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ABSTRACT

Logging is a signi�cant programming practice. Due to the highly

transactional nature of modern software applications, massive

amount of logs are generated every day, which may overwhelm

developers. Logging information overload can be dangerous to

software applications. Using log levels, developers can print the

useful information while hiding the verbose logs during software

runtime. As software evolves, the log levels of logging statements

associated with the surrounding software feature implementation

may also need to be altered. Maintaining log levels necessitates

a signi�cant amount of manual e�ort. In this paper, we demon-

strate an automated approach that can rejuvenate feature log levels

by matching the interest level of developers in the surrounding

features. The approach is implemented as an open-source Eclipse

plugin, using two external plug-ins (JGit and Mylyn). It was tested

on 18 open-source Java projects consisting of ∼3 million lines of

code and ∼4K log statements. Our tool successfully analyzes 99.22%

of logging statements, increases log level distributions by ∼20%,

and increases the focus of logs in bug �x contexts ∼83% of the time.

For further details, interested readers can watch our demonstration

video (https://www.youtube.com/watch?v=qIULoAXoDv4).
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1 INTRODUCTION

Logging is a widely used programming practice for recording soft-

ware system information during runtime [6,7,16]. The signi�cance

of logging is incontrovertible, as the runtime information stored

in logs is used by developers for a variety of purposes, such as

monitor processes [11], transferring knowledge [4], and error de-

tection [12,17].

With the evolution of modern software development, modern

software now has the potential to analyze massive amounts of

data on a daily basis. Due to such highly transactional nature of

modern software, it can generate massive amounts of logs every

day, which may overwhelm developers. Many prior studies have

highlighted the dangers posed by logging information overload. For

example, Yuan et al. [16] indicate that excessive logging may deliver

too much noise which inhibits error detection. According to Fu

et al. [3], information overload might result in additional hardware,

development, and maintenance expenses, as well as redundant log

data.

Many mainstream programming languages come with logging

frameworks (e.g., Java Util Logging in Java and logging in Python)

that help developers standardize logging practices. Using logging

frameworks, developers can place logging statements into source

code for generating runtime logs. Typical logging statements in-

clude log levels, which allow developers to specify which logs are

visible during software run-time, while hiding the verbose logs.

Speci�cally, logging frameworks treat a certain log level as a de-

fault verbosity level, enabling logging statements with log levels

greater than or equal to it to emit logs at runtime. For instance, the

logging statement below is taken from the JUL documentation and

its log level is FINER. If the default verbosity level is set to FINER, this

logging statement could print log messages at runtime. Therefore,

setting appropriate log levels can aid developers in receiving useful

log information for further development and testing.

logger.log(Level.FINER, DiagnosisMessages::systemHealthStatus);
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As software evolves, new software features are introduced, while

some existing software features are enhanced or suppressed. The

log levels of logging statements associated with the surrounding

software feature implementation, referred to as feature log levels,

may also need to be altered, as these logging statements are unable

to o�er developers with the most up-to-date information that is

no longer of interest to them. For example, if a software feature is

suppressed, its relevant logs are no longer appealing to developers

and should be concealed during software runtime to assist devel-

opers in receiving information more e�ectively. In ideal situations,

the levels of feature logs should be raised when more developers

become interested in surrounding software features, and vice versa,

resulting in more valuable log information being displayed and less

useful information being suppressed during software runtime. To

identify feature logs, we established a set of innovative heuristics

based on �rst-hand developer interactions, which can be found on

the tool’s main menu and are explored in more detail in Section 5.3.

A prior study [16] discloses that developers often fail to set log

levels appropriately the �rst time, and then alter them afterward.

Evolving log levels necessitates a signi�cant amount of manual

e�ort. To the best of our knowledge, there are no automated exist-

ing approaches for maintaining log levels by taking into account

the evolution of surrounding software features. Therefore, we pro-

pose an automated approach, namely REFELL, that can rejuvenate

feature log levels by matching the interest level of developers in

the surrounding features. Our approach attempts to aid developers

in e�ectively getting log information as software evolves, because

appropriate log levels can prevent developers from receiving too

much or too little software run-time information. The approach an-

alyzes Git histories for code changes, then adapts Mylyn’s Degree

of Interest (DOI) model [5] to gauge developers’ interest in the

software source code surrounding the logging statements based on

the retrieved code changes. Mylyn [2] is an Eclipse plugin whose

basic algorithm is the DOI model, which enables program elements

with more frequent and recent interactions to be highlighted more

prominently, and vice versa. The approach correlates such interests

with feature log levels and suggests new log levels if mismatches

are discovered.

The approach is implemented as an open-source Eclipse plu-

gin, which developers can download and install using an Eclipse

update site link.1 The project source code is also publicly avail-

able on GitHub.2 To explore the approach’s capabilities in real-life

applications, we conducted experiments on 18 open-source Java

projects. Our tool examines ∼4K logging statements, improves log

level distributions by ∼20%, and increases the focus of logs in bug

�x contexts by 83%. Several pull requests were also incorporated

into prominent and well-known open-source projects.

The corresponding full technical paper appeared in Science of

Computer Programming [14]. The full paper contains further infor-

mation, such as the approach introduction, evaluation design, and

discussion.

1https://git.io/J17UC
2https://git.io/JMTNW

2 ENVISIONED USERS

The users we expect to attract are the developers and even testers

of large software systems. These software systems are constantly

updated and can generate a large number of logs per day. Analyzing

these logs to obtain useful information necessitates a signi�cant

amount of human e�ort. Our tool can assist them in receiving

run-time log information more e�ciently.

3 HOW THE TOOL IS USED

We provide a user-friendly, easy-to-use tool to developers. Users

should �rst install our tool in Eclipse and create a new Mylyn task

before using it. The Mylyn task needs to be activated. After that,

users only need to choose the assessed projects and click on the

rejuvenate a log level command via Quick Access.

The main menu of the tool includes the heuristics listed in Ta-

ble 1. After choosing heuristics, the tool analyzes source code, and

a preview dialog box appears, as shown in Figure 1. In this dialog

box, users can choose the source �le to view and check all transfor-

mations in this �le. If users agree with the log level transformations,

they can perform log level transformations by clicking on the “Fin-

ish” button. For more information, interested readers could watch

our demonstration video.

Figure 1: Screenshot of the preview wizard for REFELL.

4 SOFTWARE ENGINEERING CHALLENGES

As we stated in Section 1, our tool expects to reconcile the software

log information overload. With the help of our tool, the log informa-

tion that users are more interested in has a better chance of being

printed during software run-time, and vice versa. The following

is a log level transformation that our tool recommended and was

approved by Jenkins developers.

- LOGGER.log(INFO,"{0} main build action completed:{1}"..);

+ LOGGER.log(FINEST,"{0} main build action completed:{1}..");

In this case, the original log level is info, indicating that when

developers chose this log level, they were interested in the log

information provided by this logging statement. However, after

that, the project went through a long development period, and

the log information from this logging statement was no longer as

interesting to developers as it once was. Our tool integrates with the

Eclipse Mylyn plug-in and can track developers’ interest in software
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features surrounding logging statements. The tool discovered that

developers were less interested in the software features surrounding

this logging statement. In addition, this logging statement was

associated with its surrounding software features. Therefore, our

tool suggested lowering the log level in this case, which was agreed

upon by developers. Jenkins developers stated “[it is p]robably a

good idea: [i]t’s time we started removing this from the general

system log [13].”

5 APPROACH AND IMPLEMENTATION

5.1 Architecture and Dependencies

Our tool’s design is depicted in Fig. 2, which consists mostly of

three layers. The top layer is the user interface layer that accepts

source code from software projects as input. The medium layer

implements the approach’s primary functionality. It leverages two

external plug-ins: JGit for historical source code change extraction

and Mylyn for measuring developer interests. Our tool mines every

project’s Git history to extract a collection of source code modi-

�cations. For each source code modi�cation, the tool creates an

interaction event as a Mylyn input. Mylyn could then automatically

measure developers’ interest in program elements (methods) en-

closing logging statements. The developer’s interest in a software

feature is quanti�ed as a real dubbed the DOI value. The DOI ranges

of features are later split by subtracting the smallest DOI value from

the largest, and then dividing the result by the number of available

logging levels. As a result, each DOI partition is associated with a

log level. Therefore, the tool can predict a log level for each log level

based on developers’ interests in the surrounding software feature,

and recommend a new log level if the existing log level and the

anticipated log level di�er. Currently, every log level corresponds to

the same size DOI partition. We chose same size since it is the most

straightforward and intuitive strategy, and we will apply Machine

Learning technologies in the future to enhance our algorithms. The

bottom layer in Fig. 2 is the basic foundation of this tool, which can

provide Eclipse plug-in development support for a transformation

tool.

Figure 2: Software Architecture for REFELL.

5.2 Integration with Mylyn

In this section, more information on how historical source code

modi�cations are transformed to interaction events as Mylyn input

is provided. For each software feature change (method change),

the tool sequentially builds a Mylyn interaction event with kind

EDIT, indicating that this interaction event is for editing source code.

Mylyn might construct many types of interaction events, such as

SELECTION, for a common Mylyn task context. However, because

Git commits cannot hold as much information as all �ner-grained

interaction event types de�ned in Mylyn, the tool has to ignore

the others and only consider the EDIT type. In the future, we would

like to merge the existing Mylyn task context with the simulative

task context created from Git history. Existing task contexts con-

tain a wide range of interaction events that could facilitate log

transformations.

Developers’ interest in a program element is re�ected by the DOI

value, with a higher DOI value indicating greater developer interest.

DOI values are higher for program elements with more frequent

and recent interactions than for program elements with fewer fre-

quent and recent interactions. A developers’ interaction could raise

the DOI value of the relevant program element while lowering DOI

values for other program elements that are una�ected by the inter-

action. In the DOI model, decreasing DOI values is referred to as

decay. Due to the presence of decay, when our tool integrates with

Mylyn, the developers’ interest in the program elements for the

very early commits is less signi�cant and less considered than the

developers’ interest extracted from the most recent commits. If the

analyzed project has a long Git history, the early commits have little

impact on the �nal log level transformation. In addition, our tool

provides users with the option to limit the number of analyzed Git

commits to avoid the tool analyzing very ancient commits. Further

details about the examined Git histories can be found in our full

technical paper [14].

In Mylyn, negative DOI values indicate uninterestingness. In

Eclipse, the view “Focus on Active Task” only displays elements

with positive DOI values, while those with negative DOI values

are hidden. Our tool has the potential to generate negative DOI

values. If a program element in a Mylyn active context is not visited

indirectly or directly for a long period of time, its DOI value could

decay many times and may become negative. As a result, we treat

negative DOI values as 0. The DOI has a minimum value of 0.

Multiple projects are treated as independent projects and pro-

cessed individually. The Mylyn task context is cleared after each

processing. Each project’s Git history needs to be traversed, so

the Git history of a repository with di�erent subprojects may be

analyzed more than once. Memoization is used to eliminate dupli-

cate analysis. Each time the tool analyzes a project, it saves some

intermediate data, such as source code changes. When the tool

analyzes projects that share a repository, the stored data is read

directly. Therefore, a repository is only processed once for every

run of the tool.

5.3 Heuristic Design

Heuristics are designed to distinguish between feature logs and

non-feature logs. We performed a pilot study by analyzing several

well-known open-source projects using our initial version of the

tool collecting comments from their developers in order to re�ne

and improve our heuristics design. Table 1 lists all of the available

heuristics in the approach. These heuristics are also displayed as

transformation setting options in the tool’s main menu, allowing

developers to accept or reject them while using the tool. We would

suggest users take all of the heuristics stated in the table 1 into
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account since these heuristics can �lter out non-feature logs to

avoid undesirable log level transformations.

Table 1: A list of heuristics to identify feature logs

Heuristic Details

WS Treat particular levels as log categories.

LOW

Never lower the level of logging statements:
(a) CTCH: appearing within catch blocks.
(b) IFS: immediately following branches (e.g., if, switch).
(c) KEYL: having particular keywords in their log messages.

CNDS
Never change the level of logging statements immediately fol-
lowing branches whose condition contains a log level.

KEYR
Never raise the level of logging statements without particular
keywords in their log messages. This is only applicable to critical
log levels (e.g.WARNING andSEVERE inJava Util Logging).

INH
Only consistently transform the level of logging statements ap-
pearing in overriding methods.

TDIST
Only transform the level of logging statements up to a transfor-
mation distance threshold.

5.4 Log Level Extraction and Rewrite

Currently, our tool supports two popular Java logging frameworks:

Java Util Logging (a Java built-in logging framework) and Slf4j

(a third-party logging framework). According to API documenta-

tion [8,10], log levels can occur in logging statements in two ways:

(i) log level can be passed as a method parameter of a logging state-

ment, as seen in the code example in the Section 1, and (ii) the

method name of a convenience method could match to a log level.

For example, the logging statement below is from the Slf4j docu-

mentation [10], and its log level is info, which is the same as its

method name.
logger.info("Temperature has risen above 50 degrees.");

The tool uses AST and its source symbol bindings to extract

logging statements from source code, then uses log level string

match to retrieve log levels from those statements. Logging trans-

formations are implemented by rewriting AST.

6 EVALUATION

The tool was tested on 18 open-source Java projects of various sizes

and domains. Our tool successfully assessed 99.22% of the 3,973

logging statements, with 2,819 being non-feature logs and 1,154

being feature logs. The failed cases are those logging statements

with log levels stored in variables that our string matching strat-

egy cannot identify. Data-�ow analysis can be used to solve those

cases, but since they account for a very small number of analyzed

logging statements, we leave them for future research. Among the

detected feature logs, 753 are suggested to be transformed. The tool

improves log level distributions by ∼20%. Among the transformed

log levels, 89.51% of the levels are lowered, implying that our tool

helps developers �lter out much information they are uninterested

in and allowing them to concentrate on fewer features of interest.

We then conduct a bug study to see how our tool can help focus

on buggy code. We compare the log level transformations made by

our tool to the ideal log level transformations. Ideally, if possible,

feature log levels in buggy context (context with bug �xes) should

be raised, whereas feature log levels in non-buggy context should

be decreased, so that logs from logging statements in buggy context

become more prominent, while logs from logging statements in

non-buggy context become less prominent, allowing developers to

focus on the buggy information to facilitate debugging. According

to the results, our tool raises the focus of logs in bug �x contexts

∼83% of the time. The results indicate that our tool has the capacity

to bring erroneous feature implementations to light and expose

bugs.

During the evaluation, we discovered that our tool still has

certain limitations. For example, we may overlook some of the

“wrapped” logging statements excluded by the CNDS heuristic. A

“wrapped” logging statement is guarded by a run-time log level

check. In fact, such logging statements make up only a small por-

tion of analyzed logging statements (only ∼6.3%). For now, the

tool’s limitations appear to be manageable, and we will consider

incorporating advanced technologies and algorithms to improve it

in the future.

In addition, we perform a pull request study to assess the use-

fulness of our heuristic rules. As a result, pull requests have been

integrated into two large and well-known open-source projects (i.e.,

Jenkins and selenium).

7 RELATED WORK

In recent years, many research studies have been conducted on log

challenges. Yuan et al. [15] implement a tool that adds appropriate

logging statements into source code to enhance failure diagnosis,

but this cannot solve the problem of information overload. Zhu et

al. [18] provide a logging suggestion tool which assists developers

in determining where to log. However, this tool does not allow

developers to alter log levels. Chen and Jiang [1] implement a

tool to detect mismatches between log content and the associated

log level. However, they do not take into account how developer

interest in the surrounding software features changes over time

during software evolution.

8 CONCLUSION & FUTUREWORK

In conclusion, we proposed a tool REFELL that can automatically

rejuvenate logging statement levels by using Git histories and DOI

model. The tool recommends a new log level if a log level does

not align with developers’ interests in surrounding software fea-

tures. The tool was implemented as an Eclipse plug-in by using

two external Eclipse plug-ins JGit and Mylyn. It was tested on 18

open-source Java projects consisting of ∼3 million lines of code

and ∼4K log statements. Our tool successfully analyzes 99.22% of

logging statements, increases log level distributions by ∼20%, and

increases the focus of logs in bug �x contexts ∼83% of the time.

In the future, we will explore algorithm enhancement by incor-

porating advanced techniques such as Machine Learning based

techniques and data-�ow analysis. Moreover, we will explore in-

tegrating Mylyn task context. Our work, such as automatic task

context building from Git histories, may contribute back to Mylyn

project, which can resolve the pending bugs in their forums [9].
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