Challenges in Migrating Imperative Deep Learning Programs to
Graph Execution: An Empirical Study

Tatiana Castro Vélez
City University of New York (CUNY) Graduate Center
New York, NY, USA
tcastrovelez@gradcenter.cuny.edu

Mehdi Bagherzadeh
Oakland University
Rochester, MI, USA

mbagherzadeh@oakland.edu

ABSTRACT

Efficiency is essential to support responsiveness w.r.t. ever-growing
datasets, especially for Deep Learning (DL) systems. DL frame-
works have traditionally embraced deferred execution-style DL
code that supports symbolic, graph-based Deep Neural Network
(DNN) computation. While scalable, such development tends to
produce DL code that is error-prone, non-intuitive, and difficult
to debug. Consequently, more natural, less error-prone imperative
DL frameworks encouraging eager execution have emerged at the
expense of run-time performance. While hybrid approaches aim
for the “best of both worlds,” the challenges in applying them in
the real world are largely unknown. We conduct a data-driven anal-
ysis of challenges—and resultant bugs—involved in writing reliable
yet performant imperative DL code by studying 250 open-source
projects, consisting of 19.7 MLOC, along with 470 and 446 manually
examined code patches and bug reports, respectively. The results in-
dicate that hybridization: (i) is prone to API misuse, (ii) can result in
performance degradation—the opposite of its intention, and (iii) has
limited application due to execution mode incompatibility. We put
forth several recommendations, best practices, and anti-patterns for
effectively hybridizing imperative DL code, potentially benefiting
DL practitioners, API designers, tool developers, and educators.

CCS CONCEPTS

+ General and reference — Empirical studies; - Computing
methodologies — Machine learning; - Software and its engi-
neering — Language features; Software evolution.

KEYWORDS

empirical studies, deep learning, imperative programs, hybrid pro-
gramming paradigms, graph-based execution, software evolution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9303-4/22/05...$15.00

https://doi.org/10.1145/3524842.3528455

Raffi Khatchadourian
City University of New York (CUNY) Hunter College
New York, NY, USA
raffi.khatchadourian@hunter.cuny.edu

Anita Raja
City University of New York (CUNY) Hunter College
New York, NY, USA
anita.raja@hunter.cuny.edu

ACM Reference Format:

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita
Raja. 2022. Challenges in Migrating Imperative Deep Learning Programs to
Graph Execution: An Empirical Study. In 19th International Conference on
Mining Software Repositories (MSR "22), May 23-24, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3524842.3528455

1 INTRODUCTION

Machine Learning (ML), including Deep Learning (DL), systems are
pervasive in society. Central to such systems are dynamic models,
whose behavior is ultimately defined by input data. However, as
datasets grow, efficiency becomes essential to support responsive-
ness [103]. For industrial applications, DL frameworks—pillars of
DL systems [56,58,68,100] —must quickly execute complex compu-
tations on large datasets while supporting easy-to-use program-
ming paradigms [60]. For efficiency, DL frameworks have tradition-
ally embraced a deferred execution-style that supports symbolic,
graph-based Deep Neural Network (DNN) computation [25,46].
While scalable, development is error-prone, cumbersome, and pro-
duces programs that are difficult to debug [56,57,99,100]. Further-
more, because graph computation executes statements in a non-
imperative order, traditional Software Engineering (SE) tools cannot
help troubleshoot bugs [9]. Contrarily, more natural, less error-
prone, and easier-to-debug imperative DL frameworks [3,27,79]
encouraging eager execution have emerged. Though ubiquitous,
eagerly-executed imperative DL programs are less efficient and scal-
able as their deferred-execution counterparts [25,37,43,60,72,79].
Executing (imperative) DL programs eagerly “makes tensor [matrix-
like data structures central to DL] evaluation trivial but at the cost
of lower performance” [30].! Thus, hybrid approaches [6,37,72]—
integrated into mainstream DL frameworks—execute imperative
DL programs as static graphs at run-time. For example, in Tensor-
Flow [1]—a popular [54,100] DL framework—AutoGraph [72] can
potentially enhance performance by decorating (annotating)—with
optional yet influential decorator arguments—appropriate Python
function(s) with @tf. function. Decorating functions with such hy-
bridization Application Programming Interfaces (APIs) can increase
imperative DL code performance without explicit modification.
Though promising, hybrid approaches necessitate non-trivial
specialized metadata [60] and exhibit limitations and known is-
sues [42] with native program constructs. Subtle considerations

Performance is this paper refers to run-time performance (speed), not model accuracy.

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

are required to make code amenable to safe, accurate, and efficient
graph execution—avoiding performance bottlenecks and semanti-
cally inequivalent results. Therefore, developers are burdened with
making their code compatible with the underlying execution model
conversion, as well manually specifying which functions should
be converted. While alternatives [60] exist, they impose custom

Python interpreters, which may be impractical for industry, and

support only specific Python constructs. Thus, there is a knowledge

gap in how hybridization is used in real-world DL applications,
leading to the challenges in successfully applying it underexplored.

Without such insight, DL systems may be inefficient, fallible, and

difficult to maintain. Moreover, advances in DL are likely to be

futile if they cannot be effectively used.

To fill this gap, we conduct an empirical study on common devel-
opment challenges in migrating imperative DL code to graph exe-
cution using hybridization in open-source DL systems. Particularly,
we aim to answer the following research questions: (RQ1) what bug
patterns and corresponding challenges are involved in writing reli-
able yet performant imperative DL code, and (RQ2) which best prac-
tices and anti-patterns can be extracted from (RQ1)? Such knowl-
edge can help drive new automated migration techniques, IDE code
completion, and automated (data science-specific [11,32,33]) refac-
toring mining approaches [95]. The results: (i) advance knowledge
of this emerging yet pervasive hybrid paradigm, (ii) provide feed-
back to language and API designers for future API versions, (iii) help
tool designers comprehend difficulties with writing performant im-
perative DL code, (iv) include preliminary recommendations, best
practices, and anti-patterns for practitioners in using hybridization
effectively, and (v) assist educators in teaching hybridization APIs.

Our study involves analyzing occurrences of tf.function in 250
projects, consisting of 19.7 MLOC, along with 470 and 446 manually
examined code patches (Git commits) and bug reports (GitHub is-
sues), respectively. Challenges—along with their causes, symptoms,
and fix patterns—are taxonomized using manual processes aided
by automated software repository mining. Due to its popularity
and extensive analysis by previous work [26,55,56,58,68,74,99,100],
we focus on hybridization in TensorFlow. Our study indicates that:
(i) tf.function is widely used, (ii) misusing tf.function was a ma-
jor theme in migrating imperative DL programs to graph execution,
(iii) subtle bugs in using tf.function can result in performance
degradation—the opposite of its intention, and (iv) tf.function is
commonly incompatible in a given context—limiting its application.

Our contributions can be summarized as follows:
Hybridization bug hierarchical taxonomy From 470 and 446

patches and bug reports, respectively, of 250 projects man-
ually examined, we build a rich hierarchical taxonomy of
common hybridization challenges.

Recommendations, best practices, & anti-patterns We propose
preliminary recommendations, best practices, and anti-patterns
for effectively hybridizing imperative DL code from our sta-
tistical results, as well as an in-depth analysis.

Complete results of our study are available in our dataset [24].

2 MOTIVATING EXAMPLES & BACKGROUND

Popular DL frameworks have historically embraced deferred
execution-style (low-level) APIs, making DNNs straight-forward to

PNTR

[. B TR SR

1
2
3
4
5
6

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

tf.constant(5.0)
tf.constant(6.0)
a*b

sess = tf.Session()

o
wonon
® 9 o ou

(sess.run(c))

Listing 1: TensorFlow deferred execution-style code [48].

class SequentialModel(tf.keras.Model): 11 @tf.function(...)

def __init__(, *xkwargs): 12
(SequentialModel,).__init__(...) 13
.flatten = layers.Flatten(14 def __call__(, X):
input_shape=(28, 28)) 15 X = .flatten(x)
num_layers = 100 16 for layer in .layers:
.layers = [layers.Dense(64, activation = 17 x = layer(x)
) for n in (num_layers)] 18 X = .dropout(x)
.dropout = tf.keras.layers.Dropout(2.2) 19 X = .dense_2(x)
.dense_2 = tf.keras.layers.Dense(10) 20 return x
Listing 2: TensorFlow imperative (OO) DL model code [43].

etf. function Output (expecting 1, 1, 2):

def f(x):

() Input: 1

£ Input: 2

()
£(2)

Listing 3: Imperative TensorFlow code with Python side-effects [42].

execute as symbolic graphs that enable various run-time optimiza-
tions. For example, during graph building (lines 2—4 of listing 1),
line 4 does not execute until the Session created on line 6 is run on
line 8. While efficient, legacy code using such APIs are cumbersome,
error-prone, and difficult to debug and maintain [56,57,99,100].
Such APIs also do not natively support common imperative pro-
gram constructs, e.g., iteration [5]. Contrarily, eager execution-style
DL APIs [3,79] facilitating higher-level, imperative, and Object-
Oriented (OO) [27] (Python) programs that are easier-to-debug,
less error-prone, and more extensible have emerged. For instance,
with eager execution, line 4 of listing 1 would execute and immedi-
ately evaluate tensor c, foregoing the need of a session. In many
DL frameworks, eager execution is now the default.

Despite the benefits, executing (imperative) DL programs eagerly
comes at the cost of run-time performance [30]. Thus, hybridiza-
tion approaches [6,37,72] that execute imperative DL programs
as graphs at run-time have been integrated into mainstream DL
frameworks. For example, listing 2 portrays TensorFlow imperative
(OO0) DL code representing a modestly-sized model for classifying
images. On line 11, AutoGraph [72] is used to potentially improve
performance by decorating the model’s call() method with etf.
function, possibly providing optional yet influential decorator ar-
guments. At run-time, call()’s execution will be “traced” and an
equivalent graph will be generated [42]. In this case, a speedup
(runtimeoia/runtimeye,) of ~9.22, averaged over five runs, ensues [63].

As noted in Section 1, while promising, hybridization presents
unique challenges [42,60] in ensuring that programs run reliably
and efficiently. If used incorrectly, hybridization may yield pro-
grams that result in unexpected run-time behavior. Decorating the
right functions, supplying the correct decorator arguments, using
the appropriate API, and properly structuring imperative DL code
so that it is amenable to graph execution can be daunting, especially
for developers (data scientists) lacking SE expertise.

Python Side-effects. Side-effect producing, native Python state-
ments, e.g., printing, list appending, global variable mutation [42],

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution

1 class Model(tf.Module):
def __init__():
.v = tf.Variable(0) 14
.counter = 0

12 m = Model()
13 for n in 3):
(m() . numpy ())

2

3

4

5

6 @tf.function Output (expecting 1, 1, 1):
7 def __call__()t

8 if .counter == 0:

9 .counter += 1

0 .v.assign_add(1)

1 return v

1

3
Listing 4: Imperative TensorFlow code using a counter [42].

1 model = SequentialModel()
2 resl = model(tf.constant([1, 2, 31))
3 res2 = model(tf.constant([1, 2, 3, 4, 51))

of the last 5 calls
retracing

Tracing is expensive.

Listing 5: DL model (listing 2) client code using varying datasets [42].

are problematic for tf. function-decorated functions.? Because they
are traced, a function’s behavior is “etched” into its corresponding
graph and thus can have unexpectant results, executing side-effects
multiple times or not at all. Side-effects occur when tf.functions
are called the first time; subsequent calls with similar arguments
execute the graph instead. For example, on line 3 of listing 3, f()
outputs x. On line 1, f() is decorated with @tf.function, which
migrates it to a graph at run-time. Then, f() is invoked three times,
the first two with the argument 1 and the last with 2. In the output
on the right, the first invocation of f() on line 4 results in a graph
being built (through tracing) that—due to a similar argument—is
later used on line 5. Consequently, the side-effecting code on line 3
is not exercised. In contrast, line 3 is exercised as a result of the call
on line 6 due to a different argument being supplied.

Although listing 3 is simple, unexpected behavior can gener-
ally be difficult to notice. Consider listing 4, where a model uses a
counter to safeguard a variable incrementation. The initial value of
counter, however, is captured during tracing upon the first model
invocation (line 14). The overall effect is that the value of v is incre-
mented unconditionally (line 10) each time the model is invoked.
Such problems are common in migrating deferred-execution-style
DL code (e.g., listing 1) to an imperative style (e.g., listing 2). Worse
yet, developers only realize such errors after observing suspicious
numerical results or significantly lower performance than expected
(e.g., when guarded operations are costly) [42].

When To Use Hybridization? Besides ensuring that DL code is
amenable hybridization [36], developers must also know when and
where to use it to avoid performance bottlenecks and other unde-
sired behavior. For example, confusion exists on how often etf.
function should be applied [87], and calling tf. functions recur-
sively could cause infinite loops [42]. Even if a recursion seems to
work, the tf. function will be traced multiple times (“retracing”), po-
tentially impacting performance. Also, using @tf. function on small
computations can be dominated by graph creation overhead [43].

Using Hybridization Parameters. Decorating the correct function
but with incorrect decorator arguments may result in performance
degradation. For instance, retracing helps ensure that the correct
graphs are generated for each set of inputs; however, excessive
retracing may cause code to run more slowly had tf.function not
been used [42,80,81]. Listing 5 depicts code that invokes the model

2Herein, “tf . function-decorated” functions will be referred to as “tf. functions.”

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

Table 1: Studied subjects.

subj KLOC studied periods cmts/iss kws exe

fixes 122 10,879 2015-11-06 to 2021-01-14 199,140 470 470
reports 167 17,378 2012-05-07 to 2021-08-11 237,232 704 446

Total 250" 19,677 2012-05-07 to 2021-08-11 436,372 1,174 916

" Represents unique totals due to subject overlap between the study portions.

declared in listing 2 multiple times using different (hypothetical)
datasets, producing the warning on the right. To limit retracing, an
input_signature can be specified on line 11, listing 2 as follows:

@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))

A [None] dimension in the tf.TensorSpec allows for flexibility in
trace (graph) reuse. Since tensors are matched on their shape, a
None wild card allows tf. functions to reuse traces for variably-sized
input—occurring when sequences or images are of different lengths
or sizes, respectively. Since each call no longer produces a trace,
the warning disappears—averting any performance bottlenecks.
These simplified examples demonstrate that effectively using
hybridization is not always straight-forward, potentially requiring
complex analyses and a thorough understanding of APl intricacies—
a compounding problem in more extensive programs. As imperative
DL programming becomes more widespread, statistical insight into
how such programs are best written efficiently and how to avoid
common bugs would be extremely valuable to developers.

3 METHODOLOGY

Subjects. We examined Git commit changesets (code patches; row
fixes, Table 1) representing bug fixes involving tf.function and
GitHub issues (row reports) mentioning tf.function. Our study
encompassed 250 open-source DL systems (column subj), compris-
ing ~19.7 million lines of source code (column KLOC), 199,140
Git commits (column cmts for commits), 237,232 GitHub issues
(column iss for bug reports), and 460.21 years of combined project
history, averaging 1.86 years per subject. Subject details may be
found in our dataset [24]; subjects sources are publicly available on
GitHub. While we focus tf. function client usages, we include Ten-
sorFlow as developers often file GitHub issues against it to discuss
tf. function usage challenges and potential bugs. Subjects include
those used in previous studies [26,32,55,56,58,59,68,99,100] and ap-
pearing in data science-specific datasets [17]. To determine if a
project represents a DL system, i.e., one with at least one DL mod-
ule, we searched repositories for specific keywords, e.g., “keras,”
“layer, “net,” “neural network,” “deep learning” The keywords have
also been used in related work [59] for a similar purpose; the key-
words were only used to ensure that subjects were DL systems, not
for finding hybridization bugs. We then verified the code to ensure
that the keywords represented DL contexts.

For changesets (bug fixes), subject criteria consists of having
at least one commit whose changeset contains tf.function. For
issues, subjects must have at least one GitHub issue mentioning
“tf.function” Subjects were mostly written in Python, which is pop-
ular for DL [16]. While the subjects include popular open-source
repositories from well-known and reputable organizations, e.g.,
Apache [7], Apple [8], Google [45], NVIDIA [75], they also include
lesser-known repositories to understand hybridization challenges

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

facing the DL community-at-large. Furthermore, hybridization is
relatively new—tf. function was released on September 30, 2019.

Mining. To find changesets (patches) representing hybridiza-
tion bug fixes, we mined repositories for commits referencing tf.
function using gitcproc [23], a tool for classifying Git commits used
by previous work [12,65,92,94]. Row fixes, column kws of Table 1
is the commits containing tf. function in their changesets. We man-
ually examined all 470 commits, portrayed by row fixes, column
exe. To find issues related to hybridization, we mined repositories
for GitHub issues mentioning “tf.function” by first filtering out
issues containing only irrelevant discussion (e.g., “social conversa-
tion”) using a pre-trained classification model [10] used by previous
work [76,98,102]. We then invoked the GitHub Search API [41] to
select (open and closed) issues that included “tf.function” using
several different criteria, e.g., “best match,” “most commented.” To
reduce false positives, since the APl ignores punctuation, we further
filtered the results to ensure that they included the period. Row re-
ports, column kws of Table 1 is the issues® containing “tf.function”
in either their title or body (description and conversations). We
randomly selected a subset of these to examine manually (details be-
low), portrayed by row reports, column exe. The aforementioned
tools [10,23,41] were only used to narrow the search space and not
for classification, which was done manually. The GitHub search was
performed in a (standard) manor consistent with previous work.

Identification. We used a gitcproc feature that leverages heuris-
tics based on log messages to identify bug fix commits. Natural
language processing (NLP) is internally used by gitcproc to deter-
mine the commits that fall into this category. Doing so helps us
to focus on likely bug fix commits for further manual examina-
tion. Random matching issues—with ones containing code being
favored—were chosen for manual inspection. Next, the authors
manually examined the commits and issues to ascertain if they
indeed relate to hybridization bugs. Two authors are SE and PL
professors with extensive expertise in software evolution, system
performance, and empirical SE. Another author is a data mining
and ML professor with substantial proficiency in Al and SE. Three
authors have several years of industrial SE experience.

Although the researchers did not converse during the initial
identification and classification process to avoid bias, this mix of
expertise is effective in studying SE tasks in DL systems. The re-
searchers convened regularly during the study, as well as at the
end for finalization, to solidify the results. Cohen’s Kappa coeffi-
cients [96] for identification and classification were 0.80 and 0.57,
respectively.* As the authors did not always have detailed knowl-
edge of the particular systems, only changes where a bug fix was
extremely likely were marked as such. The authors also used com-
mit comments and referenced bug databases to ascertain whether
a change was a bug fix. GitHub issues tags were also considered.

Classification. For commits, once bug fixes were identified, the
authors studied the code changes to determine the category of bug
fixes and whether the category relates to hybridization. For issues,
the authors examined issue descriptions and discussions, paying
attention to the tf.function challenges being described and their
possible solutions and workarounds. Particular attention was paid

3Also includes pull (patch) requests as these are treated similarly in GitHub.
4Moderate agreement is expected; the team has mixed ML/SE expertise.

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

Table 2: Discovered top-level problem categories.

problem abbr cmts iss total
Performance PRF 74 37 111
API misuse APM 23 30 53
Incompatibility INC 16 33 49
TensorFlow bug TFB 4 18 22
Other OTH 14 2 16
Unknown UKN 10 0 10
Test TST 8 0 8
Debuggability DBG 4 2 6
Exposed variable state ~ EVS 1 1 2
Compilation error CMP 1 0 1
Numerical errors NME 1 0 1
Segmentation fault SEG 1 0 1
Total 157 123 280

to code snippets. No scripts were involved in the classification—only
manual examination. Categories were then formed into a hierarchy,
in part by using the TensorFlow documentation [42]. On several
occasions, developers were contacted for clarification using the
GitHub line comment mechanism and via email.

4 RESULTS

This section answers (RQ1) by summarizing our results, noting
trends, exceptions, and unexpected outcomes. Contrarily, Section 5
consolidates, comments on, and connects the main findings. Related
discussion in Section 5 is referenced where appropriate.

4.1 Quantitative Analysis

From the 470 commits and 446 GitHub issues (totaling 916) manu-
ally examined (column exe, Table 1), we found 157 and 123 (totaling
280) tf.function bug fixes and developer challenges depicted in
columns cmts (commits) and iss (GitHub issues) of Table 2, re-
spectively. Finding these bugs and understanding their relevance
required a significant amount of manual labor that may not be feasi-
ble in more large-scale, automated studies. Python, being a dynamic
language, can be difficult to analyze, particularly w.r.t. inheritance
relationships; subclassing Keras models is a common way to write
imperative DL code in TensorFlow (cf. line 1, listing 2). Furthermore,
our number of findings (280) is comparable with previous studies
involving manual inspection (e.g., Tang et al. [91] found 285, Zhang
et al. [100] found 175, Khatchadourian et al. [65] found 61). Never-
theless, as tf. function becomes more popular, we expect its usage
and number of related bugs to grow.

4.1.1 Problem Categories. We group bug fixes and GitHub issues
into common problem categories, shown in Fig. 1 and Table 2 (col-
umn abbr is the category abbreviation). The former includes com-
bined data (commits and issues), while the latter separates the two.
Figure 1 presents a hierarchical categorization—with varying levels
of detail—of the 280 discovered tf.function-related challenges in
our subjects. Challenges are represented by their problem cate-
gory name and are followed by their counts. Categories without
instances are abstract, i.e., they only group together other cate-
gories. Table 2 portrays a nonhierarchical, top-level view of Fig. 1;
the innermost (top) layers of Fig. 1 represent the rows of Table 2.
Challenges are grouped into several (top-level) problem cate-
gories. Categories include performance (PRF, 90; further discussed

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution

Deadlock, 2 =—

du"dan " deco

Convert to TFLite, 1
Graph inadequately specialized on input shapes, 2

Random number generation, 3

Re

A

Using Python iterators and generators, 2

Executing Python side-effects, 2

MSR 22, May 23-24, 2022, Pittsburgh, PA, USA

Exposed variable state, 2
Numerical errors, 1
Segmentation fault, 1
Compilation error, 1

Gz ‘@snsI 1dV

Creating tf.Variables,
10

Figure 1: Discovered problem categories (hierarchical).

later), API misuse (APM, 25; further discussed later), and incom-
patibility between execution modes, i.e., eager and deferred, where
tf. function is used in a context not amenable to graph conversion
(INC, 48; further discussed later). An example of the latter is where
particular loss functions cannot be used in graph mode or there is an
AutoGraph limitation that prevents graph conversion. Other prob-
lem categories include dealing with or working around open bugs
related to tf.function in TensorFlow (TFB, 20; further discussed
later) and “other” (OTH, 16), which involves syntactic corrections,
general cleanup, and refactorings—a category similar to that used
by previous work [65,94]. “Unknown” (UKN, 10) represents situ-
ations where the problem category was indeterminable without
further domain knowledge or developer input. Only 3.57% of prob-
lems had unknown categories. Code changes involving tf.function
appearing in tests were categorized as “Test” (TST, 8).
Debuggability. Debuggability (DBG, 6) represent situations where
using tf.function to improve performance of DL code may, in turn,
reduce a developer’s ability to easily debug it. “In general, debug-
ging code is easier in eager mode than inside tf.function” [42].
In such situations, developers may not understand that using tf.
function is the reason why they are not able to debug their code, e.g.,
intermediate variable values may be missing. Or, tf. function may
temporarily be removed (via a commit) to facilitate debugging, but

developers inadvertently neglect to replace it (cf. Section 4.2.5). This
latter situation is unfortunate as, to assist in the debugging process,
a flag can be used to globally (temporarily) toggle tf.function [42].

Other Categories. Other (top-level) categories were more minor in
terms of their counts, yet have potentially significant consequences.
For example, exposed variable state (EVS, 2) occurs when saving (ex-
posed) program state (variables) is problematic during tf.function
conversion at run-time, e.g., variables becoming undefined [71].
Numerical errors (NME, 1) involve possible numeric overflow. Au-
tograph compilation errors (CMP, 1) surface when tf.functions
are compiled and subsequently result in compilation errors. This
problem may arise when certain dynamic Python features, e.g.,
lexical scoping, are utilized (cf. Section 4.2.2). Segmentation fault
(SEG, 1) is when using tf. function causes a program crash. While
compilation and numerical errors and segmentation faults may
be considered symptoms, we focus on tf.function client usage;
these categories represent problems from a client perspective. Their
underlying causes are bugs within the framework.

Performance. As the main purpose to hybridization is to improve
the performance of imperative style DL code by building a bridge to
graph-based execution, it was not surprising that performance—at
39.64% (111/280)—was the largest category:

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

Table 3: Performance fixes.

fix category count
Add tf. function decorator 61
Change tf. function argument 20

Add input_signature argument to tf.function 9
Remove tf.function decorator

Upgrade to new library version 4
Relocate tf. function (use on different function) 5
Re-add tf.function decorator 2
Unsolved (open) 2
Total 1

Finding 1: At 39.64% (111/280), performance was the largest
problem category encompassing tf. function usage.

Performance problems represent a spectrum of situations, stemming
from using tf.function to solve a DL code performance bug to
not observing the expected speedup from using tf.function to
exhibiting worse performance that not using tf.function. Table 3
portrays the various fixes used to solve performance problems.
Though the majority of times it was used to enhance performance
of imperative DL code, we found that in 7.21% (8/111) of cases, tf.
function was removed to alleviate performance problems:
Finding 2: Despite intent to improve performance, tf.function
caused performance degradation in 7.21% (8/111) of cases.

Moreover, only 54.95% of imperative DL code performance prob-
lems were fixed by adding tf.function. Thus, the remaining 45.05%
of cases were due to existing hybridization:
Finding 3: Only 54.95% (61/111) of imperative DL code per-
formance problems were fixed by adding tf.function. The
remaining 45.05% were due to using tf.function.

In fact, 25.23% of performances fixes involved altering tf.function
arguments:
Finding 4: Performance fixes entailed altering developer-
supplied tf.function(...) arguments at a rate of 25.23%.

Performance problems are further categorized into those related

to “input shapes,” which make up 18.92% of all such problems:
Finding 5: Performance problems involved incorrect input
tensor shape specifications at a rate of 18.92%.

Tensors are heavily used DL programs, and accurately matching ten-
sor shapes (dimensions) is often required to write reliable DL code.
In hybridization, since tf.functions are being traced and thus con-
verted into graphs, the underlying framework (by default) attempts
to build specialized graphs for each kind of input. However, when
tensors are involved, graphs may be specialized to particular input
shapes, creating a situation where function retracing is excessive.
Retracing can lead to significant performance degradation [43].
To curb this problem, an (input_signature) argument may be
supplied to tf.function that specifies an expected range of shapes.
In effect, developers provide contextual information to the frame-
work about how tf.functions will be used. For instance, setting
experimental_relax_shapes to True may cause tf.functions to gen-
erate fewer graphs that are less specialized on input shapes. How-
ever, this may not match reality, especially when dealing with dy-
namic shapes. As such, we further divide “input shape” challenges:
Graph overly specified on input shapes (11) Generated graphs
are too specific for the context where a tf. function is being
used, which can occur when either:

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

Table 4: API misuse causes.

cause count
API confusion 20
Use of graph mode 14
Decorated outer function calls unnecessarily decorated inner function 8
Incorrect tf. function argument 7

Use of eager mode 2
Lost variable state due to graph conversion 1
Lack of static shape specifications 1
Total 53

(i) experimental_relax_shapes is incorrectly set to False.
(i) input_signature isunnecessarily specified. Either it should
be either removed or set to None (the default).
Underspecified input signature (4) The input_signature param-
eter lacks proper arguments to avoid excessive retracing.
Unspecified input signature (6) The input_signature is missing
in contexts that are advantageous to graph specialization.
API Misuse. API Misuse—the second largest problem category
at 18.93%—involves situations where tf.function is not used in a
way recommended by the API documentation:
Finding 6: At 18.93%, API misuse—using tf.function incon-
sistent to documentation—was the 27 largest category.

Misusing APIs typically results in either run-time errors or unex-
pected behavior. Violating DL API constraints may lead to crashes
and poor performance [56,58]. In high-level, e.g., imperative DL,
code, bugs are commonly due to misunderstandings of the guar-
antees offered and obligations imposed by increasingly layered
software, e.g., those written against the TensorFlow API [66]. Ten-
sorFlow documentation contains a prominent sections regarding
tf.function and AutoGraph usage constraints and limitations. If
such constraints, e.g., w.r.t. control-flow, side-effects, global vari-
ables, are violated, AutoGraph will not properly generate graphs
from Python code. Despite the vast documentation, at 37.74%, API
confusion was the largest cause of API misuse (Table 4):
Finding 7: API misuse was caused by developers not under-
standing hybridization APIs at a rate of 37.74% (20/53).
Regarding potential category overlap, recall that API misuse is
defined above as a violation of intended API usage per the documen-
tation. Consider changing a tf.function argument. Performance
degradation can occur when parameter usage is consistent with the
documentation; it can be a tuning issue, e.g., shape-related. In such
a case, according to the earlier definition, shape mismatches would
not be considered API misuse as they are dependent on context.
We found that the most common way (28.30% or 15/53) to fix
API misuse was to remove @tf.function. Of these, in 46.67% of
cases (7/15), the problem cause was that @tf.function was used to
decorate an inner function called by an already decorated outer
function. As tf.function applies to the decorated function and all
other functions it calls and since the inner function cannot be called
from any other function besides the outer function, the inner func-
tion decorator is unnecessary and can thus be safely removed [43].
However, another 46.67% (7/15) of cases were caused by API con-
fusion. Thus, in these cases, unfortunately, developers abandoned
etf. function—along with its potential to enhance performance—
due to their confusion over how to use it. Most likely, developers
were doing so to avoid run-time errors, which occurred in 62.50%

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution

Autograph warn
1.9%
Performance
1.9%

Unknown

5.7%

Unexp behavior
16.1%

Run-time error

Figure 2: API misuse symptoms.

(5/8) of tf.function removals not caused by unnecessary inner func-
tion decoration and 52.83% (28/53) overall (Fig. 2):

Finding 8: To fix APl misuse, tf. function was removed 28.30%
of the time. In 46.67% of these, hybridization was abandoned
due to API confusion, with 62.50% causing run-time errors.

API misuse is further divided into several categories, the largest
of which involves creating tf.Variables within tf.functions (10).
A tf.Variable represents a tensor whose value is mutable [44]. Cur-
rently, tf.function only supports singleton tf.Variables; creating
multiple tf.Variables within the scope of a tf.function results
in a run-time exception [42]. Redundant decoration (8) is where
multiple functions on a call path are unnecessary decorated with
@tf.function; all functions called from a tf. function are also auto-
matically migrated to graphs. Accurately approximating such paths
statically—especially in the context of a dynamic language such
as Python—may be difficult, and there is ample confusion among
developers on where to apply @tf. function [87] (cf. Section 2).

Executing Python side-effects (2) refers to the situation where
tf.functions contain side-effect producing Python statements. As
described in Section 2, executing such statements within migrated
graphs can have unexpectant results, sometimes executing twice or
not all. A specific pattern of side-effects were those involving the
use of iterators and generators (2), a common looping mechanism in
Python code. Random number generation (RNG, 3) problems occur
when developers do not use RNG facilities consistently with the
documentation, commonly resulting in unexpected behavior under
graph mode. For example, RNG creation inside a tf. function can
only happen during the first run of the function [47]. Seeding may
also not work as expected in graph mode (e.g., [89])—“when [a]
global seed is set but [TensorFlow] operation seeds are not, the se-
quence of random numbers are the same for each tf.function” [51].
“Graph inadequately specialized on input shapes” (2) involves an
API misuse that is opposite to the “graph overly specified on input
shapes” performance problem category described earlier. Such prob-
lems may be fixed by setting experimental_relax_shapes to False
(the default). In other words, the shape specification is too general,
which may result in a situation that is not amenable to graph migra-
tion [38]. For example, an input_signature may be supplied using a
wild card shape to improve performance (q.v. Section 2) but results
in a run-time error due to a tensor dimension mismatch [42,83].

MSR 22, May 23-24, 2022, Pittsburgh, PA, USA

No eager support
21%

Autograph warn
4.2%

Performance -
4.2%
Unknown
4.2%

Unexp behavior

Run-time error
62.5%

Figure 3: Incompatibility problem symptoms.

Conversion to TFLite (1) represents problems with an alternate use
case of tf.function to convert a DL model to a portable format.
Execution Mode Incompatibility. At 17.50%, incompatibility is the
third largest problem category:
Finding 9: Execution mode incompatibility, at 17.50% (49/280),
was the 3 largest problem category, meaning that seamlessly
using similar constructs in different modes was problematic.

Developers seemingly struggle with seamlessly using imperative DL
program constructs, e.g., particular loss functions, across execution
modes. Ideally, developers could toggle between eager and graph
execution modes—with AutoGraph simply enhancing performance—
without making code changes. In other words, incompatibility prob-
lems prevents developers from focusing on the correctness of their
DL code—thinking of performance as an afterthought. Instead, to
use hybridization effectively, developers must be cognizant of its
internal structure, ie., how their DL code is being migrated to
graphs. Moreover, developers must (manually) be aware of which
constructs are amenable to graph conversion, how best to write
code that works in either mode, and how to interact with code that
may be executed in a different mode.

Execution mode incompatibility problems have dire consequences.
As shown in Fig. 3, 81.63% of symptoms resulting from incompatibil-
ity involve run-time errors or unexpected behavior. Such problems
that only occur at run-time are difficult to uncover and, if found,
may be found after deployment:

Finding 10: Incompatibility problems led to run-time errors

or unexpected results, which do not surface until after run-

ning the code, 81.63% of the time.

TensorFlow Bugs. TensorFlow bugs (TFB) made up 7.86% of bugs:

Finding 11: TensorFlow bugs, where developers were offered

workarounds or awaited new framework versions, made up

7.86% of problems. Of these, 9.09% involve deadlocks.

Such bugs involve dealing with or working around open TensorFlow
bugs related to tf. function. As hybridization is relatively new, the
tf. function API is under active development. Thus, it was not un-
common for such bugs to be reported to TensorFlow by filing issues
against its GitHub repository; 81.82% of TFBs appear as GitHub is-
sues (see Table 2 and Fig. 4). We categorize bugs as TFB if they were
in fact real bugs with TensorFlow that required a workaround—often
suggested by TensorFlow contributors—or a new TensorFlow library

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

125]
® [ssues = Commits
37
100
75
74
50

Count

25

2 . S & (2 »
é“') ‘_‘o") @ ‘Q\,Q o °§ & .\\s\ & \,o & é‘o
& A & F o o
S N\ & g° S ® & > &
&8 & S & & & &
Q% o &) a3 S & N
& & o\ & &)
A« 04, o NS
R

Problem category

Figure 4: Top-level problem category comparison.

+ @tf.function
def pm(linear):
state = lpt_init(linear, a0=0.1, order=1)
final_state = nbody(state, stages, nc)
tfinal_field = cic_paint(tf.zeros_like(linear), final_state[@])
return tfinal_field

Listing 6: Commit af1664e7 in galference: bug boxsize=nc

version to solve. If the reported bugs were not resolved to be the
result of problems with TensorFlow, such bugs were not categorized
as TFB but perhaps other categories.

TFB is further categorized into deadlock (2). Situations leading
to the execution of a tf.function being deadlocked include using
tensors as stopping condition of a recursive tf.function [29]. Dead-
lock may also occur as a result of other, specific tf.function code
patterns—causing the TensorFlow run time to deadlock. For exam-
ple, deadlock may occur when calling a tf. function from within
a tf.py_function [21], which executes native Python functions as
graph operations eagerly [50].

4.1.2 Commits vs. GitHub Issues. Figure 4 compares the different
sources—commits (bottom/blue bars) and GitHub issues (top/red
bars)—of problem categories. Performance—the largest problem
area—was %/3 more likely to appear in commits vs. issues. In contrast,
“incompatibility” was %3 more likely to appear in issues vs. com-
mits. Notably, 80% of TFB problems were found in GitHub issues
compared to commits. Lastly, all UKN and TST bugs were found in
commits. Section 5 discusses possible reasons for these differences.

4.2 Qualitative Analysis

This section answers (RQ2) by highlighting bug patterns with ex-
amples, summarizing causes, symptoms, and fixes, and proposing
preliminary best practices and anti-patterns.

4.2.1 Performance. Inlisting 6, pm() is decorated with @tf. function
(line 1). Using tf. function “ensure[s] that the graph for [a] function
is compiled once and not every time it is called, thus gaining in
speed and performance” [18], leading to best practice 1, Fig. 5.

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

(1) Favor @tf.function on Python functions containing imperative,
otherwise eagerly-executed, DL code to improve performance.

If possible, supply an input_signature argument to tf.function
with the intended shape and types of any input tensors to avert
retracing—a practice similar to that of providing type annotations
to variables in dynamic languages to assist with type inferencing.
(3) When an operation is deemed incompatible with hybridization,
check the documentation to see if additional steps are required
to make the imperative DL code more amenable to graph conver-
sion.

Framework limitations may impede performance enhancements.
Check for potential workarounds of (unresolved) TensorFlow bugs.
Use tf.config.run_functions_eagerly(True) to temporarily
disable tf. function to facilitate debugging.

@

=

@

=

G

=

Figure 5: Preliminary hybridization best practices.

(1

=

Hybridizing nested functions may cause performance degradation.
Sacrifice some modularity by either hybridizing the top-level func-
tion or refactoring the nested function to a top-level function [84].
Since shared variables must be singleton, using tf.Variables in
tf.functions, either directly or indirectly, may cause run-time
exceptions. Either rewrite the function or do not hybridize it.
Since tf. functions are compiled, using dynamic language features,
e.g., lexical scoping, either directly or indirectly, may lead to run-time
exceptions. Avoid such features in tf. functions where possible.

—~
)
~

3

=

Figure 6: Preliminary hybridization anti-patterns.

- @tf.function

+ @tf.function(input_signature=[
tf.TensorSpec(shape=(None, self.num_states), dtype=tf.float32),
tf.TensorSpec(shape=(None, self.num_actions), dtype=tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
tf.TensorSpec(shape=(None, self.num_states), dtype=tf.float32),1)

def update_weights(s, a, r, sn): # ...

+
+
+
+

Listing 7: Commit 02a3f297 in DDPG-tf2: Fixed all...this should work

While hybridization can enhance the performance of their imper-
ative, otherwise eagerly-executed, DL code, we found that develop-
ers struggled to use it correctly. Some distrusted it, stating, e.g., that
“it does far too much hidden magic” [2]. Others [82] struggled with
uncontrolled retracing (q.v. Sections 2 and 4.1.1), which actually re-
sults in worse performance—speedup of 0.13 in this case—by using
tf.function than not using it: “tfa.image.equalize() uses an inter-
nal scale_channel() function[,] which triggers excessive retracing
.... The problem is related to hybridizing inner functions: “I... tried
using @tf.function at the scale_channel() and...equalize_image()
level[s], but the further I moved it ‘inside, the slower equalize()
became” [85]. The fix involved “using @tf.function at the top-level
of equalize(), which made it run ~25%-40% faster ...” The root
cause is that, “using [embedded] functions ([i.e.,] defining func-
tions inside function) will retrace the graph multiple times [as]
the[ir] scope is not [publicly] visible, and the graphs cannot be
cached” [84]. As a modularity mechanism, embedding (nesting)
function definitions is a common idiom in Python, yet, currently,
TensorFlow documentation does not mention this problem. Devel-
opers are left to consider the internals of AutoGraph in writing
performant imperative DL code, leading to anti-pattern 1, Fig. 6.

Input Signatures. ~ Arguments to tf.function(), particularly
involving input tensor shapes, may also influence performance
(q.v. Section 2). Listing 7 portrays an underspecified input signature

N

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution

def ndiagquad(funcs, H: int, Fmu, Fvar, logspace: bool = False, **Ys):
Computes N Gaussian expectation integrals of one or more functions ...
- def unify(f_list): # Stack a list of means/vars into a full block.
= return tf.reshape(tf.concat([tf.reshape(f, (-1, 1)) for f in f_list],
= axis=1), (-1, 1, Din))
if isinstance(Fmu, (tuple, list)):
Din = len(Fmu)

+ def unify(f_list): # Stack a list of means/vars into a full block.
+ return tf.reshape(tf.concat([tf.reshape(f, (-1, 1)) for f in f_list],
+ axis=1), (-1, 1, Din))

Fmu, Fvar = map(unify, [Fmu, Fvarl) # both [N, 1, Din]

Listing 8: Commit b65848a2 in GPflow: fix compilation issue...

- @tf.function
def interpolate_bilinear(grid, query_points, indexing="ij", name=None): # ...
tf.debugging.assert_equal(query_shape[2], 2, message=
"Query points must be size 2 in dim 2.")

Listing 9: Commit 8bab3226 in tensorflow/addons: remove tf.func

(q.v. Section 4.1.1)—one of the most used tf.function parameters
that we observed. On lines 2-6, a performance regression was
fixed by adding an input_signature to a weight distribution tf.
function to “make sure it does not recreate graph, which will slow
down training significantly” [40]. The sequence of tf.TensorSpecs
specifies the intended tensor shapes and data types (dtypes) that will
be supplied to update_weights(). Otherwise, a separate (concrete)
function (graph) is instantiated for each inferred input signature,
which may result in retracing, leading to best practice 2, Fig. 5.

4.2.2 Compilation Errors. Consider unify() originally defined on
lines 3-5, listing 8 that accesses Din on line 5. This variable, how-
ever, it is defined after the function definition on line 7—legal due
to Python’s lexical scoping rules. In other words, the value of Din
will come from the calling context. In this case, Din on line 5 is
replaced with the value defined on line 7 due to unify() being
accessed on line 11. The code, though, results in the following (run-
time) NameError on line 5: free variable 'Din' referenced before
assignment in enclosing scope [19]. The problem is that, while it
itself is not a tf. function, ndiagquad() is called by a tf.function
elsewhere—it will also be compiled into a (static) graph (cf. Sec-
tion 4.1.1). Thus, dynamic language features like lexical scoping
are not available in static contexts. As a result, unify() is moved to
line 8, where Din is in its declaration scope. Although Python is a
dynamic language, developers must be aware that certain code will
be compiled to static graphs, leading to anti-pattern 3, Fig. 6.

4.2.3 APl Misuse. On line 1 in listing 9, @tf. function is removed
to fix a bug that is causing flaky tests [31]. The problem is deemed
to be that @tf.function and the assert statement on lines 3-4 is
incompatible. The developers express that “removing the decorator
is not ideal, but stability is more important than the [speedup]
we [would] get with [it]” [39]. However, this code likely causes a
race condition because of a missing control dependency following
the assertion. To use the assertion within a tf.function, a control
dependency is required “to block follow-up computation[s] until
the check has executed” as a result of the function being converted
to a (static) graph [49]. This leads to best practice 3, Fig. 5.

4.2.4 TensorFlow Bugs. On line 1, listing 10, @tf.function is once
again removed. The problem is that—with @tf. function—the appli-
cation “can only process one image before” needing to restarted [20],
terminating with the message: ValueError: tf.function-decorated
function tried to create variables on non-first call. Recall

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

- etf.function
def train_step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)
loss += total_variation_weight * tf.image.total_variation(image)
grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))

Listing 10: Commit 8bab3226 in neuro-art: Multiple request bugfix...

- @tf.function
def call(self, inputs):
"""Call ~Layer="""
- if not self.initialized:
= self._data_dep_init(inputs)
+ if not self._initialized:
+ self._initialize_weights(inputs)
self._compute_weights() # Recompute weights for each forward pass ...

Listing 11: Commit 16ee6c59 in tensorflow/addons: tf.func for debug

(1) More tool-support for assisting with using tf.function may help
produce reliable yet performant imperative DL code.

(2) Modernize and reformulate existing tensor shape mismatch detec-
tors for imperative DL code and tf.function(...) input shapes.

(3) More formal specification in a design-by-contract (DbC) style may
be helpful for new tool-support aimed to alleviate API misuse.

(4) Testing (dynamic analysis) focused on hybridized (imperative) DL
code that runs under multiple execution modes may localize bugs.

Figure 7: Preliminary hybridization recommendations.

from Section 4.1.1 that shared variables inside a tf. function must
be singleton; a run-time exception ensues otherwise [42]. How-
ever, it is not obvious from listing 10 where the variable creation
occurs—there are no explicit tf.Variables. The developer expresses
that “removing the ... decorator is a viable workaround but not [a]
best practice,” and that the root cause is an (unresolved) TensorFlow
bug [88]. In terms of listing 10, the problematic line is 8, as “calling
apply_gradients() on an optimizer for the first time will create its
internal variables” [78]. In terms of the framework, it transpires to
be related to software layering, as, “sadly[,] there [is] currently no
public API to just initialize the optimizer state but not [apply it]”
While several developers found workarounds for their particular sit-
uations, imperative DL code such as that in listing 10 have foregone
any potential performance gains from using @tf. function, leading
to best practice 4 and anti-pattern 2 in Figs. 5 and 6, respectively.

4.2.5 Debuggability. To improve debuggability, @tf.function is re-
moved on line 1, listing 11 (cf. Section 4.1.1). However, in the latest
file version, @tf.function has not been replaced. Thus, the devel-
oper may have inadvertently sacrificed permanent performance
gains for temporary debuggability, leading to best practice 5, Fig. 5.

5 DISCUSSION

We summarize and comment on our main findings while connecting
them to other research. To help solve the problems, we put forth
preliminary recommendations for practitioners, tool developers,
and researchers. Though our hope is that the findings will shed light
on future tool challenges and that the aforementioned descriptions
and real-world examples will provide sufficient, generalizable, and
actionable contexts, we nonetheless outline potential solutions.

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

Performance. 1t is not surprising that performance is our largest
category (finding 1) since hybridization is centrally related to per-
formance enhancement. The volume of performance problems is a
testament to the struggles developers have in writing performant,
imperative DL code. However, 45.05% of performance problems
(finding 3) were due to existing tf.function usages, suggesting
that developers also struggle with using hybridization effectively
to achieve the performance they desire. A feasible explanation is
that developers must manually decide: (i) where and when to use
tf. function, (ii) the arguments to supply tf. function for their code
to perform optimally, and (iii) which code is amenable to (efficient)
graph conversion and which is not, all of which can be error-prone.

The overarching goal is reliable and performant DL code; re-
liability stems from being able to write DL code in a less error-
prone imperative-style, while performance is achieved in migrating
that code to graph execution at run-time. AutoGraph, as well as
other hybridization technologies, attempt to achieve this goal by
automating the migration process as much as possible—frequently
requiring contextual information from developers as to their in-
tentions and imposing limitations of where the technology can be
used. The end result is a trade-off—one of many typically made by
DL frameworks [57]. As discussed in Section 1, others [60] attempt
to automate the entire migration process—not requiring any con-
textual metadata—but impose new trade-offs, such as necessitating
custom Python interpreters that may not be practical for industrial
applications and support only specific Python constructs.

As AutoGraph and other hybridization technologies are perva-
sively used, as well as being integrated into official distributions of
popular DL frameworks, our suggestion is to retain (and continu-
ally improve upon) hybridization platforms, while simultaneously
posing this problem as one of (API) usability. Our perspective is
that what is needed it tool-support that will guide developers in
using this technology correctly given a particular context, as well
as automated refactoring and other source code transformation
tools that can detect and repair hybridization problems. Such tech-
niques would alleviate hybridization issues well-before they are
seen beyond (production) deployment or after long training ses-
sions, leading to recommendation 1, Fig. 7.

Cao et al. [22] and Zhang et al. [100] also study performance
of DL code and found that a modest portion of non-imperative
TensorFlow program bugs involved performance problems. How-
ever, these problems were caused by confusion with the underlying
computation model, which essentially requires developers to build
graphs manually. In our case, graphs are built automatically. Since
imperative DL code runs eagerly by default, it is understandable
that our study would uncover more performance problems. In fact,
Tambon et al. [90] also observe performance degradation of imper-
ative DL code. Wan et al. [97] found that performance bugs took
the longest average time to fix in blockchain systems.

Per finding 4, developer-supplied arguments to tf. function()
played a major role in performance problems, comprising 25.23%
of performance fixes. Furthermore, per finding 5, a significant per-
centage (18.92%) of performance problems involved parameters
representing input shape specification—one of the most frequently
used tf.function parameters (q.v. Section 4.2.1). Input shape prob-
lems are a central focus of related work [56,66,100] on DL programs;
related studies [55,56,58,100] also found shape problems. A feasible

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

explanation is that developers are challenged to determine tensor
shapes from all possible call sites statically. We again advocate for
more tool-support in this area, e.g., an adaptation of Lagouvardos
et al. [66] for imperative DL programs focused on hybridization
parameters, leading to recommendation 2 in Fig. 7.

API Misuse. Per finding 6, using the tf.function API inconsis-
tently with its documentation was a major theme. Feasible explana-
tions include: (i) DL APIs—along with their documentation [53]—are
particularly vast and complex [57], (ii) often, documentation con-
sumers (developers) are not software experts [53], (iii) although
developers are writing imperative DL code, there exist situations
where they must nevertheless be cognizant of hybridization limita-
tions, and (iv) error messages may not be helpful. Due to Item (i),
learning how to use DL APIs effectively necessitates a steep learn-
ing curve, especially considering that hybridization is relatively
new. As ML systems have a quick time-to-market [86], develop-
ers may be not have the luxury of time to thoroughly understand
the documentation. This is especially evident in finding 7, with
37.74% of misuses caused by API confusion. Item (ii) has been rec-
ognized by other ML/DL software studies (e.g., [91]). We conjecture
that Item (iii) can also be alleviated with more tool-support, how-
ever, such tool-support in this context may require (e.g., design-
by-contract) formalization of DL API specifications (e.g., modeling
operation limitations in particular contexts), leading to recommen-
dation 3, Fig. 7. A potential downside to recommendation 3 is the
rapid change of ML APIs [32]. For Item (iv), developers often ex-
pressed frustration with error messages, e.g., “the main complexity
in [TensorFlow] 2 is in @tf. function[;] ... error messages should be
as clear as possible, especially for common problems” [28].

Zhang et al. [99] likewise observed broader API misuse in DL
systems. Nadi et al. [73] also found API misuse despite ample docu-
mentation in the context of cryptography—developers prefer higher-
level documentation. Current hybridization documentation tends to
focus on lower-level details—future research may explore whether
a similar concept will work for DL APIs. Furthermore, our findings
coincide with Jin et al. [61] that many performance bugs are due
performance implication misunderstandings of certain functions.

Incompatibility. Execution incompatibility of particular Python
constructs was also a major theme (q.v. finding 9). Zhang et al.
[99] found a similar problem in DL systems w.r.t. CPU/GPU com-
patibility. We again advocate for more automation to circumvent
such problems. To use hybridization effectively, developers must
understand which constructs are amenable to both eager and graph
execution and make appropriate considerations. Tool-support, e.g.,
IDE recommendations, may be helpful here. To alleviate run-time
errors and unexpected results, we also advocate for more testing
(dynamic analysis) of (imperative) DL code that runs the same code
under multiple execution modes. Testing of DL systems is an emerg-
ing yet promising area, and testing focusing on (imperative) DL
code hybridization may help to shed light on: (i) where develop-
ers struggle to write performant yet reliable (imperative) DL code
and (ii) potential areas of where hybridization technologies can be
improved. This leads to recommendation 4, Fig. 7.

Commits vs. GitHub Issues. Performance bugs appeared more
in commits than GitHub issues. The reason may be that enhanc-
ing performance typically requires a code change, which can be

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution

benchmarked. Contrarily, “incompatibility” is more difficult to quan-
tify, often resulting in unexpected behavior or run-time errors
(q.v. Fig. 3). Therefore, developers may be more likely to seek ex-
ternal assistance. Developers commonly file GitHub issues against
TensorFlow; 93.75% of TFB issues are against the TensorFlow subject.
That all UKN and TST bugs appeared in commits may be due to
GitHub issues being easier to categorize than changesets and DL
testing remains an emerging area, respectively.

6 THREATS TO VALIDITY

Subjects may not be representative of DL systems. To mitigate this,
subjects encompass diverse domains and sizes, have been used
in previous studies, and are from a data science-specific dataset
(q.v. Section 3). Various GitHub metrics and DL-related keywords
were used in choosing subjects. Also, hybridization is relatively new;
we expect a larger selection of subjects as it grows in popularity.

Our study involved many hours of manual validation to un-
derstand and categorize bugs. To mitigate bias, we investigated
referenced resources and comments made by developers to help
more fully understand the challenges faced. The NLP of gitcproc
may have missed bug fix changesets. Nevertheless, using it, we were
still able to find 157 bugs (280 overall) that contributed to a rich
bug categorization, best practices, and anti-patterns. Furthermore,
gitcproc has been used previously in other studies (q.v. Section 3).

Hybridization in comparable DL frameworks may have yielded
different challenges. Nevertheless, focusing on TensorFlow enables
us to more thoroughly understand the intricacies involved in using
hybridization effectively. Moreover, TensorFlow is a widely-studied
and popular (industrial) DL framework (q.v. Section 1).

7 RELATED WORK

Cao et al. [22] characterizing performance bugs in DL systems.
During their analysis of general performance bugs, they also find
that developers often struggle with knowing where to add etf.
function and how to implement decorated functions for optimal
performance. Beyond performance bugs, our study includes a rich,
hierarchical taxonomy of varying hybridization bug types, includ-
ing input shape mismatches, API misuse, and construct incompati-
bility, whose results include run-time errors, unexpected behavior,
and deadlock. Tambon et al. [90] examine (silent) behavioral bugs
within DL frameworks and their impact on client code. Their work
is reminiscent of our TFB problem category (q.v. Section 4.1.1) and
also note that performance degradation may lead to significant
problems at run-time. While they do not explicitly mention hy-
bridization performance bugs, some of their performance bugs in
imperative DL code may be alleviate by using @tf. function. Zhang
et al. [101] study API change trends in TensorFlow and for which
reasons; our focus is on client code modifications involving hy-
bridization. Baker et al. [15] extract 11 common TensorFlow API
misuse patterns. Only one of the patterns (and corresponding fix
suggestion) involves (a specific use case of) tf.function. In contrast,
our study goes beyond API misuse and entails 12 top-level problem
categories—24 overall—encompassing hybridization challenges.
Zhang et al. [99] present a large-scale empirical study of gen-
eral DL questions on Stack Overflow. Particularly, their “CPU/GPU
incompatibility” problem category resembles our execution mode

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

incompatibility category. Concerning hybridization, whether the
migrated graph executes on a GPU is typically decided by the un-
derlying DL framework; our focus is on conversion itself. Islam
et al. [56] and Zhang et al. [100] study general DL bug characteris-
tics and present anti-patterns to avoid bugs. Islam et al. [58] study
patterns in which such bugs are fixed. Chen et al. [26] explore
faults in deploying DL models to mobile applications. Nikanjam
and Khombh [74] catalog various design smells in DL systems and
recommend suitable refactorings. Jebnoun et al. [59] correlate code
smells with bugs in DL code. Liu et al. [68] characterize technical
debt in DL frameworks, while Humbatova et al. [55] taxonomize
(functional) faults in DL systems. Arpteg et al. [9] categorize (gen-
eral) SE challenges in DL systems into three areas—development,
production, and organizational. Liu et al. [67] study failed Tensor-
Flow industrial jobs and propose a constraint-based approach for
detecting shape-related errors. Amershi et al. [4] conduct a study
at Microsoft, observing software teams as they developed Al ap-
plications. Lwakatare et al. [69] also classify SE challenges for ML
systems at six different companies, focusing mainly on deployment
issues. Thung et al. [93] examine bugs in three general ML systems,
finding that nonfunctional bugs, of which performance problems
may be categorized, require the most involved fixes. Dilhara et
al. [32] study ML library evolution and its resulting client-code
modifications. And, Dilhara et al. [33] and Tang et al. [91] analyze
repetitive code changes and refactorings made in ML systems, re-
spectively. While valuable, these studies do not deal with challenges
faced in migrating imperative DL code to graph execution.

Several studies involve performance in other contexts. Han and
Yu [52] study configurability and performance. Future work entails
correlating their findings with tf. function arguments. Jin et al. [62]
study performance slowdowns caused by system side inefficiencies.
Bagherzadeh et al. [13] investigate performance in Actor-based sys-
tems. Others study language features. Parnin et al. [77] study Java
generics adoption. Dyer et al. [34] study language feature evolu-
tion. Khatchadourian and Masuhara [64] empirically assess default
methods. There are many general empirical studies. Makhshari and
Mesbah [70] taxonomize development challenges of IoT systems.
Bagherzadeh and Khatchadourian [14] investigate common ques-
tions asked by big data developers, and Khatchadourian et al. [65]
examine the use and misuse of Java streams. Engler et al. [35] and
Tian and Ray [94] study errors in systems code.

8 CONCLUSION & FUTURE WORK

This study advances knowledge of the development challenges in-
volved in migrating imperative DL code to graph execution via
hybridization. A hierarchical taxonomy of common hybridization
challenges was formulated and preliminary recommendations, best
practices, and anti-patterns were proposed. In the future, we will
explore analyzing alternative developer resources, e.g., Stack Over-
flow, and integrating our results into automated bug finders and
refactoring detection approaches [11,95].

ACKNOWLEDGMENTS

We thank Manal Zneit, Ye Paing, and Jack Cruse-Mulhall, developers
providing feedback, and the anonymous reviewers for thorough
and insightful comments. Support for this project was provided by

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

PSC-CUNY Award #638010051, jointly funded by The Professional
Staff Congress and The City University of New York.

REFERENCES

(1]
[2]
(3]
(4]

[10]

(11]

(12]

(13]

(14]

(17]

(18]

(19]

Martin Abadi et al. 2016. TensorFlow: a system for large-scale Machine Learn-
ing. In Symposium on Operating Systems Design and Implementation.

2020. Added jitted ncon. Pull request #623. google/TensorNetwork. Xanadu.
(May 26, 2020). Retrieved 01/10/2022 from https://git.io/J9cMx.

Akshay Agrawal et al. 2019. TensorFlow Eager: a multi-stage, Python-embedded
DSL for Machine Learning. (2019). arXiv: 1903.01855 [cs.PL].

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: a case study. In Interna-
tional Conference on Software Engineering. Software Engineering in Practice.
IEEE/ACM. IEEE, (May 2019), 291-300. por: 10.1109/ICSE-SEIP.2019.00042.
Apache. 2018. Customer layers (beginners). Apache MXNet documentation.
Retrieved 07/23/2021 from https://mxnet.apache.org/versions/1.7/api/python/
docs/tutorials/packages/gluon/blocks/custom_layer_beginners.html.
Apache. 2021. Hybridize. Apache MXNet documentation. (April 8, 2021).
Retrieved 04/08/2021 from https://mxnet.apache.org/versions/1.8.0/api/
python/docs/tutorials/packages/gluon/blocks/hybridize html.

Apache Software Foundation. 2021. Open Deep Learning compiler stack.
(December 1, 2021). Retrieved 12/01/2021 from https://git.io/JMric.

Apple Inc. 2021. Core ML tools. (December 1, 2021). Retrieved 12/01/2021
from https://git.io/JMr61.

A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch. 2018. Software Engineer-
ing challenges of Deep Learning. In Euromicro Conference on Software Engineer-
ing and Advanced Applications. IEEE, 50-59. por: 10.1109/SEAA.2018.00018.
Decksha Arya, Wenting Wang, Jin L. C. Guo, and Jinghui Cheng. 2019. Anal-
ysis and detection of information types of open source software issue dis-
cussions. In International Conference on Software Engineering. (May 2019),
454-464. por: 10.1109/ICSE.2019.00058.

Hassan Atwi, Bin Lin, Nikolaos Tsantalis, Yutaro Kashiwa, Yasutaka Kamei,
Naoyasu Ubayashi, Gabriele Bavota, and Michele Lanza. 2021. PyRef: refac-
toring detection in Python projects. In International Working Conference on
Source Code Analysis and Manipulation. por: 10.1109/SCAM52516.2021.00025.
Hlib Babii, Julian Aron Prenner, Laurin Stricker, Anjan Karmakar, Andrea
Janes, and Romain Robbes. 2021. Mining software repositories with a collabo-
rative heuristic repository. In International Conference on Software Engineering
(ICSE-NIER °21). IEEE/ACM, 106-110. por: 10.1109/ICSE-NIER52604.2021.
00030.

Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian.
2020. Actor concurrency bugs: a comprehensive study on symptoms, root
causes, API usages, and differences. Proc. ACM Program. Lang., 4, OOPSLA,
Article 214, (November 2020), 1-32. por: 10.1145/3428282.

Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going big: a large-scale
study on what big data developers ask. In Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 432-442. por: 10.1145/3338906.3338939.

Wilson Baker, Michael O’Connor, Seyed Reza Shahamiri, and Valerio Ter-
ragni. 2022. Detect, fix, and verify TensorFlow API misuses. In International
Conference on Software Analysis, Evolution and Reengineering, 1-5.

Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The open-
closed principle of modern Machine Learning frameworks. In Mining Software
Repositories, 353-363. ISBN: 978-1-4503-5716-6. DOIL: 10.1145/3196398.3196445.
S. Biswas, M. J. Islam, Y. Huang, and H. Rajan. 2019. Boa meets Python: a
Boa dataset of Data Science software in Python language. In Mining Software
Repositories, 577-581. por: 10.1109/MSR.2019.00086.

2021. bug boxsize=nc. modichirag/galference. af1664e. UC Berkeley. (April 16,
2021). Retrieved 01/10/2022 from https://git.io/J9ciM.

2020. Bug fix: compilation issue quadrature. Pull request #1418. GPflow/GPflow.
Cambridge University. (April 8, 2020). Retrieved 01/14/2022 from https://
github.com/GPflow/GPflow/pull/1418#issue-596552141.

2020. Bug in TensorFlow only allows it to run once. Issue #13. MLH-Fellowship/neuro-

art. MLH Fellowship. (November 10, 2020). Retrieved 01/13/2022 from https:
//github.com/MLH-Fellowship/neuro-art/issues/13.

2019. Calling tf.function from tf.py_function in dataset.map hangs. (Septem-
ber 11, 2019). Retrieved 01/05/2022 from https://git.io/JSSBw.

Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, and Xin Peng. 2021.
Characterizing performance bugs in Deep Learning systems. (December 3,
2021). arXiv: 2112.01771 [cs. SE].

Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-Gonzalez.
2017. GitcProc: a tool for processing and classifying GitHub commits. In
International Symposium on Software Testing and Analysis (ISSTA *17). ACM,
396-399. po1: 10.1145/3092703.3098230.

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]
[42]
[43]
[44]
[45]

[46]

[47]

[48]
[49]
[50]
[51]

[52]

[53]

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita
Raja. Challenges in migrating imperative DL programs to graph execution:
an empirical study. Zenodo, (March 31, 2022). por: 10.5281/zenodo.5601987.
Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: a flexible and
efficient Machine Learning library for heterogeneous distributed systems. In
Workshop on Machine Learning Systems at NIPS. arXiv: 1512.01274 [cs.DC].
Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuangiang Liu, Haoyu
Wang, and Xuanzhe Liu. 2021. An empirical study on deployment faults
of Deep Learning based mobile applications. In International Conference on
Software Engineering. ACM/IEEE. IEEE. por: 10.1109/icse43902.2021.00068.
Francois Chollet. 2020. Deep Learning with Python. (2nd edition). Manning.
2019. Cryptic error message when assigning to a variable in a tf.function.
Issue #30768. tensorflow/tensorflow. (July 21, 2019). Retrieved 01/17/2022
from https://github.com/tensorflow/tensorflow/issues/30768.

2021. Deadlock on recursive tffunction-decorated function. Issue #35540.
(October 8, 2021). Retrieved 01/05/2022 from https://git.io/JSS4P.

2021. Deep Learning examples. NVIDIA. (March 1, 2021). Retrieved 05/05/2021
from https://git.io/J2vFG.

2019. Dense image warp tests are flaky. AWS. (April 3, 2019). Retrieved
01/13/2022 from https://github.com/tensorflow/addons/issues/138#issue-
428951400.

Malinda Dilhara, Ameya Ketkar, and Danny Dig. 2021. Understanding software-
2.0: a study of Machine Learning library usage and evolution. ACM Transac-
tions on Software Engineering and Methodology. por: 10.1145/3453478.
Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig. 2022.
Discovering repetitive code changes in Python ML systems. In International
Conference on Software Engineering (ICSE "22). To appear.

Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014.
Mining billions of AST nodes to study actual and potential usage of Java
language features. In International Conference on Software Engineering, 779—
790. 1SBN: 978-1-4503-2756-5.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. 2001. Bugs as deviant behavior: a general approach to inferring errors
in systems code. In Symposium on Operating Systems Principles (SOSP *01).
ACM, Banff, Alberta, Canada, 57-72. por: 10.1145/502034.502041.

2020. Ensure compatibility with tf.function. secondmind-labs/trieste. Issue
#90. Secondmind Labs. (December 2, 2020). Retrieved 11/08/2021 from https:
//github.com/secondmind-labs/trieste/issues/90.

Facebook Inc. 2019. PyTorch documentation. TorchScript. en. Retrieved 02/19/2021
from https://pytorch.org/docs/stable/jit.html.

2021. Fit bug in Blatt-Weisskopf; update Dalitz decomposition. Apoluekt/AmpliTF.
d02db12. CERN. (July 19, 2021). Retrieved 01/03/2022 from https://git.io/JSi%f.
2019. FIX: dense image warp bug. (April 17, 2019). Retrieved 01/13/2022 from
https://github.com/tensorflow/addons/pull/187.

2021. Fixed all ... this should work. samuelmat19/DDPG-tf2. 02a3f29. MLé6.
(February 26, 2021). Retrieved 01/12/2022 from https://github.com/samuelmat19/
DDPG-tf2/commit/02a3f297#r47584455.

GitHub, Inc. 2021. Search. REST API Reference. GitHub Docs. Retrieved
12/02/2021 from https://docs.github.com/en/rest/reference/search.

Google LLC. 2021. Better performance with tf.function. (February 4, 2021).
Retrieved 02/19/2021 from https://tensorflow.org/guide/function.

Google LLC. 2022. Introduction to graphs and tf.function. (January 19, 2022).
Retrieved 01/20/2022 from https://tensorflow.org/guide/intro_to_graphs.
Google LLC. 2021. Introduction to variables. TensorFlow core. (November 11,
2021). Retrieved 01/03/2022 from https://www.tensorflow.org/guide/variable.
Google LLC. 2021. IREE: intermediate representation execution environment.
(December 1, 2021). Retrieved 12/01/2021 from https://git.io/JMrPT.

Google LLC. 2021. Migrate your TensorFlow 1 code to TensorFlow 2. Auto-
matic conversion script. TensorFlow Core. (May 27, 2021). Retrieved 05/27/2021
from https://tensorflow.org/guide/migrate#automatic_conversion_script.
Google LLC. 2021. Random number generation. Interaction with tf.function.
TensorFlow Core. (November 16, 2021). Retrieved 01/07/2022 from https:
//tensorflow.org/guide/random_numbers#interaction_with_tffunction.
Google LLC. 2021. tf.compat.v1.Session. (May 14, 2021). Retrieved 07/06/2021
from https://tensorflow.org/api_docs/python/tf/compat/v1/Session#run.
Google LLC. 2021. tf.debugging.assert_equal. Retrieved 01/13/2022 from https:
//tensorflow.org/api_docs/python/tf/debugging/assert_equal#returns.
Google LLC. 2021. tf.py_function. Version 2.7.0. (November 5, 2021). Retrieved
01/05/2022 from https://tensorflow.org/api_docs/python/tf/py_function.
Google LLC. 2021. tf.random.set_seed. (December 4, 2021). Retrieved 01/03/2022
from https://tensorflow.org/api_docs/python/tf/random/set_seed.

Xue Han and Tingting Yu. 2016. An empirical study on performance bugs for
highly configurable software systems. In International Symposium on Empirical
Software Engineering and Measurement. DOI: 10.1145/2961111.2962602.

Y. Hashemi, M. Nayebi, and G. Antoniol. 2020. Documentation of Machine
Learning software. In International Conference on Software Analysis, Evolution
and Reengineering. (February 2020). por: 10.1109/SANER48275.2020.9054844.

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution

(54]

[55]

[56]

(58]

[59]

[60]

[62]

(63]

[64]

[65]

[67]

[68]

(69]

(70]

[71]

[72]

(74]

[75]

(76]

Horace He. 2019. The state of Machine Learning frameworks in 2019. Retrieved
04/01/2021 from https://thegradient.pub/state- of- ml- frameworks-2019-
pytorch-dominates-research-tensorflow-dominates-industry.

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio,
Andrea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in Deep
Learning systems. In International Conference on Software Engineering. DOI:
10.1145/3377811.3380395.

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on Deep Learning bug characteristics. In Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. (August 2019). por: 10.1145/3338906.3338955.

Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, and Hridesh Rajan. 2019.
What do developers ask about ML libraries? a large-scale study using Stack
Overflow. (2019). arXiv: 1906.11940 [cs.SE].

Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020.
Repairing Deep Neural Networks: fix patterns and challenges. In International
Conference on Software Engineering. DOI: 10.1145/3377811.3380378.

Hadhemi Jebnoun, Houssem Ben Braiek, Mohammad Masudur Rahman, and
Foutse Khombh. 2020. The scent of Deep Learning code: an empirical study. In
Mining Software Repositories. boI: 10.1145/3379597.3387479.

Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dong-Jin Shin,
Taebum Kim, and Byung-Gon Chun. 2019. Speculative symbolic graph exe-
cution of imperative Deep Learning programs. SIGOPS Oper. Syst. Rev., 53, 1,
(July 2019), 26-33. 155N: 0163-5980. DOI: 10.1145/3352020.3352025.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and detecting real-world performance bugs. In Programming
Language Design and Implementation. por: 10.1145/2254064.2254075.

Hui Jin, Kan Qiao, Xian-He Sun, and Ying Li. 2011. Performance under failures
of MapReduce applications. In International Symposium on Cluster, Cloud and
Grid Computing. por: 10.1109/ccgrid.2011.84.

Raffi Khatchadourian. 2021. graph_execution_time_comparison.ipynb. (Feb-
ruary 23, 2021). Retrieved 11/03/2021 from https://bit.ly/3bwrhVt.

Raffi Khatchadourian and Hidehiko Masuhara. 2018. Proactive empirical as-
sessment of new language feature adoption via automated refactoring: the case
of Java 8 default methods. The Art, Science, and Engineering of Programming,
2, 6, 6:1-6:30, 3. DOI: 10.22152/programming-journal.org/2018/2/6.

Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Baishakhi Ray.
2020. An empirical study on the use and misuse of Java 8 streams. In Inter-
national Conference on Fundamental Aspects of Software Engineering. ETAPS.
(April 2020), 97-118. por: 10.1007/978-3-030-45234-6_5.

Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and
Yannis Smaragdakis. 2020. Static analysis of shape in TensorFlow programs. In
European Conference on Object-Oriented Programming. Volume 166, 15:1-15:29.
por: 10.4230/LIPIcs. ECOOP.2020.15.

Chen Liu, Jie Lu, Guangwei Li, Ting Yuan, Lian Li, Feng Tan, Jun Yang, Liang
You, and Jingling Xue. 2021. Detecting TensorFlow program bugs in real-world
industrial environment. In International Conference on Automated Software
Engineering. IEEE. po1: 10.1109/as€51524.2021.9678891.

Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping
Li. 2020. Is using Deep Learning frameworks free? Characterizing technical
debt in Deep Learning frameworks. In International Conference on Software
Engineering (ICSE-SEIS ’20). por: 10.1145/3377815.3381377.

Lucy Ellen Lwakatare, Aiswarya Raj, Jan Bosch, Helena Holmstrém Olsson,
and Ivica Crnkovic. 2019. A taxonomy of software engineering challenges for
Machine Learning systems: an empirical investigation. In Agile Processes in
Software Engineering and Extreme Programming, 227-243. por: 10.1007/978-3-
030-19034-7_14.

Amir Makhshari and Ali Mesbah. 2021. IoT bugs and development challenges.
In International Conference on Software Engineering. ACM/IEEE. IEEE, (May
2021). por: 10.1109/icse43902.2021.00051.

2020. Migrate to tf.module and add support for SavedModels. Pull request
#603. onnx/onnx-tensorflow. IBM. (July 2, 2020). Retrieved 12/14/2021 from
https://git.io/JDEoD.

Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee,
Zachary Nado, D. Sculley, Tiark Rompf, and Alexander B. Wiltschko. 2019.
AutoGraph: imperative-style coding with graph-based performance. (2019).
arXiv: 1810.08061 [cs.PL].

Sarah Nadi, Stefan Kriiger, Mira Mezini, and Eric Bodden. 2016. “Jumping
through hoops:” why do Java developers struggle with cryptography APIs? In
International Conference on Software Engineering. ACM, (May 2016), 935-946.
DoI: 10.1145/2884781.2884790.

Amin Nikanjam and Foutse Khomh. 2021. Design smells in Deep Learning
programs: an empirical study. In International Conference on Software Mainte-
nance and Evolution. IEEE, 332-342. por1: 10.1109/ICSME52107.2021.00036.
NVIDIA Corporation. 2021. TensorRT open source software. (December 1,
2021). Retrieved 12/01/2021 from https://git.io/fjVoO.

Shengyi Pan, Lingfeng Bao, Xiaoxue Ren, Xin Xia, David Lo, and Shanping
Li. 2021. Automating developer chat mining. In International Conference on

[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[o1]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

Automated Software Engineering. (November 2021), 854-866. po1: 10.1109/
ASE51524.2021.9678923.

Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2013. Adoption and
use of Java generics. Empirical Softw. Engg., 18, 6, (December 2013), 1047-1089.
ISSN: 1382-3256. DOI: 10.1007/510664-012-9236-6.

Alexandre Passos. 2019. tf function-decorated function tried to create variables
on non-first call. June 11, 2019). Retrieved 01/13/2022 from https://github.
com/tensorflow/tensorflow/issues/27120#issuecomment-500975337.

Adam Paszke et al. 2019. PyTorch: an imperative style, high-performance
Deep Learning library. (December 3, 2019). arXiv: 1912.01703 [cs.LG].
2021. Performance bottleneck due to tf.function retracing. Issue #74. Ten-
sorFlow. q-optimize/c3. (March 18, 2021). Retrieved 11/08/2021 from https:
//github.com/q-optimize/c3/issues/74.

2020. Reduce tf.function retracing. Pull Request #100. (August 10, 2020). Re-
trieved 11/08/2021 from https://github.com/keiohta/tf2rl/pull/100.

2020. Remove @tf.function in tfa.image.equalize. Issue #2263. eomii. (Decem-
ber 3, 2020). Retrieved 01/10/2022 from https://git.io/J9cAb.

2022. Remove ‘experimental relax_shapes=true’ to avoid none shape. Univer-
sity of Chinese Academy of Sciences. (January 4, 2022). Retrieved 01/10/2022
from http://github.com/jiangyi15/tf-pwa/commit/0db1#r62889998.

2020. Remove tf.function decorator in tfa.image.equalize. (December 5, 2020).
Retrieved 01/10/2022 from https://git.io/J9Cft.

2020. Remove tf function decorator in tfa.image.equalize. eomii. (December 8,
2020). Retrieved 01/10/2022 from https://git.io/J9chg.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Di-
etmar Ebner, Vinay Chaudhary, Michael Young, Jean-Frangois Crespo, and
Dan Dennison. 2015. Hidden technical debt in Machine Learning systems. In
Advances in Neural Information Processing Systems, 2503-2511.

Stack Exchange Inc. 2020. Should I use @tf.function for all functions? Stack
Overflow. (January 21, 2020). Retrieved 11/08/2021 from https://stackoverflow.
com/questions/59847045/should-i-use- tf-function-for-all-functions.

Eric Stavarache. 2019. tf.function-decorated function tried to create vari-
ables on non-first call. Issue #27120. ETH Ziirich. (March 25, 2019). Retrieved
01/13/2022 from https://github.com/tensorflow/tensorflow/issues/27120.
2019. Surprising random seed behavior when using @tf.function. Issue #33297.
(October 13, 2019). Retrieved 01/03/2022 from https://git.io/JSiac.

Florian Tambon, Amin Nikanjam, Le An, Foutse Khomh, and Giuliano Anto-
niol. 2021. Silent bugs in Deep Learning frameworks: an empirical study of
Keras and TensorFlow. (2021). arXiv: 2112.13314 [cs.SE].

Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani
Stewart, and Anita Raja. 2021. An empirical study of refactorings and technical
debt in Machine Learning systems. In International Conference on Software
Engineering, 238-250. por: 10.1109/ICSE43902.2021.00033.

Yiming Tang, Allan Spektor, Raffi Khatchadourian, and Mehdi Bagherzadeh.
2022. Automated evolution of feature logging statement levels using Git histo-
ries and degree of interest. Science of Computer Programming, 214, (February 1,
2022), 102724. por: 10.1016/j.s¢ico.2021.102724.

Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An empir-
ical study of bugs in Machine Learning systems. In International Symposium
on Software Reliability Engineering. por: 10.1109/ISSRE.2012.22.

Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing
error handling bugs in C. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
752-762. po1: 10.1145/3106237.3106300.

Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner
2.0. IEEE Trans. Softw. Eng. por: 10.1109/TSE.2020.3007722.

Anthony J. Viera and Joanne M. Garrett. 2005. Understanding interobserver
agreement: the kappa statistic. Family medicine, 37, 360-363, 5.

Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. 2017. Bug characteristics
in blockchain systems: a large-scale empirical study. In Mining Software
Repositories. IEEE, (May 2017), 413-424. por: 10.1109/MSR.2017.59.

Wenting Wang, Deeksha Arya, Nicole Novielli, Jinghui Cheng, and Jin L.C.
Guo. 2020. ArguLens: anatomy of community opinions on usability issues
using argumentation models. In Conference on Human Factors in Computing
Systems (CHI ’20). ACM, (April 2020). por: 10.1145/3313831.3376218.

Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019.
An empirical study of common challenges in developing Deep Learning
applications. In International Symposium on Software Reliability Engineering.
(October 2019). por: 10.1109/ISSRE.2019.00020.

Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An empirical study on TensorFlow program bugs. In International Sym-
posium on Software Testing and Analysis. DoL: 10.1145/3213846.3213866.
Zejun Zhang, Yanming Yang, Xin Xia, David Lo, Xiaoxue Ren, and John
Grundy. 2021. Unveiling the mystery of API evolution in Deep Learning
frameworks: a case study of TensorFlow 2. In International Conference on
Software Engineering (ICSE-SEIP). por: 10.1109/ICSE-SEIP52600.2021.00033.
Jiayuan Zhou, Shaowei Wang, Cor-Paul Bezemer, Ying Zou, and Ahmed E.
Hassan. 2021. Studying the association between bountysource bounties and

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

the issue-addressing likelihood of GitHub issue reports. IEEE Trans. Softw. Eng.,
47, 12, (December 2021), 2919-2933. por: 10.1109/TSE.2020.2974469.

[103] Weijie Zhou, Yue Zhao, Guoqiang Zhang, and Xipeng Shen. 2020. HARP: holis-
tic analysis for refactoring Python-based analytics programs. In International
Conference on Software Engineering, 506—-517. poI: 10.1145/3377811.3380434.

	Abstract
	1 Introduction
	2 Motivating Examples & Background
	3 Methodology
	4 Results
	4.1 Quantitative Analysis
	4.2 Qualitative Analysis

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion & Future Work

