THE LEAST DEGREE OF A CM POINT ON A MODULAR CURVE

PETE L. CLARK, TYLER GENAO, PAUL POLLACK, AND FREDERICK SATA

ABSTRACT. For a modular curve X = Xo(N), X1(N) or X1(M, N) defined over Q, we denote
by dewm(X) the least degree of a CM point on X. For each discriminant A < 0, we determine
the least degree of a point on Xo(N) with CM by the order of discriminant A. This places us
in a position to study dcm(X) as an “arithmetic function” and we do so, obtaining various
upper bounds, lower bounds and typical bounds. We deduce that all but finitely many curves
in each of the families have sporadic CM points. Finally we supplement these results with
a computational study, e.g. computing den(Xo(N)) and den (X1(N)) exactly for N < 10°
and determining whether Xo (V) (resp. X1(N), resp. X1(M, N)) has sporadic CM points for
all but 106 values of N (resp. 227 values of N, resp. 146 pairs (M, N) with M > 2).

CONTENTS
1. Introduction
Notation
Acknowledgments
2. The class number ha
3. Exact results on da cm(X) and dom(X)
3.1. X;(M,N)and X(N)
3.2, Xi(N)
3.3. Xo(N)
3.4.  Comparison of denm(X1(N)) with ¢(N)
4. Preliminary results
4.1. Results used
4.2. Some key inequalities
4.3. Estimates for da cm(Xo(N))
5. Analytic results
5.1. Lower order of deay(Xo(NV)): proof of Theorem 1.2
5.2. Upper order of deym(Xo(V)): proof of Theorem 1.3
5.3.  Lower order of doym(X1(V)): proof of Theorem 1.4
5.4. Upper order of deym(X1(V)): proof of Theorem 1.5
5.5. Upper and lower order of dey (X (N))
5.6. Typical behavior of dem(Xo(N)) and donv(X1(N)): proof of Theorem 1.7
6. Explicit and unconditional upper bounds
7. Sporadic CM Points on Modular Curves
7.1. GL3s modular curves
7.2. Proof of Lemma 4.1
7.3. Sporadic points
8. Computations
8.1. Computing dem(Xo(V)), dem(X1(N)) and dem (X1 (M, N))
8.2. Sporadic CM points

References



2 PETE L. CLARK, TYLER GENAO, PAUL POLLACK, AND FREDERICK SAIA

9. Tables 46

1. INTRODUCTION

We study elliptic curves with complex multiplication (CM) over number fields, an ongoing
project of the present authors and our collaborators [CCS13, CCRS14, CP15, BP17, BCS17,
BCP17, CP17, CMP18, BC20a, BC20b, CCM21, Cl21].

In particular we seek to understand the extremal behavior of torsion points on CM elliptic
curves over number fields. For each d € Z™, as one varies over all CM elliptic curves E /F
defined over all number fields of degree d, up to isomorphism there are only finitely many
possibilities for the torsion subgroup E(F)[tors| [Si88, Cor. 7]. (The same holds for non-CM
elliptic curves but lies much deeper [Me96].) One way to measure the extremal behavior is
to study the upper order of the function Tn(d) which is the maximum size of the torsion
subgroup of a CM elliptic curve defined over a degree d number field. The following result of
Clark and Pollack, building upon work of Breuer [Br10], completely determines the extremal
behavior in this sense.

Theorem 1.1 (Clark—Pollack [CP17, Thm. 1.1]). We have

1' 5 TCM (d) 6771'

imsup ——— = —.

doe dloglogd — /3

Here is a “dual” measure: we fix M, N € Z* with M dividing N and ask for the least degree
of a number field F' over which there is a CM elliptic curve E/r and an injection of groups

7JMZ x 7./N7 — E(F)]tors].

Let us now recast and generalize this problem in terms of modular curves. As we will recall in
more detail in §7.1, to a subgroup H of GL2(Z/NZ)/{+1} we attach a modular curve X (H) g
that is smooth, projective and integral (but not necessarily geometrically integral), and such
a curve comes equipped with a Q-morphism to the j-line 7: X (H) — X (1) of degree

I(H) = [GLy(Z/NZ)/{%1} : H].

If F is a field of characteristic 0 and E/p is an elliptic curve for which the modulo N Galois
+-representation

on: Aut(F/F) = GLy(Z/NZ) — GLo(Z/NZ)/ {1}

lies in H, then E,p induces an F-valued point on X (H). Conversely every F-valued point on
X (H) is induced by at least one such elliptic curve, and any two elliptic curves inducing the
same point have the same j-invariant. We say a closed point p € X(H) is a CM point if the
corresponding Q(p)-valued point is induced by a CM elliptic curve — equivalently, if 7(p) is a
CM j-invariant. For an imaginary quadratic order O, we say that a closed point p € X (H) is
an O-CM point if the corresponding elliptic curve has endomorphism ring O.

For a modular curve X = X (H), let deav(X) be the least degree [Q(p) : Q] of a CM point
p € X. For an imaginary quadratic discriminant A, let da cm(X) be the least degree of a
point with CM by the order! of discriminant A. (This constrains p to lie in the fiber over a
single closed point on X (1),g.) Thus we have

dem(X) = Hgn da,om(X).

Here and hereafter, “an order” is always a Z-order in an imaginary quadratic field.
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We now find a crucial distinction: to compute da cm(X(H)) for each A is a problem in
arithmetic geometry. This problem was solved for the curves X (V) by Stevenhagen [St01]
and again by Bourdon-Clark [BC20a]. It was solved for the curves X;(M, N) by Bourdon-
Clark [BC20b]. We solve it here for the curves Xy (/V), building on [BC20b]. In every such
case the formula for da cm(X (H)) involves the class number ha of the order of discriminant
A: indeed, if j : X(H) — X(1) is the natural map, then for any A-CM point p on X (H) we
have ha = [QU(P)) : Q] | [Q(p) : Q).

Even when da cm(X (H)) is known for all A, the minimization over A remains an interesting
problem in its own right, and one with a more analytic flavor.

It is exactly these analytic problems that are our focus in the present work. By combining
our arithmetic-geometric results with methods of elementary and analytic number theory,
we derive several statistical results on the distribution of dom(Xo(N)), dem(X1(V)), and
dem(X1(M,N)), as N (or as M,N) vary. Our theorems are listed below, beginning with
bounds for the extremal orders. When needed to obtain sharp (or close to sharp) results, we
assume the Riemann Hypothesis for Dirichlet L-functions, henceforth denoted as GRH (but
see §6 for unconditional results).

Theorem 1.2 (Lower order of dcy(Xo(V))).
(a) We have dom(Xo(N)) > 2 for all N > 163. (See Table 1 for the list of N such that

dem(Xo(N)) =1.)
(b) Fiz C > 2. Then as X — oo we have

#£{1 < N < X | dem(Xo(N)) < O} = \/hfﬁ.

Combining part a) and part b) with C' = 2 we get: liminf o dom(Xo(N)) = 2.

Theorem 1.3 (Upper order of deym(Xo(V))). Assume GRH.
(a) There is a sequence of N tending to infinity along which we have

1 log N
dem(Xo(N)) > —log2 1)) ——— .
(b) As N tends to infinity through all positive integers, we have

log N
loglog N )

dot(Xo(N)) < exp (<log2 T o(1))

Further questions about the upper order of dey(Xo(N)) are raised in Remarks 5.3 and 5.4.
Theorem 1.4 (Lower order of dey(X1(N))). We have dem(X1(N)) > ﬁ for all large
N, and dey(X1(N)) < ﬁ on a sequence of N tending to infinity.

Theorem 1.5 (Upper order of dem(X1(N))). Assume GRH.

(a) There is a sequence of N tending to infinity along which we have
1 log N

Xi{(N) >N —log 2 1)) —— .

don(Xa(V) 2 Newp ((Jrog2-+0(1)) B )

(b) As N tends to infinity through all positive integers, we have

log N

dem(X1(N)) < N log 2 H)———.

n(Xi(W) < Nexp (g2 +o(1) )

Turning to dem (X1 (M, N)), we first observe the following consequence of Theorem 1.1.
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Theorem 1.6 (Lower order of don(X1(M,N))). Let M, N be positive integers for which
M | N. If N is sufficiently large, then

MN

1 dem(X1(M, N —_.

1) M (M. N)) >

Moreover, there are infinitely many pairs of positive integers M, N where M | N and
MN

2 dem(X1(M, N —_.

Proof. Theorem 1.1 implies that if F" is a degree d number field and E/p is a CM elliptic curve
with Z/MZ x Z/NZ — E(F)[tors], then M N < #E(F)[tors] < dloglogd. Soif d < MN,
then MN < dloglog MN, and d > MN/loglog M N. This final estimate holds also when
d > M N. Therefore,

MN MN
loglog M N > loglog N~
The proof of the second half of Theorem 1.6 is similar. By Theorem 1.1, we can choose a
sequence of d — oo and a corresponding sequence of elliptic curves E,p with [F: Q] = d,
having E(F')[tors] = Z/MZ x Z/NZ (where M | N) and M N = #E(F)[tors] > dloglogd.
Then dom(X1(M,N)) <d < MN/loglog MN < MN/loglog N. O

dom(X1(M,N)) >

We do not have a sharp result for the upper order of dey (X1 (M, N)). However, we will prove
(see Lemma 4.4 below) that whenever M | N, we have

dem(X1(M, N)) < 2M - depm(X1(NV)).

Combining this with the upper bound on deyv (X1 (V)) from Theorem 1.5, we see that under
GRH, for all € > 0 we have

dem(X1(M,N)) <. MN'Te,
This universal upper bound differs from the universal lower bound (1) by a factor of order
smaller than any fixed positive power of N.

Of special interest in the study of dom(X1(M,N)) is the full-torsion case M = N, corre-
sponding to the modular curve X (N). We prove that dcy (X (NV)) has lower order % and
upper order N2. This lower order result refines the second half of Theorem 1.6 by showing
that (2) holds with M = N for infinitely many N.

The last of our main analytic results concerns the sizes of dey(Xo(N)) and dev(X1(N))
for typical inputs N. It should be read as asserting that for most inputs, we have

den(Xo(N)) = (log N)Z182  and  deai(X1(N)) ~ N(log N)z %82,
Theorem 1.7. Assume GRH. Fiz e > 0.
(a) As x — oo, all but o(x) positive integers N < = satisfy
(3) 2(%—5) log log @ < demi(Xo(N)) < 2(%+e) loglog
(b) All but o(x) integers N < x satisfy
N . 2(G—9)loglogz < doni(X1(N)) < N . 9(3+e)loglogz

The proofs of these analytic theorems draw from the stream of ideas in [CP15, CP17] but
also require tools from probabilistic number theory and the ‘anatomy of integers.” In some
cases our methods seem to be of wider interest. Here is one example. For each N € Z™, let
R(N) denote the least positive integer that is not a square but reduces to a square mod N. The
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proof of Theorem 1.7 can be modified to show that on GRH we have R(N) = (log N)l&2+o(1)
as N — oo along a set of integers of asymptotic density 1. It is somewhat surprising, given
the simple definition of R(NN) and the long history of investigations into the distribution of
power residues, that this normal order theorem for R(NN) also seems to be new.

It has been asked, e.g. by Hindry and Silverman [HS99], whether the CM case gives the
extremal behavior of torsion points on elliptic curves over number fields. One way to analyze
this is to compare the functions T'(d), Tom(d) and T cm(d), where T'(d) is the largest size of
a torsion subgroup of an elliptic curve defined over a degree d number field and T cpm(d) is
the same but restricted to elliptic curves without CM. Evidently for each d € Z* we have

T(d) = max {Tom(d), T-cm(d)},
so which is it? Breuer showed [Brl0] that the upper order of T cy(d) is at least \/dloglog d:
1.
lim sup cu(d)

— >0
4 +dloglogd
It may well be that the above limit supremum is finite, but showing this seems out of present
reach. If that finiteness holds, in view of Theorem 1.1 we would have limsup, T:CCCMM%) = 00.

On the other hand we have [CMP18, Remark 2.3]

.. Toem(d)
(4) hmdmf —vi

> 0,

whereas [BCS17, Thm. 1.4]
limdinf Tom(d) = 6.

Moreover, combining (4) and [BCP17, Thm. 1.1] — that “torsion is typically bounded on CM
elliptic curves over number fields” — it follows that T cnm(d) > Tem(d) on a set of positive
integers of density 1.

For a modular curve X g, let d(X) (resp. d-cm(X)) be the least degree of a non-cuspidal
(resp. of a non-cuspidal, non-CM) closed point on X, so

d(X) = min{doy (X), do o (X))}

Again, which is it? For the modular curves Xo(N) and X;(M,N), it seems likely that
d(X) = dcm(X) “most of the time.” For any modular curve X (H) we have the upper bound

d-con(X(H)) < I(H) = deg(X(H) — X(1)).

Indeed, starting with any non-CM j € Q and pulling back along X (H) — X (1) = P! gives
a closed non-CM point of degree at most I(H). Moreover, as P}(Q) is infinite and there are
only finitely many closed CM points on a modular curve of any fixed degree, d— cm(X (H))
is at most the degree of any finite morphism to P!, but by a result of Abramovich (see §7)
this only improves the upper bound by an absolute constant, and thus it is as yet unknown
whether as X (H) ranges over all modular curves we have lim inf % > 0. If this
holds, then there would be a constant A such that for all N > A and all M | N we have

dem(Xo(IV)) < dwem(Xo(N)) and  dem(X1(M, N)) < d-om(X1(M, N)).

In summary, for many modular curves X our upper bounds on doy(X) give the best known
upper bounds on d(X ), which may lie close to the truth. To show this is again beyond present
reach, but this time we can establish a result in this direction.
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Theorem 1.8. There is a constant A such that for all N > A and all M | N, the curves
Xo(N) g and X1(M, N) q(c,,) have sporadic CM points.

The general definition of a sporadic point on a modular curve X (H) involves some field of
definition considerations, so we defer it to §7. The curves Xo(/V) and X;(N) are defined and
geometrically integral over Q, and a sporadic point is a closed point p whose degree [Q(p) : Q]
is smaller than that of the degree of all but finitely many closed points.

In §8 we give explicit finite sets of N (resp. pairs (M, N)) such that away from these sets, the
curves Xo(N) and X;(N) (resp. Xi(M,N))) have sporadic CM points. These results show
in particular that in the setting of Theorem 1.8 we may take A = 8581. We also report on
computations of doy(Xo(N)) and den (X1 (N)) for all N < 109 and of den (X1 (M, N)) for
all (M, N) with M | N < 53.

Notation. Most of our notation is standard, or will be introduced as necessary, but one
exception is worth highlighting. For the remainder of the paper, we adopt the following
convention for logarithms and iterated logarithms, borrowed from [BLSS05]. We write In z
for the usual natural logarithm and we set

log z := max{2,Inz}.

Thus, logx > 2 for all x > 0, and the same holds for iterated logarithms. This allows us to
state several upper and lower bounds in a uniform way, without cavil over small arguments.
Moreover, since log z is bounded away from 1, it allows us to absorb positive constants into
bounded powers of logz (or of iterates of logz). Owing to this convention, the constant
0.693147. .., which plays a role in several of our results, will be written as In 2 from now on
rather than as log 2.

Acknowledgments. We are grateful to Drew Sutherland for his interesting suggestions
recorded at the end of §7. We thank the referee for their careful work and for contribut-
ing Lemma 8.10.

Partial support for the second and fourth author was provided by the Research and Training
Group grant DMS-1344994 funded by the National Science Foundation. The second author
is also supported in part by the National Science Foundation Graduate Research Fellowship
under Grant No. 1842396. The third author is partially supported by the National Science
Foundation grant DMS-2001581.

2. THE CLASS NUMBER ha

For each negative integer A that is 0 or 1 modulo 4 there is a unique order O(A) of discrim-
inant A. The fraction field of O(A) is K = Q(v/A). In all cases, the unit group O(A)* is

» 6 ifA=-3
generated by e«(®) where u(A) =<4 if A= —4.
2 ifA<—4

For a discriminant A = f2Ax < 0, let Ha(j) € Z[j] be the Hilbert class polynomial: it
is the monic separable polynomial whose roots in C are the j-invariants of the O(A)-CM
elliptic curves. It has degree ha and is irreducible over K. We put

R°(A) = Qlj]/Ha.

Then
R(A) = KR°(A)
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is the ring class field of K of conductor f and we have [R°(A) : Q] = [R(A) : K] = ha.

(Warning aside: for all A < 0, the number field R(A) is Galois over Q and thus well-defined
as a subfield of C. On the other hand, the number field R°(A) is only Galois over Q for
finitely many values of A and thus in general it has several conjugate copies inside C. This
causes no trouble for us here, but it is worth keeping in mind.)

We put
ha == #PicO(A),
the class number of O(A).

Let Zk be the ring of integers of K. This is the maximal order in K, and for each § € Z*
there is a unique order O such that [Zg : O] = § and A(O) = f2Ak. Throughout this paper
we work with all imaginary quadratic orders (equivalently, with all CM elliptic curves) and not
just maximal orders, so we need information about ha for all A < 0, not just for fundamental
discriminants Ag. But in fact the class number of a nonmaximal order is easily understood in
terms of the class number of the corresponding maximal order, as the following result shows.

Theorem 2.1 (Relative Class Number Formula). Let K be an imaginary quadratic field with
ring of integers Zg, and let f € Z+. Then we have

(- ()
) hag #Zﬁfg ! p)pr)

Proof. See [Co89, Cor. 7.24]. O

Next we record some upper and lower bounds for ha. They are easy consequences of well
known results, but we will include proofs for completeness.

Lemma 2.2. Fiz e > 0. For all A <0 we have

IA|27C < ha <. |A2Te
Proof. A celebrated theorem of Siegel [Si35] gives ha, > |A Kﬁ* whenever A is a funda-
mental discriminant. For A = f2Ax < 0, using (5) and 1 < #0O(A)* < 6, we get

ha > hAKfH (1 - ;) = ha,o(f)-

plf
Since ¢(f) >¢ f172¢ (cf. [HW, Theorem 327, p. 352]), Siegel’s theorem gives

ha e |AxlF = [PAK| = Al

As for the upper bound: it is elementary to prove (e.g. from Dirichlet’s class number formula)
that ha, < |Ax|/?log|Af| for fundamental discriminants A . Writing A = A as above,

we find that ha < ha, f < |A[Y2log|Ag| <. |A]z 1. O
Lemma 2.3. Assume GRH. For any negative discriminant A, we have

ha = |A[Y2(loglog | A])OM).
Proof. Write A = f2Af, where Ak is a fundamental discriminant. Then

Ar\1
ha = ha, ]| (1 - (pK) p) = ha - (loglog|A|)OW.

plf
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(In the final step we use that the product on p is bounded below by ¢(f)/f, which is >
1/loglog|A|, and bounded above by f/¢(f), which is < loglog|A|.) By Dirichlet’s analytic
class number formula, we have

ha, = V|Ak|- L(1, (AF)).

Littlewood [Lit28] has shown that under GRH,

L, (A)> _ (loglog | A )00

— (loglog | AW,
Collecting our estimates, we find that ha = f1/|Ag| - (loglog |A)OM), O

3. EXACT RESULTS ON da cm(X) AND dom(X)

3.1. X1(M,N) and X(N). Let M | N, let A = A < 0 be a discriminant, and put
K = Q(VA). In [BC20b, §8] Bourdon-Clark give exact formulas for da oy (X1(M, N)). The
results are somewhat intricate and involve several cases. Most of the complexity is not rele-
vant to our asymptotic study (though it is relevant to our computational work): for instance,
the hardest part is to decide whether the answer is the same for the curve X;(M, N) q as it
is for the curve Xi(M, N), i — but this involves only a factor of [K : Q] = 2, a discrepancy
that is absolutely harmless for analytic purposes. We will not record the general result here.

In the case of M = N we get a much nicer formula. Rather than specializing the results of
[BC20Db, §8] it is cleaner to make use of earlier results of Bourdon-Clark-Stankewicz [BCS17]
and Bourdon-Clark [BC20a]. The latter result, giving an exact formula for the least degree
of an O(A)-CM point on X(N) /g, is essentially due to Stevenhagen [St01].

As mentioned above, for N < 2 we have dey (X (V) = 1.

Theorem 3.1. Let O be an order of discriminant A < 0. For all N > 3 we have
2h A A\ 1
da.cm(X(N)) = O(N)N <1—<>>
n(¥¥) = eV TT (1= (5

Proof. Let K be the fraction field of O. Let E/r be an O-CM elliptic curve defined over
a field F of characteristic 0, and let h: E — E/Aut(E) = P! be a Weber function on E.
By [BCS17, Lemma 3.15], if (Z/NZ)? — E(F), then F D> K, so F > R(A)(h(E[N])). By
[BC20a, Thm. 1.4] we have

R (EN)) = R(a)) = HOTOT

We also know [BC20a, Cor. 1.7] that there is an O-CM elliptic curve E defined over F' =
R(A)(§(E[N])) with (Z/NZ)? — E(F), so

da,om(X(N)) = [R(A)(B(E[N])) = Q]
A)(O(EIN])) : R(AR(A) = K][K : Q]
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Moreover by [BC20a, Lemma 2.2] we have
womor ] (1= (2)3) (1) -0 (- (3)3):

so the formula follows. O

Theorem 3.2. Let (% > 2 be a prime power. Then we have

e (X() = d_aen(xX(e) = 2 - 1) (1= ().

Proof. In view of Theorem 3.1 it suffices to prove the first equality. For each prime power
% > 3, as we range over all imaginary quadratic discriminants A we must show that the
quantity da cm(X(¢*)) is minimized when A = —3.
e Suppose { =2, so a > 2. Then
d_3,cm(X(2%)) = d_g,om(X(27)) = 2772,
whereas if A < —4 then
1 1
da.cm(X(29)) > 22 <1 - 2) (1 — 2) = %72

e Suppose ¢ = 3. Then
d_3’CM(X(3a)) =2 32(1—2’
while
d_som(X(3%) =4-3%72 > d_3 om(X(3%)),
and for A < —4, we have

da,cm(X (3%) > 3% (1 - ;) (1 — ;) =4-3272 > d_5 oM (X(3%)).

e Suppose £ > 5. Then

A son(X (1) = 3 2°2(C - 1)<e _ (‘f)) < 52_2(5—1)

while

€2a—2 /-1 2 £2a—2 62—1 -1 262(1—2 62—1
d_ s on(X(69)) > (—-1)" ( ) S ( )

= d_z.om(X(0)).

2 B 2 (+173 2
For A < —4, a similar calculation shows that
d_acm(X (%) > 2d_3 cm(X (£9)). O

Remark 3.3. Let N = ¢7' ... (0,
a) The proof of Theorem 3.2 gives dom(X (N)) = d_sz.om(X(N)) if T[], 2: > %
b) However, if N = ¢{* --- {2 with each ¢; =5 (mod 12), then
d_scm(X(N)) _ 2 Lli—1
dfg,CM(X(N)) 3 pale} fl +1 '

The Prime Number Theorem for Arithmetic Progressions shows that this ratio can

be arbitrarily small. A similar argument shows that for Aq,..., A, any n imaginary
dem(X(N))
min; dAi,CM(X(N))

quadratic discriminants, the quantity can be arbitrarily small.
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3.2. X1(IV). We have X (N) = X(1,N), and the computation of da cm(X1(IN)) was done
in [BC20b, §7] as a stepping stone to the general case of X;(M, N). For later use, we record
these values for A = —3 and A = —4. Here and below, 1) denotes Dedekind’s function, defined

by $(N) == N[, n(1+1/p).
Theorem 3.4. Let N € Z+.
a) We have d_scm(X1(1)) = d_gcom(X1(2)) = 1.
b) Let N > 3, and write
N = 2apl{1 .. p?”“qil PPN qg-s
with a > 0, r,s > 0, bj,c; > 1, and distinct primes p; = 1 (mod 4) and ¢; = 3
(mod 4). Then
). ¢(2a>11%flﬁmq§j>

). <z><2a>11§-2:1 ¥(q;)

o(N ifr =0,
¢(N if r > 1.

c) We have d_gcm(X1(1)) = d_3.cm(X1(2)) =d—3cm(X1(3)) = 1.
d) Let N >4, and write

d_s,com(X1(N)) =

N = 3ap1{1 . p?rqgl - qgs
with a > 0, r,s > 0, b;,¢c; > 1 and distinct primes p; = 1 (mod 3) and ¢; = 2
(mod 3). Then

a—1 s €5
¢(N) . [3 -‘Hézl ¢(q]' ) ’&f?“ _ 0,

a—1 s €j
Proof. This is a special case of [BC20a, Thm. 7.2] and [BC20b, Thm. 7.1]. O
3.3. Xo(N).

Theorem 3.5. Let p € Xo(N) g be a closed point with CM by an order O of discriminant
A = f2Ax < —4 in an imaginary quadratic field K. Let N € Z%, and consider the morphism
of Q-schemes m: X1(N) — Xo(N).
a) The morphism m is inert over p: that is, writing the fiber 7*(p) as Spec A(p) for a
Q-algebra A(p), we have that A(p) is a field.
b) For every closed point P € X1(N) with m(P) = p, we have

1 ifN<?2
NN >3

d_3om(X1(N)) =

[Q(P) : Q(p)] = deg(m) = {

Proof. Part a) is the special case M = 1 of [C]121, Thm. 1.2]. Part b) follows immediately. O

We say that a positive integer N is of Type I if ords(N) < 1 and N is not divisible by any
prime ¢ = 2 (mod 3). We say that a positive integer N is of Type II if orde(N) <1 and N
is not divisible by any prime ¢ =3 (mod 4).

Remark 3.6.

a) A positive integer N is of Type I iff there is a primitive ideal I of O(—3) of norm N,
i.e., such that O(—3)/I = Z/NZ. Thus for any field FF D Q(v/—3) and any O(—3)-CM
elliptic curve E/p, we have that £ — FE/FE[I] is an F-rational cyclic N-isogeny.

For N € Z", by [BC20a, Thm. 6.18¢)] there is an O(—3)-CM elliptic curve Eov=3)

admitting a Q(+/—3)-rational cyclic N-isogeny iff there is a € {1,2, 3,6} such that %
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is an integer of Type I. Whereas if N is of Type I the existence of a cyclic Q(v/—3)-
rational N-isogeny is independent of the Q(v/—3)-rational model, in the exceptional
cases some but not all O(—3)-CM elliptic curves defined over Q(v/—3) admit such an
isogeny.

b) A positive integer N is of Type II iff there is a primitive ideal I of O(—4) of norm N.
Thus for any field F > Q(v/—1) and any O(—4)-CM elliptic curve E/p, we have that
E — E/E[I] is an F-rational cyclic N-isogeny.

For N € Z*, by [BC20a, Thm. 6.18b)] there is an O(—4)-CM elliptic curve
E g =1) admitting a Q(v/—1)-rational cyclic N-isogeny iff there is a € {1,2} such
that % is an integer of Type II. As above, if % is of Type II but N is not, then some
but not all O(—4)-CM elliptic curves defined over Q(y/—1) admit a Q(y/—1)-rational
cyclic N-isogeny.
Theorem 3.7. Let O be an order of discriminant A, and let N > 2.
a) We have d_3 cm(X0(2)) = d—a.cm(Xo(2)) = 1. For A < —4, we have

ha if (3) # 1,

da,com(Xo(2)) = {3hA if (3) = 1.

b) If N >3 and A < —4 then

d X1 (N
da.cm(Xo(N)) = %)}é))
c) Let N >3 and A = —4. Then:
(i) If N is of Type II, then
d_gom(Xo(N)) =2 = ‘W
(ii) If N is not of Type II, then
d X1 (N
d_s.cn(Xo(N)) = %)}é»

d) Let N >3 and A = —3. Then:
(i) If N = 3, then
d_3cm(Xo(3)) = 1.
(ii) If N > 3 is of Type I, then
d_3cm(Xo(N)) =2 = dA’Cq;\(&]if))(}éN))-
(iii) If N is not of Type I, then
d X1(N
d_3.cm(Xo(N)) = A’qu\g](\,)}é 2

Proof. By [BCS17, Thm. 5.5], if an elliptic curve E/p has an F-rational cyclic N-isogeny,

there is a field extension L/F of degree dividing @ and a quadratic twist EP of F /1, such

that EP(L) has a point of order N. From this it follows that

da,cm(X1(NV))
da,om(Xo(N)) > W

a) We have X1(2) = Xo(2), so in this case the result is [BC20a, Remark 7.3].
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b) The case in which A < —4 is immediate from Theorem 3.5.

c¢) Suppose N > 3 is of Type II. Then N ¢ {1,2,4}, so by §3.1 we have d_4 cm(Xo(N)) > 2.
By Remark 3.6, there is an O(—4)-CM elliptic curve with a Q(v/—1)-rational cylic N-isogeny,
so d_s,cm(Xo(N)) = 2. By Theorem 3.4, we have

d_gom(X1(N)) = #(N) _ ¢(N)

5 = Td—4,CM(X0(N))-

Now suppose N = 2“101{1 x ~pf"qf1 ---¢% is not of Type II
e Suppose that a = r = 0. By Theorem 3.4 we have

d_s.om(Xa (V) _ TTi= %(g7)

— — o 2 .
2 o) = 5 = [R°(N“Ak) : Q).
By e.g. [BC20b, §2.6], there is an O(—4N?)-CM elliptic curve E’ and a R°(N2Ag)-

/R°(N2AK)
rational cyclic N-isogeny

LN1: E' - E,
where F is an O(—4)-CM elliptic curve. The dual isogeny LXJZ E — F' is also a cyclic
N-isogeny defined over R°(N?A), showing that

d_s,cm(Xo(N)) < [R°(N?Ak) : Q] = d_4’gc;z4]£f))(/l2(N))

e Suppose that a =0, r > 1. Put

N c .
M= =g gl Ma=pitopy
pl .. -pr
By Theorem 3.4 we have
d_s,cm (X1 (V T c;
P CE) — o) T wtas’) = ROMEAK) + O
j=1

As above, there is an O(—4)-CM elliptic curve E/q(yr,) admitting a Q(My)-rational cyclic
M;-isogeny; let K be its kernel. For 1 < i <7, since p; =1 (mod 4) there is a prime ideal p;
of O(—4) of norm p;. Then n: E — E/E[p* ---ptr] is a cyclic K(M;)-rational My-isogeny;
let K be its kernel. Then K = K; @ Ko is a K (M;)-rational cyclic subgroup scheme of order
N, so E— E/K is a K(Mj)-rational cyclic N-isogeny, showing that

_ dogom(X ()
B(N)/2

e Suppose that a = 1. We observe that since N is not of type II, neither is % Since every

O(—4)-CM elliptic curve E defined over a number field F has the form y? = 23 + Az and
thus has an F-rational point of order 2, we have d_4cm(Xo(N/2)) = d—s,om(Xo(N)) and
d_scm(X1(N/2)) = d_g,om(X1(N)). Finally, we have ¢(N/2) = ¢(N), so the result in this
case follows from the a = 0 case.

d_4,cMm(Xo(N)) < [K(N) : Q)

e Suppose that a > 2. In this case we have

d_47CM(X1(N)) _ d—4,CM(X1(N/2))
P(N) $(N/2)
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Moreover, since deg(Xo(N) — Xo(N/2)) = 2, by induction on a we get

_ deaom(Xi(N/2)) _ doaom(Xi(V))
P(N/2)/4 ¢(N)/2

d) We know that d_scm(Xo(N)) = 1 iff N € {1,2,3,6}, so suppose that N ¢ {1,2,3,6}:

then d_3cm(X1(N)) > 2. If N is of Type I, then by Remark 3.6 there is an O(—3)-CM

elliptic curve with a Q(+/—3)-rational cyclic N-isogeny, so d_3 cm(Xo(N)) = 2. By Theorem

3.4, we have
d_37CM(X1(N)) = (25(3]\[) = gb(GMd—S,CM(XO(N))'

Now suppose N = BC”pll’1 . -pfqul -+- ¢ is not of Type L.

d_s.cMm(Xo(N)) < 2d_yg,cm(Xo(N/2))

e Suppose that a = r = 0. By Theorem 3.4 we have

d_scm(X1(N)  TT5— ¢(gf) >
2—= = = [R°(N“Ag) : Q).
Arguing as in part c) we get an Q(N)-rational O(—3)-CM point on X¢(N), showing that

d_s.cm(Xo(N)) < [Q(N) : Q] = d_&?(ﬂz(v))(/lzsm)

e The case a = 0, r > 1 is handled as in part c¢) above.

e Suppose a = 1. We observe that since N is not of Type II, neither is % Let p3 be

the prime ideal of O(—3) of norm 3. Then for any O(—3)-CM elliptic curve E defined over

any number field F', the map E — E/FE]ps] is an F-rational 3-isogeny. From this it follows

easily that d_3com(Xo(N/3)) = d_z.cm(Xo(N)), and from Theorem 3.4 we see that also

d_z,cm(N) _ d_3cm(IN/3)
o(N) T o(N/3)

e Suppose a > 2. In this case we have that

d_zcm(X1(N))  d_zcom(X1(N/3))

P(N) o oWV/3)/3 7
and since deg(Xo(N) — Xo(IN/3)) = 3, we may argue as in part c), by induction on a. O

, so the result holds in this case.

Remark 3.8. In forthcoming work [CI21] of the first author, the process employed here is
reversed: for each N € ZT and A we determine all fields of moduli of closed O(A)-CM points
on Xo(N). Via Theorem 3.5, we deduce the set of degrees of closed O(A)-CM points on X5 (V)
(at least when A < —4), which is more precise than the determination of da cm(X1(V)).

3.4. Comparison of dcy(X1(N)) with ¢(N). Let K be an imaginary quadratic field, let
O be an order in K of discriminant A, and let N be a positive integer. Recall that R°(A) is
the minimal field of definition of an O-CM elliptic curve. As in [BC20b], let 7°(O, N) be the
least degree [F' : R°(A)] of a field extension F'/R°(A) over which there is an O-CM elliptic
curve E/p with an F-rational point of order N. Since [R°(A) : Q] = ha we have

da,cm(X1(N)) = haT®(O, N).
As we saw in the previous section, for all A < 0 and all N € Z™ we have

&(N) | 6da,cam(X1(N)).

So it is natural and computationally useful to understand the minimal values of dom(X1 (V)

#(N)
The results of this section accomplish this. In particular, this explains the behavior of dis-

criminants A = —3 and A = —4 relative to all other imaginary quadratic discriminants.
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Theorem 3.9. Let O be an order of discriminant A, and let N € Z+.
a) We have T°(O,N) > @

b) The following are equivalent:
i) We have T°(O,N) = @
ii) We have that A = —3 and N is of Type L

¢) Let N > 3. If T°(O,N) € (2N 2N yhen To(0,N) = 4N 11 T°(0,N) €

(2N §(N)], then T°(O,N) = ¢(N).

Proof. Step 0: If N € {1,2,3,4,6}, all the assertions hold vacuously. So we assume N €
Z+\ {1,2,3,4,6}.

Step 1: Following [BC20a, §7.1] we denote by T(O, N) the least size of an orbit of the Cartan
subgroup (O/NO)* on any point P order N in (O/NQO, +). By [BC20a, §7.2] the Cartan orbit
on such a point is isomorphic to (O/Ip)*, where Ip := {x € O | zP = 0}. Since P has order
N we have an injection of rings Z/NZ — O/Ip, which induces an injection of unit groups
(Z/NZ)* < (O/Ip)*, and thus ¢(N) | T(O,N). Since T°(O,N) € {T(O,N), 2T(O,N)},
it follows that if A < —4 we have

N
YN | 10,3y | (0. )
establishing the result in this case. It remains to consider the cases A = —4 and A = —3.
Step 2: Suppose A = —4. From [BC20a, Thm. 7.2] we have
T(O,N
r0.3 - 0N

e Suppose ordz(N) < 1 and that N is not divisible by any prime ¢ = 3 (mod 4). Then

[BC20a, Thm. 7.2] gives T(O,N) = ¢(N). Since N =5 or N > 7, it follows that N is

divisible by a prime ¢ = 1 (mod 4), and then by [BC20b, Thm. 6.2, Thm. 7.1] we have
)

T°(O,N) = 2T(0, N) = 20,
e Suppose ordy(N) = 2 and that NN is not divisible by any prime ¢ = 3 (mod 4). Then
[BC20a, Thm. 7.2] gives T(O,N) = 2¢(N). Again N must be divisible by a prime ¢ = 1
N o T(O,N
(mod 4), and as above this gives T7°(O,N) = 2T(O,N) = % = ¢(N).
e Suppose ordy(N) =t > 3. Then by [BC20a, Thm. 7.2] we have
T(O,N) > 271p(N), T(O,N) = 2!3¢(N), T°(O,N) > T(O,N) = 2'73¢(N) > $(N).
e Suppose N is divisible by some prime ¢ = 3 (mod 4). Then [BC20a, Thm. 7.2] gives

T(O,N) = (£ + 1)p(N) > 46(N),

=)
T(O,N
(0.2 1(0,8) = "N 5 4,
Step 3: Suppose A = —3. From [BC20a, Thm. 7.2] we have
T(O,N)

T(O,N) = ———.

e Suppose ordz(N) < 1 and that N is not divisible by any prime ¢ = 2 (mod 3). Then
[BC20a, Thm. 7.2] gives T(O,N) = ¢(N). Since N > 7, N must then be divisible by
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a prime ¢/ = 1 (mod 3), and then by [BC20b, Thm. 6.2] and [BC20b, Thm?7.1] we have
T°(0,N) = 2T(0, N) = ¢N).
e Suppose ordz(N) = 2 and that N is not divisible by any prime ¢ = 2 (mod 3). Then
[BC20a, Thm. 7.2] gives T(O,N) = 3¢(N). If N = 9 then [BC20b, Thm. 6.6] gives
7°(0,9) =3 = @. If N > 10 we have that N is divisible by a prime ¢ = 1 (mod 3), and
then by [BC20b, Thm. 6.2, Thm. 7.1] we have T°(O, N) = 2T(O,N) = ¢(N).
e Suppose ordz(N) = b > 3. Then [BC20a, Thm. 7.2] gives T(O,N) > 3"1$(N) > 9¢(N),
so T°(O,N) > T(O,N) = TEON) > 34(n).
e Suppose N is divisible by some prime ¢ = 2 (mod 3). Then [BC20a, Thm. 7.2] gives
T(O,N) > (£ +1)¢(N), so T°(O,N) > FLH(N). Thus if £ > 2 we get T°(O, N) > ¢(N), so
suppose that 2 is the only prime divisor of IV that is congruent to 2 modulo 3, in which case
we have T°(O, N) > @ However, since N > 10, either N is divisible by some prime ¢ = 1
(mod 3) or by 9. In the former case we get T°(O,N) = 2T(O, N), so T°(O,N) > ¢(N). In
the latter case we get T(O, N) > 9¢(N), so T°(O,N) > T(O, N) > So(N). O
Theorem 3.10. Let A be an imaginary quadratic discriminant, and let N € ZT\{1,2,3,4,6}.
The following are equivalent:
i) We have da,cm(Xi1(N)) = @
i) Fither (A = —4 and N s of Type II) or
(A,N) € {(-3,9), (-7,7), (—=7,14), (—11,11), (—19,19), (—-27,9),
(—27,27), (—28,7), (—28,14), (—43,43), (—67,67), (—163,163)}.
Proof. Step 1: Suppose A € {—4, —3}. Then the result follows from the analysis given in the

proof of Theorem 3.9. This analysis also shows that dey(X1(N)) = @ if N is of Type IL
Step 2: Suppose A < —4, and let O = O(A). Then

N
da.cm(X1(N)) = #PicO - T°(O, N) > #PicO - ¢(2)
Equality holds iff we have R°(A) = Q, T(O, N) = ¢(N) and T°(O, N) = T(O, N).
So suppose that da cm(X1(N)) = @ Then the class number one condition gives

A€ {-7,-8,-11,—-12,—16,—19, —27, —28, —43, —67, —163},

and by [BC20a, Thm. 6.15] the Cartan orbit condition T(O, N) = ¢(N) holds iff A is a
square in Z/4NZ. This implies: (i) if £ | N then (%) # —1 and (ii) if £ | A and ¢ { § then
ord,(N) < 1. Moreover if £ > 2, (* | N and ($) = 1, then by [BC20b, Thm. 6.2, Thm. 7.1]
we have T°(O, N) = 2T(O,N) > ¢(N).

Step 3: Suppose that A € {-7,—8,—11, —19, —43, —67, —163} is a fundamental discriminant.
It follows from the above analysis that if 7°(O, N) = 1 and (%) # 1 then N is a squarefree
divisor of A, while if (%) = 1 then either N or % is a squarefree divisor of A. Conversely,
by [Kw99, Cor. 4.2], when these conditions on N hold there is an O-CM elliptic curve E /g

admitting a Q-rational cyclic N-isogeny and thus da cm(X1(N)) = ¢V)  This gives rise to
the following pairs (A, N) with A < —4, N > 7 and da ey (X1 (N)) = 22

(=7,7), (=7,14), (=11,11), (—19,19), (—43,43), (—67,67), (—163,163).

-
M‘

Step 4:
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e Suppose A = —12. The analysis of Step 2, together with the fact that A is not a square

modulo 32, shows that if da cm(X1(V)) = @ then N is of the form 2 or 2¢-3 for some a < 2.

Since N ¢ {1,2,3,4,6}, we need only consider N = 12. But @ =2<4=dcm(X1(12)) as
follows from [GS19] (or already from [BCS17, Thm. 1.4]).
e Suppose A = —16. The analysis of Step 2 shows that if da cm(X1(N)) = w then N is of
the form 2 for some b > 3. In the notation of [BC20b, Prop. 6.4] we have m = 2 and M = 3,
so by [BC20b, Thm. 6.5] we have T°(0,2%) = 2T(0,2%) > ¢(N).
e Suppose A = —27. The analysis of Step 2 shows that if da cm(X1(V)) = @ then N is
of the form 3° for some b > 2. If b > 4 then —27 is not a square modulo 4 - 3°. By [BC20a,
Thm. 7.2] and [BC20b, Thm. 6.5] we have T°(0,9) = 22 and 7°(0,27) = 2270 giving rise
to the following pairs with da cm(X1(V)) = @:

(—27,9), (—27,27).

e Suppose A = —28. The analysis of Step 2 shows that if da cm(X1(n)) = @ then N is
of the form 7° or 2 - 7. Moreover if —28 is a square modulo 7% then b = 1. By [Kw99, Cor.
4.2] there are O-CM elliptic curves admitting Q-rational cyclic N-isogenies when N = 7 or

14, giving rise to the following pairs with da cm(X1(N)) = @:

(—28,7), (—28,14). g
Corollary 3.11. Let N > 7.
a) We have dom(X1(N)) = @ iff N is of Type I
b) We have dem(X1(N)) = 20V iy

i) N is not of Type I, and
ii) N is of Type Il or N € {9,11,14,27}.

Remark 3.12. In [CCS13, Thm. 1] it is shown that there is a prime number ¢y such that for
all primes ¢ > ¢y and all discriminants A < 0, we have:

o dacm(Xi(4)) > %, with equality holding iff A = —3 and / =1 (mod 3).

o If da.cm(X1(0) € (52, 52 then A = —4, £ =1 (mod 4) and da cm(X1(0)) = 5.
The proof given therein uses a CM analogue of Serre’s open image theorem given by Serre
himself in [Se72]: this does not lead to an explicit value for ¢y. On the other hand we now
have the quantitative version of Serre’s result due to Stevenhagen and Bourdon-Clark [St01],
[BC20a, Thm. 1.4]. The results of this section show that the optimal value of ¢ is 163 and

generalize this work from primes to all positive integers.

4. PRELIMINARY RESULTS
4.1. Results used. The elliptic curve E/q: y? = 23 — 2 has CM by the order of discriminant
—4 and (Z/27)? — E(Q), showing that
dem(X (1)) = dem(Xo(2)) = dom(X1(2)) = dom(X(2)) = 1.
Thus in our study of dem(Xo(N)) and dem(X1(M, N)), we may assume that N > 3. We
remind the reader that (N) = N [],x(1+ 1/p).

Lemma 4.1. Let M,N € Z+ with M | N and N > 3. Then:
a) deg(Xo(N) — X(1)) = 1/1(]{[V)-N
b) deg(X1(N) = X (1)) = “5C0,
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¢) deg(X (N) — X (1)) = MeNu),
d) deg(X1(M,N) — X(1)) = MeINeN)

We defer the proof of Lemma 4.1 to §7.2. For now let us emphasize that we are giving the
degrees of the maps viewed as curves over Q. In parts a) and b) this distinction does not
matter, as the subgroups I'o(N) and I'y(/N) are rational in the sense of §7.1. But it does
matter in parts ¢) and d): as follows from the discussion in §7.1, deg(X(N) — X (1)) (resp.
deg(X1(M,N) — X(1))) is ¢(N) times (resp. ¢(M) times) the degree of the corresponding
covering of compact Riemann surfaces.

Theorem 4.2 (Silverberg, Bourdon—Clark). Let O be an order in an imaginary quadratic
field K, and let E be an O-CM elliptic curve defined over a number field F D K. If E(F)
has a point of order N € Z then

#0O* [F: Q)
2 #PicO’

Proof. This is [BC20a, Thm. 6.2]. O

P(N) |

Theorem 4.3 (Clark—Pollack). Let K be an imaginary quadratic field, let F' D K be a field
extension, and let E/p be an elliptic curve with CM by an order in K. Suppose that for
a,b € ZT we have an injection Z/aZ x Z/abZ — E(F). Then [F(E[ab]) : F] < b.

Proof. This is [CP15, Thm. 7]. O

4.2. Some key inequalities. The following important result gives inequalities among various
dov(X)’s coming from the tower structure of modular curves X7 (M, N) — X1(N) — Xo(N).

Lemma 4.4. Let M,N € Z+ with M | N and N > 3. Then:

a) We have M deyi(Xo(N)) < dem(X1(N)) < 2N dey (Xo(N)).
b) We have denv(X1(M, N)) < 2Mdem(X1(N)).

Proof. a) For N € {3,4,6} we have dom(Xo(N)) = dem(X1(N)) = 1, from which part a)
follows. If N € Z* \ {1,2,3,4,6} the result follows from Theorem 3.7.

b) Every noncuspidal closed point p on X;(N) with residue field Q(p) is induced by a pair
(E, P) jq(p) Where E/q(y) is an elliptic curve and P is a Q(p)-rational point of order N [DRT73,
p. 274, Prop. VI.3.2]. So if dem(X1(N)) = d there is a number field F' of degree d and a
CM elliptic curve E,p such that E(F) has a point of order N. Let K be the endomorphism

algebra of E. Applying Theorem 4.3 to E,pg shows that there is an extension L/F' of degree
at most 2M such that Z/MZ x Z/NZ — E(L)[tors]. O

Remark 4.5. Lemma 4.4a) implies, in particular, that
den(X1(N)) < ¢(N)dom(Xo(N)).

This tight relationship between dcen(Xo(N)) and donm(X1(V)) often allows one to deduce
theorems about doy (X1 (N)) from corresponding statements about dea(Xo(N)). For example
(recalling that ﬁ < ¢(N) < N) Theorem 1.5 follows immediately from Theorem 1.3,
while Theorem 1.7(b) is a consequence of part (a) of the same result.
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4.3. Estimates for da cm(Xo(NV)). Let A < 0 be a quadratic discriminant. For N € Z7,
write N = N1 N9y N3 where:
e N is divisible precisely by primes p with (%) =1
e N, is divisible precisely by primes p with (%) =0,
e N3 is divisible precisely by primes p with (%) = —1.

Proposition 4.6. If Ny is squarefree, then da cv(Xo(IN)) < hat(N3).

Proof. Write N = [[i_, ¢{* as a product of distinct prime powers. By Lemma 4.4a) and

i=1"1
[BC20a, Thm. 7.2], we have
TT(OA), 6)
(6) dacm(Xo(N)) < ha ] o
i=1 i

where for a prime power £%, the quantity T((’)(A),Ea) is computed in [BC20b, Thm. 7.2d)],
and the implied constants are absolute. In particular:

o If (£) = 1, then T(O(A), £?) = (£).

o If (§) =1, then T(O(A), £) = (L) (£7).

o If (2) =0, then T(O(A),£) = ¢(¢).
T(O(A).47)

G0) for all 4 and the proposition follows. [

Since Ny is squarefree, this accounts for

Suppose we are in the case where (%) = 1 for all p | N. The proof of Proposition 4.6 then
shows that da cv(Xo(IV)) < ha. The following proposition makes the upper bound explicit.

Proposition 4.7. Let N € ZT, and let A be a negative discriminant with the property that

A
<> =1 for all primes p | N.
p

Then dAycM(X()(N)) < 2hAa.

Proof. Let K = Q(v/A) and let K(I) be its Hilbert class field, so that [K(M) : K] = hg =
# Pic Ok. There is a (necessarily proper) ideal I of the ring of integers O of K such that
Ok/I = Z/NZ, so if E) k) is any Og-CM elliptic curve then E — E/E[I] is a cyclic

N-isogeny defined over K. Thus we have
dom(Xo(N)) < daom(Xo(N)) < 2[KW - Q] = 2ha. O

Remark 4.8. That one has an Ox-CM point on Xo(N) defined over K(1) when every prime
divisor of N splits in K is a basic point in the theory of Heegner points on modular elliptic
curves (often called the “Heegner hypothesis” on N and K). The observation that when the
Heegner hypothesis is satisfied, the rational isogeny of small degree leads to a CM point of
order N of small degree seems to appear for the first time in work of Sutherland [Sul2, §4].

5. ANALYTIC RESULTS

5.1. Lower order of dcy(Xo(N)): proof of Theorem 1.2. The complete list of N € ZT
such that dey(Xo(IV)) =1 is given in Table 1: the largest such N is 163.

This is not a new result, but we are not sure of the proper attribution. These N appear
as part of a list of known non-cuspidal Q-rational points on Xo(/N) in Mazur’s work [Ma7§],
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albeit without a proof that it consists of all CM points. The classification of all noncupidal Q-
rational points on X((/N) was obtained for prime N in Mazur’s paper, and the composite case
was done by various people over the next several years, ending in a work of Kenku [Ke81].
When taken together, these papers provide a proof of Theorem 1.2. However this risks a
dependence on significantly more difficult results.

Here is a better way: for each A < 0, the set of N € Z" such that da cm(Xo(N)) = ha is
finite (and known). For Ag < —4 this is a result of Kwon [Kw99, Cor. 4.2]; for A € {—4, -3}
it is due to Bourdon-Clark [BC20b, Cor. 5.11]. Table 1 is an immediate consequence.

Let K be a quadratic field, and let Px be the set of primes that split in K. Let P be a
set of prime numbers whose symmetric difference with Pk is finite. Then P is a Chebotarev
set in the sense of Serre, and he has shown [Se76, Thm. 2.8| that if A/p is the set of positive
integers N all of whose prime divisors lie in P, then as X — oo,

X
Viog X’
for a certain positive constant cp. (Actually this case of Serre’s results also follows from
earlier work of Landau [La09].)

Let A < 0 be a discriminant and put K = Q(+v/A). By Proposition 4.7, if N € Z* is such
that (%) =1 for all p | N then dom(Xo(N)) < da,cm(Xo(N)) < 2ha. By the above result of

Serre, the number of N up to X satisfying this “Heegner hypothesis” is < \/%. Taking A

#{1<N<X|NeNp}~cp

to be any one of the 13 class number 1 discriminants, we see that

{1<N <X |dem(Xo(V)) <2} > \/lfﬁ’
which establishes the lower bound in Theorem 1.2b).

The idea for the upper bound (as well as several arguments to come) is that this “Heegner
hypothesis” is also close to being necessary. If N > 5, then d_3cm(Xo(V)) < 2 iff N is of
Type I and d_4 cm(Xo(V)) < 2 iff N is of Type II, so some amount of divisibility at ramified
primes is permitted, but this only changes the implied constant.

Here are the details: fix A < 0 and C' > 2. First of all we have da cm(Xo(IV)) > ha, so if
dem(Xo(N)) < C then dom(Xo(INV)) = da,cm(Xo(V)) for some A < 0 with ha < C. There
are only finitely many such A, so we may work with a fixed A < 0. Suppose ¢ is a prime such
that (%) = —1. Then (6) and the second bulleted point below it gives

da,cm(Xo(N)) > (O)ha > lha,

with an absolute implied constant. Thus if da cm(Xo(N)) < C then N can only be divisible
by finitely many primes that are inert in Q(v/A), so by Serre’s result we have

X
da,cm(Xo(N)) <c NP

completing the proof of Theorem 1.2b).

5.2. Upper order of doy(Xo(N)): proof of Theorem 1.3. We begin by establishing a
general (GRH-conditional) upper bound on dcy(Xo(IV)), expressed in terms of log N and the
number 7 of distinct prime factors of N.

Theorem 5.1. Assume GRH. Let N € 7" have w(N) = r distinct prime divisors. For all
€ > 0 we have
don(Xo(N)) < 27 log N - (loglog(2" log N))°W.
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The argument below was inspired by work of Schinzel on pseudosquares [Sc97].

Proof. Since donv(Xo(N)) < dem(Xo(2N)), we can (and will) assume that 2 | N. (Note
that the order of magnitude of our upper bound does not change under replacing N by 2N.)
We will find a small negative discriminant A satisfying (%) =1 for all p | N, and then use
Proposition 4.7 and class number estimates to bound dcy(Xo(V)). Our A will have the form
A = —{ where ¢ = 3 (mod 4) is prime.

Let p1,...,p be the distinct primes dividing N, where p; = 2. To ensure that (%) =1
for all p | N, and that ¢ = 3 (mod 4), we choose the prime ¢ to satisfy certain Chebotarev
conditions. Observe:

e The condition £ = 3 (mod 4) on ¢ holds iff £ is unramified in Q(v/—1)/Q and the Frobe-
nius element at ¢ in this abelian extension is the nontrivial element of Aut(Q(v/—1)/Q).
e The condition (%Z) = 1 holds iff £ = 7 (mod 8) iff ¢ is unramified in Q(+/2)/Q and
the Frobenius element at ¢ is trivial.
e For each ¢ = 2,3,...,r, by quadratic reciprocity we have (;—f) =1iff (%) =1iff /is
unramified in Q(,/p;)/Q and the Frobenius element at £ is trivial.
The classes of —1 and py,...,p, are Z/2Z-linearly independent in Q*/Q*2. By Kummer
Theory, the fields Q(v/—1), Q(/p1), ..., Q(y/pr) are linearly disjoint over Q. Let L be
their compositum, an abelian number field. Let Ay be its discriminant. We may represent
the automorphism group Aut(L/Q) as G = [[;_,{£1}, where for 0 < ¢ < r, if H; is the
set of vectors with ith coordinate equal to 1, then L0 = Q(v/=1) and for 1 < i < 7,
L = Q(y/pi). The desired condition on £ is that it is unramified in L and its Frobenius
element is (—1,1,...,1) € G. As we are assuming GRH, an effective version of the Chebotarev
Density Theorem due to Lagarias-Odlyzko [LO77] tells us that there is such a prime number
¢ with ¢ < log? |Ap.

We now find an upper bound on |Ay|. For this we use the bijective correspondence between
finite abelian extensions of Q and finite groups of Dirichlet characters (see e.g. [W, Ch. 3]).
For d € Q*\Q*?, let x4 be the Dirichlet character corresponding to the quadratic field Q(v/d),
let x1 be the trivial character, and let X be the group of Dirichlet characters generated by
X—1 and xp, for 1 <i <7r: thus X = G, so #X = 271 More explicitly we have

X:{Xd|d€D},

where D is the set of (positive and negative) divisors of p;---p,. For d € D, let §; be the
conductor of x4. Recall the conductor discriminant formula [W, Thm. 3.11]:

AR H fa-
deD
We have
) |d] ifd=1 (mod 4),
fa = {4|d\ if d=2,3 (mod 4).
Since d € D = —d € D, precisely half of the odd elements of D are 1 (mod 4) and none of
the even elements of D are 1 (mod 4), and we have

2
IAL\:43'2T_1< 11 d) =27 (pr o pr)”
1<d|p1--pr

Since p1 - - - p, is a divisor of N, we see that

log |Ar| < 2771 42" logpy - - pr < 2" log N
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and so we can choose

0 < 4"log? N.
From Proposition 4.7, dem(Xo(N)) < da,om(Xo(N)) < 2h_y. The claimed estimate for
dcm(Xo(N)) now follows from Lemma 2.3. O

The number r of distinct prime factors of N satisfies r < (1 + 0(1))101;50 fgv ~

the discussion on p. 471 of [HW]). Plugging this into Theorem 5.1 gives

log N
loglog N )’

as N — oo (cf.

dent (Xo(N)) < exp <(ln2 +o(1))

which is part (b) of Theorem 1.3.
We now turn to the proof of (a). The following useful proposition is an easy consequence
of Proposition 4.6 and Lemma 2.3.

Proposition 5.2 (conditional on GRH). For each squarefree positive integer N and each
negative discriminant A,

(7) da,cm(Xo(N)) = (loglog [AN|)W - |A[Y2 T p.
pIN
(5)=-1

Proof. Write N = NjNyN3 where N1, No, N3 have the same meanings as in the discussion
immediately preceding Proposition 4.6. So N3 = Hp‘ N, (8)=—1P (since N is squarefree).
T \p

Proposition 4.6 gives
da,cm(Xo(N)) < hath(N3) = haNs - (loglog N)OW.

(In the last step, we used that 1 < 1)(N3)/N3 < N3/¢p(N3) < loglog N3.) To finish off, we
use the estimate for ha appearing in Lemma 2.3. g

Proof of part (a) of Theorem 1.3. We show (non-constructively) the existence of a sequence
N tending to infinity along which

dCM(XO(N))Zexp<<iln2+o(1)> log )

loglog N

Let y = (logz -loglog )2, let P be the set of primes not exceeding ¥, and let € denote the
collection of all K-element subsets of P, where

1
K= { Og‘”J .
logy
We will consider €) as a finite probability space with the uniform measure.
We associate to each S € ) the squarefree integer Ng := Hpesp. Note that Ng < z. Put

1 log =
L:= zln2.- ———|.
P (2 " loglogm)

For every negative discriminant A with |A| < L, we introduce the random variable

Da(s) =112 ] »
p|Ns
&=
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Fix € € (0, %), and take ¢ = % — e. We estimate, for a given A, the probability that
Da(S) < L. Clearly,

Pr(Da(S) < L) < E[L¢- Da(S)™]

Le 1
" a0 Z<)H
A)=—11
p
Observe that
1 _ K

ST rteg( X oie X
S peS pEP pEP

@) G- G

1< > pep p~! < logloglog x. Moreover,

> 1:22(1+( ) Z Z Z( >+;Zl.

By a theorem of Mertens, >° (2)=—1P

peEP pEP pEP p€7D pGP pEP
($)#-1 plA plA
Put I = #P, so that 1 52pepl =13 = (3 +o0(1))y/logy, as x — co. Under GRH we have
1 A
5 Z <> = O(y'*log(|Aly)),
peEP p

which is o(II) for our choice of y. (See, for example, [MV07, Theorem 13.7, p. 425].) Also,
> pep, pia 1 < log|A[ < log z, which is again o(II). Collecting our estimates, we deduce that

L¢ 1 (3 +o(1)Im~E

Pr(Da(S) < L) <

A2 #0Q K!
With IT = #P, we have #0 = () = (1 +o(1)) - %y, and K = (3 + o(1)) ghg, so that
(8) Pr(Da(S) < L°) < LC_1|A|—1/2 _ L—1/2—e+o(1)m|_1/27

as * — oo, uniformly for negative discriminants A with |A| < L.

The sum of |A|~'/2 on A with |A| < L is O(L'/?). Tt thus follows from (8) that for large
enough z, we can choose S with Da(S) > L€ for all negative discriminants A with |A| < L.
Let N = Ng. We claim that (as long as x is large enough)

(9) dem(Xo(N)) = exp <<111 In2-— 6) k)l;g():;p) :

Note that the right-hand side exceeds exp((1n2 — ¢) lolgoi g ~), since N < 2. To prove (9),
let A be the discriminant minimizing da car(Xo(N)). If |A| > L, then the appearance of
the factor |A['/2 in (7) gives the desired lower bound. Otherwise, our choice of S shows that

|A|1/2 Hp\N, (&)=—1P > L¢, and again the stated lower bound follows from (7). Since € can

be taken arbitrarily small, and x can be taken arbitrarily large, we have our result. O

Remark 5.3. Let ¢y denote the infimum of those constants ¢ for which

log N )

— N — oo.
log log N w >

dov(Xo(N)) < exp <(C +0(1))
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Theorem 1.3 shows that ian < ¢y <1In2. We conjecture that c; = %ln 2.

Remark 5.4. The upper bound of Theorem 5.1 on donm(Xo(N)) is highly sensitive to the
number 7 of distinct prime factors of N. So it could be interesting to study the upper order of
donv(Xo(N)) under restrictions on . The most obvious such restriction is to ask that N = ¢ be
prime. Theorem 5.1 shows (in somewhat more precise form) that dey(Xo(£)) < (log €)1,
as ¢ — oo. In the opposite direction, using Linnik’s theorem on primes in progressions [Li44],
one can produce a sequence of primes £ = 3 (mod 4) tending to infinity for which the smallest
quadratic nonresidue mod ¢ is > log¢. (See [Fri49] or [Sa49] for a similar argument, but
without the condition that ¢ = 3 (mod 4).) From Proposition 4.6 and Lemma 2.2, one can
deduce that doy (Xo(£)) > (log £)'/2°() along this sequence of £. Probably the lower bound,
with the exponent % on log £, reflects the truth in this upper order problem.

5.3. Lower order of dcy(Xi(N)): proof of Theorem 1.4. We first produce a sequence

of N tending to infinity such that dem(X1(V)) < ﬁ. Take N of the form N =

[I<7, p=1 (mod 3)P- By §3.3 we have deni(Xo(NV)) < 2, and so by Lemma 4.4(a),

dsou(X1(N) <o(N)=N ][] (1—2) <<Nexp<— > 1).

p<T p<T p
p=1 (mod 3) p=1 (mod 3)

By the prime number theorem for arithmetic progressions, we have log N = (3 + o(1))7T as
T — oo, and Zp§T7 p=1 (mod 3) % = %loglogT+ 0O(1) = %logloglogN + O(1). Thus,

N

1
d_scMm(X1(N)) < Nexp(—iloglog log N) <« w.

As dem(X1(N)) < d_sgcm(X1(N)), the upper bound half of Theorem 1.4 is proved.
To finish the proof of Theorem 1.4, we show that

N

(10) da,cm(X1(N)) > Joalos ¥

for all N € Z* and discriminants A < 0. Write N = N1 N>N3 as in the setup for Proposition
4.6, and let no be the product of the distinct primes dividing Ns. Then

da,cm(Xo(N)) > da,em(Xo(N1m2aN3)) > hat(N3),
using the estimate of Proposition 4.6 in the second step. By Lemma 4.4(a), we have
da,cm(X1(N)) > had(N)p(N3).

In particular, da cm(X1(N)) > haop(N) > hA$. If A > (loglog N)?, inserting the
lower bound for ha from Lemma 2.2 (with e = 1) gives (10). So we suppose that A <
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(loglog N)2. In this case, we use the last display to obtain

da,cm(X1(NV)) > hANH (1 - 1) H p

AN NPT iN
(5)=-1
>haN ] <1 1>
2 NA - =
p|N P
@)
1
>>hANexp<— Z >
p
p|N
G
Continuing,
1 1 1
PRI DL D D
p|N p<log N p|N
@1 BHF1 pn
1 w(N) 1
- -+0(1
< o g < > —+0()
p<log N p<log N
(5)7A-1 (5)71
Now

1 1 1 A 1
> =i ¥ (1)
p<log N p p|lA p p<log N p p

()7

1 1 AN 1
< O(logloglog |A[) + S logloglog N+ 5 Y (=)=
2 2 p)p

p<log N

By the Siegel-Walfisz theorem and partial summation, we have _; <p<V (%)% < 1 whenever
V > U > exp(|A]°). It follows that the sum on p appearing in the last display is at most
2 p<exp(|Al) %—1—06(1) < elog |A|+Oc(1). Taking e = 1 and collecting estimates, we find that

ex - Z 1 > !
P D |A]Y/3y/loglog N’

p|N
@)
and so
dCM(Xl(N)) > hAAfl/g . 7]\[
Vioglog N’

As ha > AY3, we once again have (10).

5.4. Upper order of dcy(X1(NV)): proof of Theorem 1.5. Theorem 1.5 follows immedi-
ately from Theorem 1.3 and Lemma 4.4(a).
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5.5. Upper and lower order of dcy(X(NV)). Theorem 1.6 was proved already in the in-
troduction, as a consequence of Theorem 1.1. So we concentrate on the claims about X (N).

Proposition 5.5. doyv (X (N)) has lower order %-

Proof. The lower bound dey (X (V) > % follows from taking M = N in Theorem 1.6.
For the upper bound, we apply Theorem 3.1 with A = —3 and N = HPST, p=1 (mod 3) P- For

large T, that theorem gives d_3cn(X(N)) < ¢(N)2. As at the beginning of the proof of

Theorem 1.4, we have ¢(N) < ﬁ for this family of N, and so we have

N2
< loglog N’
as desired. O

Proposition 5.6. doy (X (N)) has upper order N2.
Proof. For all N € Z* we have

dem(X(NV)) < d—zom(X(N)) = ]\;2 <1 - <_3) 1> (1 - 1)

dCM (X(N)) < d—S,CM(X(N))

oIN pJ)p p
N2 1 2
SSI(-5) -2

By Theorem 3.2, as N tends to infinity along prime powers (% we have dca (X (€9)) ~ 2620, O

5.6. Typical behavior of donm(Xo(V)) and dey(X1(N)): proof of Theorem 1.7. We
consider only Theorem 1.7(a), since part (b) follows from (a) via Lemma 4.4.
We first prove the lower bound in Theorem 1.7(a). That is, we consider N < z for which

dem(Xo(N)) < 9(3—¢)loglogz

and show that these numbers comprise a set of size o(x), as x — oco. In what follows we
restrict ourselves to IV satisfying

|w(N) —loglog z| < logloglog x - y/loglog x.
This is permissible since a well-known theorem of Hardy-Ramanujan [HR17] shows that this
inequality on w(NN) holds for all but o(z) values of N < z.
Let A < 0 be the discriminant minimizing da cm(Xo(V)). Writing N’ for the product of
the distinct primes dividing N, we have that
da.cn(Xo(N')) < da.on(Xo(N)) = dom(Xo(N)) < 259 logloge,

Using the estimate of (7) for da cm(IN'), we see it is necessary to have (for large x)

(11) ‘A’ < 2(1—6)10glog:c

as well as
A

(12) () =0orl for all D ’ N with P> 2%10glog:c.
p

Our strategy will be to count, for a fixed discriminant A < 0 satisfying (11), those N satisfying
(12); then we sum on A.

We need two lemmas. The first is an estimate for prime character sums weighted by p~!,
under GRH.
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Lemma 5.7 (under GRH). Let x be a nonprincipal Dirichlet character mod m (say). Then
pr(p)/p converges, to (say) A,. Moreover, for all X > 2,

> X;p) = Ay + O(X 2 log{mX}).
p<X

Moreover, |Ay| < logloglog (3m) + O(1).

Proof. The convergence of »_ x(p)/p, along with the estimate for its partial sums, follows
from the GRH-conditional bound >_ _, x(p) = O(t'/?log{mt}) and summation by parts.

To obtain the bound on |A,|, we use the trivial estimate |x(p)/p| < 1/p to estimate the

contribution from p < (logm)3, then apply partial summation to handle the remaining terms.
O

The following Hardy—Ramanujan inequality for integers with restricted prime factors is an
immediate consequence of [Te00, Lemma 1].

Lemma 5.8. There are (absolute) constants A and B for which the following holds: Let
X > 2, and let P be a set of primes not exceeding X . For each positive integer k,

k—1
X 1 1
S o1<a X <Z ) B
- — 1)
= logX (k—1)! 5P
p|ln=peP
w(n)=k

Proof of the lower bound half of Theorem 1.7(a). Let A be a negative discriminant satisfying
(11), let

P={p<a:p<23l8ler g <A> # —1},
p
and let k£ be an integer with

(13) |k —loglog x| < logloglogz - y/loglog x.
Using Lemma 5.7, we find that for large =z,

2 Rt En (),

pEP p<2loglogx p<w plA
1 1 1/A
< O(logloglog x) + (5 loglogz + O(1)) + 3 Z — (=) + O(logloglog |AJ)
p\Pp
p<z

1
=3 loglog x + O(logloglog z).

We plug this estimate for ijep]f1 into Lemma 5.8. Using Stirling’s formula to estimate
(k —1)!, a short computation reveals that the number of N < z composed entirely of primes
from P and with w(N) = k is at most z/(logz)™?+°(1). Summing on k satisfying (13) and
A satisfying (11), we find that the number of N counted for any choice of k, A is at most

z/(log z)¢"2+°()  which is o(x). Keeping in the mind remarks preceding the proof, we have
the lower bound half of Theorem 1.7(a). O

We now shift attention to proving that the upper bound in (3) holds for all but o(z) values of
N < x, as  — oo. We can (and will) assume that 0 < e < 1. Write P~ (), P*(N) for the



THE LEAST DEGREE OF A CM POINT ON A MODULAR CURVE 27

least and greatest prime factors of N, with the convention that P™(1) = 1 and P~ (1) = oo.
We restrict attention to N satisfying all of the following ‘anatomical’ conditions:

(i) |w(N) —loglog x| < logloglog x - v/loglog x.
(ii) The largest squarefull divisor of N is at most log log .
(iii) The largest d dividing N composed of primes at most z := exp(y/loglogz) has d <
Zlog log logz'
(iv) PH(N) > g!/loglogz,

We claim that these conditions exclude only o(x) values of N < x. We have seen this
already for (i). The number of N < x with a squarefull divisor exceeding loglog = is at most
x 1/m < W, which shows that (ii) is acceptable. By [HT88, Thm.

07] we get that the number of N < x violating (iii) is O(z exp(—clogloglogz)) for some
absolute ¢ > 0, while Theorem 05 of [HT88| shows that the number of exceptions N < z
to (iv) is O(zexp(—c'loglogz)) (for some absolute ¢ > 0). Hence, (iii) and (iv) are also
acceptable.

Put 0 := (1+¢€)In2. Let

m>loglog x, squarefull

1
D_; = {negative fundamental discriminants A : §(log z)? < |A] < (logz)’}.

We claim that for all but o(x) of the N < x satisfying (i)—(iv), there is a A € D_; with
(%) =1 for all p | N. Let us see how this claim helps us. Suppose that there is such a A. Let

N’ be the largest squarefull divisor of N, so that % is squarefree and ged (N, %) = 1. Then
(7) gives

dom(Xo(N/N')) < da.cm(Xo(N/N')) < (log 2)%/?(log log 2)°™).
Moreover, we have crudely

dem(Xo(IV))
dem(Xo(N/N))

< deg(Xo(N) = Xo(N/N"))
= (N)/Y(N/N') = $(N') < N < (loglog z)*.

Noting that (log x)e/ 2 — 9(3+3€)loglog , we see from the last two displays that the upper
bound in (3) holds (if = is large). The rest of the proof is devoted to proving the claim.

Our strategy is as follows: We sieve D_j, which is a set of size < (logz)?, by the set of
primes p dividing N. Specifically, for each prime p dividing N, we remove those A € D_;
for which (%) = 1. The naive expectation, which guides the argument, is that every p should
remove very close to half of the values of A. Our goal is to show that for almost all N, at
least one A € D_; survives this sieving process.

We execute the sieve in stages. Let pg be the largest divisor of N composed of primes not
exceeding z = exp(y/loglogx). (So, contrary to our usual convention, py is not necessarily
prime.) By condition (ii) above, N is not divisible by the square of a prime exceeding z. So
we can factor

N = pop1 - pk,

where p; < pp < ... < pj, are primes exceeding z. Note that k > 1, since PT(N) > x!/loglogz >
z. From (i), we have

k <w(N) < loglogx + logloglog = - \/log log x.
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We first sieve by the primes dividing pg, and then successively by p1,p2,ps,.... We let D;
be the set of discriminants surviving through the ith step. That is,

A
D;,={Ae€eD_;: () =1forallp|po---pi}.
p

Clearly,
D 12>Dy>DyD---DDy.

In this notation, we are trying to show that for all but o(x) values of N < x satisfying (i)—(iv),
we have Dy, # ).
The initial sieving step does not cut down the size of D_; by very much: As r — oo,

(14) 4Dy > (log )’ o),
To see this, note that py < zl°gloglogr — (Jog 2)°(M) from (iii), and that
1
Do D {negative squarefree A : §(log )% < |Al < (logz)?, A=1 (mod 8pp)}.

The lower estimate (14) now follows from classical results on the distribution of squarefree
numbers in arithmetic progressions. For instance, the estimate (1) of [Pr58] (referred to there
as “near trivial”) is more than sufficient.

Suppose that D = 0. Let § be a small positive constant, to be specified more precisely
momentarily. There must be an index 7 € {0,1,...,k — 1} with

1
#Di1 < (2 - 5) #D;.
Let i be the least such index. Then

4D, > (; —6)1#790

(15) = (; _ 5)i (log z)0+0(1)

We now specify our choice of §: It should be small enough that

1
9+log<2—5> > 0.

If we now fix a positive ' < 6 +log(1/2 — §), then (for large x)
#D; > (logz)”".

Here we have applied the lower bound (15), using i < k < (1+0(1)) loglog . Note that ¢ and
0’ can be chosen to depend only on € (and not on N).
We conclude that when Dy = ), the number NV has a factorization

N = Maqr,
where
M,r>1, qisa prime > z,
1'/M > xl/loglogaz7
P~(r) > q> P*(M),
the set

D(M):={AeD_;: <§> =1foralp| M}
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satisfies
#D(M) > (logz)”,
and
(16) #{AeD(M): (?) #1} > <; + 5) #D(M).

Explicitly, we can take M = pg---p;, ¢ = pit1, and r = p;jyo---pr. We will show that only
o(X) values of N admit such a factorization. This will complete the proof of the claim, and
thus also of Theorem 1.7(a).

We take two cases, according to whether or not r = 1.

When r = 1, we count the N with a factorization of this kind by pivoting on the value of
M. For each M, we bound the number of primes ¢ < x/M for which (16) holds. We then
sum on M.

To execute this plan, it is again convenient to adopt the language of probability. Let
Q = {primes ¢ : ¢ < z/M?}, viewed as a finite probability space with the uniform measure.
For each A € D(M), we introduce the random variable XA defined by

1if (9) # 1,
0 if (£) =

eD(M
%(1 - (é)) + 3 14, for each A € D(M) we

wwi-3sia £ ()+(3)

q<x/M

:%+ ( (+ ) log( |A:n/M)>

Since 7 > gt/1oglog® and #Q0 > /(M logz), the O-term here is (crudely) O((logz)~10). Tt
follows that

(17) Xalg) = {

Set

Then E[X] = > Acp(ar) E[Xa]. Since Xa(q )
have on GRH

1 -
E[X] = S#D(M) + O(#D(M) - (log ) 7).
Next, we compute the variance of X. Clearly, E[X?] = >oanep) EXaXa] A = A

then XaXar = Xa, and E[XaXa/] = 2 + O((logz)~1?) (as shown above). For the remaining
terms in E[X?2], we have

1 1/A A 1 /AN
xaxo=1-1(5)-1(5) +1(57) +ots +1as0

Since A and A’ are distinct fundamental discriminants, their product AA’ is not a square, so
(A2 is a nontrivial character mod |[AA'|. So under GRH,

E[XaXa] = > +o <#Q\/> g{|AA’|]\m4}> +0 <#Q log |[AA y)

= i + O((log z)~19).
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Summing on A, A’ € D(M), we find that
1 _
ELX?) = L (#D(M))? + OG#D(M) + (#D(M))? - (log) 1),
and
1 _
B (X - J#DON)?| = OGP0 + (FDON)? - (og2) ™)

By Chebyshev’s inequality,

/

Pr <X > (; + 5) #D(M)> < (#D(M))" 1 + (logz) 1 <« (logz)™?".

Hence, given M, the number of ¢ < x/M for which (16) holds is

< T xloglogx
Mlog(x/M) Mlogx

Now sum on M < z. We find that the total number of N with factorizations of the desired
kind, in the case r = 1, is O(z(loglog x)(log z)~?"), and so is o(z) as & — oo.

Now suppose that » > 1. We first count, for given values of M and ¢, the number of
possible values of 7. We need r < Miq, and P~(r) > ¢ > P™(M). By Brun’s upper bound
sieve (see Theorem 2.2 on p. 68 of [HR74]),

1
#{r < Miq P> POy < o ] <1 - p)
p<P+(M)
X

< Mg -log PT(M)

< #Q(logz)~? (logz)™" < (logz)~?".

(18)

In order to verify the hypotheses of the upper bound sieve, we used that Miq > Pt (M).
(Indeed, 7. =7 =P~ (r) > PT(M).)
Now we fix M and sum the bound of (18) on ¢ satisfying (16). For this we employ a second

moment argument similar to that seen above for the case » = 1, but now counting the primes

q with a weight of ¢~ 1.

We let Q = {q prime : z < ¢ < {7}, and we put
1
W .= Z -
qe q
A short calculation gives
W =loglog z + O(loglog log x).

We turn €2 into a finite probability space by assigning to each ¢ €  the probability (g\¥)~!.
We define Xa, for A € D(M), as in (17), and we let X = 3" cp Xa. Then E[X] =
> aep(v) E[Xa], and for each A € D(M),

il g Qo 2 )

q prime q prime
z2<q<z/M qlA, g>=
=}+O i~z*1/210g]Az\ + 0 i-zfllog|A]
2 w w ’
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The second O-term is subsumed by the first. Looking back, we see that log |A| < loglogz =<
W, while log z = (loglog z)*/2. So E[Xa] = 3 +0(271/%), and
E[X] = §#D(M) +O#D(M) - =71/?).
A similar calculation shows that for all distinct A, A" € D(M),
E[XaXa] = i + 012,
so that E[X?] = }(#D(M))? + O(#D(M) + (#D(M))* - 2~/2) and

B |(X - #D(NP| = 0D + (#D01)? 517
Hence,
Pr (X > (; - 5) #D(M)) < #D(M) 42712 <« 2712

It follows that given M,

1
Z S W2« 2_1/3,
p q
where ¢ runs over the primes in (z,z/M] for which (16) holds. Putting this back into (18),
we see that the number of N that have a factorization of the desired kind, with » > 1, and
with M given, is O(zz~! So the total number of N arising in the case r > 1 is

1
SV A N S
<o qu Miog P (M)’

/3M10g113+(M))'

Of course, the term M = 1 contributes O(1) to the sum on M. To bound the contribution
of the remaining terms, we pivot on the value of p = P*(M) to find that

ZWZZL

1<M<z M: P+(M)=p
1\t 1
Y Y LY T (1-7) <X <o
p<zx p o8P P+(M"<p p<z plogp ¢ prime p<z p

L<p

Substituting this back above bounds the number of N by zz~1/3.loglog z, which is < zz~1/4,
and so is o(x). This completes the proof.

6. EXPLICIT AND UNCONDITIONAL UPPER BOUNDS

For our later discussion of sporadic points, it will be important to have upper bounds on
dov(Xo(N)), dem(X1(N)), and dem (X1 (M, N)) that are completely explicit and not depen-
dent on unproved hypotheses. For N € ZT, let Ny denote the product of the distinct odd
primes dividing N. Put A =1 — 8Ny, and write

A= f2Ag,

where Ak is a fundamental discriminant. Then (ATK) = 1 for all primes p dividing N. Note

that 1 = A = Ag (mod 8), so that Ax < —7.
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For an imaginary quadratic field K of discriminant A < —4 we have [CCS13, Appendix]

e
hic < 5= v/[Ak]In|Ax].

Using Proposition 4.7 and Lemma 4.4, we get
(19) dCM(X()(N) < 2hg < — \/ 8Ny ln|8N0]

dem(X1(IV)) < *¢ (N)V/8No In [8No|,
and for M | N,

(20) deni (X1 (M, N)) < M¢ )v/8No In |8Np|.

If we drop the requirement of explicitness, sharper unconditional bounds can be obtained.

We focus on donm(Xo(N)), leaving the reader to supply the corresponding estimates for

dem(X1(N)) and dem (X1 (M, N)) that follow from Lemma 4.7.

Theorem 6.1. Let ¢ > 0. With Ny the product of the distinct odd primes dividing N, we
1

have dem(Xo(N)) < N08+6.

The proof depends on the following special case of a result of Norton (see [No98, Corollary
3.38]), proved using Burgess’s fundamental work on character sums.

Lemma 6.2. Let M € Z*, and let H be a subgroup of (Z/MZ)* containing (Z/MZ)**
Every coset of H has a positive integer representative that is OE(M1/4+€).

Proof of Theorem 6.1. Let N' = 8Ny, and write N’ = 23p; - --p,, where pq,...,p, are odd
primes. We define a group homomorphism
v= (11, try2) = (Z/N'Z)* — {£1}7+2,
as follows:
e For 1 <i<r, weput ¢;(a) = ().

pi
e Weput t,41(a) =1 <= a=1 (mod 4).

e We put t,49(a) =1 <= a= =1 (mod 8).
Let H be the kernel of ¢, so (Z/N'Z)*? C H. By Lemma 6.2, for all ¢ > 0 there is an integer
1<a<, N/ite « N5/4+6 such that
-1
(5H)--11).
Pr

L(a):<<;11>,...,

Then A = —a is a negative discriminant satisfying (%) =1 for all p | N. The result now
follows from Proposition 4.7 and Lemma 2.2. O

Remark 6.3. For prime powers N = £%, one can prove the somewhat sharper estimate
L €
(21) don (Xo(£%)) < 5,

In fact, if £ = 2 or £ = 1 (mod 4), then donm(Xo(¢%)) is bounded; this follows from taking
A = —7 or A = —4 (respectively) in Proposition 4.7. So to prove (21) we may assume that
¢ =3 (mod 4). Burgess [Bu57] has shown that for all € > 0 there is a prime

1
q <<€ »64\/€+€
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which is a quadratic nonresidue modulo £. Now put A = —q or A = —4q according to whether
g =3 (mod 4) or ¢g=1,2 (mod 4). Since £ =3 (mod 4), we have (%) = (FH) (9 =1, and it
follows that )

don(Xo(£%)) < da.cn(Xo(£%)) < 2ha < 65,

Replacing € with § finishes the proof.

7. SPORADIC CM PoOINTS ON MODULAR CURVES

7.1. GLs modular curves. In this section we give a brief review of GLo-modular curves.

Let E/q) be an elliptic curve with j-invariant ¢t. For N € ZT, let Q(X(N)) be the field
obtained by adjoining the z-coordinates of the N-torsion points of E. This field is indepen-
dent of the choice of £ and
Aut(Q(X(N))/Q(t)) = GLo(Z/NZ)/{£1}.
When N > 3 the field Q(X(N)) is however not a “regular” function field: the algebraic
closure of Q in Q(X(N)) is Q({n). Thus Q(X(N)) is the function field of a curve defined
over Q that is smooth and integral but with ¢(/NV) geometric connected components, each of
which is defined over Q({n). We write Q({n)(X((NV))) for the field Q(X(N)) regarded as a
function field over Q((x); then there is a corresponding nice (smooth, projective geometrically
integral) curve X (V) q(c,) Which is isomorphic to any one of the connected components of
the base change of the scheme X(N),q to Q(C(x)-
For M | N we have Q(X(M)) C Q(X(N)), so we get a tower of function fields. Let
QX (o)) = |J QX ().
N>1
Then R
AuH(Q(X (50))/Q(X (1)) = GLa(Z)/{+1}.
Let
av: Aut(Q(X(50))/Q(X(1))) = Aut(Q(X (N))/Q(X(1)))
be the natural map. For a subgroup H of GL2(Z/NZ)/{£1},

QX (H)) = Q(X(o0))in (D)
is a subextension of Q(X(c0))/Q(X (1)) such that
I(H) = [Q(X(H)) : Q(X(1))] = #GL2(Z$[\;Z)/{i1}.

(If H is any subgroup of GL2(Z/NZ), then we will associate the subgroup H™ := H{+1} of
GL2(Z/NZ)/{£1}. In the literature it is common to ignore the distinction between H and
H*. We will try not to do this here.) The algebraic closure of Q in Q(X (H)) is

@H — Q(CN)det H.

Thus we can view X (H) as a curve over Q that is smooth and integral and also as a curve
over Qg that is smooth and geometrically integral. Here we will say that H is rational if
Qg = Q. Moreover, for subgroups

H, C GLQ(Z/le)/{il}, Hy C GLQ(Z/NQZ)/{:I:l},

we write Hy < Hy if ¢y, (H1) C qy.(Hz). Thus we have Hy < H iff Q(X (Hy)) D Q(X (Hz))
and when these conditions hold there is a finite Q-morphism X (H;) — X (Ha).
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To H C GLy(Z/NZ)/{£1} we can also attach a congruence subgroup I'(H) C PSLy(Z) =
SL2(Z)/{£1}: namely we take the complete preimage I'(H) of H N SLa(Z/NZ)/{£1} under
the quotient map PSLy(Z) — SLo(Z/NZ)/{%1}. Then X(I'(H)) := I'(H)\H is a compact
Riemann surface — i.e., a nice curve defined over C — and the extension of the nice curve X (H)
from Qg to C is isomorphic to X(I'(H)). If we put

SI(H) := [PSLy(Z) : T'(H)]
then we have SI(H) | I(H), with equality iff Qi = Q.

7.2. Proof of Lemma 4.1. Let M and N be positive integers with M | N. We will give
definitions of the modular curves Xo(N), X1(N), X(N) and X;(M, N) over Q and use these
definitions to prove Lemma 4.1. This material is well known to the experts, but in view of the
distinction between GLg and SLg it can’t hurt to be explicit. Moreover we have (somewhat
vexingly) not been able to find a reference for Lemma 4.1d) — which includes parts b) and c)
as special cases — so a proof seems necessary for completeness.

As in the previous section, to define each modular curve we need to specify a subgroup
H of GLy(Z/NZ)/{£1} and then I(H) is simply [GL2(Z/NZ)/{£1} : H].

For any commutative rings Ry,..., R, and n € Z" we have a canonical isomorphism
T T
GL. (][ Ri) = ] GLn(R)).
i=1 i=1

If N = p{*---p2, for each subgroup H C GLa(Z/NZ) considered below,? it will be clear that
for all 1 <4 <r we have subgroups H; of GLy(Z/p}*Z) such that % = [[;_, H; and thus
T
[GLy(Z/NZ) : H] = | [IGL2(Z/p{* Z) : Hi).
i=1
We call this phenomenon “primary decomposition.”

We may view GLy(Z/NZ) as the automorphism group of the Z/NZ-module V. = V(N) =
Z/NZ S Z/NZ; let e := (1,0) and ey :== (0, 1).

e Let Hy = Hy(N) be the subgroup of GL2(Z/NZ) consisting of matrices g € GLy(Z/NZ)
such that ge; € (e1). Otherwise put, we have

Hy = { (g Z) |a,d € (Z/NTZ)*, beZ/NZ}.

We put Hy = Hy(N) = E) Azl = fIvo. The subgroup Hy defines the modular curve
Xo(N). A Z/NZ-submodule of V is free of rank 1 iff it is generated by a primitive vector,
i.e., an element v € V of order N. It is an easy consequence of the structure theory of finitely
generated Z-modules that GLo(Z/NZ) acts transitively on primitive vectors and thus also
on free, rank one Z/NZ-submodules of V. The Orbit-Stabilizer Theorem gives that I(H)
is equal to the number of free, rank one Z/NZ-submodules of V, and this in turn is ﬁ
times the number of primitive vectors in V. Primary decomposition reduces us to the case

2This is certainly not the case for an arbitrary subgroup H.
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of N = p® Clearly V(p) has p? — 1 primitive vectors, and a vector in V(p®) is primitive iff
its mod p reduction is primitive, so V(p®) has p?¢=2(p? — 1) = ¢(N ) (N) primitive vectors,
hence ¢ (N) free, rank one Z/NZ-submodules of V', so I(Hp) = 1(N).

o Let H, = H; (N) be the subgroup of GLy(Z/NZ) consisting of matrices g € GL2(Z/NZ)
such that ge; = e;. Otherwise put, we have

Hy = { <(1) Z) |d e (Z/NZ)*, beZ/NZ}.

The modular curve X (V) is defined by the subgroup H; = Hi(N) = Hy- {£1} of the group
GL2(Z/NZ)/{£1}. Very similarly to the above we get that the index of H; in GL2(Z/NZ)
is equal to the number of primitive vectors in V' and thus once again is ¢(N)ip(N). If N =2

then —1 € Hy = H; so we have I(Hy) =3. If N > 3 then I(H;) = [GLQ(Z/QNZ):Hﬂ = ¢(N)2w(N)‘

e Let Hy = Hy(N) be the trivial subgroup of GL2(Z/NZ). The modular curve X(N) is
defined by the subgroup Hy = Ha(N) = Hy - {£1} = {£1}. Thus I(Hz) = w.
We are left to compute # GL2(Z/NZ), which is the number of ordered Z/NZ-bases of V.
Primary decomposition reduces us to the case of N = p®. When N = p we can take any
nonzero vector as the first basis vector and any vector not lying in the span of the first vector
as the second basis vector, giving

# GL2(Z/pZ) = (p° = 1)(p* — p) = po(p)*¥(p).
For a > 1, reduction modulo p® gives a short exact sequence
1 = K — GLo(Z/p*'Z) — GLo(Z/p"Z) — 1
where K = 1 + p®Ms(Z/p*T'Z) has order p*. This leads to the formula
4 GLy(Z/NZ) = No(N)2H(N)

and thus to NV (V)
I(Hs) = 5
e For M | N, let H = H(/]\Z,/N) = Hflzﬁ) N EE(\]\/@ C GL2(Z/NZ). Otherwise put, we have
H = H(M,N)

{ CCL Z la=1 (mod N), b=0 (mod N),c=0 (mod M), d=1 (mod M)}.

We have P?(E,/l) = H;(2) and .Ff(_i,/2) = H5(2), so we may assume N > 3 and thus
[(H (M, N)) = [GLg(Z/NZé : H(M,N)].

Primary decomposition reduces us to the case M = p*, N = p' with 0 < s <t. When s =0

we have H(p*,pt) = Hy(pt), so we may assume s > 1. The description using matrices yields

[H(p57p5) : H(psjpt)] — p2t7237

while

(GLo(Z/p'Z) : H(p*, p*)] = # GLa(Z/p*Z) = p*6(0") 20 (0°),

P

[GLo(Z/p'Z) : H(p*,p")] = (p — 1)*(p + 1)p** T2 = Mp(M)p(N)p(N).

SO
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7.3. Sporadic points. Let X be a nice curve defined over a field F.. The gonality vr(X) is
the least degree of a finite F-rational morphism X — P!, If L/F is a field extension, we put
YL(X) =7L(X,L), i.e., the gonality of the base extension to L. We then have v7,(X) < vp(X).

A closed point p on X, has low degree if its degree degp = [F(p) : F] is less than the
gonality v#(X). A closed point p on X, is sporadic if the set of closed points ¢ of F with
deg g < degp is finite. Since every nice curve has infinitely many closed points of degree at
most vr(X), a sporadic point necessarily has low degree.

Sporadic points on curves are interesting and often elusive. To produce such points one
must first find a point of low degree and second establish that there are only finitely many
points of equal or smaller degree. There are few general techniques for showing the latter
part. By far the most widely used is the following result, essentially due to Frey [Fre94] but
stated there with an unnecessary hypothesis on rational points.

To state it (as well as for other, later purposes) it is convenient to make one more definition:
for a nice curve X, we define §(X) to be the least degree d such that X has infinitely many
closed points of degree d. Thus a sporadic point is a point of degree less than §(X).

Theorem 7.1. For a nice curve X defined over a number field F, we have

X
) < 5(x) < 4 (X)
Proof. Since P!(F) is infinite, there are infinitely many closed points on X of degree at most
yr(X).2 Thus §(X) < yp(X).
In [C109, Thm. 5] it is shown that if for d € ZT the set of closed points of degree dividing
d is infinite, then yp(X) < 2d. Applying this with d = §(X) gives w < 0(X). O

Now we consider the modular curve X (H) attached to a subgroup H of GLo(Z/NZ)/{£1}.
As above, X(H) can in all cases be defined over Q but is geometrically integral (and hence
nice) iff the subgroup H is rational. Although the definitions of gonality, low degree and
sporadic points make sense for such curves, to the best of our knowledge these concepts have
only been studied in the literature for nice curves, and moreover Theorem 7.1 applies to nice
curves. Thus we will study sporadic points on the geometrically integral curve X (H) Q-
We want to point out the interesting recent paper [BELOV19], which obtains results on non-
CM sporadic points on modular curves, with a particular emphasis on the case of rational
j-invariant.

Lemma 7.2. Let H be a subgroup of GLo(Z/NZ)/{£1}, and let X (H) g ) be the corre-
sponding modular curve. Viewing X(H) as a curve over C by base extension, we have

119
X(H I(H).
Ae(X(H)) > o0 ST(H)
Proof. This is [JKS04, Thm. 1.3]. As explained therein, this is obtained by combining work
of Abramovich [Abr96, Thm. 0.1] with the best known partial result on Selberg’s eigenvalue
conjecture due to Kim and Sarnak [Ki03, p. 176]. O

The following result is a direct generalization of [BELOV19, Lemma 6.2].

3Though it is not necessary for this argument, the Hilbert irreducibility theorem implies there are infinitely
many closed points on X of degree vr(X).



THE LEAST DEGREE OF A CM POINT ON A MODULAR CURVE 37

Theorem 7.3. Let Hy be a subgroup of GLa(Z/NZ)/{x£1}. Suppose there is a closed point
po € X(Ho) such that
119 119

29 d < " I(Hy) =
(22) °gePo = 10007 (H0) = 55500

For every subgroup H < Hy, every closed point p of X(H)/Q(H) lying over py is sporadic.
Proof. For any subgroup H C GL2(Z/NZ)/{£1} we have
I(H) = SI(H)[Qx : QJ,

deg(X (Ho) — X (1)).

Thus
degg, p— [(geg(@g] < degg po - de[%X(%)] — X (Hyp))
H: H:
_ deggpo I(H) _ 119 I(H) U

[Qg : Q] I(Ho) — 24000 [Qg : Q] 24000
By Lemma 7.2 we have
tgn(X(H)) _ 7e(X(H) 19
2 - 2 24000
so p is a sporadic point on X(H)/QH by Theorem 7.1. O

SI(H) > degq,, p;

Remark 7.4. For a reduced curve X g, we may define the gonality yq(X ) as the least degree
of a dominant Q-morphism X — P! and the invariant §(X) as the least d € Z such that X
admits infinitely many closed points of degree d, and then call a closed point p € X sporadic
if deggyp < 6(X). Evidently we still have §(X) < yg(X). This applies in particular to the
curves X1(M, N) g for all M | N. Since the residue field of every closed point on X; (M, N)
contains Q(Car), we observe that the set of sporadic closed points on X (M, N) q is the same
as the set of sporadic closed points on X1(M, N) q(,,), and the bound (22) of Theorem 7.3
can be viewed in terms of X1(M, N) .

We call a closed point pyp on a modular curve X (Hy) super-sporadic if for every H < Hy,

every closed point of X (H) lying over py is sporadic. Thus Theorem 7.3 says that py € X (Ho)

. . . de
is super-sporadic if I(ggop)o < %-

Example 7.5. Let £ be a prime number. The modular curve Xy (¢) has two cusps, 0 and oo,
and both are Q-rational. Let py be either of these points. Then (22) holds for py and Hy(¥¢) if
and only if ¢ > 211. It follows that for every modular curve X (H) associated to a subgroup
H < Hy({), every cusp on X (H) is a sporadic point.

Super-sporadic CM points abound on modular curves. Indeed:

Theorem 7.6. There is a constant A such that for all N > A and all M | N, the curves
Xo(N) g and X1(M, N) q(c,,) have super-sporadic CM points.

Proof. 1t follows immediately from the definition of a super-sporadic point that if Hy < Hj,
7w: X(Hg) — X (Hy) is the natural map and p € X (Hj), then if 7(p) is super-sporadic, so is
p. Now all of the above modular curves cover Xy(NV), and all sufficiently large N are divisible
by a large prime power ¢%, so it is enough to prove that for all but finitely many prime powers
¢%, the modular curve Xg(¢%) /0 has a super-sporadic CM point. Let Hp be the subgroup that
defines X (¢*). Then

I(Ho) = deg(Xo(£*) — X (1)) = ¢(£%) = £* + L7 > £,
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while (21) gives
dCM(XO(Ea)) < £0'079,

so the set of prime powers £% such that dc%((?({%(fa)) > 2}1580

is finite. O

We will pursue explicit forms of Theorem 7.6 in the following section.

The statement of Theorem 7.6 is the same as that of Theorem 1.8 except that “sporadic”
has been changed to “super-sporadic.” The latter is stronger: it gives sporadic CM points on
every curve lying over one of these curves in the modular tower. This includes most but not
all “named” modular curves, an exception being modular curves attached to non-split Cartan
subgroups, for which one could prove similar results.

Are there sporadic CM points on all but finitely many modular curves X (H)? Indeed not:
by [SZ17, Remark 1.3] there are infinitely many subgroups H with Qg = Q and such that
the modular curve X (H) is Q-rationally isomorphic to P!, and thus has no sporadic points
whatsoever. The paper [SZ17] gives a complete finite classification of rational subgroups H
of prime power level such that X (H) has infinitely many Q-points — equivalently, has no spo-
radic points. It should be possible to show that as H ranges over rational subgroups of prime
power level, all but finitely many of the curves X (H) have sporadic CM points, but perhaps
there is a larger natural class of modular curves to consider?

Any two nice curves of genus 0 over a field k are “twists” of each other, i.e., over an algebraic
closure of k they each become isomorphic to P! and thus to each other. In correspondence with
one of us, Sutherland has suggested to try to show that all but finitely many Q-isomorphism
classes of GLo-modular curves have sporadic CM points. As he points out, in this family of
curves the genus tends to infinity, which helps to make the statement plausible.

We leave these as open questions.

8. COMPUTATIONS

8.1. Computing dey(Xo(N)), dem(X1(NV)) and dom(X1(M, N)). The main result of this
section is the explicit computation of dcy(Xo(N)) and doy(X1(N)) for all N < 10° and
of upper bounds on dom(X1(M, N)) for all M | N with N < 100. The results are recorded
in [GS19]. In the remainder of this section we describe how the computations were performed.

For an imaginary quadratic order O of conductor f and discriminant A = f2A, let ha =
# Pic O be the class number of @. We denote by R°(A) the field obtained by adjoining
to Q the j-invariant of any O-CM elliptic curve E/c. This is a number field that is well-
determined up to isomorphism. For positive integers M | N, following [BC20b, §8] we denote
by T°(O, M, N) the least degree [F' : R°(A)] of a number field F' over which there is an O-CM
elliptic curve E and an injective group homomorphism Z/M7Z x Z/NZ — E(F). We write
T7°(O, N) for T°(O,1, N). Thus we have

dA,CM(Xl(Ma N)) = hATo(Oa M7 N)a

and taking M =1, we get
da,cm(X1(N)) = haT®(O, N).
Thus we have
dem(X1(M,N)) = mAinhATo((’),M, N)

and in particular

dCM(Xl(N)> = mAiIl hATO(O, N)
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A formula for T°(O, M, N) is given in [BC20b, §8], and Theorem 3.7 computes da cm(Xo(V))
in terms of da cm(X1(V)). In order to get from this to the computation of denv (X1 (M, N))
and dcov(Xo(IV)) one must solve the minimization problem, and this clearly requires some
information about class numbers of imaginary quadratic orders. In describing the computa-
tion of dom(Xo(N)) and denm (X1 (IV)) it is useful to single out several classes of values of N.
First, Table 1 gives all values of N for which dey(Xo(V)) = 1, along with the correspond-
ing values of dcy(X1(N)). Henceforth we suppose that denm(Xo(IV)) > 2, or equivalently
N e Z+\{1,2,3,4,6,7,9,11, 14,19, 27, 43,67, 163}.

Suppose that N is of Type I, so N > 7. Theorem 3.7 and Corollary 3.11 give

N
dom(Xo(N)) =2,  dom(X1(N)) = ¢>(3>
Suppose that NN is of Type II and not of Type I. Theorem 3.7 and Corollary 3.11 give
N
don(Xo(V)) =2, don(X; (W) = 20

Finally, suppose that N is neither Type I nor Type II. Then Theorem 3.7 implies that for all
discriminants A < 0 we have

dnon(X (V) = PV cna (o).

From this it follows that

N
don (6 (V) = D doni(x0 ()
and also that for all A < 0 we have
N
N | dy a2 (V).
For the same class of N, we put I°(A,N) = %, so that

da,cm(Xo(N)) = haI°(A,N).
For imaginary quadratic discriminants A1, As we have
da,.om(X1(N)) < da, om(X1(N)) <= ha, I°(A1, N) < ha,I°(Ag, N).

Work of Watkins [Wa04] gives all fundamental discriminants A g < 0 of class number at most
100. Using this and (5), we built the list of all discriminants A < 0 such that ha < 100 [GS19].

Here then is our method to compute donv (X1 (V)) — or equivalently, to compute den (Xo(N)).
For N as above, let A; < 0 be a discriminant which minimizes the quantity hal°(A, N)
among all discriminants A < 0 with ha < 100. If ha, I°(A1, N) < 100 then clearly for any
Ay with ha, > 100 we have

hAllo(Al,N) < hA2IO(A2,N),
and it follows that
dem(X1(N)) = da,,em(X1(N)) and  dem(Xo(N)) = da,,em(Xo(N)).

Our method fails for N precisely when den(Xo(V)) > 100. By Theorem 1.2 asymptot-
ically 100% of values of N satisfy this condition. However, it turns out that the small-
est such N is 50450400, so our method has a sizable range of effectiveness — more than
sufficient for the applications to sporadic CM points. We have computed and recorded
dom(Xo(N)) and dem(X1(N)) for all N < 10% with a total run time of approximately
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8.75 days. Among N < 10° the largest value of dom(Xo(N)) is 48, which occurs for
N € {277200, 554400, 831600, 932400, 956340, 985320}.

We next consider X;(M,N): for fixed A and M | N, the quantity da cm(X1(M,N)) is
computed in [BC20b, §8]. Using Lemma 8.3c), the upper bound (20) on dom (X1 (M, N))
and the lower bound ¥(N) > N + 1, we find that X;(M,N) has a sporadic CM point
for all N > 474059054. For each M | N with N < 474059054, our method to compute
dem (X1 (M, N)) is as follows. Since dom(X1(M,N)) = 1 if N < 2, let us assume N > 3.
Then Theorem 4.2 implies that for all A < —4 we have @ | T°(O, M, N). Thus if there is

a A1 such that dAl‘C;f((]ff()l/(Qj\/[’N)) < 100, then dey (X1 (M, N)) can be computed by minimizing
da,om (X1 (M, N)) over all discriminants A < 0 of class number at most 100.

Unfortunately, this method is valid for a much smaller range of pairs (M, N) with M > 1.
It is valid for all M | N < 52, and we record dem(X1(M, N)) for these values [GS19]. For
other values, our method yields only an upper bound on dcy (X3 (M, N)). However it turns
out that for each pair (M, N) for which we do not know whether X; (M, N) has a sporadic

CM point we are able to determine don (X1 (M, N)) and not just bound it above: cf. Table 7.

Remark 8.1. Conditionally on GRH, the list of fundamental imaginary quadratic discriminants
of class number at most 9052 is known [JRWO06], [LLS15, Cor. 1.3]. So on GRH one could
compute dev(Xo(N)), dom(X1(V)) and dey (X1 (M, N)) for a much larger range of M, N.

8.2. Sporadic CM points. Here is the main result of this section.

Theorem 8.2.
a) For all N > 721, both of the modular curves Xo(N) and X1(N) have super-sporadic
CM points.
b) For all M | N with N > 8581, the modular curve X1(M,N) has super-sporadic CM
points.

c) For the 50 values of N listed in Table 2, the modular curve Xo(N) does not have
sporadic CM points.

d) The 106 values of N listed in Table 3 include all values for which we do not know
whether Xo(N) has sporadic CM points.

e) For the 67 values of N listed in Table 4, the modular curve X;(N) does not have
sporadic CM points.

f) The 227 values of N listed in Table 5 include all values for which we do not know
whether X1(N) has sporadic CM points.

g) For the 37 pairs (M, N) with M > 2 listed in Table 6, the modular curve X;(M,N)
does not have sporadic CM points.

h) The 146 pairs (M, N) listed in Table 7 include all pairs with M > 2 for which we do
not know whether X1(M, N) has sporadic CM points.

The proof is of course quite computational. We break it up into a sequence of smaller results.

Lemma 8.3. Let N >3 and M | N.
a) A closed point on Xo(N),q of degree at most %@ZJ(N) 18 super-sporadic.
b) A closed point on X1(N)q of degree at most 2= (N)Y(N) is super-sporadic.
c) A closed point on X1(M,N),q of degree at most B Mo(M)$(N)Y(N) is super-
sporadic.

Proof. This is an immediate consequence of Theorem 7.3 and Lemma 4.1. g
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Lemma 8.4. For all N > 102641930, the curves Xo(N) /g and X1(N) g have super-sporadic
CM points.

Proof. We compute this for X (V) using Lemma 8.3a), the upper bound (19) on dcy(Xo(N))
and ¥(N) > N + 1. Since every preimage in X7 (V) of a super-sporadic CM point on X (V)
is super-sporadic, the result follows for X;(N). O
Lemma 8.5. For a positive integer N, let D(N) be the minimum of |A| as A ranges over
mmaginary quadratic discriminants satisfying (%) =1 for all primes p | N. (Thus N and
K = Q(v/—D(N)) satisfy the “Heegner hypothesis.”) Let £ be the set of positive integers
N <102641930 such that
119

Xo(N N).

d_pv),cm(Xo(N)) > 24000¢( )

Then #& = 689 and the largest element of £ is 4290.

Proof. By direct computation. O

Lemmas 8.3 and 8.5 imply that Xo(N) and X;(/NV) have super-sporadic CM points for all
NeZt\E&.

Lemma 8.6. Let g be the subset of € consisting of N for which dem(Xo(N)) > 512s¢(N),

and let Fy be the subset of € consisting of N for which doy(X1(N)) > g5 @(N)(N).
a) We have

Fo = [1,197] U [199, 221] U [223, 227] U [229, 245] U [247, 249] U [251, 257] U {259}
U [261, 265] U {267} U [269, 272] U [275, 277] U [279, 283] U [285, 289]
U {291, 293, 295, 299, 300, 301, 303, 304, 305, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 323,
324,329, 331, 332, 334, 336, 337, 341, 343, 347, 348, 349, 350, 353, 357, 359, 360, 361, 367, 373, 376,
379, 380, 383, 384, 389, 392, 395, 397, 400, 401, 413, 416, 420, 426, 429, 430, 432, 435, 440, 447, 455,
468, 472, 476, 483, 496, 501, 504, 519, 524, 528, 535, 558, 560, 572, 576, 591, 600, 623, 635, 672, 720}.
b) We have

JF1=1[1,110] U [112,128] U [131,132] U [134, 138] U [140, 145] U [148, 150] U [152, 156]
U [158,162] U [164,168] U [171,177] U [179,180] U {182, 184} U [186, 192]

U [195,197] U {200} U [203, 204] U [206,210] U [212,216] U {220, 224, 225, 227, 230
231,232,234, 235, 236, 238, 239, 240, 242, 243, 244, 245,248,249, 251, 252, 253, 254, 255, 256,
261,262,263, 264,267,270,272,275,276, 279, 280, 282, 285, 286, 287, 288, 295, 299, 300, 303,
304, 310, 311, 312, 315, 318, 319, 320, 323, 324, 329, 332, 334, 336, 341, 347, 348, 350, 357, 359,
360, 376, 380, 383, 384, 392, 395, 400,413, 416, 420, 426, 429, 430, 432, 435, 440, 447, 455, 468,

472,476,483, 496, 501, 504, 519, 524, 528, 535, 558, 560, 572, 576, 591, 600, 623, 635, 672, 720}.
Proof. By direct computation. O
Remark 8.7. If N > 7 and is neither Type I nor Type II then we have

dew(X1 (V) _ 9(N)
dov(Xo(N)) 2

and thus N € Ffy <= N € F;. However, there are 62 values N of Type I or Type II for
which super-sporadic CM points exist on X7 (/N) but not on Xo(N).

= deg(X1(N) — Xo(V))
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Lemma 8.8.

a) We have §(Xo(N)) = 1 <= N € {1,2,3,4,5,6,7,8,9,10,12,13,16,18,25}. For
these values of N, Xo(N) has no sporadic points.

b) We have §(X1(N)) =1 < N € {1,2,3,4,5,6,7,8,9,10,12}. For these values of
N, X1(N) has no sporadic points.

c) We have §(Xo(N)) =2 <

N e {11,14,15,17,19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37,
39,40, 41, 43,46,47, 48,49, 50,53, 59,61, 65,71, 79, 83,89, 101, 131}.

d) We have 6(X1(N)) =2 < N € {11,13,14,15,16,18}.

Proof. a), b) For a nice curve defined over a number field X,p, we have §(X) = 1 iff X is
F-rationally isomorphic to P! or to an elliptic curve with positive rank. Since the cusp at oo is
a Q-rational point on X; (V) and Xy (IV), these curves are isomorphic to the projective line iff
they have genus 0 and are elliptic curves iff they have genus 1. The curve X (V) (resp. X1(N))
has genus 1 iff N € {11,14,15,17,19, 20, 21, 24,27, 32,36,49} (resp. iff N € {11,14,15}), but
in all these cases the Mordell-Weil rank is 0, so the curves have 6 = 2. The curve Xy(N)
has genus 0 iff N € {1,2,3,4,5,6,7,8,9,10,12,13,16, 18,25}, giving part a), and the curve
X1(N) has genus 0 iff N € {1,2,3,4,5,6,7,8,9,10, 12}, giving part b).

c), d) By work of Abramovich-Harris [AH91], a nice curve X defined over a number field
has §(X) = 2 iff it is genus 0 with no F-rational points, is an elliptic curve with finitely many
rational points, is hyperelliptic with genus at least 2, or has genus at least two and admits
a degree 2 F-rational morphism to an elliptic curve with infinitely many F-rational points.
Using this, Bars [Ba99, Thm. 4.3] computed all N such that Xy(/N) has genus at least 2 and
d(Xo(N)) =2, and Jeon-Kim [JK04, Thm. 4.2] computed all N such that 6(X1(N)) <2. O

Corollary 8.9.

a) For N € {11,14,19,27,43,67,163} we have dem(Xo(N)) =1 < 6(Xo(N)), and thus
Xo(N) has a sporadic CM point.
b) For

N € {15,17,20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33,
35,36,37,39,40, 41, 46, 47, 48, 49, 50, 53, 59, 61, 65, 71, 79, 83,89, 101, 131}

we have dey(Xo(N)) > 2 =0(Xo(V)), so Xo(N) does not have sporadic CM points.
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c) For N € Fy, we have dop(Xo(N)) =2 < (Xo(N)) iff

N € {34,38,42, 44,45, 51,52, 54, 55,56, 57, 58, 62, 63, 64, 66, 68, 69, 73, 74, 75, 76, 77, 78,
81,82, 84, 85, 86, 88,91, 92, 93,95, 97, 98,99, 100, 102, 103, 104, 106, 107, 109, 111, 112,
113,114, 115,116,117, 118,119, 121, 122, 123, 124, 125, 127, 128, 129, 130, 133, 134,
135,136, 137,139, 141, 142, 143, 145, 146, 147, 148, 149, 151, 153, 154, 155, 156, 157,
158,159, 161, 162, 164, 165, 166, 167, 169, 170, 171,172,173, 175, 176, 177, 178, 179,
181,182, 183, 184, 185, 186, 187, 189, 191, 193, 194, 196, 197, 199, 200, 201, 202, 203,
205, 206, 207, 209, 211,212, 213, 214, 215, 217, 218, 219, 221, 223, 224, 225, 226, 227,
229, 232,233, 235, 237, 239, 241, 242, 243, 244, 245, 247, 249, 251, 253, 254, 256, 257,
259, 262, 263, 265, 267, 269, 271, 275, 277, 279, 281, 283, 289, 291, 293, 295, 299, 301,
305,307,311, 313, 317, 319, 323, 329, 331, 337, 341, 343, 347, 349, 353, 359, 361, 367,

373,379, 383,389, 397, 401}

Thus for these values of N, the curve Xo(N) has a sporadic CM point.
Proof. By Lemma 8.8 and direct computation. O

Derickx and van Hoeij [DvH14] give upper bounds on yg(X1(N)) for N < 250. Since sporadic
points have low degree, if dom(Xi1(IN)) is at least their upper bound on yg(X;(/N)) then
X1(N) cannot have sporadic CM points. Of the 296 numbers N € Fi, there are 67 values of
N < 250 for which this is the case; these are listed in Table 4, along with their corresponding
dev(X1(IV)) values and upper bounds on yg(X1(V)) from [DvH14].

In fact, for N < 40 the referenced upper bounds are known to be the exact gonality values,
which allows us to make a few additional certifications of sporadic CM points on X (V).

Lemma 8.10. For N € {31,34,39}, the modular curve X1(N) has sporadic CM points.

Proof. Let N € {31,34,39}, and let J1(N) g be the Jacobian abelian variety of the modular
curve X1(N),q- By [DEVHMZB20, Thm. 3.1] we have J1(N)(Q) is finite. From this it follows
- see e.g. [BELOV19, Thm. 4.2] — that §(X1(IV)) = vo(X1(V)). Comparing the work of
[DvH14] to our own calculations, we find that dom(X1(N)) < vo(X1(V)). O

For the remaining 227 values of N, which are recorded in Table 5, we do not yet know
whether X (V) has a sporadic CM point.

In our computations for dem(X1(M,N)), we find based on Lemma 8.3 that there are 183
pairs (M, N) with M > 1 such that X;(M, N) may fail to have a sporadic CM point. Our
computations of don(X1(M, N)) for all such pairs are exact — that is, these modular curves
are minimized by an order of class number at most 100. Thus for some of these pairs we can
show that there are no sporadic CM points on X;(M, N), as follows: using the Q-morphism
X1(M,N) — X{(N), we get

Y(X1(M, N)) < deg(X1 (M, N) = X1(N)) - 1o(X1(N)) = Mo(M) - vo(X1(N)),
and it follows that if
dem(X1(M, N)) = M¢(M) - yo(X1(N))

then X (M, N) has no sporadic CM points. Using this and the upper bounds on yg(X1(N))
in [DvH14], we find that X;(M, N) has no sporadic CM points for 31 pairs (M, N).



44 PETE L. CLARK, TYLER GENAO, PAUL POLLACK, AND FREDERICK SAIA

Additionally, for the pairs (2,2),(3,3),(4,4),(5,5), and (3,6) the curves X1(M, N) q(c,)
are of genus 0 with infinitely many rational points. By [JKP06, Thm. 3.2] we have 6(X1(6,6) ) =
4, while our computations give dey(X1(6,6)) = 6. We then have 37 total pairs (M, N) with
M > 1 for which we know we have no sporadic CM points, and we list these in Table 6. For
the remaining 146 pairs (M, N) with M > 1 (listed in Table 7), we do not yet know whether
X1(M, N) has a sporadic CM point.

Example 8.11. Consider the modular curve X;(450). In order to use Lemma 8.3 to produce
a super-sporadic CM point on X;(450), we would need

119

den (X1(450)) < {m)¢(450)¢(450)J = 321.

If A is an imaginary quadratic discriminant such that every prime divisor of 450 = 2 - 32 - 52
splits in O(A) then (A < —4 and thus) da,cm(450) = ¢(450)ha = 120ha. Thus such
a A gives us a super-sporadic CM point iff ha < 2. However, in none of the 27 imaginary
quadratic fields of class number 1 or 2 do the primes 2, 3 and 5 all split. Moreover, minimizing
da,om(X1(450)) among all mazimal orders of class number at most 100 only gives

dov(X1(450)) < 360.
In fact
den (X1(450)) = 240,
with minimizing discriminant A = —36 = 32 - AQ( V=) Equivalently we have
dem(X0(450)) = d—36,c0m(X0(450)) = 4,

coming from the fact that h_3g = 2 so the ring class field F' of Q(1/—1) of conductor 2 is a
number field of degree 4 over which there is an O(—36)-CM elliptic curve with an F-rational
cyclic 450-isogeny: cf. [BC20a, Thm. 6.18].
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9. TABLES
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TABLE 1. All integers N € Z™ for which dey(Xo(N)) = 1.

TABLE 2.

N | dem(Xo(V)) | dem (X1 (V)
1 1 1
2 1 1
3 1 1
4 1 1
6 1 1
7 1 2
9 1 3
11 1 )
14 1 3
19 1 6
27 1 9
43 1 14
67 1 22
163 1 o4

1
12
24
36
53

2
13
25
37
59

3
15
26
39
61

4 5
16 17
28 29
40 41
65 71

6
18
30
46
79

7
20
31
47
83

8
21
32
48
89

9
22
33
49

101

10
23
35
50
131

Some N for which Xo(N) has no sporadic CM points.
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N 60 | 70 | 72 | 80 | 87 | 90 | 94 | 96 | 105|108 | 110 | 120 | 126 | 132 | 138
dem(Xo(N)) | 4 | 4 | 4 | 4 | 4 | 4 | 4| 4| 4| 4| 4] 4| 4] 4]|4
N 140 | 144 | 150 | 152 | 160 | 168 | 174 | 180 | 188 | 190 | 192 | 195 | 204 | 208 | 210
dem(Xo(N)) | 6 | 6 | 4 | 4 | 4 | 4| 4|6 | 4| 4| 4| 4| 4] 4]4
N 216 | 220 | 230 | 231 | 234 | 236 | 238 | 240 | 248 | 252 | 255 | 261 | 264 | 270 | 272
dem(Xo(N)) | 4 | 6 | 4 | 4 | 4 | 4| 4| 4| 4|6 | 4| 4| 4] 4]4
N 276 | 280 | 282 | 285 | 286 | 287 | 288 | 300 | 303 | 304 | 310 | 312 | 315 | 318 | 320
dem(Xo(N)) | 4 | 6 | 4 | 4| 4| 4|6 |6 | 4] 4] 4] 4|4]|4]4
N 324 | 332 | 334 | 336 | 348 | 350 | 357 | 360 | 376 | 380 | 384 | 392 | 395 | 400 | 413
dom(Xo(N)) | 4 | 4 | 4 | 4| 6 | 4| 4|8 | 4| 4| 4| 4| 4] 4]4
N 416 | 420 | 426 | 429 | 430 | 432 | 435 | 440 | 447 | 455 | 468 | 472 | 476 | 483 | 496
dom(Xo(N)) | 4 | 8 | 6 | 4 | 4 | 6| 4| 8 | 4| 4|6 | 4|6/ 4]4
N 501 | 504 | 519 | 524 | 528 | 535 | 558 | 560 | 572 | 576 | 591 | 600 | 623 | 635 | 672
dem(Xo(N)) | 4 | 8 | 4 | 4| 8| 4|6 | 6|66 | 4|84 4]8
N 720

dom(Xo(N)) | 12

TABLE 3. All N for which we do not know whether X, (V) has a sporadic CM point.
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N 1213l als5l6[7] 8] 910]11]12]13]14
dom(Xa(N) [ 1111 |2|1]2]4]3]2 41413
YoXaN)< |1 1|11 |11 ]1]1]1 11212
N 151617 18 [19]20]21] 22 | 23 | 24 | 25 [ 26|27 28
dom(X1(N)) | 88|86 |6[8|4|10[22|16]10]|6]9]12
YXiN)<| 2|24 2 |5|3|4| 4| 7| 4]|51|6|6]6
N 293032 33 3536 [38] 40 | 42 | 44 | 45 [ 46|47 48
dom(X1(N)) [14] 8 [16| 20 |24 |24 |18 | 16 | 12 | 20 | 24 | 22| 46 | 32
YWX(N)< |11 6|8 |10 |12]8 |12 12|12 | 15| 18 |19]29] 16
N 5152|5455 [56|59(60] 63|64 69| 7071|7275
dom(X1(N)) 322418 40 |24 |58 |32| 36 | 32 | 44 | 48 | 70|48 |40
Y(X1(N)) < | 24|21 |18 | 30 |24 46|24 | 36 | 32 | 44 | 36 | 66| 32| 40
N 778081 ] 87 [ 90|94 |96 105|108 | 140 | 144

dom(X1(N)) | 60|64 541124892 64| 96 | 72 | 144 | 144

1(X1(N)) < | 60| 48| 54| 70 |48 |83 |56 | 96 | 72 | 144 | 128

TABLE 4. Some N for which X;(N) has no sporadic CM points.
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N 37 | 41 | 43 | 49 | 50 | 53 | 57 | 58 | 61 | 62 | 65 | 66 | 67 | 68 | 73
dem(X1(NV)) [ 12| 20 | 14 | 14 | 10 | 26 | 12 | 14 | 20 | 30 | 24 | 20 | 22 | 32 | 24
N 74| 76 | 78 | 79 | 82 | 83 | 84 | 85 | 86 | 88 | 89 | 91 | 92 | 93 | 95
dom(X1(N)) | 18 | 36 | 24 | 26 | 20 | 82 | 24 | 32 | 42 | 40 | 44 | 24 | 44 | 20 | 72
N 97 | 98 | 99 | 100 | 101|102 | 103 | 104 | 106 | 107 | 109 | 110 | 112 | 113 | 114
dem(X1(N)) [ 32| 42 | 60 | 40 | 50 | 32 | 34 | 48 | 26 | 106 | 36 | 80 | 48 | 56 | 36
N 115 | 116 | 117 | 118 [ 119|120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 131
dem(X1(N)) | 88 | 56 | 72 | 58 | 96 | 64 |110| 30 | 80 | 60 | 50 | 72 | 42 | 64 | 130
N 132 | 134 | 135|136 | 137 | 138 | 141 | 142 | 143 | 145 | 148 | 149 | 150 | 152 | 153
dem(X1(N)) | 80 | 66 | 72 | 64 | 68 | 88 | 92 | 70 [120| 56 | 72 | 74 | 80 | 144 | 96
N 154 | 155 | 156 | 158 | 159 | 160 | 161 | 162 | 164 | 165 | 166 | 167 | 168 | 171 | 172
dem(X1(N)) | 60 | 120 | 48 | 78 | 104 [ 128 | 132| 54 | 80 | 80 | 82 | 166 | 96 | 108 | 84
N 173 | 174 | 175 | 176 | 177 | 179 | 180 | 182 | 184 | 186 | 187 | 188 | 189 | 190 | 191
dem(X1(IV)) | 86 | 112 |120| 80 [ 116 | 178 | 144 | 72 | 88 | 60 | 160 | 184 | 108 | 144 | 190
N 192 | 195 | 196 | 197 | 200 | 203 | 204 | 206 | 207 | 208 | 209 | 210 | 212 | 213 | 214
dem(X1(N)) | 128 | 192 | 84 | 98 | 80 | 168 | 128 | 102 | 132 | 192 | 180 | 96 | 104 | 140 | 106
N 215 | 216 | 220 | 224 | 225 | 227 | 230 | 231 | 232 | 234 | 235 | 236 | 238 | 239 | 240
dem(X1(N)) | 168 | 144 | 240 | 96 | 120 | 226 | 176 | 240 | 112 | 144 | 184 | 232 | 192 | 238 | 128
N 242 | 243 | 244 | 245 | 248 | 249 | 251 | 252 | 253 | 254 | 255 | 256 | 261 | 262 | 263
dem(X1(N)) | 110 | 162 | 120 | 168 | 240 | 164 | 250 | 216 | 220 | 126 | 256 | 128 | 336 | 130 | 262
N 264 | 267 | 270 | 272 | 275 | 276 | 279 | 280 | 282 | 285 | 286 | 287 | 288 | 295 | 299
dom(X1(N)) | 160 | 176 | 144 | 256 | 200 | 176 | 180 | 288 | 184 | 288 | 240 | 480 | 288 | 232 | 264
N 300 | 303 | 304|310 (311|312 315|318 | 319|320 | 323|324 |329| 332 | 334
dem(X1(IV)) | 240 | 400 | 288 | 240 | 310 | 192 | 288 | 208 | 280 | 256 | 288 | 216 | 276 | 328 | 332
N 336 | 341 | 347|348 {350 | 357 | 359 | 360 | 376 | 380 | 383 | 384 | 392 | 395 | 400
dem(X1(N)) 1192 | 300 | 346 | 336 | 240 | 384 | 358 | 384 | 368 | 288 | 382 | 256 | 336 | 624 | 320
N 413 | 416 | 420 | 426 | 429 | 430 | 432 | 435 | 440 | 447 | 455 | 468 | 472 | 476 | 483
dom(X1(N)) | 696 | 384 | 384 | 420 | 480 | 336 | 432 | 448 | 640 | 592 | 576 | 432 | 464 | 576 | 528
N 496 | 501 | 504 | 519 | 524 | 528 | 535 | 558 | 560 | 572 | 576 | 591 | 600 | 623 | 635
dem(X1(N)) | 480 | 664 | 576 | 688 | 520 | 640 | 848 | 540 | 576 | 720 | 576 | 784 | 640 | 1056 | 1008
N 672 | 720

dem(X1(NV)) | 768 | 1152

TABLE 5. All N for which we do not know whether X; (V) has a sporadic CM point.
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(M, N) | dep(X1 (M, N)) || (M, N) | dem(X1(M, N))
(2,2) 1 (4,16) 16
(3,3) 2 (2,18) 12
(2,4) 2 (3,18) 12
(4,4) 4 (2,20) 8
(5,5) 8 (2,22) 10
(2,6) 2 (2,24) 16
(3,6) 4 (3,24) 32
(6,6) 6 (2,26) 12
(2,8) 4 (3,27) 36
(4,8) 8 (2, 28) 12
(3,9) 6 (2, 30) 16
(2,10) 4 (2,32) 16
(2,12) 8 (2, 36) 24
(3,12) 12 (2, 40) 32
(4,12) 8 (2, 48) 32
(6,12) 16 (2,54) 36
(2,14) 6 (2,70) 72
(3,15) 16 (2,72) 72
(2,16) 8

(

TABLE 6. Some (M, N) with M > 2 for which X, (M, N) has no sporadic CM points.
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(M, N) (7,7 | (8,8 | (9,9 | (5,10) | (10,10) | (11,11) | (12,12)
dom(X1(M, N)) 12 8 18 8 16 40 24
(M,N) (7,14) | (14,14) | (5,15) | (8,16) | (6,18) | (9,18) | (4,20)
dom(X1(M,N))| 24 36 16 32 18 36 16
(M, N) (5,20) | (10,20) | (3,21) | (4,24) | (6,24) | (12,24) | (5,25)
dom(X1(M,N))| 32 32 12 16 32 48 40
(M, N) (4,28) | (7,28) | (3,30) | (5,30) | (6,30) | (4,32) | (8,32)
dem(X1(M,N)) | 24 72 16 48 32 32 64
(M, N) (3,33) | (2,34) | (3,36) | (4,36) | (6,36) | (2,38) | (3,39)
dem(X1(M,N)) | 40 16 36 48 48 18 24
(M, N) (4,40) | (5,40) | (2,42) | (3,42) | (6,42) | (2,44) | (4,44)
dem(X1(M,N)) | 32 64 12 36 36 20 40
(M,N) (3,45) | (5,45) | (2,46) | (3,48) | (4,48) | (6,48) | (2,50)
dom(X1(M,N))| 48 96 22 64 64 64 20
(M, N) (3,51) | (2,52) | (4,52) | (3,54) | (6,54) | (5,55) | (2,56)
dom(X1(M,N))| 64 24 48 36 72 160 24
(M, N) (4,56) | (2,58) | (2,60) | (3,60) | (4,60) | (2,62) | (2,64)
dom(X1(M,N))| 48 28 32 64 64 30 32
(M, N) (4,64) | (2,66) | (2,68) | (3,69) | (3,72) | (4,72) | (6,72)
dem(X1(M,N)) | 64 40 32 88 96 96 144
(M, N) (2,74) | (3,75) | (2,76) | (2,78) | (2,80) | (4,80) | (3,81)
dem(X1(M,N)) | 36 80 72 24 64 128 108
(M, N) (2,82) | (2,84) | (3,84) | (2,86) | (3,87) | (2,88) | (2,90)
dom(X1(M,N))| 40 48 72 42 112 40 72
(M,N) (3,90) | (2,92) | (2,94) | (2,96) | (3,96) | (4,96) | (2,98)
dom(X1(M,N))| 96 44 92 64 128 128 42
(M,N) (2,100) | (2,102) | (2,104) | (3,105) | (2,106) | (2,108) | (3,108)
dem(X1(M,N)) | 40 64 96 192 52 72 144
(M, N) (2,110) | (2,112) | (2,116) | (2,118) | (2,120) | (2,122) | (2,124)
dem(X1(M,N)) | 120 48 56 116 64 60 120
(M, N) (2,126) | (2,128) | (2,132) | (2,136) | (2,138) | (2,140) | (4,140)
dem(X1(M,N)) | 108 64 80 128 88 144 288
(M, N) (2,144) | (3,144) | (4,144) | (2,150) | (2,152) | (2,156) | (2,160)
dom(X1(M,N)) | 144 288 288 120 144 96 128
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(M, N) (2,162) | (2,166) | (2,168) | (2,174) | (2,180) | (2,188) | (2,190)
dem(X1(M,N)) | 108 164 96 168 192 184 144
(M,N) (2,192) | (2,196) | (2,200) | (2,208) | (2,210) | (2,216) | (2,220)
dom(X1(M,N)) | 128 168 160 192 192 216 320
(M, N) (2,234) | (2,236) | (2,238) | (2,248) | (2,252) | (2,262) | (2,264)
dom(X1(M,N)) | 216 232 288 240 288 260 320
(M, N) (2,280) | (2,286) | (2,288) | (2,300) | (2,336) | (2,360)
dem(X1(M,N)) | 288 360 288 320 384 576

TABLE 7. All pairs (M, N) with M > 2 for which we do not know whether
X1(M,N) has a sporadic CM point.




