POWERFREE SUMS OF PROPER DIVISORS

PAUL POLLACK AND AKASH SINGHA ROY

ABSTRACT. Let s(n) :=3_,, ,,d denote the sum of the proper divisors of n. It is natural
to conjecture that for each integer k > 2, the equivalence

n is kth powerfree <= s(n) is kth powerfree

holds almost always (meaning, on a set of asymptotic density 1). We prove this for k > 4.

1. INTRODUCTION

A 19th century theorem of Gegenbauer asserts that for each fixed k, the set of positive integers
not divisible by the kth power of an integer larger than 1 has asymptotic density ((k)™!, where
((s) is the familiar Riemann zeta function. Recall that the asymptotic density of a set A of
positive integers is the limiting proportion of the elements of A up to x, more precisely the
limit as x — oo of the quantity %#{a <z :a € A}, subject to existence.

Call an integer kth-power-free, or k-free for short when it is not divisible by the kth power of an
integer larger than 1. In this note we investigate the frequency with which the sum-of-proper-
divisors function s(n) :=>_ din, d<n @ assumes k-free values. As we proceed to explain, there is
a natural guess to make here, formulated below as Conjecture 1.1.

Fix k > 2. If n is not k-free, then p* | n for some prime p. Moreover, if y = y(z) is any function
tending to infinity, the the upper density of n divisible by p* for some p > y/* is at most
Zp>y1 P % =o0(1). Hence, almost always a non k-free number n is divisible by p* for some
p¥ <y. To be precise, when we say a statement about positive integers n holds almost always,
we mean that it holds for all n < x with o(z) exceptions, as x — oo. (Importantly, we allow
the statement itself to involve the growing upper bound z.)

It was noticed by Alaoglu and Erdés [AE44] that whenever y = y(z) tends to infinity with «
slowly enough, o(n) is divisible by all of the integers in [1, y] almost always. (We give a proof
below with y := (loglog x)'~¢; see Lemma 2.2.) Hence, almost always n and s(n) = o(n) —n
share the same set of divisors up to y. Putting this together with the observations of the last
paragraph, we see that if n is not k-free, then s(n) is not k-free, almost always. The same
reasoning shows that if n is k-free, then s(n) is not divisible by p* for any p < y'/*, almost
always. Thus, if it could be shown that almost always s(n) is not divisible by p* for any prime
p > y'/*. then we would have established the following conjecture.

Conjecture 1.1. Fix k > 2. On a set of integers n of asymptotic density 1,
n is k-free <= s(n) is k-free.
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The case k = 2 of Conjecture 1.1 is alluded to by Luca and Pomerance in [LP15] (see Lemma
2.2 there and the discussion following). Their arguments show that s(n) is squarefree on
a set of positive lower density (in fact, of lower density at least ((2) 'log2). Conjecture
1.1, for every k > 2, would then be a consequence of the following general conjecture of
Erdés—-Granville-Pomerance-Spiro [EGPS90] (see Remark 3.5 below).

Conjecture 1.2. If A is a set of natural numbers of positive upper density, then s(A) :=
{s(n) : n € A} also has positive upper density.

We recall that the upper and lower densities of a set of positive integers are defined in the
exact same way as the asymptotic density, but with limsup and liminf replacing the limit
respectively (so that these always exist).

Our result is as follows.
Theorem 1.3. Conjecture 1.1 holds for each k > 4.

To prove Conjecture 1.1 for a given k, it is enough (by the above discussion) to show that
almost always s(n) is not divisible by p* for any p* > (loglog z)*?. The range p < 2°(!) can be
treated quickly using familiar arguments (versions of which appear, e.g., in [Pol14]). The main
innovation in our argument — and the source of the restriction to £ > 4 — is the handling
of larger p using a theorem of Wirsing [Wir59] that bounds the “popularity” of values of the
function o(n)/n.

The reader interested in other work on powerfree values of arithmetic functions may consult
[Pap03, PSS03, BL05, BP06] as well as the survey [Pap05].

Notation and conventions. We reserve the letters p, ¢, P, with or without subscripts, for
primes and we write log,, for the kth iterate of the natural logarithm. We write P*(n) and
P~(n) for the largest and smallest prime factors of n, with the conventions that P(1) = 1 and
P~(1) = co. We adopt the Landau-Bachmann—Vinogradov notation from asymptotic analysis,
with all implied constants being absolute unless specified otherwise.

2. PRELIMINARIES
The following lemma is due to Pomerance (see [Pom77, Theorem 2]).

Lemma 2.1. Let a, k be integers with gcd(a, k) =1 and k > 0. Let x > 3. The number of n < x
for which there does not exist a prime p = a (mod k) for which p || n is O(x(logz)~'/#®k),

The next lemma justifies the claim in the introduction that o(n) is usually divisible by all
small primes. It is well-known (see, e.g., Lemma 2.1 of [LP15]) but we include the short proof.

Lemma 2.2. Fiz e > 0. Almost always, the number o(n) is divisible by every positive integer
d < (logy z)'~*.

Proof. Notice that d | o(n) whenever there is a prime p = —1 (mod d) such that p || n. For
each d < (log, )'~¢, the number of n < x for which there is no such p is O(z exp(—(log, ))),
by Lemma 2.1. Now sum on d < (log, ). O
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Our next lemma bounds the number of n < x for which n and o(n) possess a large common
prime divisor. In what follows, we say that a positive integer a is squarefull if no prime appears
only to the first power in a; or, in other words, if p? divides a for every prime p dividing a. By
the squarefull part of a natural number, we shall mean its largest squarefull divisor.

Lemma 2.3. Almost always, the greatest common divisor of n and o(n) has no prime divisor
exceeding log, x.

With more effort, it could be shown that ged(n, o(n)) is almost always the largest divisor of n
supported on primes not exceeding log, z. Compare with Theorem 8 in [ELP08], which is the
corresponding assertion with o(n) replaced by ¢(n).

Proof. Put y := log, x. We start by removing those n < x with squarefull part exceeding %y.
The number of these n is O(xy~/2), which is o(x) and hence negligible.

Suppose that n survives and there is a prime p > y dividing n and o(n). Since p | o(n), we
can choose a prime power ¢° || n for which p | 0(¢¢). Then y < p < o(¢°) < 2¢°, forcing e = 1.
Hence, p | 0(q¢) = g+ 1 and ¢ = —1 (mod p). Since pq | n, we deduce that the number of n
belonging to this case is at most

1 zlog, x T
Z E: _<<95§ E —<<mlog2x§ — ng o ’
P>y g=—1 (mod p) pq p>y q<zx q p>y ylogy 083 &
q<z g=—1 (mod p)

which is again o(z). Here the sum on ¢ has been estimated by the Brun—Titchmarsh inequality
(see, e.g., Theorem 416 on p. 83 of [Tenl5]) and partial summation. O

The next lemma bounds the number of n < x with two large prime factors that are multiplica-
tively close.

Lemma 2.4. For all large x, the number of n < x divisible by a pair of primes qy, qa with

g0 <0 < g and V0B < g, < g

is O(x/logs x).

. 1
Proof. The number of such 1 is at most @ Y 1/1010e52 g, <, o 2 1/(oms 02 <gy<qy o5 DY Mertens’
theorem, the inner sum is

] 1 ]
<log ( og (q1) ) = 0g

<
log (qua=1/(ogs %) qrz—/Uees)*) ™ (log g1)(logs x)?’
leading to an upper bound for our count of n of

xlogx Z 1 < rlogz loggz  «x
(log x)? qlogq — (logzz)? logz  logya’

21/101logg Teq<z

Here the final sum has been estimated by the prime number theorem and partial summation. [

We conclude this section by quoting the main result of [Wir59].
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Lemma 2.5 (Wirsing). There exists an absolute constant \g > 0 such that

1
#{mgx:m:a}gexp()\o ng>
m log,

for all x > 3 and all real numbers c.

3. PROOF OF THEOREM 1.3

As discussed in the introduction, it is enough to establish the following proposition. From now
on, y := (log, z)%?.

Proposition 3.1. Fir k > 4. Almost always, s(n) is not divisible by p* for any p* > y.

We split the proof of Proposition 3.1 into two parts, according to the size of p.

3.1. ...when y < p* < x!/21°832_ The following is a weakened form of Lemma 2.8 from [Pol14].

Lemma 3.2. For all large x, there is a set E(x) having size o(x), as x — 00, such that the
following holds. For all d < z'/?1°83%  the number of n < x not belonging to £(x) for which
d | s(n) is O(x/d"?).

Summing the bound of Lemma 3.2 over d = p* with y < p*¥ < 2!/21°87 gives o(z). It follows

that almost always, s(n) is not divisible by p* for any p* € (y, z'/?'8s7].
3.2. ...when p* > z'/21°83% The treatment of this range of p is based on the following result,
which may be of independent interest.

Theorem 3.3. For all large x, there is a set E(x) having size o(x), as x — oo, such that the
following holds. The number of n < x not belonging to E(x) for which d | s(n) is
T

< d/*log x
uniformly for positive integers d > x'/2'°8s% satisfying P~ (d) > log, x.
The crucial advantage of Theorem 3.3 over Lemma 3.2 is the lack of any restriction on the size
of d. Since k > 4, when we sum the bound of Theorem 3.3 over d = p* with z'/2108% < pF < 22,

the result is O(x log, x/log ), which is o(z). So the proof of Theorem 1.3 will be completed
once Theorem 3.3 is established.

Turning to the proof of Theorem 3.3, let £(x) denote the collection of n < x for which at least
one of the following fails:

(1) n > z/logx,

(2) the largest squarefull divisor of n is at most log, x,
(3 ( ) > x1/1010g3x7

(
(

4

)
) P
)
5)
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(6) Pt(n) > Py (n)z/(2®* where Pj(n) := P*(n/P*(n)) is the second-largest prime
factor of n.

Let us show that only o(z) integers n < z fail one of (1)—(6). This is obvious for (1). The
count of n < w failing (2) is K 3" 100 4+ squarerun 1/7 << ©/+/10g; x, and thus is o(z). That
the count of n < x failing (3) is o(z) follows from standard bounds on the counting function of
smooth (friable) numbers (e.g., Theorem 5.1 on p. 512 of [Tenl15]), or Brun’s sieve. The set of
n < x passing (3) but failing (4) has cardinality < 2> _ 1/1010e= 1/7? = 0(z). Condition (5)
is handled by Lemma 2.3. That the count of n < z satisfying (1)—(5) and failing (6) is o(x)
follows from Lemma 2.4.

Let d be as in Theorem 3.3. We separate the count of n ¢ £(x) for which d | s(n) according to
whether P*(n) < d"/*(logz)? or P*(n) > d'/*(log z)?.

We first consider n ¢ &(x) with P*(n) > d'/*(logz)?. Write n = mP, where P := P*(n).
Then ged(m, P) =1, and
z/m > dY*(log x)?.
We can rewrite the condition d | s(n) as
Ps(m) = —o(m) (mod d).

For this congruence to have solutions, we must have ged(s(m)o(m),d) = 1. Indeed, if there
exists a prime ¢ dividing both o(m) and d, then from ¢ | d, we have ¢ > log, x, whereas since
d | s(n), we also have ¢ | s(n). But then the divisibility ¢ | o(m) | o(n) leads to ¢ | ged(n, o(n)),
contradicting condition (5) above. Since any common prime divisor of s(m) and d would, by
the congruence, have to divide o(m) as well, we must indeed have ged(s(m)o(m),d) = 1.

As such, the above congruence condition on P places it in a unique coprime residue class
modulo d. Hence, given m, the number of possible P (and hence possible n = mP) is

« % i1 T
md md  md'/*(log x)?’

which when summed over m < z is < z/d"/*log x, consistent with Theorem 3.3. (We use here
the lower bound on d.)

It remains to count n < x, n ¢ £(z) where d | s(n) and P*(n) < d"/*(log x)?. For this case, we
fix a constant

A > 2)\0,

where \g is the constant appearing in Wirsing’s bound (Lemma 2.5). We will assume that
d < 2% since s(n) < o(n) < %2 for all n < z, once z is sufficiently large (e.g., as a
consequence of the bound o(n) < nlog, (3n); see Theorem 323 in [HWO08]).

We write n = AB, where A is the least unitary squarefree divisor of n/P*(n) exceeding
d'* exp <%ﬁ)°g%) Such a divisor exists as n > x/logx has maximal squarefull divisor at most
log, x, whereupon its largest unitary squarefree divisor coprime to P*(n) must be no less than

1 x A logx
. qV/4 2 )
d/4(log z)?log, x logw ~ P (2 log, x)
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(We assume throughout this argument that z is sufficiently large.) Then

x x A logx
1 B< - < — —— :
(1) - AT 4Vt exp( 210g2x)

Furthermore,

P+(A) < P;r(n) < P+<n)mfl/(log3m)2 < d1/4(10gl,>2x71/(10g3:v)2 < d1/4x7)\/10g2a:'
Since A/P*(A) is a unitary squarefree divisor of n/P*(n), to avoid contradicting the choice
of A, we must have A < d'/?exp (—%ﬁi{%). Then 0(A) < Alog, A < Alog, z, so that (for
large ) o(A) < d'/2.

For each B as above, we bound the number of corresponding A. First of all, since ged(A, B) =1,
the divisibility d | s(n) translates to the congruence o(A)o(B) = AB (mod d). Now, we claim
that ged(Ao(B),d) = 1: indeed, for any prime ¢ dividing both A and d, we must have, on one
hand, ¢ > P~(d) > log, z, while on the other, ¢ | d | s(n) and ¢ | A | n imply ¢ | ged(n, o(n)).
This contradicts (5). It follows by an analogous argument that ged(o(B),d) = 1, thus proving
our claim. Consequently, the above congruence may be rewritten as

c(A) B

A o(B)
Now for some B, consider any pair of squarefree integers A; and A, satisfying the above
congruence along with the conditions o(A;),0(A4s) < d/2. Then o(A))/A1 = o(Ay)/A,
(mod d), leading to o(A;)Ay = Aj0(As) (mod d). But also

lo(A1)Ay — Ajo(As)| < max{o(A;)As, Ajo(Ar)} < d,

thereby forcing o(A;)/A; = 0(As)/As. This shows that for each B, all corresponding A have
0(A)/A assume the same value, whereupon Lemma 2.5 bounds the number of possible A by

(mod d).

exp (Aobﬁ). Keeping in mind the upper bound (1) on B, we deduce that the number of n

logy x
falling into this case is at most

x A logx \ log x \ A\ logx
——exp | —= - ex = ex _Z '
a7 P\ 79 log, x P log, x as P " 2) logyx
Since A > 2\, this final quantity is < x/d"/*logx. This completes the proof of Theorem 3.3,
and so also that of Theorem 1.3.

Remark 3.4. It is to be noted that one needs the condition &£ > 4 in order to have the sum
x
>
pl/2logg z<pk<332 p log x

which arises from summing our upper bound in Theorem 3.3 over all d := p* > z'/21°8% be
o(z). Indeed, if k¥ < 3, then this sum would be > 27/6/(log ).

Remark 3.5. The conjecture of Erdds, Granville, Pomerance, and Spiro (quoted above as
Conjecture 1.2) can be restated as saying that s7'(.A) has density 0 whenever A has density 0.
If this holds, then the conclusion of Proposition 3.1 follows for each k > 2: take

A = {n divisible by p* for some p* > log,(100n)}.
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Unfortunately, very little is known in the direction of the EGPS conjecture. The record result
(still quite weak) seems to be that of [PPT18], where it is shown that s~!(.A) has density 0
whenever A has counting function bounded by z'/2°() as 2 — oco.
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