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ABSTRACT

Multi-user massive MIMO signal detection from one-bit received
measurements strongly depends on the wireless channel. To this end,
majority of the model and learning-based approaches address de-
tector design for the rich-scattering, homogeneous Rayleigh fading
channel. Our work proposes detection for one-bit massive MIMO for
the lower diversity mmWave channel. We analyze the limitations of
the current state-of-the-art gradient descent (GD)-based joint multi-
user detection of one-bit received signals for the mmWave channels.
Addressing these, we introduce a new framework to ensure equitable
per-user performance, in spite of joint multi-user detection. This is
realized by means of: (i) a parametric deep learning system, i.e.,
the mmW-ROBNet, (ii) a constellation-aware loss function, and (iii)

a hierarchical detection training strategy. The experimental results
corroborate this proposed approach for equitable per-user detection.

Index Terms— Millimeter Wave Multiple Input Multiple Out-
put, One-bit ADCs, Deep Learning, Algorithm Unrolling

1. INTRODUCTION

Massive MIMO 5G systems, and beyond, propose an entirely new
age of communication systems and interconnected devices [1]. Al-
though massive MIMO systems hold immense advantages for highly
directional mmWave communication [2, 3], the resulting large num-
ber of analog to digital converters (ADCs) required present a sig-
nificant challenge for system cost and widescale deployment [4, 5].
In order to scale the number of RF chains with massive MIMO, the
use of few-bit ADCs presents a promising solution to system cost
and implementation. A special case of few-bit ADCs, i.e., the one-
bit ADC, has gained increased interest for both channel estimation
as well as end-to-end detection. To this end, this work focuses on
mmWave MIMO neural detection for one-bit received signals.

Beginning with the linear system characterization through Buss-
gang’s theorem [6], a large number of model-based detectors have
been proposed for both single carrier and multi-carrier systems using
one-bit ADCs [7–11]. A marked boost in this area was provided via
GD-based strategies, beginning with the formulation of the one-bit
likelihood [12]. The near maximum likelihood (n-ML) detector effi-
ciently implemented the first such GD-based detector [13]. The work
in [14], further improved on the likelihood formulation and proposed
a robust learning-based detector, OBMNet, inspiring the new class
of learning-based detectors via deep neural networks (DNNs).

DNNs, via a general parametric structure and ability for univer-
sal functional approximation [15, 16], provide an encouraging di-
rection for general MIMO receiver design [17, 18] and in particular
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for detector design for one-bit massive MIMO because of the inher-
ent nonlinearity in the measurement process [19–22]. Our recent
work [23] also leveraged this to build a novel DNN-aided regular-
ized GD detector - the ROBNet, as well as a constellation-aware
loss function, for one-bit massive MIMO. However, majority of both
model and learning-based approaches are applied to the one-bit re-
ceiver under the Rayleigh-fading MIMO channel, with very limited
work specifically tailored to the mmWave channel [24–26].

Through this work, we empirically analyze the challenges to sig-
nal detection from one-bit data for the mmWave MIMO channel.
The regularized GD detection framework [23], wherein we utilize a
DNN-aided regularization to augment each GD iteration, is appro-
priately modified to address these challenges. The unfolded DNN
implementation, the mmW-ROBNet, capitalizes on the advantages
of the regularized GD framework specifically for the mmWave chan-
nel. Additionally, we propose a novel hierarchical detection strategy
to ensure equitable per-user detection, in spite of the challenges for
joint multi-user detection. Our experimental results highlight the
utility of the proposed signal detection strategy from one-bit data.

2. SYSTEM MODEL AND GD-BASED DETECTION

This section describes the mmWave channel and one-bit receiver
model, followed by an overview of the OBMNet [14], one of the
important blocks for our proposed detector using regularized GD.

2.1. System model - MmWave channel and one-bit receiver

We begin by describing the K-user sectored LOS mmWave channel
model [3]. The channel model is expressed as

H̄ =
⇥
a(✓1),a(✓2), . . . ,a(✓K)

⇤
. diag(↵1,↵2, . . . ,↵K), (1)

where each a(✓i) is the uniform linear array (ULA) manifold with
N antennas for the ith user. Each user path gain ↵i and path an-
gle ✓i is independently drawn from the distributions N (0, 1) and
U(�⇡/3,⇡/3), respectively. We order the four users 1 to 4 in de-
creasing order of received channel powers1, i.e., {|↵i|2}Ki=1. The
received signal at the base-station (BS), before quantization, is

r̄ = H̄x̄+ n̄, (2)

where x̄ is the vector of M-QAM constellation symbols and n̄ is the
AWGN, whose variance determines the signal-to-noise ratio (SNR).

In order to express the algorithm design as a function of real-
valued inputs, we introduce operators Tm(·) and Tv(·) to convert
matrices and vectors, respectively, into the real valued forms. Using
these, we convert the received signal (2) and the observed channel

1User ordering done during CSI acquisition and initial access



matrix (1) into real-valued forms as [12–14]

H = Tm(H̄) =

[
Re(H̄) −Im(H̄)
Im(H̄) Re(H̄)

]
, r = Tv(r̄) =

[
Re(r̄)
Im(r̄)

]
,

x = Tv(x̄) =

[
Re(x̄)
Im(x̄)

]
, n = Tv(n̄) =

[
Re(n̄)
Im(n̄)

]
.

with Re(·) and Im(·) the real and imaginary parts, respectively.
All subsequent likelihood and detection algorithm expressions are
henceforth expressed in the real-valued form, using Tm(·) and Tv(·).
One-bit quantization at the BS transforms the received signal (2) as

y = sign(Hx+ n) = sign(r). (3)

We assume that the underlying detection algorithm has perfect chan-
nel state information H, similar to the benchmark works [13, 14].

2.2. GD-based detection for general one-bit MIMO

The exact one-bit maximum likelihood (ML) optimization is derived
in [12], based on the standard normal cumulative distribution func-
tion (cdf). However, optimizing this cdf-based cost function runs
into instabilities, especially at high SNRs [14, 27]. Using the pop-
ular DNN activation, the logistic sigmoid, an approximation of the
Gaussian cdf-based ML formulation is derived as [28]

x̂ML = argmin
x∈M2K

2N∑
i=1

log (1 + e−c
√

2ρyih
T
i x), (4)

where M2K is the 2K−dimensional vector of M-QAM symbols

(in real-valued form), c = 1.702 and SNR ρ = E(||H̄x̄||2)
E(||n̄||2) . Using an

unconstrained GD on the likelihood (4) results in the iterative update

x(t+1) = x(t) − α(t)∇(t)
x

= x(t) + α(t)GTσ(−Gx(t)), t = 0, . . . , T − 1,
(5)

where G = diag(y1, y2, . . . , y2N )H and σ(·) is the logistic sig-

moid. The final estimated symbols x(T ) are projected onto the M-

QAM constellation as x(T ) ←
√

K

||x(T )||x
(T ). The authors in [14]

implement the GD algorithm (5) as a learnable unfolded DNN, i.e.,
the OBMNet, with step sizes at each iteration {α(t)}T−1

t=0 as the
only learnable parameters. The network is trained on the MSE loss

L = 1
Ntrain

∑Ntrain
n=1 ||x(T )

n − x̃train,n||2.

This framework is extremely robust for lower order M-QAM
constellations, i.e., QPSK. However, our related work in [27] [23]
presents the limitations of the OBMNet for higher-order M-QAM
symbol recovery, for the Rayleigh channel, namely the limited
network expressivity and the large recovered constellation cluster
spread. We now analyze this approach for the mmWave channel.

3. DNN-AIDED GD FOR MMWAVE ONE-BIT RECEIVERS

This section presents the GD-based detection tailored specifically
to the mmWave channel. Beginning with the challenges for joint
detection, we describe our proposed approach and implementation.

3.1. Challenges to joint detection for the mmWave channel

Different from the rich scattering of the Rayleigh-fading channel,
there is lower diversity in the mmWave channel due to antenna cor-
relation [2, 3]. This is pictorially represented in Fig. 1 by the his-

Fig. 1. Distribution of the square root power for mmWave (left) and

Rayleigh-fading channel (right) with N = 64 antennas, K = 4
users. Here User 1 has the strongest channel and User 4 the weakest.

Fig. 2. Comparing performance of ML (left) & OBMNet [14] (right)

detection for mmWave channel (1) with K = 4 users, N = 64
antennas, each user transmitting QPSK symbols. User 1 has the

strongest channel and User 4 the weakest.

tograms of the square root of channel power (see eq. (1)), i.e., ||h̄i||,
in decreasing order from User 1 (||h̄1||) to User 4 (||h̄4||). These
plots portray a larger spread in mmWave channel powers per user,
vs the more equitable power distribution of the Rayleigh channel.

The impact of this channel power spread among the users affects
detection performance, i.e., bit error rate (BER), of each user. This is
quantitatively illustrated in Fig. 2, comparing maximum likelihood
(ML) detection, using exhaustive search in M2K , to the OBMNet
[14], for QPSK symbols. The left plot in Fig. 2 shows the overt
disparity in the ML detection performance for the different users;
User 1, with the strongest channel, experiences more than six orders
of magnitude lower BER, at saturation, compared to User 4, with the
weakest channel. The right plot in Fig. 2 highlights that the OBMNet
[14], optimizing for the joint detection performance, is limited by the
weakest users, thus unable to equitably handle users with stronger
channels. The next sub-sections describe the design of a DNN-aided
detector to provide a more equitable BER performance.

3.2. Robust detection framework for mmWave channels

Signal detection for the receiver (1)-(3) is approached via regularized
DNN-aided GD, with a novel hierarchical detection training strategy.
Our approach consists of three major components, elaborated here.

3.2.1. User-matched regularized GD

The regularized GD detection for one-bit receivers [23] augments
the GD step (5) via a DNN-aided projection step, thereby fine-tuning
each iteration. For mmWave channels, we devise a modification - a
user-matched regularized GD. Herein, we incorporate the mmWave



channel path gains per-user {↵i}Ki=1, from (1), as

r̂(t)
x = Tm

�
abs(diag(↵1,↵2, . . . ,↵K)�1)

�
r(t)

x (6a)

x̂
(t+1) = x

(t) � ↵(t)r̂(t)
x (6b)

x
(t+1) = x̂

(t+1) + h(t)
� (x(t), r̂(t)

x , x̂(t+1)). (6c)

The user-matching step (6a) homogenizes the gradient from (5), sta-
bilizing the unequal channel power scaling, among the users 2. Up-
date steps (6b)-(6c) execute regularized GD with the user-matched
gradient. The function h(t)

� is the DNN-based parametric regulariza-
tion at iteration t, elaborated further in Sec. 3.3. The regularized GD
algorithm (6), implemented as an unfolded DNN, i.e., the mmWave
regularized one-bit net (mmW-ROBNet), is illustrated in Fig. 3.

3.2.2. Constellation-aware DNN loss function

In order to tailor the DNN loss function to the M-QAM symbol re-
covery, we incorporate the regularized loss function [23]

L =
1

Ntrain

NtrainX

n=1

⇥
||x(T )

n � x̃train,n||2 + �R(x(T )
n , x̃train,n)

⇤
,

(7)
where R(·) is a constellation-aware regularization, based on a
smooth quantization of the network output, Q�(·), implemented as

R(x(T )
n , x̃train,n) = ||Q�(x

(T )
n )� x̃train,n||2. (8)

For QPSK symbol recovery3, this is given by Q�(x) = tanh(� x).
This saturating nonlinearity Q�(·) attenuates symbol errors within
the true constellation boundaries and amplifies errors for crossing
over symbol boundaries. The constellation-aware regularization (8)
thus incorporates symbol error rate (SER), in addition to MSE, into
the total loss (7), resulting in a robust training.

3.2.3. Hierarchical detection training

The final block for robust DNN-aided GD is the enhanced DNN
training procedure. In particular, we control the trajectory of inter-
mediate GD iterates {x(t)}T�1

t=1 in (6), essential to the final estimate
x
(T ). To this end, we propose a sub-loss L(t) at each iteration t as

L(t) =
1

Ntrain

NtrainX

n=1

⇥
||w(t) � x

(t)
n �w

(t) � x̃train,n||2

+ �R(w(t) � x
(t)
n ,w(t) � x̃train,n)

⇤

where,

w
(t) = c̃(t)

⇥
1, exp(�t), . . . , exp(�(K � 1)t)

⇤T
.

(9)

Here w
(t) is the masking vector, t is the user masking coefficient

and c̃(t) is the normalization constant such that ||w(t)|| = 1, at the
tth iteration. The operator � denotes element-wise product. The
regularization R(·) is the same as (8). The total DNN training loss
function is given by

L =
TX

t=1

L(t). (10)

2Due to space constraints, we omit the analytical proof, but will include
it in the complete future publication of this work

3Our work in [23] also extends this to 16-QAM. The complete version of
this work, will incorporate 16-QAM for mmWave channels as well.
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Fig. 3. Block diagram for the mmW-ROBNet

Table 1. DNN Parameters of the Regularizer Network (For K Users)
Network Layer Parameters

mmW-ROBNet
(each stage)

Convolution

(1-D)

conv + ReLU + bn
Input dim - K
Input chan - 6
Output chan - 64
Kernel size - 3

Fully-connected

Input dim - 64K
Output dim - 2K
Hidden layers - 3
Hidden dim - {128,64,32}
bn dim - {128,64,32}
Nonlinearity - ReLU

Owing to the exponential decay over the user index, the masking
vector w(t) attenuates the users that experience a weaker channel,
reducing their contribution to the loss function (9). Further, we be-
gin with a large value for the masking coefficient t and decrease
this over the GD iterations to T = 0. This results in the first few
regularization sub-networks h(t)

� being trained to detect the stronger
users only. The subsequent sub-networks gradually add users in de-
creasing order of their channel quality, by jointly detecting these
with the stronger users. Finally, the last sub-network h(T )

� is trained
to jointly detecting all the users. Since the training strategy (9)-(10)
detects multiple users from the strongest to the weakest, it is called
hierarchical detection or HieDet training.

3.3. DNN implementation for user-matched regularized GD

Inspired by the potential of model-based algorithm unrolling for gen-
eral signal processing [14, 21, 29, 30], the unfolded DNN, ROBNet,
is developed as an approach to solve the constrained optimization (4)
for any general channel matrix H, via a DNN-augmented GD algo-
rithm [23]. The mmW-ROBNet framework (6), introduced in Sec.
3.2.1, incorporates the specific properties of the mmWave channel.
The implementation details are elaborated as follows.
(i) The T -stage regularized GD algorithm (6), is unfolded into T
distinct sub-networks (each represented as Stage t in Fig. 3).
(ii) At the beginning of each Stage t + 1, the OBMNet iteration (5)
generates the tth gradient and outputr(t)

x and x̂
(t+1), respectively.

(iii) The mmWave-channel powers per user, {|↵i|2}Ki=1, user-
matches the OBMNet-generated gradientr(t)

x as (6a), to get r̂(t)
x

(iv) The previous estimate x
(t), user-matched gradient r̂(t)

x and
OBMNet output x̂(t+1) is passed to the Regularization Network h(t)

�
for fine-tuning (see Table 1 for DNN parameters).
(v) Additionally, a residual link from the OBMNet output is fed to
the output of the Regularization Network, thereby imparting a stage-
dependent correction, to the unconstrained OBMNet step.
(vi) The final output x(T ) is normalized as x(T )  

p
2K

||x(T )||x
(T ).



Fig. 4. Comparison of per-user BER Vs SNR performance, from the strongest user, User 1, to the weakest, User 4. All K = 4 users,

transmitting QPSK symbols, are jointly detected at the BS with N = 64 antennas

Fig. 5. Recovered constellation for joint detection of all K = 4
users, received at ULA with N = 64 antennas at SNR = 15 dB

4. EXPERIMENTAL RESULTS

Simulation setup: The sectored mmWave channel [3] is considered,
as described in Sec. 2.1. The signal from K = 4 users, transmitting
QPSK symbols, is received at a BS ULA with N = 64 antennas.

DNN hyperparameters and training: We follow the same DNN
training procedure, namely the minibatch description, optimizer and
weight decay, as described in our previous work [23]. The mmW-
ROBNet consists of T = 5 iterations. For the constellation-aware
loss function (7)-(8), we assign λ = 5 and β = 2. All net-
works are trained at an intermediate SNR of 15 dB. Finally, the
sequence of user masking coefficients {κt}5t=1, in (9), is given by
{10, 1, 0.5, 0.1, 0}.

Performance benchmarks: The OBMNet [14], with T = 20 itera-
tions is considered as our primary benchmark. We also compare our
framework against the the n-ML [13] algorithm optimizing the cdf
likelihood. The Rayliegh-ROBNet framework, from our previous
work [23], is also considered. Finally, the ML detection, based on
an exhaustive search, forms the lower limit of the BER performance.

4.1. Recovered constellation: Scatterplots

We begin with a qualitative performance comparison of the pro-
posed mmW-ROBNet and the benchmark unregularized GD, i.e.,
the OBMNet [14]. The recovered constellation via joint detection
of all four users is provided in Fig. 5 (red dots represent incor-
rectly detected symbols). Based on these plots, it is evident that
both the mmW-ROBNet as well as the OBMNet have poor recovery
with bit errors for joint four-user detection. Since all the users ex-
perience different quality channels, the recovered constellation for
the weaker users is evidently responsible for this performance limi-
tation. Reinforcing this rationale, we also illustrate the scatterplots
of the strongest two users, i.e., User 1 and User 2, in Fig. 6. Due to

Fig. 6. Recovered constellation for User 1 and User 2 only, received

at ULA with N = 64 antennas at SNR = 15 dB

the better quality channel for these users, the mmW-ROBNet, with
HieDet training, is able to generate more uniform constellation clus-
ters with markedly reduced cluster spread compared to the OBMNet.

4.2. Detection performance for general mmWave channel

The per-user BER vs SNR performance is given in Fig. 4. As seen
from these plots, the sigmoid-based likelihood (4) improves on the
cdf-based n-ML detector. Although our Rayleigh-ROBNet [23] out-
performs the benchmark detectors, it is also unable to captalize on
the channel with the highest power, i.e., User 1. Note that the BER
average across the users will not capture this difference in detector
performance. The combination of the user-matched GD, along with
the sequential HieDet training is able to capitalize on the users with a
better channel without significantly affecting users with worse chan-
nel quality. Finally, all approaches saturate in BER for high SNR,
and reducing the gap to ML is still part of our ongoing research.

5. CONCLUSIONS

Through this work we have presented a novel one-bit neural detec-
tion approach, mmW-ROBNet, specifically tailored to the mmWave
channel model. We have illustrated the dependence of the detection
performance, per user, on the channel power for that user. Address-
ing this limitation, we have modified the existing regularized GD
framework, the ROBNet, to overcome these challenges. In particu-
lar, by means of the user-matched regularized GD and HieDet train-
ing, we are able to capitalize on the stronger user channel powers for
an equitable performance among the multiple users.

Future work in this domain involves improving on the robustness
of the HieDet training to further close the gap to ML detection. In
addition, we also envision extending this detection to higher order
M-QAM constellations, addressing the challenges therin.
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