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ABSTRACT

Logging is a significant programming practice. Due to the highly
transactional nature of modern software applications, massive
amount of logs are generated every day, which may overwhelm
developers. Logging information overload can be dangerous to
software applications. Using log levels, developers can print the
useful information while hiding the verbose logs during software
runtime. As software evolves, the log levels of logging statements
associated with the surrounding software feature implementation
may also need to be altered. Maintaining log levels necessitates
a significant amount of manual effort. In this paper, we demon-
strate an automated approach that can rejuvenate feature log levels
by matching the interest level of developers in the surrounding
features. The approach is implemented as an open-source Eclipse
plugin, using two external plug-ins (JGit and Mylyn). It was tested
on 18 open-source Java projects consisting of ~3 million lines of
code and ~4K log statements. Our tool successfully analyzes 99.22%
of logging statements, increases log level distributions by ~20%,
and increases the focus of logs in bug fix contexts ~83% of the time.
For further details, interested readers can watch our demonstration
video (https://www.youtube.com/watch?v=qIULoAXoDv4).
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1 INTRODUCTION

Logging is a widely used programming practice for recording soft-
ware system information during runtime [6,7,16]. The significance
of logging is incontrovertible, as the runtime information stored
in logs is used by developers for a variety of purposes, such as
monitor processes [11], transferring knowledge [4], and error de-
tection [12,17].

With the evolution of modern software development, modern
software now has the potential to analyze massive amounts of
data on a daily basis. Due to such highly transactional nature of
modern software, it can generate massive amounts of logs every
day, which may overwhelm developers. Many prior studies have
highlighted the dangers posed by logging information overload. For
example, Yuan et al. [16] indicate that excessive logging may deliver
too much noise which inhibits error detection. According to Fu
et al. [3], information overload might result in additional hardware,
development, and maintenance expenses, as well as redundant log
data.

Many mainstream programming languages come with logging
frameworks (e.g., Java Util Logging in Java and logging in Python)
that help developers standardize logging practices. Using logging
frameworks, developers can place logging statements into source
code for generating runtime logs. Typical logging statements in-
clude log levels, which allow developers to specify which logs are
visible during software run-time, while hiding the verbose logs.
Specifically, logging frameworks treat a certain log level as a de-
fault verbosity level, enabling logging statements with log levels
greater than or equal to it to emit logs at runtime. For instance, the
logging statement below is taken from the JUL documentation and
its log level is FINER. If the default verbosity level is set to FINER, this
logging statement could print log messages at runtime. Therefore,
setting appropriate log levels can aid developers in receiving useful
log information for further development and testing.

logger.log(Level .FINER, DiagnosisMessages::systemHealthStatus);
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As software evolves, new software features are introduced, while
some existing software features are enhanced or suppressed. The
log levels of logging statements associated with the surrounding
software feature implementation, referred to as feature log levels,
may also need to be altered, as these logging statements are unable
to offer developers with the most up-to-date information that is
no longer of interest to them. For example, if a software feature is
suppressed, its relevant logs are no longer appealing to developers
and should be concealed during software runtime to assist devel-
opers in receiving information more effectively. In ideal situations,
the levels of feature logs should be raised when more developers
become interested in surrounding software features, and vice versa,
resulting in more valuable log information being displayed and less
useful information being suppressed during software runtime. To
identify feature logs, we established a set of innovative heuristics
based on first-hand developer interactions, which can be found on
the tool’s main menu and are explored in more detail in Section 5.3.

A prior study [16] discloses that developers often fail to set log
levels appropriately the first time, and then alter them afterward.
Evolving log levels necessitates a significant amount of manual
effort. To the best of our knowledge, there are no automated exist-
ing approaches for maintaining log levels by taking into account
the evolution of surrounding software features. Therefore, we pro-
pose an automated approach, namely REFELL, that can rejuvenate
feature log levels by matching the interest level of developers in
the surrounding features. Our approach attempts to aid developers
in effectively getting log information as software evolves, because
appropriate log levels can prevent developers from receiving too
much or too little software run-time information. The approach an-
alyzes Git histories for code changes, then adapts Mylyn’s Degree
of Interest (DOI) model [5] to gauge developers’ interest in the
software source code surrounding the logging statements based on
the retrieved code changes. Mylyn [2] is an Eclipse plugin whose
basic algorithm is the DOI model, which enables program elements
with more frequent and recent interactions to be highlighted more
prominently, and vice versa. The approach correlates such interests
with feature log levels and suggests new log levels if mismatches
are discovered.

The approach is implemented as an open-source Eclipse plu-
gin, which developers can download and install using an Eclipse
update site link.! The project source code is also publicly avail-
able on GitHub.? To explore the approach’s capabilities in real-life
applications, we conducted experiments on 18 open-source Java
projects. Our tool examines ~4K logging statements, improves log
level distributions by ~20%, and increases the focus of logs in bug
fix contexts by 83%. Several pull requests were also incorporated
into prominent and well-known open-source projects.

The corresponding full technical paper appeared in Science of
Computer Programming [14]. The full paper contains further infor-
mation, such as the approach introduction, evaluation design, and
discussion.

https://git.io/J17UC
Zhttps://git.io/J]MTNW
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2 ENVISIONED USERS

The users we expect to attract are the developers and even testers
of large software systems. These software systems are constantly
updated and can generate a large number of logs per day. Analyzing
these logs to obtain useful information necessitates a significant
amount of human effort. Our tool can assist them in receiving
run-time log information more efficiently.

3 HOW THE TOOL IS USED

We provide a user-friendly, easy-to-use tool to developers. Users
should first install our tool in Eclipse and create a new Mylyn task
before using it. The Mylyn task needs to be activated. After that,
users only need to choose the assessed projects and click on the
REJUVENATE A LOG LEVEL command via Quick Access.

The main menu of the tool includes the heuristics listed in Ta-
ble 1. After choosing heuristics, the tool analyzes source code, and
a preview dialog box appears, as shown in Figure 1. In this dialog
box, users can choose the source file to view and check all transfor-
mations in this file. If users agree with the log level transformations,
they can perform log level transformations by clicking on the “Fin-
ish” button. For more information, interested readers could watch
our demonstration video.
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Figure 1: Screenshot of the preview wizard for REFELL.

4 SOFTWARE ENGINEERING CHALLENGES

As we stated in Section 1, our tool expects to reconcile the software
log information overload. With the help of our tool, the log informa-
tion that users are more interested in has a better chance of being
printed during software run-time, and vice versa. The following
is a log level transformation that our tool recommended and was
approved by Jenkins developers.
LOGGER. log (INFO, "{@} main build action completed:{1}"..);

+ LOGGER. log (FINEST,"{0} main build action completed:{1}..");

In this case, the original log level is info, indicating that when
developers chose this log level, they were interested in the log
information provided by this logging statement. However, after
that, the project went through a long development period, and
the log information from this logging statement was no longer as
interesting to developers as it once was. Our tool integrates with the
Eclipse Mylyn plug-in and can track developers’ interest in software
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features surrounding logging statements. The tool discovered that
developers were less interested in the software features surrounding
this logging statement. In addition, this logging statement was
associated with its surrounding software features. Therefore, our
tool suggested lowering the log level in this case, which was agreed
upon by developers. Jenkins developers stated “[it is p]robably a
good idea: [i]t’s time we started removing this from the general
system log [13].”

5 APPROACH AND IMPLEMENTATION

5.1 Architecture and Dependencies

Our tool’s design is depicted in Fig. 2, which consists mostly of
three layers. The top layer is the user interface layer that accepts
source code from software projects as input. The medium layer
implements the approach’s primary functionality. It leverages two
external plug-ins: JGit for historical source code change extraction
and Mylyn for measuring developer interests. Our tool mines every
project’s Git history to extract a collection of source code modi-
fications. For each source code modification, the tool creates an
interaction event as a Mylyn input. Mylyn could then automatically
measure developers’ interest in program elements (methods) en-
closing logging statements. The developer’s interest in a software
feature is quantified as a real dubbed the DOI value. The DOI ranges
of features are later split by subtracting the smallest DOI value from
the largest, and then dividing the result by the number of available
logging levels. As a result, each DOI partition is associated with a
log level. Therefore, the tool can predict a log level for each log level
based on developers’ interests in the surrounding software feature,
and recommend a new log level if the existing log level and the
anticipated log level differ. Currently, every log level corresponds to
the same size DOI partition. We chose same size since it is the most
straightforward and intuitive strategy, and we will apply Machine
Learning technologies in the future to enhance our algorithms. The
bottom layer in Fig. 2 is the basic foundation of this tool, which can
provide Eclipse plug-in development support for a transformation
tool.

User |

Interface User-Facing Plug-ins ‘

| Internal Plug-ins ‘
Core of

| JGit Plug-in || Mylyn Plug-in ‘

Framework | Eclipse Framework Plug-ins ‘

Figure 2: Software Architecture for REFELL.

5.2 Integration with Mylyn

In this section, more information on how historical source code
modifications are transformed to interaction events as Mylyn input
is provided. For each software feature change (method change),
the tool sequentially builds a Mylyn interaction event with kind
EDIT, indicating that this interaction event is for editing source code.
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Mylyn might construct many types of interaction events, such as
SELECTION, for a common Mylyn task context. However, because
Git commits cannot hold as much information as all finer-grained
interaction event types defined in Mylyn, the tool has to ignore
the others and only consider the EDIT type. In the future, we would
like to merge the existing Mylyn task context with the simulative
task context created from Git history. Existing task contexts con-
tain a wide range of interaction events that could facilitate log
transformations.

Developers’ interest in a program element is reflected by the DOI
value, with a higher DOI value indicating greater developer interest.
DOI values are higher for program elements with more frequent
and recent interactions than for program elements with fewer fre-
quent and recent interactions. A developers’ interaction could raise
the DOI value of the relevant program element while lowering DOI
values for other program elements that are unaffected by the inter-
action. In the DOI model, decreasing DOI values is referred to as
decay. Due to the presence of decay, when our tool integrates with
Mylyn, the developers’ interest in the program elements for the
very early commits is less significant and less considered than the
developers’ interest extracted from the most recent commits. If the
analyzed project has a long Git history, the early commits have little
impact on the final log level transformation. In addition, our tool
provides users with the option to limit the number of analyzed Git
commits to avoid the tool analyzing very ancient commits. Further
details about the examined Git histories can be found in our full
technical paper [14].

In Mylyn, negative DOI values indicate uninterestingness. In
Eclipse, the view “Focus on Active Task” only displays elements
with positive DOI values, while those with negative DOI values
are hidden. Our tool has the potential to generate negative DOI
values. If a program element in a Mylyn active context is not visited
indirectly or directly for a long period of time, its DOI value could
decay many times and may become negative. As a result, we treat
negative DOI values as 0. The DOI has a minimum value of 0.

Multiple projects are treated as independent projects and pro-
cessed individually. The Mylyn task context is cleared after each
processing. Each project’s Git history needs to be traversed, so
the Git history of a repository with different subprojects may be
analyzed more than once. Memoization is used to eliminate dupli-
cate analysis. Each time the tool analyzes a project, it saves some
intermediate data, such as source code changes. When the tool
analyzes projects that share a repository, the stored data is read
directly. Therefore, a repository is only processed once for every
run of the tool.

5.3 Heuristic Design

Heuristics are designed to distinguish between feature logs and
non-feature logs. We performed a pilot study by analyzing several
well-known open-source projects using our initial version of the
tool collecting comments from their developers in order to refine
and improve our heuristics design. Table 1 lists all of the available
heuristics in the approach. These heuristics are also displayed as
transformation setting options in the tool’s main menu, allowing
developers to accept or reject them while using the tool. We would
suggest users take all of the heuristics stated in the table 1 into
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account since these heuristics can filter out non-feature logs to
avoid undesirable log level transformations.

Table 1: A list of heuristics to identify feature logs

Heuristic  Details

ws Treat particular levels as log categories.

Never lower the level of logging statements:
LOW (a) CTCH: appearing within catch blocks.
(b) IFS: immediately following branches (e.g., if, switch).

(c) KEYL: having particular keywords in their log messages.

Never change the level of logging statements immediately fol-

CNDS lowing branches whose condition contains a log level.

Never raise the level of logging statements without particular
KEYR keywords in their log messages. This is only applicable to critical
log levels (e.g. WARNING and SEVERE in Java Util Logging).

Only consistently transform the level of logging statements ap-

INH pearing in overriding methods.

Only transform the level of logging statements up to a transfor-

TDIST mation distance threshold.

5.4 Log Level Extraction and Rewrite

Currently, our tool supports two popular Java logging frameworks:
Java Util Logging (a Java built-in logging framework) and SIf4j
(a third-party logging framework). According to API documenta-
tion [8,10], log levels can occur in logging statements in two ways:
(i) log level can be passed as a method parameter of a logging state-
ment, as seen in the code example in the Section 1, and (ii) the
method name of a convenience method could match to a log level.
For example, the logging statement below is from the SIf4j docu-
mentation [10], and its log level is info, which is the same as its
method name.

logger.info("Temperature has risen above 50 degrees.");

The tool uses AST and its source symbol bindings to extract
logging statements from source code, then uses log level string
match to retrieve log levels from those statements. Logging trans-
formations are implemented by rewriting AST.

6 EVALUATION

The tool was tested on 18 open-source Java projects of various sizes
and domains. Our tool successfully assessed 99.22% of the 3,973
logging statements, with 2,819 being non-feature logs and 1,154
being feature logs. The failed cases are those logging statements
with log levels stored in variables that our string matching strat-
egy cannot identify. Data-flow analysis can be used to solve those
cases, but since they account for a very small number of analyzed
logging statements, we leave them for future research. Among the
detected feature logs, 753 are suggested to be transformed. The tool
improves log level distributions by ~20%. Among the transformed
log levels, 89.51% of the levels are lowered, implying that our tool
helps developers filter out much information they are uninterested
in and allowing them to concentrate on fewer features of interest.

We then conduct a bug study to see how our tool can help focus
on buggy code. We compare the log level transformations made by
our tool to the ideal log level transformations. Ideally, if possible,
feature log levels in buggy context (context with bug fixes) should
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be raised, whereas feature log levels in non-buggy context should
be decreased, so that logs from logging statements in buggy context
become more prominent, while logs from logging statements in
non-buggy context become less prominent, allowing developers to
focus on the buggy information to facilitate debugging. According
to the results, our tool raises the focus of logs in bug fix contexts
~83% of the time. The results indicate that our tool has the capacity
to bring erroneous feature implementations to light and expose
bugs.

During the evaluation, we discovered that our tool still has
certain limitations. For example, we may overlook some of the
“wrapped” logging statements excluded by the CNDS heuristic. A
“wrapped” logging statement is guarded by a run-time log level
check. In fact, such logging statements make up only a small por-
tion of analyzed logging statements (only ~6.3%). For now, the
tool’s limitations appear to be manageable, and we will consider
incorporating advanced technologies and algorithms to improve it
in the future.

In addition, we perform a pull request study to assess the use-
fulness of our heuristic rules. As a result, pull requests have been
integrated into two large and well-known open-source projects (i.e.,
Jenkins and selenium).

7 RELATED WORK

In recent years, many research studies have been conducted on log
challenges. Yuan et al. [15] implement a tool that adds appropriate
logging statements into source code to enhance failure diagnosis,
but this cannot solve the problem of information overload. Zhu et
al. [18] provide a logging suggestion tool which assists developers
in determining where to log. However, this tool does not allow
developers to alter log levels. Chen and Jiang [1] implement a
tool to detect mismatches between log content and the associated
log level. However, they do not take into account how developer
interest in the surrounding software features changes over time
during software evolution.

8 CONCLUSION & FUTURE WORK

In conclusion, we proposed a tool REFELL that can automatically
rejuvenate logging statement levels by using Git histories and DOI
model. The tool recommends a new log level if a log level does
not align with developers’ interests in surrounding software fea-
tures. The tool was implemented as an Eclipse plug-in by using
two external Eclipse plug-ins JGit and Mylyn. It was tested on 18
open-source Java projects consisting of ~3 million lines of code
and ~4K log statements. Our tool successfully analyzes 99.22% of
logging statements, increases log level distributions by ~20%, and
increases the focus of logs in bug fix contexts ~83% of the time.

In the future, we will explore algorithm enhancement by incor-
porating advanced techniques such as Machine Learning based
techniques and data-flow analysis. Moreover, we will explore in-
tegrating Mylyn task context. Our work, such as automatic task
context building from Git histories, may contribute back to Mylyn
project, which can resolve the pending bugs in their forums [9].
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