify the objective further. The column to be added is given by

ALc(j,Yprev,i)) - (6)

ALc (75, Yorev.s) =

| = arg min mm L(v4,C) (=
igr 20

Minimization with respect to 7, can be obtained in closed-form as
2
2 _ g,
,Y;)Pt :max{|q1|82 170} (7)
J

At the optimal value ~;”

Iq \q
L(v;pt,c)—{ log "4~ ) lul® 1

* we have

if |Qj|2 > 85 (8)
otherwise.

Note that log ‘qJ ‘q’ + 1 < 0 with equality if and only if

q; = s;. Since L( opt C) is a monotonic non-increasing function

of quj\ with L(~; Opt ,C) = 0if |g;|> < s; we can simplify the
underlying problem in (6) as
_ ) = max 4 19
l =argmax Rc(j):= max ,15. )
j¢T Sj

Algorithm 1 summarizes the proposed steps.

Remark 1. An important characteristic of the sequential SBL [13]
and the proposed LWS-SBL Algorithm is that they may be run for
more than m iterations if needed, unlike OMP [26]. This flexibility
is achieved by avoiding the orthogonal residue computation step as
in OMP. Such a flexibility may be useful to correct erroneous support
that is possible in initial iterations.

2.1.1. Efficient updating of q; and s;

To lower the complexity of the steps in Algorithm 1, we exploit the
fact that one column of @ is added per iteration and update C~*
using matrix inversion lemma. We highlight the value at iteration
i with superscript (-)I). More specifically, let (C¥')~! denote the
value used to compute (g;, s;) as per (4), and 11 denote the column
index to be added at iteration ¢ (Step 3 & 4 of Algorithm 1). Then

(C [t41] ) —1

= (CY 44, @, @) ' = (C1)~

/A + SEZ[]z]

L wli(wli)H

Algorithm 1: Light-Weight Sequential SBL Algorithm

Result: 4, Posterior mean fix = X, covariance )M
Input: y, ®, K
1 Initialize: 4 = 0, A = some sensible value (e.g.,
0.lvar(y)), C ' =X, T=0
2 fori:=1to K do
3 Compute g; and s;,Vj ¢ T as in (4) (efficient recursive
implementation in (10))

2
4 | = argmax;z,p  Rc(j) = max {‘quv‘ ,1}
J
5 A = max {Wi{sl, 0}; rank-one update of C~*
81

6 T = T U! (unless 4; = 0, rare)
end

® 3

Compute posterior mean, fix, and covariance, Xx

where wlil = (C ) '®,; and s _ @l[](ci )~1@,;. Then
we can update (q][i]7 g]) to get ( ;ZH] S[;Jrl]) as

77

) -1 ) @HW[]
i+1] _ H (it _ Ll (]
4 =% (C y=q¢; — ol yiiy»
/A + 5,
(10)
1 (I’H 2
[i+1] _ gH (it . — gl |5 w |
®; i= 955 R R
/A + St

2.1.2. Computing posterior mean, [Lx, and covariance, ¥«

The posterior on x is a complex Gaussian distribution [12,25]. We
report X = fix as a point estimate after K iterations using

. . -1 .
fix = T®" (<I>F<I>H n /\I) y=Tq" ™ an
T
where q[K'H] = [q:[lKH], .. ,qLKH]] . Note that 4; # 0 only for

7 € T, and thus the above equation provides a sparse solution. Also,

the diagonal entries of 3, can be easily obtained as following

22 [K +1]

Yis;
12)

e . -1
(Bxlis =4 — 4 5 (<I>I‘<I>H + )\I) B; =4, —
which is similarly non-zero only for j € T.

2.2. Computational Complexity of Algorithm 1

We analyze the computational complexity for the proposed LWS-
SBL algorithm and compare with OMP.

2.2.1. Efficient computation ofwm

The update equations in (10) require the vector wlil = (C )_1 D,
which can be computed by first computing (C?)~* from (Cli~ 1])
using a rank-one update, followed by multiplying ®,(;. These steps

need O(m?) computations. Instead we propose the following steps
. . . =1 (w [i_I])HQ _
3 i\ — i— — W
wlil= (C[ ]) 1(1)“1_] _ (C[ 1]) 1(1,1[1_] . —
1/71 [i—1] + S [i—1]
Wil wlihH g
= (€)@, _ZW(W—)__Z[’]’ (13)

where (CI1)~! = A7'L (CM)~! may be pre-computed; the rest
requires O(m(i — 1)) computations, an improvement over O(m?).
In this manner, we avoid computing C ™! in Step 5 of Algorithm 1.



2.2.2. Computational Complexity

Analyzing and comparing two algorithms based on computational
complexity is challenging because it depends on the metric em-
ployed, i.e. number and type of operations, parallel' versus sequen-
tial computations, storage, etc. For this work, we track the number
of arithmetic operations, in particular, multiplications and divisions
as they are more computationally demanding than additions or sub-
tractions. We further assume that multiplication and division have
similar complexity and do not distinguish them in this aspect, but
highlight them by mentioning ‘div’ for divisions explicitly (e.g., n
divisions represented as n ‘div’). We summarize the computational
complexity for LWS-SBL and compare with OMP in Table 1.

LWS-SBL
mn+2mp+n+m
+2(n —14) + (n — 1) ‘div’
Solution X m(BK —1)+2K |(K-1)K/2+ K ‘div’
LWS-SBL vs. OMP: Computational Complexity (p =7 — 1)
Table 1.

Remark 2. The extra 2(n — i) + (n — ¢) ‘div’ for LWS-SBL (than
OMP) corresponds to updating s; and dividing |g;|* and s;,Vj ¢ T.

OMP (QR) [14,27]

Iteration i + 1 mn+2mp+n+m

During the first iteration s; does not depend on j as (C[l])’l =
A7'T and thus the divisions may be avoided. Note that both the
algorithms have O(mn) per iteration computational complexity.

3. GRIDLESS LWS-SBL ALGORITHM

We now discuss the case when @ has a parametric representation,
and extend LWS-SBL to perform gridless parameter estimation.
Consider the following parametric data model

y = Pox + n, (14)

where the kth column of &9 € C™*¥ is a vector function of
the parameter 0y, i.e., [Po]r = @(0x) for some known ¢(.), k €
{1,...,K}. @ = [01,...,0k]" and 6y’s lie in some known con-
tinuous domain. K denotes the number of active sources. Model
assumptions made in (1) are also applicable in (14). The above
problem is ubiquitous, with applications such as line spectral esti-
mation [28] and direction-of-arrival (DoA) estimation [29] for nar-
rowband signals; we emphasize the latter as means for exposition.

3.1. Grid-based Remodeling of (14)

The proposed Algorithm 1 in its present form is not amenable to the
parametric problem in (14). Mathematically, the approach can be
readily developed by modifying equation (6) to reflect optimization
over the continuous parameter space rather than the index set. How-
ever, this step when implemented will require a grid search though
the grid is not predetermined. As a practical implementation of this
concept, we adopt a two-step approach where in step-1 we recover
an on-grid support set using Algorithm 1. This is followed by step-2
where we locally optimize the recovered grid points over a smaller
parameter space. This step is inspired by a previous work by the au-
thors [30] on batch EM-SBL where all components of ~ are simul-
taneously updated. In contrast to [30], this paper proposes a fixed
iterations strategy to identify a sparse solution, with an emphasis on
computational complexity reduction.

Assuming a grid size n, we introduce a dictionary ® with array man-
ifold vectors as columns ie., [B]; = ¢(05),0; € [FF,5).J €
{1,...,n}. For example, consider a uniform linear array (ULA)

!Note that updating q;’s and s;’s may be parallelized.

Algorithm 2: Gridless LWS-SBL Algorithm

Result: 0 = [01,...,0x]7, 7, fix = X, Bx

Input: y, ®, K; (4, C™*, \) from Algorithm 1; 72, ITER

Initialize: 4 = 4

for iter := 1 to ITER do

for i :== 1to K do
Rank-one update of C~! to get C:lli
®1,ca1 = local dictionary of size 7 around wu,
Compute g(u) and s(w) as in (16) using ®iocal
Solve (19); update (i, ,uz;) = (y°P%, u®P*)
Rank-one update of C:lli to get c!

end

O ® N R W=

end

—
=)

—
o

Compute fix, Xx; 0; = arcsinug,,i € {1,..., K}

with m sensors and d = )\/2 distance between adjacent sensors to
prevent ambiguity in DoA estimation; \ denotes the wavelength of
the incoming narrowband source signals. Then [®]; = ¢(6;) =
[1,exp (—imu;), ..., exp (—i(m — 1)wu;)]7, u; = sin 6;.

3.2. Gridless LWS-SBL Algorithm

The goal is to further maximize the likelihood after the initial K it-
erations by locally optimizing the selected grid points. This enables
to go beyond the limitations of the initial grid. We begin by sepa-
rating out the /;-th dictionary component, ¢ € {1,..., K}, selected
previously as part of Algorithm 1 and optimize its contribution to the
likelihood not only with respect to (w.r.t.) the corresponding ~y;,, but

also w.r.t. the grid point u;; = sin ;. Thus, we write
L{yr) = Lyn\q13) + Llw, i, C), (15)
where C—l,; = @'ﬂ‘\{ll}r'ﬂ‘\{ll}érﬂlg\{ll} + Al E(’y,’u,,C,li) =

log(1 + vs(u)) — lq(u)|*/(v~* + s(u)), and
s(u) = p(u)"CZl p(u), qlu)=ow)'Cly.  (16)

For ease of exposition, we represent a grid point with the notation
¥ = (v, u). We locally maximize the likelihood in the neighbour-
hood of Wprev = (J1;, wi; ) by equivalently minimizing

Aic—ti (\I/, \I/pmv) = E(’y, U, C—li) — E(’Ayli,ul,i ) C—li)~ (17)
Note that unlike in the previous section, the second term above is
non-zero. However, it does not depend on ¥ and is therefore fixed.
Another perspective to understand this is that we are replacing the
same grid point W, with any other point in its neighbourhood,

and thus in order to maximize likelihood we only need to minimize
the first term on RHS in (17). The underlying problem reduces to

WOPY = (4P 4PY) = argmin  min L(v,u,C_;,), (18)
ue[uli—é,uli+6) ¥20

for some §2. Similar steps as in previous section can be followed to
simplify the objective and we get

Rc_,, () = max { laC)” ; 1} ,
(19)

opt __
u = arg max

u€luy, —6,u1,+9)

opty|2 _ opt
and v°P* = max lgu)I” = s(u ),0 .
s(uopt)2

2We set & = 1/n during the first iteration to avoid any grid point overlap.
Future iterations may involve non-uniform grid, and a similar asymmetric §
in either directions is used to avoid the same issue.
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Fig. 1. (a) Computation time vs. m. (b) Probability of error in
support vs. support size, K.

We implement the optimization for u in the neighbourhood of Wy e
by a fine grid of size n. We summarize the steps for the proposed
gridless approach in Algorithm 2.

Remark 3. The proposed approach includes the previous grid point
Wrev in the search and thus ensures that the likelihood increases
steadily over the iterations. Also, Algorithm 2 iterates over the same
source multiple times, which helps to account for the potential errors
in localizing other sources in the set T\{/;}.

4. NUMERICAL RESULTS

We evaluate the proposed sequential SBL algorithms for support
recovery performance and computational time, and compare with
OMP. For OMP, we implement two variations which differ only in
the estimation of the sparse coefficients, X, a) using the QR de-
composition of selected columns b) using pseudo-inverse. There-
fore, the two differ in the amount of computational time to run,
and serve as benchmark for comparison with the proposed algo-
rithm. For the proposed algorithm, we plot three curves a) A = o2
b) A = 03/10 ¢) A = 10 o2. This helps to assess the perfor-
mance under different assumptions of knowledge of o2. To evalu-
ate the support recovery performance we adopt the distance metric
dist(S,S) = 1 — [SN S|/ max{|S], S|}, where S and § denote the
actual and recovered support sets respectively, used in [31] (see eq.
(3.29) and Fig. 3.6. in [31]). We present results for ULA geome-
try, but similar results were obtained for ® with Gaussian random
entries. The grid size is n = 200. Thus the grid spacing between
adjacent points is 2/n = 0.01 in u-space. The signal-to-noise ratio
(SNR) is computed per source at the receiver and is fixed at 30 dB.
Results are averaged over 500 realizations, unless otherwise speci-
fied.

Experiment 1: In Fig. 1 (a) we plot the amount of time required to
run the different algorithms as a function of measurement size, m.
The simulations are carried out in MATLAB 9.4.0.813654 in a Win-
dows 10 system using a 2.7 GHz CPU. As evident from the plot, the
proposed sequential SBL algorithm requires larger amount of time
than the OMP algorithm. OMP using QR decomposition requires
the least amount of time to complete. The plots also help to ascer-
tain the linear dependency of their respective complexities on m.
Experiment 2: In Fig. 1 (b), we plot the support recovery perfor-
mance as a function of support size. We consider different measure-
ment sizes m = {30,40,50}. We ensure that the minimum sepa-
ration between sources is at least 10 grid points or equivalently 0.1
in u-space. As expected the probability of error in support increases
as the support size increases, and is higher for smaller measurement
sizes. For m = 50, the probability of error is zero for sizes up to
6, beyond which it is non-zero. It is evident from the curves that
the proposed LWS-SBL algorithm has better support recovery per-
formance than OMP. Also, the support recovery performance for

Probability of error in support
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Fig. 2. (a) Probability of error in support vs. minimum allowed sep-
aration between support elements. (b) RMSE vs. number of snap-
shots, L (plots using A = ¢2).

different noise variance parameter A € {0.103“ o2, 100%} setting
within LWS-SBL is comparable, indicating low sensitivity to these
variations. On the other hand, the sparse coefficients estimation, X,
were observed to be more sensitive to setting A but the effect was
mild.

Experiment 3: In Fig. 2 (a) we plot the support recovery perfor-
mance as a function of the minimum separation between the support
elements. Note that the dictionary and support size (K = 10) are
fixed along the x-axis, only the support set changes to ensure the
minimum separation between sources is as per the x-axis tick point.
We consider m = {30,40,50}. As observed from the Fig. 2 (a), the
proposed LWS-SBL algorithm has a better support recovery perfor-
mance than OMP. The difference is more prominent when the sources
are closely located. Again, in this experiment it was observed that
the support recovery performance was less sensitive to setting A pa-
rameter differently from the true value (to A € {0.162,1002}). The
X estimation was more sensitive to such settings, albeit mildly.
Experiment 4: In Fig. 2 (b) we plot the root mean squared error
(RMSE) as a function of number of snapshots (L) for the gridless
(GL) LWS-SBL algorithm presented in Algorithm 2. Parameters
used: m = 50, n = 10n, support size K = 10, minimum sepa-
ration between support elements of 0.1 in u-space, and the results
are averaged over 100 realizations. As evident from the plots, even
ITER= 1 ensures that the error steadily decreases with L. ITER= 2
(blue curve with circle markers) was sufficient to further ensure that
the gap with the Cramér-Rao bound (CRB) is small. It was also ob-
served that, when fewer snapshots (L < 4) are available, a finer grid
may be needed to prevent support recovery errors within LWS-SBL
(compare red curve with pentagram markers and blue curve with cir-
cle markers). Another alternative can be to run the LWS-SBL i.e.,
Algorithm 1 for more than K iterations. Finally, note that the Algo-
rithm 2 may be extended in a multi-resolution fashion to control the
grid size at any iteration. In this case, the effective grid resolution

1

of 2. 1o Was achieved with O(n) complexity instead of O(n?)

required by running the grid based algorithm with a fine initial grid.
5. CONCLUSION

We proposed a Light-Weight Sequential SBL (LWS-SBL) algorithm.
The computational complexity of LWS-SBL is also O(mn), similar
to that of OMP. We demonstrated the improved support recovery per-
formance using parametric dictionaries with high mutual coherence,
and allowing sources to be closely separated. We also proposed a
two-step gridless algorithm that allows to go beyond the initial grid
limitation by locally optimizing the likelihood function around po-
tential source locations. This method is shown to empirically ap-
proach CRB. Future work includes efficient implementation of the
gridless extension of the proposed algorithm.
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