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Abstract—Rumors (i.e., untrue emergence saying of COVID-19
in an area) that rapidly disseminate on the ubiquitous social
media easily cause public panics and irrational behaviors (e.g.,
taking unnecessary medicine) of many very sensitive individuals
referred to as target recipients. Thus, rumor controlling or block-
ing for these target recipients is very critical, which differs from
the traditional way of protecting all individuals and remains an
open and challenging problem so far. In this work, on the basis
that rumors are disseminated from the given sources to target
recipients via multiple paths which may be significantly inter-
rupted by deleting a few key links referred to as protectors, we
first mathematically define a general target information dissem-
inating (TID) model and do theoretical proofs. Second, based
on the TID model, we introduce a random walk algorithm to
sample the paths of rumor dissemination for recipients. Third,
aiming at deleting a budget-limited set of protectors efficiently in
a large number of selected paths to reduce or weaken the negative
rumor influences on the target recipients, we propose a heuristical
strategy-based rumor influence decay mechanism referred to as
RumorDecay (i.e., RumorDecay k hop nearest neighbor method
and RumorDecay k hop random walk method in this work) which
can locate the optimal protectors quickly and efficiently. Finally,
we conduct extensive experiments on many real social networks
and the results show that the RumorDecay strategy can signif-
icantly weaken the rumor dissemination ability with less time
cost.

Index Terms—Rumor blocking, rumor dissemination
interruption, social network, target information dissemination.

I. INTRODUCTION

W
ITH the development of computer technology, more and

more social media, such as Facebook and WeChat are

emerging rapidly. On the one hand, it provides people with con-

venient communication services and shortens the information

interaction time between two individuals. On the other hand,
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the convenient social media also accelerate the generation and

dissemination of rumors (e.g., false messages or wrong state-

ments) in social networks. Due to the high degree of freedom

and activity of social network participants, the dissemination

of rumors becomes more complex and difficult to control.

Someone who has an ulterior motivation deliberately creates

rumors to attract the attention of the general public, such as for

money or interests. Some people who do not know the truth may

believe the rumors that are wildly disseminated on the Internet

without thinking. Furthermore, these people who are cheated

by rumors forward and share the rumors in social media, which

results in the rapid dissemination of rumors. In more serious

cases, it will disturb the normal social stability. Therefore, the

malicious dissemination of rumors on the Internet has a great

negative influence and resistance on the healthy development

of the whole Internet and society. The dissemination of rumor

in networks may bring widespread panic or huge economic

losses within a short time [1]. Hence, the reasonable modeling

and analysis of rumor dissemination processes have been a

long-standing area of research [2]–[4].

However, most current rumor controlling studies assume

that all users are recipients in the social networks, which is

a very strong assumption. As we know, many social network

users are immune to the rumors, who may know the truth

or do not care about rumors, and the rumors are meaning-

less to them. Only those ones who received the rumors and

took irrational behaviors (e.g., taking unnecessary medicine

for COVID-19) are the victims that are the intended recipi-

ents (namely, the target recipients) of the rumors. It is different

from the traditional all-recipients rumor dissemination models.

First, traditional models are a very time-consuming process of

stopping rumor dissemination, because the model considers all

social users to be target recipients. Meanwhile, the research

goal of this article is more specific and it only focuses on the

target recipients. Therefore, the research method in this article

is bound to consume less time. Second, there are no available

solutions for the target-recipients rumor blocking problem for

which there is also a lack of mathematical problem definition,

model formulation and theoretical proofs. To the best of our

knowledge, the target-recipients rumor blocking issue is still

challenging and open so far.

We aim to interrupt the rumor dissemination paths for

the given target recipients in social networks, and the neg-

ative rumor influence on target recipients will decay with the

increasing budget. First, we define a reasonable mathematical

model of target influence dissemination (TID) in which the

rumor information arrives at a recipient along multiple paths
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with a probability, and we do theoretical proofs for the mod-

els. Second, considering that a link may participate in multiple

rumor propagating paths, we aim to use the greedy algo-

rithm to find the link whose deletion will interrupt the most

rumor disseminating paths at the cost of high computing time.

Third, to reduce the time complexity, we propose to sample the

rumor paths by employing the random walks with low time

cost. Fourth, based on the sampled paths, the most suitable

protectors are quickly deleted. Finally, we conduct extensive

experiments on many real social graphs to demonstrate the

effectiveness and efficiency of our methods.

Our work studies a new rumor dissemination model, and

give feasible solutions to decay the negative rumor influence to

target recipients. This work makes the following contributions:

1) Mathematical Model of Target Influence Dissemination

Is Established: Aiming at decaying the rumor influ-

ence on the target recipients, we first define the target

information dissemination problem, propose a mathe-

matical model called TID describing that rumors are

originally made by multiple source users and dissem-

inated via multiple paths to multiple destination users,

and theoretically prove the model.

2) Rumor Dissemination Interruption Strategy Is Proposed:

We propose a rumor interruption strategy based on link

deletion. The strategy first introduces random walk algo-

rithm (RW) to sample the rumor dissemination paths

between sources and target recipients. Then, we propose

a heuristical strategy-based rumor influence decay mech-

anism referred to as RumorDecay (i.e., RumorDecay k

hop nearest neighbor method (RumorDecay-kHNN) and

RumorDecay k hop random walk method (RumorDecay-

kHRW) in this work) to select the protectors. Under the

given conditions, deleting these protectors can signifi-

cantly weaken the dissemination of rumors.

3) Extensive Controlled Experiments and Extended

Experiments: To illustrate the effectiveness of

RumorDecay for rumor dissemination interruption,

we conduct extensive experiments on a set of widely

used social networks. The results show that our

RumorDecay method can efficiently and effectively

block the rumor influence on recipients with less time

cost and limited graph utility loss.

The remainder of this article is organized as follows:

Section II reviews the related research on rumor controlling.

Section III introduces the TID model in social networks in

detail. We analyze and demonstrate the effectiveness of the

rumor dissemination interruption solution RumorDecay based

on link deletion in Section IV. Section V conducts a lot of con-

trolled experiments and graphically display the experimental

results. Section VI is the extended experiments. Finally, we

summarize the whole article and describe the potential future

work in Section VII.

II. RELATED WORK

It is extremely important and urgent to construct the

rumor dissemination interruption mechanism for major mass

incidents. How to effectively prevent the rumors or false

information from disseminating in the network and life has

become an important study topic for scientists. In terms

of rumor interruption, there are many considerable research

results. These results mainly improve the early information

dissemination model. These improved dissemination models

are more in line with the dissemination characteristics of

rumors in social networks. Based on these dissemination mod-

els, researchers have explored many effective methods to con-

trol and stop the dissemination of rumors. The current methods

of rumor controlling or rumor blocking can be summarized

into the following five categories: 1) information dissemina-

tion model; 2) rumor blocking method based on maximizing

the influence of nodes; 3) rumor blocking method based on

resisting information dissemination; 4) rumor dissemination

path control based on link disturbance; and 5) rumor control

strategy based on rumor community identification.

A. Information Dissemination Model

Budak et al. [6] were among the first who study the false

information controlling problem. In particular, they consider

the multicampaign-independent cascade model and investigate

the problem of identifying a subset of individuals that needs

to be convinced to adopt the good campaign so as to mini-

mize the number of people that adopt the rumor. He et al. [7]

and Fan et al. [8] further studied this problem under the

competitive linear threshold model and the OPOAO model,

respectively.

B. Maximizing the Influence of Nodes

In this part of the research, the main idea is to maximize

the influence of information. That is, researchers use sev-

eral influential important nodes to refute rumors, so that

rumors in social networks cannot disseminate in the network.

Wang et al. [9] proposed a fake information diffusion con-

trol method Fidic. In this article, considering the sequences

of users during the diffusion of fake information in social

networks, the PageRank-based method ranks the users accord-

ing to the links of their diffusion behaviors. Bao et al. [10]

established a trust network based on the trust relationship

between users, then they used an immunization strategy to con-

trol the rumor dissemination. Kandhway and Kuri [11] used

node centrality and optimal control to maximize information

diffusion in social networks.

C. Resisting Information Dissemination

When rumors disseminate in a social network, we release

positive information to some nodes that are not affected by

rumors. In this way, these positive nodes are free from the

interference of rumors. In addition, we use these immu-

nized nodes to immunize their neighbors, which can eliminate

the negative impact of rumors and even eliminate rumors.

Wen et al. [1] studied a feasible method to clarify rumors by

disseminating the truth. It combines truth dissemination with

the method of blocking rumors by influential nodes or com-

munities. It proves that their method is more effective than

only considering a single blocking strategy. Ding et al. [12]

discussed a hybrid control strategy, which combines the

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on September 17,2022 at 15:59:48 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: RumorDecay: RUMOR DISSEMINATION INTERRUPTION FOR TARGET RECIPIENTS IN SOCIAL NETWORKS 6385

continuous truth dissemination method and the directional

rumor screening method. It solves the imbalance problem

between rumor suppression and control cost minimization.

D. Rumor Dissemination Path Control

Rumor dissemination path controlling based on link pertur-

bation or node perturbation is one of the important methods

to prevent rumor dissemination. This method aims to delete

some links or nodes that play a key role in rumor dissemina-

tion [13]–[17]. Therefore, in this study, the problem of rumor

blocking is transformed into the problem of link selection.

Yan et al. [18] studied the problem of preventing rumor

dissemination by deleting links in social networks. They try

to remove a set of links from the network to minimize the

influence of rumor dissemination. In [19], to minimize the

dissemination of rumors, two heuristic algorithms based on

betweenness and outdegree are proposed to perturb a limited

number of links in social network.

E. Rumor Community Identification

Recently, the research on the identification of rumor com-

munities is one of the hot research topic in the field of rumor

blocking. The close relationship between multiple rumor dis-

semination members leads to the emergence of rumor commu-

nities. How to identify these rumor communities and control

the dissemination of them is particularly important.

Ping et al. pointed out that the presence of witch users

can significantly reduce the rumor blocking effect by 30%

and the existing rumor blocking methods fail to consider the

influence of witch attacks on rumor blocking. Based on this,

a rumor blocking framework (SLCRB) with minimum cost

based on witch perception is proposed [20]. Zheng and Li [21]

proposed a method for finding rumor communities, first, he

identified the minimal subset of rumor nodes. Then, he deleted

all nodes in the subset and their corresponding out degree

edge and in degree edge from the network. Zhang et al. [22]

proposed a rumor masking method (RBMTU) based on user

tolerance degree. Wang et al. [23] proposed that the exist-

ing rumor blocking methods are either continuous blocking

or permanent blocking. However, long time blocking may

lead to complaints and dissatisfaction of users, or even with-

drawal from social activities. Therefore, the author studied

the feasibility of temporary rumor blocking in rumor control

problem. Wu et al. [24] proposed a dynamic rumor influ-

ence minimization algorithm based on the group structure.

Fang et al. [25] proposed a general rumor blocking method

based on the nonpredictive rumor seed set.

III. TARGET INFORMATION DISSEMINATING IN

SOCIAL NETWORKS

In this section, before studying the dissemination of rumors,

we first study the TID problem in which a set of nodes is the

target recipients. We focus on the information dissemination

dynamics on information controlling and try to find a model

that expresses rumor dissemination and rumor controlling.

Here, we first give the general representation symbol in the

following research. Given a network G = (V, E), where V is

the node set and E is the link set. The number of nodes in G

is N = |V| and the number of links in G is M = |E|. A set

of target recipients is denoted by T and a set of information

source nodes is denoted by S. The number of nodes in S and

T are denoted by n and m, respectively. All possible target

information flow paths between S and T are defined as RST .

For any source node s (s ∈ S) and any target node t (t ∈ T),

the dissemination path between s and t is denoted by Rst. That

is, RST =
⋃

Rsitj , where i ∈ [1, n] and j ∈ [1, m]. A path is

denoted by e = {s ≡ v0, v1, . . . , vk ≡ t}, where k is the path

length (i.e., the hop number).

A. Single-Source-Single-Target Problem

Suppose that there is only one source node s and one target

node t in the network. The target information can be dissem-

inated from s to t by any path in Rst. The probability that the

target node t is the final recipient of the information from s is

denoted by (1), where pe
st is the probability that the information

flows from s to t through path e. We define (2) as the proba-

bility that t is not the recipient of information from s via all

paths in Rst

Hst = 1 −
∏

e∈Rst

(

1 − pe
st

)

(1)

Fst =
∏

e∈Rst

(

1 − pe
st

)

. (2)

Problem 1 [Target Information Dissemination Minimization

for Single Source Node Single Target Node (SS-MinTID)]: The

goal of SS-MinTID is to minimize the objective function Hst

by disabling or deleting a budget-limited number of links. The

disabled or deleted links are denoted by set E− and the cor-

responding objective function is H#
st(E

−). Equally, the goal is

to maximize the function F#
st(E

−) = 1 − H#
st(E

−).

Theorem 1: The SS-MinTID problem is monotone. Given

two link sets E1 and E2, where E1 ⊂ E2 ⊂ E. The conclusion

is that F#
st(E1) ≤ F#

st(E2) always holds.

Proof: Suppose that E2 = E1 ∪ x, where x ∈ E. There are

two cases for the link x: 1) x is not in any path of the set Rst,

so we have F#
st(E1) = F#

st(E2) and 2) at least one path in Rst

contains link x. When link x is deleted, the disappearing path

set in Rst is defined as Rx, where Rx ⊂ Rst. Thus, F#
st(E2) can

be replaced by (3). Because it satisfies 0 <
∏

e∈Rx
(1−pe

st) < 1,

so inequality F#
st(E1) < F#

st(E2) always holds

F#
st(E2) =

F#
st(E1)

∏

e∈Rx

(

1 − pe
st

) . (3)

Theorem 2: The SS-MinTID problem is not submodular.

Given two link sets E1 ⊂ E2 ⊂ E and a link x, where x ∈

E\E2. We have F#
st(E1∪{x})−F#

st(E1) < F#
st(E2∪{x})−F#

st(E2).

Proof: As shown in Fig. 1, there are three paths with dif-

ferent colors between s and t. That is, Rst = {e1, e2, e3}.

Let E1 = ∅, E2 = {(v5, v6)} and x = (v1, v2). The

result of F#
st(E1 ∪ {x}) − F#

st(E1) is shown in (4) and the

result of F#
st(E2 ∪ {x}) − F#

st(E2) is shown in (5). Therefore,

F#
st(E1 ∪ {x})− F#

st(E1) = {F#
st(E2 ∪ {x})− F#

st(E2)} ∗ {1 − p
e3
st }.
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Fig. 1. Case to illustrate the SS-MinTID problem is not submodular.

So, Theorem 2 always holds because of 0 < (1 − p
e3
st ) < 1

F#
st(E1 ∪ {x}) − F#

st(E1)

=
{(

1 − p
e2
st

)

∗
(

1 − p
e3
st

)}

−
{(

1 − p
e1
st

)

∗
(

1 − p
e2
st

)

∗
(

1 − p
e3
st

)}

= p
e1
st ∗

(

1 − p
e2
st

)

∗
(

1 − p
e3
st

)

(4)

F#
st(E2 ∪ {x}) − F#

st(E2)

=
{(

1 − p
e2
st

)}

−
{(

1 − p
e1
st

)

∗
(

1 − p
e2
st

)}

= p
e1
st ∗

(

1 − p
e2
st

)

. (5)

Greedy Solution for the SS-MinTID: For information flow

blocking problem, every time, we select a link to be deleted

that maximally increases F#
st. Then, we can calculate the gain

G#
x of the function F#

st when deleting a link x. We assume the

link set E− has been deleted and the disappearing paths in Rst

is denoted by RE− . Equation (6) gives the definition of G#
x

G#
x = F#

st

(

E− ∪ {x}
)

− F#
st

(

E−
)

=

∏

e∈Rst

(

1 − pe
st

)

∏

e∈

{

R(E−∪{x})∩Rst

}

(

1 − pe
st

) −

∏

e∈Rst

(

1 − pe
st

)

∏

e∈{RE−∩Rst}

(

1 − pe
st

)

=
Fst

∏

e∈{RE−∩Rst}

(

1 − pe
st

)

×

[

1
∏

e∈{Rx∩(Rst\(Rst∩RE−))}

(

1 − pe
st

) − 1

]

. (6)

For any link x to be deleted, the parts Fst and
∏

e∈{RE−∩Rst}
(1 − pe

st) are fixed. As shown in (7), in order to

get the maximum gain, we need to find a link x when G#
x is

maximum and delete it from network G

max
(

G#
x

)

∼ min

{

∏

e∈{Rx∩(Rst\(Rst∩RE−))}

(

1 − pe
st

)

}

. (7)

B. Multisources–Multitargets Problem

In this section, we will study the problem of multisource

nodes and multitarget recipients for target information flow

in networks. The source nodes of information are denoted by

S = {s1, s2, . . . , sn}, where n is the number of source nodes.

Similarly, the target recipients of information are denoted by

T = {t1, t2, . . . , tm}, where m is the number of target recip-

ients. All paths of information flow between S and T are

defined as RST , where RST = RSt1 ∪ RSt2 ∪ · · · ∪ RStm =

Rs1t1 ∪ Rs2t1 ∪ · · · ∪ Rsntm . Similar to the (single-source–single-

target) SS problem, we first give two concepts: FST and HST ,

which are shown in (8) and (9), respectively. FST is the prob-

ability that T is not the recipients of target information from

S via all paths in RST . HST is the probability that T are the

Fig. 2. Case to illustrate the MM-MinTID problem is not submodular.

final recipients of the target information from S via all paths

in RST

FST =

n
∏

i=1

m
∏

j=1

∏

e∈Rsitj

(

1 − pe
sitj

)

= Fs1t1 ∗ · · · ∗ Fsntm (8)

HST = 1 −

n
∏

i=1

m
∏

j=1

∏

e∈Rsitj

(

1 − pe
sitj

)

= 1 − FST . (9)

Problem 2 [Target Information Dissemination Minimization

for Multisource Nodes Multitarget Nodes (MM-MinTID)]: The

goal of MM-MinTID is to minimize the objective function

HST by disabling or deleting a budget-limited number of links.

The disabled or deleted links are denoted by set E− and the

corresponding objective function is H#
ST(E−). Equally, the goal

is to maximize the function F#
ST(E−) = 1 − H#

ST(E−).

Theorem 3: The MM-MinTID problem is monotone. Given

two link sets E1 and E2, where E1 ⊂ E2 ⊂ E. Then, F#
ST(E1) ≤

F#
ST(E2) always holds.

Proof: Suppose that E2 = E1 ∪ x, where x ∈ E. There

are two cases for the link x: 1) x is not in any path of

the RST , so we have F#
ST(E1) = F#

ST(E2) and 2) at least

one path in RST contains link x. When link x is deleted,

the disappearing path set in RST is defined as Rx, where

Rx ⊂ RST . Thus, F#
ST(E2) can be replaced by (10). Because

it satisfies 0 <
∏n

i=1

∏m
j=1

∏

e∈{Rx∩Rsitj
}(1 − pe

sitj
) < 1, so

inequality F#
ST(E1) < F#

ST(E2) always holds. That is to say,

the MM-MinTID problem is monotone

F#
ST(E2) =

F#
ST(E1)

∏

e∈Rx

(

1 − pe
ST

)

=
F#

ST(E1)
∏n

i=1

∏m
j=1

∏

e∈
{

Rx∩Rsitj

}

(

1 − pe
sitj

) . (10)

Theorem 4: The MM-MinTID problem is not submodular.

Given two link sets E1 ⊂ E2 ⊂ E and a link x, where x ∈

E\E2. Then, we have F#
ST(E1 ∪ {x}) − F#

ST(E1) < F#
ST(E2 ∪

{x}) − F#
ST(E2).

Proof: Fig. 2 is the case to illustrate the MM-TID

problem is not submodular. According to this figure, there

are eight information flow paths with different colors between
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S = {s1, s2} and T = {t1, t2, t3}. There is no path between

s1 and t3. Similarly, there is no path between s2 and t2.

RST = {e11, e12, e13, e14, e21, e22, e23, e24}. Suppose that there

are two link sets E1 = ∅ and E2 = {(v9, v10)}. A link

x = (v1, v2). Equation (11) gives the result of F#
ST(E1 ∪{x})−

F#
ST(E1) and the result of F#

ST(E2 ∪{x})−F#
ST(E2) is shown in

(12). Theorem 6 has been proved because of 0 < (1−p
e22
s2t ) < 1

F#
ST(E1 ∪ {x}) − F#

ST(E1)

=

∏n
i=1

∏m
j=1

∏

e∈Rsitj

(

1 − pe
sitj

)

1 − p
e11
s1t1

−
∏n

i=1

∏m

j=1

∏

e∈Rsitj

(

1 − pe
sitj

)

=
FST

1 − p
e11
s1t1

− FST

=
p

e11
s1t1

∗ Fs1t1 ∗ Fs1t2 ∗ Fs2t1 ∗ Fs2t3

1 − p
e11
s1t1

(11)

F#
ST(E2 ∪ {x}) − F#

ST(E2)

=

∏n
i=1

∏m
j=1

∏

e∈Rsitj

(

1 − pe
sitj

)

(1 − p
e11
s1t1

) ∗ (1 − p
e22
s2t1

)

−

∏n
i=1

∏m
j=1

∏

e∈Rsitj

(

1 − pe
sitj

)

1 − p
e22
s2t1

=
FST

(1 − p
e11
s1t1

) ∗ (1 − p
e22
s2t1

)
−

FST

1 − p
e22
s2t1

=
F#

ST(E1 ∪ {x}) − F#
ST(E1)

1 − p
e22
s2t1

. (12)

Greedy Solution for the MM-MinTID: For the information

flow blocking problem, every time, we select a link to be

deleted that maximally increase F#
SF . Then, we can calcu-

late the gain G#
x of the function F#

ST when deleting a link x.

Suppose that the link set E− has been deleted and the disap-

pearing paths in RST is denoted by RE− . Equation (13) gives

the definition of G#
x

G#
x = F#

ST

(

E− ∪ {x}
)

− F#
ST

(

E−
)

=
FST

∏n
i=1

∏m
j=1

∏

e∈

{

R(E−∪{x})∩Rsitj

}

(

1 − pe
sitj

)

−
FST

∏n
i=1

∏m
j=1

∏

e∈
{

RE−∩Rsitj

}

(

1 − pe
sitj

)

=
FST

∏n
i=1

∏m
j=1

∏

e∈
{

RE−∩Rsitj

}

(

1 − pe
sitj

)

×

1 −
∏n

i=1

∏m
j=1

∏

e∈
{

Rx∩
(

Rsitj
\
(

Rsitj
∩RE−

))}

(

1 − pe
sitj

)

∏n
i=1

∏m
j=1

∏

e∈
{

Rx∩
(

Rsitj
\
(

Rsitj
∩RE−

))}

(

1 − pe
sitj

) .

(13)

To get the maximum gain, we need to find a link x when G#
x

is maximum and delete it in network G. The specific solution

Fig. 3. Schematic of DFS and BFS algorithms.

Fig. 4. Schematic of RW algorithm.

is shown in

max
(

G#
x

)

∼ min

⎡

⎢

⎢

⎣

n
∏

i=1

m
∏

j=1

∏

e∈
{

Rx∩
(

Rsitj
\
(

Rsitj
∩RE−

))}

(

1 − pe
sitj

)

⎤

⎥

⎥

⎦

.

(14)

IV. RUMOR DISSEMINATION INTERRUPTION

A. Path Sampling

According to the TID model, first, we need to compute all

the rumor dissemination paths RST between the source nodes

S of rumor producers and the target recipients T . Hence, the

solution to get all the paths RST is the first problem that needs

to be solved. Enumeration is one of the important methods to

solve the problem of computation of set RST . We can enumer-

ate all the paths between S and T and define the enumeration

paths as R1
ST . Because the core idea of the enumeration method

is to list all the cases that meet the given conditions. Hence,

set R1
ST contains all the rumor dissemination paths, that is,

R1
ST = RST . The main implementation methods of the enumer-

ation method include depth-first search algorithm (DFS) and

breadth-first search algorithm (BFS). Fig. 3 gives the search

path of DFS and BFS algorithms. According to the figure,

BFS focuses on local information and DFS focuses on global

information. We will apply the DFS algorithm to compute the

path set R1
ST . The enumeration method seems to be a good

solution for small-scale networks and we can even observe

the paths in some small social networks with the naked eye.

However, with the increase of network scale, enumerat-

ing all the paths in social networks becomes a very time-

consuming task. To speed up the path computing process of the

greedy solution, we introduce the RW algorithm to sample the

paths. RW is an irregular and completely random movement.

As shown in Fig. 4, we cannot control the direction of the

random walk. Particularly, there may be loops in some paths,

such as steps 3 and 4 in Fig. 4. The only parameter that we

can set is the frequency (τ ) of RW, such as τ = 1 × 104,

τ = 2 × 105, or even bigger. Here, we apply the RW algo-

rithm to sample the paths between S and T and define the

sampling paths as R2
ST . Since the RW algorithm has a random
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Algorithm 1 Path Sampling Algorithm: DFS

Require: G = (V, E), s, t, r, R1
ST = {}, e = [], l

Ensure: R1
ST , F#

ST

1: e = e −→ s;

2: if s == t & getHopNum(e) <= l

3: R1
ST = R1

ST ∪ e;

4: else

5: if getHopNum(e) <= l

6: U = getNeighborNodes(G, s);

7: for each u ∈ U

8: if u /∈ e

9: R1
ST = DFS(G, u, t, r, R1

ST , e, l);

10: end if

11: end for

12: end if

13: end if

14: F#
ST = getFSet(R1

ST , r);

nature, so we have R2
ST ⊂ RST . Although R2

ST is not as accu-

rate as R1
ST , it is worthy for us to lose a little bit of accuracy

in exchange for the reduction of the time consumed for path

sampling.

In our experiments, suppose that the rumor disseminates

throughout the network and the dissemination rate (i.e., the dis-

semination probability of rumor between node pairs) of rumor

in G is r. Besides, we hold that the longest length (i.e., the hop

number) of rumor dissemination path cannot exceed a certain

threshold l. In our experiments, l equals the diameter of G.

For a feasible path e = {s ≡ v0, v1, . . . , vk ≡ t} between a

source node s (s ∈ S) and a target recipient t (t ∈ T), where

k is the hop number of path e and k ≤ l. Hence, when only

e is considered, we define the rumor acceptance probability

of t as pe
st = rk. Now, the purpose of path sampling is to

find all qualified rumor dissemination paths RST between S

and T . Meanwhile, we visit each path e in RST in turn and

get all the links that exist in e. This set of links is denoted

by EST . For each link (u, v) ∈ EST , we can get F#
ST({(u, v)})

based on the knowledge of the previous section. Then, we get

a set F#
ST = ∪F#

ST({xi}), where link xi ∈ EST . Next, we will

introduce the DFS and RW methods in detail, respectively.

1) Depth-First Search: DFS is a basic enumeration process,

which traverses the whole graph in the form of depth first.

Algorithm 1 gives the core steps of the DFS algorithm used in

path sampling. Line 9 of Algorithm 1 is a recursive process. In

the worst case, the time complexity of Algorithm 1 is O(N2).

2) Random Walk: Random walk is a statistical model,

which is composed of a series of tracks. For the path sam-

pling of rumor dissemination, random walk is a pretty good

solution. Algorithm 2 gives the specific steps of random walk

and the time complexity of the RW algorithm is O(N).

B. Important Links Detection

To interrupt the dissemination of rumors in G, we can

destroy the dissemination path of rumors by deleting some

of the most critical social links, so as to prevent the effec-

tive dissemination of rumors. Of course, it is not advisable to

Algorithm 2 Path Sampling Algorithm: RW

Require: G = (V, E), s, t, r, l, τ

Ensure: R2
ST , F#

ST

1: do

2: cur = s; e = []; e = e −→ cur; R2
ST = {};

3: do

4: U = getNeighborNodes(G, cur);

5: flag = 0;

6: if U 
= ∅

7: cur = getARandomNeighborNode(U);

8: e = e −→ cur; flag = cur;

9: end if

10: if flag == 0

11: break;

12: else if cur == t

13: R2
ST = R2

ST ∪ e;

14: end if

15: l = l − 1;

16: while l > 0

17: τ = τ − 1;

18: while τ > 0

19: R2
ST = getUniquePaths(R2

ST);

20: F#
ST = getFSet(R2

ST , r);

delete all links in EST , because it will cause serious damage

to the utility of G. The operation we can accept is to delete a

certain number of critical links and we define the number as β.

To interrupt the dissemination of rumor, our main work is

to delete the β most critical links in G and these critical links

are part of EST . So, how to find the most suitable β links in

a large number of links of EST? First, we find a small num-

ber of critical links between S and T that have information

flow and we denote these links as E′, where E′ ⊆ E. Here, we

introduce two methods to compute E′: 1) RumorDecay-kHNN

and 2) RumorDecay-kHRW. Then, we introduce a concept of

link weight. For a link (u, v) ∈ E′, the weight of it equals

ku × kv. We denoted it by W ′
(u,v) = ku × kv, where ku is

the degree of node u. So, we can calculate the link weight

of each link in E′ and get weight set W ′. For convenience,

we normalize W ′, and W ′
(u,v) = W ′

(u,v)/
∑

W ′. Next, we will

explain the RumorDecay-kHNN and RumorDecay-kHRW in

detail, respectively.

1) RumorDecay k Hop Nearest Neighbor: RumorDecay-

kHNN method is a link selection algorithm and can select

some most important links for rumor dissemination in G.

These selected links form a bridge of information dissemi-

nation between S and T in G. The main idea of RumorDecay-

kHNN algorithm is as follows: given source node s and target

recipient t in G and the longest length (i.e., the hop number)

l of rumor dissemination path. First, we find 1 to k = ⌈l/2⌉

hop neighbors of s and define it as s_kneigh. Similarly, we

find 1 to k = ⌈l/2⌉ hop neighbors (t_kneigh) of t. s_kneigh

and t_kneigh will produce an intersection V ′, where V ′ ⊆ V .

Extracting the node set V ′ in G and the links corresponding to

V ′, we get a subgraph G′. Finally, based on G′, the link set E′

and the weight set W ′ can be easily calculated. The specific
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Fig. 5. Schematic of the RumorDecay-kHNN algorithm.

Algorithm 3 RumorDecay-kHNN

Require: G = (V, E), s, t, l

Ensure: E′, W ′

1: k = ⌈l/2⌉;

2: s_kneigh = getkHopNearestNeigh(G, s, k);

3: t_kneigh = getkHopNearestNeigh(G, t, k);

4: V ′ = getIntersection(s_kneigh, t_kneigh);

5: G′ = getSubGraph(G, V ′);

6: (E′, W ′) = getLinkWeight(G′);

Algorithm 4 RumorDecay-kHRW

Require: G = (V, E), s, t, l, τ

Ensure: E′, W ′

1: k = ⌈l/2⌉;

2: s_knodes = getkHopRandWalk(G, s, k, τ );

3: t_knodes = getkHopRandWalk(G, t, k, τ );

4: V ′ = getIntersection(s_knodes, t_knodes);

5: G′ = getSubGraph(G, V ′);

6: (E′, W ′) = getLinkWeight(G′);

steps of RumorDecay-kHNN are shown in Algorithm 3. The

time complexity of RumorDecay-kHNN is O(N).

Fig. 5 is a case to illustrate the idea of the RumorDecay-

kHNN algorithm. In this case, k = 3. There are 12 nearest

neighbors (s_kneigh) of s and 13 nearest neighbors (t_kneigh)

of t. Set {v1, v2, v3, v4} exists in both s_kneigh and t_kneigh.

Hence, V ′ = {v1, v2, v3, v4}.

2) RumorDecay k Hop Random Walk: RumorDecay-

kHRW is also a link selection algorithm and can select

some most important links for rumor dissemination in G.

RumorDecay-kHRW is similar to RumorDecay-kHNN, the

only difference is the method to find 1 to k hop neigh-

bors. RumorDecay-kHRW finds the 1 to k hop neighbors of

node s by random walk. So, given two nodes s and t in G

and the longest path length (i.e., the hop number) l. First,

based on random walk, we find the 1 to k = ⌈l/2⌉ hop

neighbors (s_knodes) of node s. Similarly, we find the 1 to

k = ⌈l/2⌉ hop neighbors (t_knodes) of target recipient t.

For s_knodes and t_knodes, the subsequent processes are con-

sistent with method RumorDecay-kHNN. The specific steps

of RumorDecay-kHRW are shown in Algorithm 4. The time

complexity of RumorDecay-kHRW is O(N).

Algorithm 5 Rumor Dissemination Interruption: RumorDecay

Require: G = (V, E), S, T, r, β, l, τ

Ensure: G−

1: (R2
ST , F#

ST) = getPaths(G, S, T, r, l, τ ); /*Algorithm 2*/

2: (E′, W ′) = getWeight(G, S, T, l, τ ); /*Algorithm 3 or

4*/

3: for each (u, v) ∈ E′ do

4: I(u,v) = getLinkImportance(F#
ST , W ′);

5: end for

6: Isorted = sortByLinkImportance(I);

7: E− = getDeletedLinks(Isorted, β);

8: G− = getUpdatedNetwork(G, E−);

3) Rumor Dissemination Interruption: Before explaining

the rumor dissemination interruption method, this section first

introduces the concept of link importance for rumor dissem-

ination. F#
ST and W ′ are two different indicators to evaluate

the influence of links on rumor dissemination, we use these

two evaluation methods synthetically and propose a calculation

method to evaluate the link importance for rumor dissem-

ination. Thus, based on F#
ST and W ′, an evaluation index

called I(u,v) to measure the importance of link (u, v) in E′

is proposed. The calculation process of I(u,v) is shown in (15),

where (u, v) ∈ E′. The value range of I(u,v) is [0, 1]. The larger

I of a link, the greater the effect of this link on the dissem-

ination of rumor. Therefore, we can effectively interrupt the

dissemination of rumor by deleting several links with larger I

within the given threshold range

I(u,v) =
F#

ST({(u, v)}) + W ′
(u,v) − min

(

F#
ST

)

− min
(

W ′
)

max
(

F#
ST

)

+ max(W ′) − min
(

F#
ST

)

− min(W ′)
. (15)

In summary, we put forward a strategy RumorDecay

based on link deletion in social networks to weaken the

rumor dissemination. Algorithm 5 gives the specific steps of

RumorDecay and the time complexity is O(N). Specifically,

given a social network G = (V, E) and the diameter of G is l.

There are some nodes S of rumor producers and some tar-

get recipients T in G. Suppose that the probability of rumor

dissemination between any two nodes is r. Based on these

known conditions, RumorDecay aims to delete the optimal β

social links in order to weaken the dissemination of rumor.

First, we use Algorithm 2 to sample the qualified paths R2
ST

between S and T and the corresponding set F#
ST . Then, accord-

ing to Algorithms 3 or 4, we can obtain a smaller link set
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TABLE I
SOCIAL NETWORKS CONSIDERED IN THIS WORK

E′ and the corresponding weight set W ′. Next, for each link

(u, v) ∈ E′, the link importance I can be calculated. Sort I in

descending order to get Isorted. At this time, the β links with

the largest I are the links that need to be deleted, which is

defined as E−. Finally, the updated network G− = (V, E\E−)

can effectively weaken the dissemination of rumor under the

given constraints.

V. EXPERIMENTS

A. Elementary Knowledge

In this section, we briefly introduce some elementary knowl-

edge of all the experiments in our research. They mainly

include experimental environment, datasets, and experimental

evaluation.

1) Experimental Environment: All the experiments are run

on a windows10 server of 3.50-GHz CPU and 16.00-GB

RAM. The programming simulation language is MATLAB.

2) Datasets: The datasets used in this work are many

social networks which are free for scientific use and can be

downloaded online.1,2,3 In addition, we also generate a ran-

dom networks as the experimental dataset. Table I gives an

overview of the networks considered.

3) Evaluation Methodology: To prove the effectiveness of

rumor dissemination path interruption algorithm RumorDecay,

we mainly evaluate the experimental results in two aspects:

1) network utility and 2) the scope of rumor dissemination.

Network utility describes the change degree of the structure

of original network G. For the study of rumor dissemina-

tion interruption, we just need to delete a certain number

of social links in G and the network utility is bound to

decline. If the network utility has a big change, it means that

the RumorDecay algorithm destroys the original network too

much. Therefore, we not only hope to weaken the dissemi-

nation of rumor in G but also hope to damage the original

network as little as possible. In this article, we introduce the

average clustering coefficient C and the average path length

L to evaluate the network utility. The average clustering coef-

ficient describes the coefficient of the degree of clustering of

nodes in networks. Equation (16) gives the definition of C,

where Ei is the number of links that actually exist between the

ki neighbor nodes of node i and Ci is the clustering coefficient

of node i. The average path length is defined as the average

distance between any two nodes in the network. Equation (17)

1http://www-personal.umich.edu/∼mejn/netdata/
2http://snap.stanford.edu/data/index.html
3http://www.orgnet.com/

gives the definition of L, where dij is the number of links on

the shortest path between nodes i and j

C =
1

N

N
∑

i=1

Ci =
1

N

N
∑

i=1

2Ei

ki(ki − 1)
(16)

L =
1

1
2
N(N − 1)

∑

i≥j

dij. (17)

The infectious disease model is a mathematical model to

predict the trend of infectious diseases. According to the types

of infectious diseases, common infectious disease models can

be divided into SIS [31], SIR [32], SIRS [33], and so on.

In this article, the SIR model is used to predict the dissemi-

nation scope of rumors. Before and after rumor dissemination

interruption, we apply the SIR algorithm in G and G−, respec-

tively, to calculate the scope of rumor dissemination. For an

experiment, under the evaluation of SIR model, suppose that

m′ nodes in T finally accept the rumor. Here, the scope of

rumor dissemination is denoted by sir = m′/m. In this work,

for each rumor interruption result G−, we perform the SIR

algorithm for 50 times and get the average value.

In addition, according to Section III, HST describes the

probability that T is affected by S. HST is also an index to

evaluate the scope of rumor dissemination. Therefore, by cal-

culating the difference of HST before and after deleting links,

we can know whether our method effectively weakens the

dissemination of rumor.

B. Experimental Results

In this work, the different controlled experiments are

designed in two directions: one is to study the influence of

the threshold (β) of links to be deleted on the experimen-

tal results and the other is to study the influence of different

dissemination rate (r) on the experimental results.

In our experiments, we observe that when the frequency of

RW exceeds a certain threshold, it will have a small effect on

the final results. Therefore, in our experiments, we set τ =

2 × 105 and it is big enough to deal with the sampling of

paths. The most important point is that 2 × 105 rounds of RW

can be completed in a relatively short period of time and it is

much less than the time which is required of DFS algorithm.

1) Threshold of Link Deletion: For threshold β, we let

β = 0.02 × N, 0.04 × N, . . . , 0.2 × N, respectively, and

r = 0.16. Figs. 6 and 7 clearly describe the experimental

results (C, L, H, and sir) corresponding to different rumor

interruption algorithms with the change of threshold β. Fig. 6

is for networks kar, dol, and polb, while Fig. 7 is for networks

footb, e-mail, and ranGraph1. In this work, all the same exper-

iments are repeated for six times. In addition, both in Figs. 6

and 7, the green curve with the star symbol represents the

standard curve corresponding to the sampling result of algo-

rithm RW. The red curve with the circle symbol is the result

of RumorDecay-kHNN and the blue curve with cross symbol

is the result of RumorDecay-kHRW.

Generally speaking, for network utilities C and L, the

change degree of network utilities increases with the increase

of β. The larger β, the more links are deleted in the
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 6. Experimental results of networks (a1)–(a4) kar, (b1)–(b4) dol, and (c1)–(c4) polb with different threshold β.

(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

(f1) (f2) (f3) (f4)

Fig. 7. Experimental results of networks (d1)–(d4) footb, (e1)–(e4) e-mail, and (f1)–(f4) ranGraph1 with different threshold β.

network and the greater the damage to the original network G.

Therefore, as shown in Figs. 6 and 7, the curves of

C and L corresponding to methods RumorDecay-kHNN

and RumorDecay-kHRW are almost linear. Particularly, in

Fig. 6(a2), we can observe that when the threshold exceeds

0.06 × N, the network kar will become a disconnected

graph after deleting links. Thus, we cannot calculate the

average path length of e-mail and replace the average

path length of e-mail with −1. This is a reasonable phe-

nomenon, deleting many links in network kar which has

only 78 links will definitely have a greater impact on the

structure of it.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 8. Experimental results of networks (a1)–(a4) kar, (b1)–(b4) dol, and (c1)–(c4) polb with different rate r.

Now, we observe the influence of different β on the scope

of rumor dissemination. First, no matter how β changes, the

standard curves (the green curve with star symbol) of H and

sir should fluctuate in a smaller range because r is a fixed

value in all experiments. According to the observation, the

standard curves of H in Figs. 6 and 7 basically meet the

above requirements. But the standard curves of sir show a

sawtooth shape. The reason is that there are random modules

in the SIR model, so it is difficult to get the same results

for different experiments. On the whole, the large β, the bet-

ter the effect of rumor dissemination interruption. The special

case is shown in Fig. 7(e3), when r is less than 0.16 × N,

methods RumorDecay-kHNN and RumorDecay-kHRW cannot

effectively weaken the dissemination of rumor. Besides, the

experimental results show that the experimental performance

of methods RumorDecay-kHNN and RumorDecay-kHRW is

similar. In terms of sir in Figs. 6 and 7, methods RumorDecay-

kHNN and RumorDecay-kHRW have their own advantages

on different β. Therefore, we cannot clearly point out which

method is better. Although the larger the threshold of link

deletion, the better the interruption of rumor dissemination.

However, deleting a large number of links in the network

may completely destroy the availability of the network and the

network utilities have also been greatly changed. Therefore, in

our experiment, we suggest β = 0.1 × N.

Table II shows the average running time of algorithms RW,

RumorDecay-kHNN and RumorDecay-kHRW in different

networks. First, in general, the path sampling time based

on the RW algorithm will increase with the increase of

network scale. Although the RW algorithm is repeated for

2 × 105 times in each experiment, the path sampling work

can be completed in 1 min for all individual experiments. The

TABLE II
AVERAGE RUNNING TIME (IN SECONDS) OF THE CONTROLLED

EXPERIMENTS

running process of algorithm RumorDecay-kHNN is very fast,

because RumorDecay-kHNN only needs to find neighbors of

some nodes. In our experiments, the fastest running time of

RumorDecay-kHNN is about only 3 ms and the maximum

running time is no more than 1 s. For RumorDecay-kHRW,

both the source node and the target node need to perform

a random walk process, which is different from the single

random walk model of RW, so the running time of algo-

rithm RumorDecay-kHRW is generally larger than the running

time of RW.

2) Rumor Dissemination Rate: For rate r, we let r =

0.1, 0.12, . . . , 0.2, respectively, and β = 0.1×N. Figs. 8 and 9

clearly describe the results corresponding to different rumor

interruption algorithms with the change of rate r. Fig. 8 is for

networks kar, dol, and polb, while Fig. 9 is for networks footb,

e-mail, and ranGraph1. Similarly, all the same experiments are

repeated six times.

First, as shown in Figs. 8 and 9, deleting a certain number

(β = 0.1 × N) of links in network G will affect the cluster-

ing coefficient and the average path length of the network. All

clustering coefficient C of G in different experiments show
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(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

(f1) (f2) (f3) (f4)

Fig. 9. Experimental results of networks (d1)–(d4) footb, (e1)–(e4) e-mail, and (f1)–(f4) ranGraph1 with different rate r.

different degrees of reduction and the average path length L

of G generally increases in varying degrees. In addition, the

change of network utilities is independent of rate r. Namely,

the change of r cannot affect the network utility directly.

Particularly, look closely at Fig. 8(a1), only in this case, the

change rate of network utilities exceeds 50%. In other exper-

iments, the change rate of network utilities is between 10%

and 30%. For our rumor dissemination interruption study, the

change rate of network utilities is reasonable.

Now, we will discuss the influence of different r on the

scope of rumor dissemination. As shown in the third and

fourth columns of Figs. 8 and 9, on the whole, both HST

and sir increase with the increase of r. In addition, meth-

ods RumorDecay-kHNN and RumorDecay-kHRW both have

almost a same effect on the interruption of rumor dissemi-

nation. When r is small, such as r = 0.10, deleting links

with a certain threshold may only have a very weak effect

on the final results. The main reason is that a small rate r

cannot have a large enough impact on the dissemination of

rumor even in the original network G. When r ≥ 0.12, H and

sir curves of RumorDecay-kHNN and RumorDecay-kHRW

are lower than the standard curve in more than 95% of the

experiments. That is, both methods RumorDecay-kHNN and

RumorDecay-kHRW based on link deletion can effectively

weaken the dissemination of rumor in most cases. Of course,

in some rare cases, our methods may not be able to effec-

tively weaken the dissemination of rumor, such as networks

footb [Fig. 9(d3)] and e-mail [Fig. 9(e3)]. In fact, whether it is

the dissemination of rumors or infectious diseases, the dissem-

ination rate r is generally not too large or too small. When

r is too small, we can believe that the rumors or infectious

diseases are not harmful for our real life. When r is too large,

(a1) (a2)

(b1) (b2)

Fig. 10. Experimental results of (a1), (a2), (b1), and (b2) dol based on DFS
and RW path sampling algorithms, respectively.

we will certainly take more effective measures to interrupt the

dissemination of rumors or infectious diseases. For example,

the release of truth information for rumor interruption and the

intervention of medical drugs for infectious diseases.

VI. EXTENDED EXPERIMENTS

In this section, we will compare the efficiency of algorithms

DFS and RW in the path sampling work for network dol.

Here, we do not discuss the network utilities and only dis-

cuss the dissemination scope of rumor for different rumor

interruption methods. As shown in Fig. 10, the dotted lines

represent the results of DFS-based rumor interruption meth-

ods and the solid lines represent the results of RW-based

rumor interruption methods. Obviously, the standard of rumor
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Fig. 11. Path sampling time of RW and DFS.

dissemination scope (H and sir) based on the DFS algorithm

will get the maximum and it is larger than the standard based

on the RW algorithm. All in all, both algorithms RumorDecay-

kHNN and RumorDecay-kHRW based on DFS or RW can

weaken the dissemination of rumor to a certain extent.

Fig. 11 shows the path sampling time of DFS and RW.

Because the change of r or β will not affect the process

of all experiments, so we only compare the running time of

the β-based controlled experiments. As shown in Fig. 11, for

path sampling work, RW only needs a small amount of time

to complete path sampling, while the running time of the

DFS algorithm is much longer than RW. With the increase

of network scale, DFS is obviously not suitable to solve the

problem of path sampling.

VII. CONCLUSION

This work studies the problem of rumor dissemination

interruption for target recipients in social networks and

proposes a rumor controlling strategy RumorDecay (i.e.,

RumorDecay-kHNN and RumorDecay-kHRW). The core idea

of RumorDecay is link deletion with limited threshold.

First, this work built a mathematical model TID for the

target information disseminating problem and theoretically

proves its monotonicity and submodularity. Second, accord-

ing to TID, in order to select the best candidate links to be

deleted, we introduced the RW algorithm to sample quickly

the rumor dissemination paths. Then, we proposed a heuristical

strategy-based rumor influence decay mechanism referred to

as RumorDecay. RumorDecay can find the critical links to be

deleted in a short period of time. Finally, we designed and con-

ducted a large number of controlled experiments in two input

parameters: 1) rumor dissemination rate r and 2) the threshold

β of links to be deleted. Experimental results showed that the

RumorDecay strategy can effectively weaken rumor dissemi-

nation in social networks. Deleting key links in social networks

can effectively weaken the spreading ability of rumors. In real

life, both rumor controlling and infectious disease control-

ling can be achieved by the operation of critical link deletion.

Therefore, the critical link selection method has become the

main content of our work.

Limited by the immaturity of current technology, there

are still some problems that have not been solved. There

are several avenues for future research: 1) design a more

comprehensive rumor dissemination interruption model. For

example, we can consider the impact of the release of the

truth or the intervention of official departments on the dis-

semination of rumors and 2) the community phenomenon of

rumor dissemination. Specifically, the acceptance probability

of a rumor by members of a community is consistent. So, we

can consider the structure disturbance of the recipient commu-

nity in the network to weaken or interrupt the dissemination

of rumors. Furthermore, rumor producers often exist in the

network in the form of community. Therefore, identifying the

rumor community and controlling it are also a feasible idea.
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