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ABSTRACT

In this paper we study the C*-fixed points in moduli spaces of Higgs bundles over a
compact Riemann surface for a complex semisimple Lie group and its real forms. These
fixed points are called Hodge bundles and correspond to complex variations of Hodge
structure. We introduce a topological invariant for Hodge bundles that generalizes the
Toledo invariant appearing for Hermitian Lie groups. An important result of this paper
is a bound on this invariant which generalizes the Milnor-Wood inequality for a Hodge
bundle in the Hermitian case, and is analogous to the Arakelov inequalities of classical
variations of Hodge structure. When the generalized Toledo invariant is maximal, we
establish rigidity results for the associated variations of Hodge structure which gener-
alize known rigidity results for maximal Higgs bundles and their associated maximal
representations in the Hermitian case.

1. Introduction

Since their introduction in Hitchin’s seminal paper [Hit87], Higgs bundles over a compact
Riemann surface have been of tremendous interest in geometry, topology and theoretical physics.
Within the moduli space of Higgs bundles there is a special subvariety determined by the fixed
points of a natural C*-action. These fixed points are called Hodge bundles and correspond to
holonomies of complex variations of Hodge structure. They are part of the global nilpotent cone,
and coincide with critical points of a natural energy function on the moduli space. The impor-
tance of the C*-fixed points also stems from the fact that, roughly speaking, the subvariety of
Hodge bundles determines the topology of the moduli space of Higgs bundles (see [Hit87, GHS14,
GH13, Got94]). In this paper we investigate some basic properties of Hodge bundles and their
moduli.

To describe our results, let G be a complex semisimple Lie group with Lie algebra g, and let
X be a compact Riemann surface with genus g > 2 and canonical bundle K. A G-Higgs bundle
on X is a pair (E, ¢), where E is a holomorphic principal G-bundle on X and ¢ € H°(E(g) ® K)
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is a holomorphic section of the Lie algebra bundle twisted by K. The moduli space of polystable
G-Higgs bundles will be denoted by M(G). By the nonabelian Hodge correspondence, the moduli
space M(G) is homeomorphic to the character variety R(G) of conjugacy classes of reductive
representations p : m1(X) — G.

The C*-action on the Higgs bundle moduli space is defined by X-(E,¢) = (E,Ap). To
describe the C*-fixed points, fix a Z-grading g = @jez g;. Let ¢ € go be the grading element,
that is, [(,z] = jx for all x € g;, and let Go < G be the centralizer of (. A Higgs bundle (F, ¢)
is said to be a Hodge bundle of type (Go, gi) if £ reduces to a holomorphic Go-bundle Eg,, and
¢ € H'(Eg,(gr) ® K). A polystable Higgs bundle is a fixed point if and only if it is a Hodge
bundle [Sim92]. In fact it suffices to consider Hodge bundles of type (Go, g1) (see §4.2 for more
details).

The representations p : m1(X) — G associated to Hodge bundles factor through a real form
p:m(X) — GR — G of Hodge type, that is, a real form such that the rank of its maximal
compact subgroup is equal to the rank of Ggy. If H§ < Gg is a maximal compact subgroup, then
the homogeneous space GF / HI([f has a natural complex structure and is called a period domain.
The holomorphic tangent bundle of G¥ /Hf decomposes as € >0 GR X gz g;- In [Sim92], Simpson

showed that the representations p : 7 (X) — GF < G arising from Hodge bundles of type (Go, g1)
define p-equivariant holomorphic maps

fp: X — GR/HE

such that Jf, is valued in the first graded piece GR Xk 01 of the holomorphic tangent bundle.
Such pairs (p, f,) are called variations of Hodge structure.

When the grading in the above discussion is g = g_1 @ go @ g1, the real form GR < G is a
group of Hermitian type and the period domain GR/ H§ is the Riemannian symmetric space
of GR. In this case, the symmetric space is Kdhler and Hodge bundles define representations
p:m(X) — GR and p-equivariant holomorphic maps to the symmetric space of G¥. Pulling
back the Kéhler form and integrating it over X defines an invariant which is usually called the
Toledo invariant 7(p). The Toledo invariant is defined for all representations into Hermitian Lie
groups and satisfies the Milnor—Wood inequality

I7(p)| < (29 — 2) rk(G™/HY).

This inequality was first proven by Milnor [Mil58] for PSLoR, and more generally in [DT87,
BIWO03]. Using Higgs bundles, one can also define the Toledo invariant and obtain the
Milnor-Wood inequality [Hit87, BGG03, BGR17].

The set of representations which maximize the invariant are called maximal representations
and have many interesting geometric features. For example, maximal representations define
connected components of the character variety which consist entirely of discrete and faithful
representations [BIW10]. For PSLyR, maximal representations correspond to Fuchsian represen-
tations and the representation uniformizing the Riemann surface X defines the unique maximal
Hodge bundle. There are two classes of Hermitian groups, those of tube type and those of nontube
type. Generalizing the complex hyperbolic geometry results of [Tol89], maximal representations
into nontube-type groups always factor through a maximal subtube up to a compact factor
[BGGO03, BIW03, BGR17]. For example SU(p, p) is the maximal subtube of SU(p, ¢) when ¢ > p.

Hodge bundles of type (Go, g1) form their own moduli space M (G, g1). Consider a Z-grading
g= EB]EZ g; with grading element (. Define a character of the Lie algebra go,

xr 80 — C, xr(r)= B(x,()B(v,7),
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where B is the Killing form of g and « is the longest root such that the root space g, C g1.
As explained in § 3.3, the normalization constant B(7,7) normalizes the minimum of the holo-
morphic sectional curvature of the period domain to be —1. Recall that a Hodge bundle of type
(Go, g1) is a pair (E, ), where E is a holomorphic Go-bundle and ¢ € H°(E(g1) ® K). For some
positive integer ¢, the multiple q - xr exponentiates to a character x : Go — C* of the Lie group
Go and defines a line bundle E(y). We define the Toledo invariant of a Hodge bundle (E, ¢) by

(B, p) = ;deg E(x).

For gradings g_1 @ go © g1, the Lie algebra character yr and the invariant 7 agree with the
definitions of the Toledo character and invariant for Hermitian groups in [BGR17].

To generalize the notion of rank, we use the fact that the space g; is a prehomogeneous
vector space (PHVS) for the action of Gg. That is, g1 has a unique open dense Gg-orbit Q C g;.
The theory of PHVSs was introduced by Sato (see [SK77, Kim03, Mor91, Man13]) and provides
an ideal set of tools to study our problem. Let e € 2 C g1 be any point in the open orbit and
complete it to an sly-triple {f, h,e} with h € go. We define the rank of (Gg, g1) by

rkp(Go, g1) = Sxr(h).

In §3 we show that this is independent of the choices made. Again, for Hermitian groups this
definition recovers the rank of the symmetric space.
Let us state our first main result.

THEOREM A (Corollary 5.5). A polystable Hodge bundle (E, ) of type (Go, g1) satisfies the
inequality

I7(E, )| < (29 — 2) kp(Go, g1)- (1.1)
Remark 1.1. In terms of variations of Hodge structure, the Toledo invariant is the degree of
the pullback of a natural line bundle on the period domain G®/(Go N HR). Inequality (1.1) is
simply saying that this is bounded by the Euler characteristic times a number (the rank) which
is determined by the Lie theory of the period domain. In Proposition 3.12, we prove that the
rank is the negative inverse of the maximal value of the holomorphic sectional curvature (in the
+1 space) of the period domain, which coincides with the usual rank in the case of Hermitian
symmetric spaces.

Remark 1.2. We refer to inequality (1.1) as the Arakelov—Milnor inequality as it generalizes
the Milnor-Wood inequality when the Higgs bundle defines a variation of Hodge structure in
a Hermitian symmetric space, and is analogous to the Arakelov inequalities for variations of
Hodge structure. These are generalizations of the classical Arakelov inequality for the degree of
the relative canonical bundle of a family of curves over another curve (see, for example, [Pet90,
J702, Vie09, VZ03, MVZ12]). As in the Milnor—-Wood case, maximality of the bound in the
Arakelov inequalities is accompanied by some rigidity phenomena. As already mentioned, in the
Hermitian case for the grading g_1 @ go ® g1, the character x7 and the invariant 7 agree with
the definition of the Toledo character and the Toledo invariant for Hermitian groups in [BGR17],
and the rank of (Go, g1) coincides, as mentioned above, with the rank of the symmetric space.

We refer to Hodge bundles with |7(E, ¢)| = rkr(Go, g1)(29 — 2) as maximal Hodge bundles
of type (Go,g1). As in the Hermitian case of [BGR17], the Arakelov—Milnor inequality follows
from a more general and more precise inequality established in Theorem 5.3. Indeed, the stability
of a Hodge bundle of type (G, g1) depends on a parameter a = A\{ with A € R. In Theorem 5.3
we give an inequality for an a-semistable Hodge bundle (E, ). Moreover, we give a refined
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inequality which depends on the orbit in g; which contains the generic value of ¢. While we
are mostly interested in the case o = 0, since this relates to the stability of the Higgs bundle
obtained from (F, ) by extension of structure group, considering the arbitrary value of the «
case has proven to be a powerful tool to study the moduli space for a = 0 (see [BGG03, GHS14]).
We believe that the same principle will apply in this general situation.

Ezxample 1.3. The inequality is usually easy to write down in concrete cases. For example, for
G = SO2,+4C and G¢ = GL,C x SO,C, one finds that rky(Go, g1) = 2min(p, ¢) if ¢ > 1 and 1 if
q = 1. Let us take ¢ > 1. A bundle (E, ¢) of type (Go, g1) can be written as E =V @ W & V*,
where V' is a GL,C-bundle and W is a SO,C-bundle, and the Higgs field has the form

06 0
e=1[0 0 0T
00 0

where 6 : W — V ® K. One obtains 7(F, ¢) = 2deg V, and it follows that inequality (1.1) takes
the form (actually deg V' < 0)

deg V' > —min(p, q)(29 — 2).

As mentioned above, we actually prove a more precise inequality, which depends on the orbit
which contains the generic value of ¢. In our case, if the image of T in W is the sum of a
nondegenerate subspace of dimension r; and of a totally isotropic subspace of dimension 73,
then the inequality can be refined as

degV > — (n + 2)(29 —9). (1.2)

These values are calculated in Example 3.7.

Fundamental in the proof of the Arakelov—Milnor inequality (1.1) is the construction of a
maximal Jacobson-Morozov (JM) regular prehomogeneous vector subspace (PHVSS) of (Go, g1)
and the existence of a polynomial relative invariant for this subspace. This is the analogue of a
maximal subtube in the Hermitian case. To explain this, let {f, h,e} C g be an sly-triple such
that [h,e] = 2e and [e, f] = h. The weights of ad;, are integral. When the weights of ad;, are
all even, {f,h,e} is called an even sly-triple and defines a Z-grading g = € jez 8 with grading
element h/2 and e € g;. In fact e € Q C g; is in the open Gg-orbit (see §2.2). A PHVS (G, g1) is
called regular if the Gy-stabilizer of a point in the open orbit €2 is reductive. For gradings arising
from even slo-triples {f, h, e}, (Go, g1) is regular since the Gg-centralizer of e € € coincides with
the G-centralizer of the slaC-subalgebra. In this case, we refer to (G, g1) as a JM-regular PHVS.

Fix a basis {f, h,e} of s[5C and let T < PSLyC be the connected subgroup with Lie algebra
(h). The Hodge bundle associated to the representation uniformizing the Riemann surface X is
given by (Er,e), where Et is the holomorphic frame bundle of K~! and e € H(Er((e)) ® K).
For SLyC, we take Et to be the frame bundle of a square root of K. Suppose {f,h,e} C g
is an even sly-triple and consider the associated JM-regular PHVS (Go, g1). From our setup, it
follows that extending structure group (E1(Go),e) defines a maximal Hodge bundle,

7(ET1(Go), e) = tk(Go, 91)(29 — 2).

Let C < Gg be the G-centralizer of the sloC-subalgebra. Since T and C are commuting subgroups
of Go, we can form a Gop-bundle Bt ®¢, Ec out of Bt and a holomorphic C-bundle E¢. Since
C acts trivially on (e), we have e € H(Ec ®¢, E1((e)) ® K). Moreover, this process does not
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change the Toledo invariant and defines a map
\Ile : N(C) E— Mmax(Go,gl)
EC m— (EC ®G0 ET, e)

from the moduli space of degree zero polystable C-bundles to the moduli space of maximal Hodge
bundles of type (Go, g1)-

THEOREM B (Theorem 6.2). If (G, g1) is a JM-regular prehomogeneous vector space, then the
map V. defines an isomorphism between the moduli space of degree zero polystable C-bundles
and the moduli space of maximal Hodge bundles of type (Go, g1)-

Remark 1.4. We note that the map ¥, is a moduli space version of a restriction of the so-called
global Slodowy slice map of [CS21]. In [BCGGO21], an extension of the map ¥, to the entire
Slodowy slice gives rise to the Cayley correspondence used to describe certain components of the
moduli space of GR-Higgs bundles related to higher Teichmiiller theory, generalizing the Cayley
correspondence for the Hermitian group case given in [BGR17]. It would be interesting to extend
these results to the full Slodowy slice for every even slo-triple.

When (Go,g1) is JM-regular, the representations p: 7 (X) — G associated to maximal
Hodge bundles of type (Go, g1) are described by the following theorem.

THEOREM C (Theorem 6.5). Fix a Riemann surface X of genus g > 2 and suppose (Go, g1)
is a JM-regular PHVS associated to an even sla-triple {f, h,e}. Let S < G be the associated
connected subgroup and let C be the G-centralizer of { f, h,e}. The Higgs bundle associated to a
reductive representation p : 71(X) — G is a maximal Hodge bundle of type (Go, g1) if and only
if p is a product p = py * pc, where

— pu:m(X) — S® < S is the uniformizing PSLoR-representation of X if S = PSLyC and a lift
of the uniformizing representation to SLoR if S = SLoC, and
— pc 1 (X) — CR < C is any representation into the compact real form of C.

The representations p = p, * pc : m1(X) — G all factor through a real form of Hodge type
GR < G which is canonically associated to the grading @ ez 8; (see Proposition 3.8). Moreover,
the GR-centralizer of any such representation is compact, and hence these representations do not
factor through any proper parabolic subgroups P® < GR. B

From the above results, it follows that the equivariant holomorphic map f,: X — GR /HéR
associated to such a maximal variation of Hodge structure (p, f,) is a totally geodesic embedding
which maximizes the holomorphic sectional curvature. In this paper we discuss how the choice
of the Toledo character is related to a metric of minimal holomorphic sectional curvature —1 on
GR /H](I)Q, providing an alternative proof of Theorem A. Our bounds for the sectional curvature
give the bounds found in [Li22] in the case of SL,,C.

Now consider a general grading g = € jez 8 With grading element ¢, not necessarily coming
from an sls-triple. Pick a point e € 2 C g1 in the open Gg-orbit, and complete e to an sly-triple
{f.h e} with h € go. If (Go, g1) is not a JM-regular PHVS, then s = ( — h/2 is nonzero and we
define Go < Gy to be the Gg centralizer of s and g = {x € g1 | [s,#]} = 0. With this setup, G
is reductive and (GO,Ql) defines a PHVSS of (Go,gl) which contains e € Q C §; in the open
orbit (see §2.4). Moreover, the Go-centralizer C of the sly-triple {f, h,e} satisfies C < Go. We
call (Go, §1) a maximal JM-regular PHVSS of (Go, g1).

In §6.3, we show that all maximal Hodge bundles of type (Go,g1) reduce to a maximal
Hodge bundles of type (Go, g1) (see Proposition 6.15). We then show that the moduli space
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MM (G, g1) of maximal Hodge bundles of type (Go, g1) is isomorphic to the moduli space of
polystable C-bundles and deduce rigidity results for maximal variations of Hodge structure (see
Theorems 6.16 and 6.17). This recovers rigidity results for maximal variations of Hodge structure
in the Hermitian case.

2. Prehomogeneous vector spaces, Z-gradings and the Toledo character

For this section, let G be a complex reductive Lie group with Lie algebra g. Throughout the
paper, the word character will be used to refer to a Lie group morphism x : G — C* and also a
Lie algebra morphism x : g — C, what type of object is being considered should be clear from
the context.

2.1 Prehomogeneous vector spaces
We gather together some basic facts about PHVSs. The main references are [Kim03, Kna02,
Mor91, SK77].

A prehomogeneous vector space for G is a finite-dimensional complex vector space V' together
with a holomorphic representation p: G — GL(V') such that V' has an open G-orbit. Such an
open orbit is necessarily unique and dense. If V' is a PHVS, let 2 denote the open orbit in V and
S =V \Q be the singular set. For x € V| denote the G-stabilizer of x by G*. A PHVS vector
space V is called regular if G* is reductive for x € 2, otherwise it is called nonregular.

We say that (H, W) isa PHVSS of (G, V) if (H,W) is a PHVS, H C G is a subgroup, W C V/
is a vector subspace, and the action of H is the restriction of the action of G.

Example 2.1.

(1) The vector space C" is a PHVS for the standard representation of GL,,C. For this example,
2 =C"\ {0}, and it is regular only when n = 1.

(2) The vector space M, , of p x ¢ matrices is a PHVS for the action of S(GL,C x GL,C)
given by (A, B)-M = AMB™'. Here, = {M € M, | k(M) = min(p,q)}. This example
is regular only when p = q.

(3) The vector space M, , is also a PHVS for the action of GL,C x SO,C given by (A4, B) - M =
AMB™L. Here Q= {M € M, ,| tk(M - MT) = min(p, q)}. Also, the vector space M, ,®
Mg, is a PHVS for the action of S(GL,C x GL,C x GL,C) given by (A, B,C) - (M,N) =
(AMB=1,BNC™'). Here Q = {(M,N) € My, ® M, | tk(MN) = min(p, q,7)}.

The first example is regular when p < g and the second example is regular when p =r
and p < q. Note that the inclusions

Myq —— My ® Mgy GL,C x SO,€C —— S(GL,C x GL,C x GL,C)
M (Ma_MT)v (AvB) _— (A’B’(AT)_I)

make (GL,C x SO,C, M, 4) a PHVSS of (S(GL,C x GL,C x GL,C), M, , & M, ,).

Let V be a PHVS for G with representation p. A nonconstant rational function F: V — C
is called a relative invariant if there exists a Lie group character y : G — C* such that

F(p(g)-x) =x(g9)F(x) forallge Gandxz € V.

Here are some fundamental facts appearing in [SK77, §4].
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PRrROPOSITION 2.2. Let V be a PHVS for G with representation p.

(i) Up to a constant, a relative invariant is uniquely determined by its corresponding character.
In particular, any relative invariant is a homogeneous function.
(ii) V is regular if and only if the singular set S is a hypersurface.
(iii) Let x : G — C* be a character. Then there is a relative invariant for x if and only if x is
trivial on the stabilizers of points in ), that is, x|g= = 1 for all z € Q.

Ezxample 2.3. The regular PHVS M, ,, from Example 2.1(2) has a relative invariant F': M, , —
C given by F(M) =det(M). The associated character x : G — C* is given by x(4,B) =
det(A) det(B)~! since

F((A,B)- M) = det(AMB™) = x(A, B)F(M).

The regular PHVS M, , & M, , with p < g from Example 2.1(3) has a relative-invariant given
by F(M,N) = det(MN). The associated character is x(4, B,C) = det(A) det(C~!) since

F((A,B,C)-(M,N)) =det(AMB™*BNC™') = x(A, B,C)F(M, N).
This relative invariant also defines a relative invariant for the GL,C x SO,C PHVSS given
by (M,N)=(M,-M?%). For (A, B) € GL,C x SO,C, the associated character is x(A, B) =
det(AAT) = det(A)2.

2.2 Prehomogeneous vector spaces associated to Z-gradings
A Z-grading of a semisimple Lie algebra g is a decomposition

g= @gj such that [g;, g;] C git-
JEZ

The subalgebra p = P j>08j 1s @ parabolic subalgebra with Levi subalgebra gg C p. There is an
element ¢ € go such that g; = {X € g|[(,z] = jz}; the element ( is called the grading element
of the Z-grading.

Given a Z-grading g = @jez gj, let Go < G be the centralizer of (; Go acts on each factor
g;. The relation between Z-gradings and PHVSs is given by the following theorem of Vinberg
(see [Kna02, Theorem 10.19]).

PROPOSITION 2.4. For each j # 0, g;j is a PHVS for Gy.

Prehomogeneous vector spaces arising from Z-gradings of g are said to be of parabolic type.
From now on, we will consider only PHVSs of parabolic type.

Ezxample 2.5. All of the PHVSs from Example 2.1 are of parabolic type. Below the parabolic
refers to the subgroup with Lie algebra p = €9 >0 9j-

— For (S(GL,C x GL,C), M, ,), G = SL,4,C and the parabolic is the stabilizer a p-plane in
Ccrta,

— For (GL,C x SO,C, M, ,), G = SO2,4+,C and the parabolic is the stabilizer of an isotropic
p-plane in C?P+4,

— For (S(GL,C x GL,C x GL,C), M, ; & M,,), G = SLy44+-C and the parabolic is the stabi-
lizer of a flag CP C CP+t4 C CPTatr,

Consider a nonzero nilpotent element e € g. By the Jacobson-Morozov theorem, e can be
completed to an sla-triple {f, h,e} C g, that is, a triple satisfying the bracket relations of slyC:

[h.e] =2e, [h,fl==2f e, fl=h

Moreover, given {h,e} so that [h,e] = 2e and h € ad.(g), there is a unique f € g such that
{f, h,e} is an sly-triple.
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Given an slo-triple {f, h, e}, the semisimple element h acts on g with integral weights and
thus defines a Z-grading g = P,z 9;, where g; = {z € g|ady(z) = jz}. Note that e € go. We
have the following result of Kostant and Malcev (see [Kna02, Theorem 10.10]).

PROPOSITION 2.6. Let {f, h,e} C g be an sly-triple with associated Z-grading g = @jez gj, and
let Go < G be the associated analytic subgroup with Lie algebra go. Then e is in the open orbit
) of the PHVS (G(),QQ).

COROLLARY 2.7. The PHVS (G, g2) arising from an sly-triple {f, h,e} is regular.

Proof. Since e € ) C g2, we need to show that the stabilizer Gf is reductive. The group G
centralizes h, so the stabilizer G§ of e stabilizes both h and e. By the uniqueness part of the
Jacobson-Morozov theorem, G§ stabilizes the sl-triple. As the centralizer of an sly-subalgebra
is reductive (see [CM93, Lemma 3.7.3]), we conclude that G§ is reductive. O

Let B:gxg— C denote the Killing form of g. Given an sly-triple, {f, h,e} C g with
associated Z-grading g = € ez 95 define the Lie algebra character xp, : go — C by

Xn(z) = 5B(h, ). (2.1)
ProrosITION 2.8. There is a positive integer q such that q - x; exponentiates to a character
Xh,q * Go — C*
which has a relative invariant of degree q - B(h/2,h/2).

Remark 2.9. In fact, we will prove that the associated relative invariant is a polynomial in
Proposition 3.16.

Proof. Let gi C go be the Lie algebra of the Go-stabilizer of e € go. For x € g, we have
B(h,z) = B(le, f],z) = B(f, e, z]) = 0.

Thus, xp(g5) = 0, and there is a positive integer ¢ so that ¢ - x; exponentiates to a character
which is trivial on the identity component of Gf. Since G§ has a finite number of components,
we can choose g so that ¢ - x;, exponentiates to a character x4 : Go — C* whose restriction to
G§ is trivial. Hence, by part (iii) of Proposition 2.2, the character xj 4 has a relative invariant
F : g2 — C such that F(e) # 0. For the degree, we have Adexptn)(e) = exp(2t)e. Thus,

et (o (1) ) = (o0 (1) ) o (10 52, 2) . 22

By Proposition 2.2 F' is homogeneous, and so has degree g - B(h/2,h/2). O

Remark 2.10. Not every regular PHVS of the form (G, g2) arises from an sls-triple. For examples
in Eg, E7 and Eg see [Rub11, Remark 4.18]. In fact, the B3 example in [Rubl1, Table 1] gives a
very simple example of a regular PHVS which does not arise from an slo-triple. For such regular
PHVSs the grading element ¢ does not have a relative invariant.

2.3 Canonical Z-gradings associated to parabolics
In this section we fix some normalizations for the Z-gradings we will consider.

Up to conjugation, all Z-gradings of g arise from labeling the nodes of the Dynkin diagram of g
with nonnegative integers [Vin94, Chapter 3.5]. This works as follows. Let t C g be a Cartan sub-
algebra and A = A(g, t) be the corresponding set of roots. Pick a set of simple roots IT C A and
let AT C A be the set of positive roots. Every root o € A™ can be written as o = zmen n;Q,
where all n; are nonnegative integers. For each «; € II, choose nonnegative integers p;,
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that is, label the nodes of the Dynkin diagram of Il with nonnegative integers p;. This choice
defines a Z-grading g = @jez g;, where g; is the direct sum of all root spaces g, such that
o= EaiEH nio; and j =Y. nip;.

In the above construction, the associated parabolic p = ®j20 g; and the Levi subalgebra
go depend only on the labels p; mod 2. Namely, up to conjugation, parabolic subalgebras p are
determined by subsets © C II, where

Pe:féB @ g-a® @ga'

a€span(©)NAT acAt

We define the canonical Z-grading of pe by labeling the «a;-node of the Dynkin diagram 0 if
a; € © and 1if a; € IT\ ©. That is, g; is given by

gj = @ga, where a = Z n;a; and j = Z ;.

a; €11 a; €EI1\O©

Remark 2.11. We will often consider PHVSs of parabolic type and of the form (G, g1) where g;
is the weight-1 piece of the canonical grading of a parabolic subalgebra of g. This is not a major
restriction since, given a general PHVS (G, g) of parabolic type, the subalgebra consisting of
graded pieces g; with j = 0 mod k is reductive and g;, is the weight 1 piece of the canonical
grading of a parabolic in this subalgebra.

An sly-triple {f, h,e} C g is called even if ad, has only even eigenvalues. Parabolic sub-
algebras arising from even sly-triples are called even Jacobson—Morozov parabolics. For such
parabolics, the canonical grading is given by adj, /o; the PHVS (Go, g1) is regular by Corollary 2.7
and, by Proposition 2.8, there is a relative invariant associated to the character yj from (2.1).
As a result we will call a PHVS (Go, g1) which arises from an even sly-triple a JM-regular PHVS.

Ezample 2.12. When © = (), Gq is Cartan subgroup and g; is the direct sum of simple root
spaces. Such a PHVS (Go, g1) is always JM-regular and arises from a principal sla-triple. Here
Q) C g consists of vectors with nonzero projection onto each simple root space and the stabilizer
of such a point is the center of G.

Ezxample 2.13. Let n = ZaiEH n;c; be the longest root of A™. For g not of type Eg, Fy, Go, there
is at least one simple root «; with n; = 1. For such a root set © =II'\ {c;}. In this case, the
canonical Z-grading of the parabolic pg is given by

g=9-1DPgoD g

For these examples, (Go, g1) is regular if and only if it is JM-regular. The associated flag variety
G/Pg is the compact dual of a Hermitian symmetric space and (Go, g1) is regular if and only
if the associated Hermitian symmetric space is of tube type. An example of this is given in
Example 2.1, in which case the symmetric space of SU(p, q) is the relevant Hermitian symmetric
space; it is of tube type only when g = p.

Remark 2.14. In Example 2.13, the space gy is an irreducible Gg-representation. In general, if
(Go, g1) is a PHVS such that Gg acts irreducibly on gy, then (G, g1) is regular if and only if it is
JM-regular. For example, this implies that the PHVS (GL,C x SO,C, M, ;) from Examples 2.1
and 2.5 is JM-regular whenever p < g. The regular PHVS (S(GL,C x GL,C x GL,C), M, , &
M, ) from Examples 2.1 and 2.5 does not come from a maximal parabolic of SLgy;,C but it is
still a JM-regular PHVS when p < ¢.
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Ezample 2.15. The simplest example of a PHVS (G, g1) which is regular but not JM-regular
occurs in SO7C with © = {ag}, that is, with labeled Dynkin diagram

Here (Go, g1) = (GL1C x GLyC, C2 @ C?) for the action (), A) - (v,w) = (AwA™L, AwT). A point
in the open orbit is given by v = (1,0) and w = (1,0). For this point, the Gy-stabilizer is given
by A=1and A= ((1) 2) for £ € C*. Geometrically, this parabolic stabilizes an isotropic flag of
the form C c C? c C”.

2.4 Jacobson—Morozov regular prehomogeneous vector subspaces

Fix a Z-grading g = ¢z 9; with grading element ¢ and consider a PHVS (Go, g1). Following

the proof [CM93, Theorem 3.3.1] of the Jacobson-Morozov theorem, one can show that any

nonzero element e € g; can be completed to an sly-triple {f, h,e} with f € g_; and h € go.
The semisimple element h defines a new grading g = @ ez g; where

g; = {z € g|adp(z) = jz}.
Define g; = g; N g2; and the subalgebra g C g given by

i=Psy (2.3)

JEZL
Note that h and ¢ are both in gy and e € g;. The difference s = ¢ — h/2 is semisimple or

zero since ¢ and h/2 are semisimple and [, h/2] = 0. Thus, g is reductive since g = g° is the
centralizer of s. The following proposition is immediate.

PROPOSITION 2.16. Let Gy < G be the Go-centralizer of h. Then (Go, §1) is a PHVSS of (Go, g1)
which is JM-regular and e is in the open Gg-orbit £ C g1.

DEFINITION 2.17. If e €  is in the open Gg-orbit, then (Go, @1)Awill be called a maximal JM-
regular PHVSS of (Go, g1). For any e € g1 \ {0}, we will call (Go,g1) a maximal JM-regular
PHVSS for e.

Remark 2.18. 1If (Go, g1) is JM-regular, then for any e € Q an associated sla-triple has the form
{f7 2(7 6}. In this case, (G(]:gl) - (G()a@l)‘

Ezxample 2.19. Consider the PHVS (S(GL,C x GL,C), M, ) from Example 2.1(2). If p # ¢,
then the PHVS is not JM-regular. For p > ¢, a maximal JM-regular PHVSS is isomorphic
to (S(GL,C x GL,C x GL,_,C), M), for the action (A, B,C)- M = AMB™!. In general, the
maximal JM-regular PHVSS of the PHVSs (G, g1) from Example 2.13 is related to the maximal
subtube of the associated Hermitian symmetric space.

For the PHVS (GL,C x SO,C, M, ;) from the first example of Example 2.1(3) with p > ¢, the
PHVS is not JM-regular and a maximal JM-regular PHVSS is isomorphic to (GL,C x GL,_,C x
SO,C, M, ), where the action is given by (4, B,C)- M = AMC~!. The maximal JM-regular
PHVSS of (S(GL,C x GL,C x GL,C), M, ; ® M,,) can be described similarly. For the regular
(non-JM-regular) PHVS (G, g1) = (GL1C x GLoC,C? @ C?) from Example 2.15, the maximal
JM-regular PHVSS (Gg, §1) containing (v, w) = ((1,0), (1,0)) is

Goz{()\,A)eGLl(CxGLQ(C’A:<<8 2))} and  §, = (v) ® (w).
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The construction of a maximal JM-regular PHVSS of (G, g1) containing e € g; depends on
e and a choice of sly-triple {f, h,e}. However, if e, ¢’ € g1 are in the same Gg-orbit then any two
maximal JM-regular PHVSSs containing e and €’ are Gg-conjugate.

PROPOSITION 2.20. Let e,e¢’ € g1 so that e € Go-e, and let {f,h,e},{f',h, e} be two
slo-triples with h,h' € go. Then there is g € Gq so that

{f,1, e} ={Ady f,Adg h,Adge}.
In particular, the associated maximal JM-regular PHVSSs (C‘ro, g1) and (Gg, g)) containing e and
e’ respectively are Gg-conjugate.

Proof. We may assume e =¢’. Let g = ®j€Z g; be the Z-grading associated to the sl-triple
{f.h,e} and g° be the centralizer of e and u®=le,g|Ng°=g°NP;.,9;. We have i’ —h € u°
since [h—h',e]=0 and [e, f— f]=h —h. Since h,h’ € gg, following the proof [CM93,
Theorem 3.4.7], we can inductively construct Z € go Nu® so that Adexp(z)(h) =h+ (B —h)= 1.
Note that Adexp(z) € = €, and, by the uniqueness part of the Jacobson-Morozov theorem, we have

Adexp(Z) [= f,‘ ]

Finally, we note that every e € g; defines a parabolic subgroup of Py . < Gg. For e € g; \ {0},
let {f,h,e} be an associated sly-triple with h € go. If g = ;7 8; is the Z-grading with grading
element h, then p = @ >0 g; is a parabolic subalgebra of g. Moreover, p depends only on e €
g1 \ {0} and not on the sly-triple {f, h,e} (see, for example, [CM93, Remark 3.8.5]). Note that
the parabolic p can also be defined by

p = {7 € g| Adexp(—t(n/2)) is bounded as t — oo}. (2.4)
The parabolic subalgebra po(e) C go is defined by
Po,e = 8o N ﬁ

We will denote the associated parabolic subgroup by Pg . < Gg. Note that go C po . and G() < P
define a Levi subalgebra and subgroup, respectively.

PROPOSITION 2.21. Let e € g; \ {0} and {f,h,e} be an sly-triple with h € go. If s =( — h/2,
then

Po.e = {7 € go | Adexp(ts) T is bounded as t — oo}.

Proof. The proposition follows immediately from the description of p in (2.4) and the fact that
Adexp(icyz =z for all z € go. O

3. The Toledo character and period domains
In this section we generalize notions from [BGR17], which concerned Z-gradings g =g_; ®

go D g1, to arbitrary Z-gradings.

3.1 The Toledo character and rank

Let G be a complex semisimple Lie group with Lie algebra g and Killing form B. Fix a Z-grading
9 = D,cz 9; with grading element (. Recall that (Go, g1) is a PHVS, and let 2 C g1 be the open
Go-orbit. Since gg is the centralizer of ¢, B({,—) : go — C defines a character.

DEFINITION 3.1. The Toledo character xr : go — C is defined by

xr(z) = B(C,2)B(v,7),
where « is the longest root such that g, C g;.
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Remark 3.2. The normalization factor B(~, ) guarantees that the Toledo character is indepen-
dent of the choice of invariant bilinear form B.

Let e, e’ € g1 \ {0} such that ¢’ € Gg-e and let {f, h,e}, {f',h', €'} be two sly-triples with
h,h' € go. By Proposition 2.20, there is g € Go such that {Ad, f,Adgh,Adge} = {f', W, ¢}
Since Ady ¢ = ¢, we have

xt(h) = B(¢,h)B(v,7) = B(Ady ¢, Adg h)B(v,7) = xr (). (3.1)
As a result, we make the following definition.

DEFINITION 3.3. Let e € g1 and {f, h,e} be an slo-triple with h € gg. Define the Toledo rank of
e by

rkp(e) = %XT(h)-
Define the Toledo rank of the PHVS (Go, g1) by
rkr(Go, g1) = rkr(e) for e € Q.
Remark 3.4. Note that if (Go, g1) is a JM-regular PHVS, then rkr(Go, g1) = B(¢, () B(7,7)-

Ezample 3.5. For the PHVSs (Gog, g1) from Example 2.13, the Toledo rank of (G, g1) agrees
with the rank of the associated Hermitian symmetric space.

PROPOSITION 3.6. Let e € g1 and {f, h,e} be an associated sla-triples with h € go. Then

h h
ter(e) = B (5.5 ) B0 ). (32
Proof. Write ( = h/2 + s. Note that s € g° and h/2 € ad.(g). Thus, B(h/2,s) =0 and
h h h h h
rkr(e) = B<C, 2>B(%’Y) = B<2 +s, 2>B(%’)’) = B<27 2>B(%7)- O

Ezample 3.7. We illustrate these notions in the case of Example 1.3, with G = SO2,4,C and G =
GL,C x SO,C. Taking an isotropic basis of C?*9 = CP @ C4 @ CP, such that (e;, e2pig+1-i) = 1,
we have the grading element

~1d,

Then g = Hom(CP,C?), where u € Hom(CP, C?) represents the matrix

—uT

€ = U s in which ug = Up+1—j,q+1—i-

The orbits are classified by two integers (ri,r2), such that the image of v € Hom(CP,CY) is the
sum of a nondegenerate subspace of dimension r; and a totally isotropic subspace of dimension
ro. Let J,. be the rank r matrix
1
Jr = ).
1
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Then one can take

21d,,
1d,, Id,,
Id,, Id,,

I, ~1d,,
0 —1d,,

—21d,,

0

(The formula for w is valid if 7o + 1 < ¢/2; the reader will modify u accordingly if ro + 1 > ¢q/2.
The formula for h remains the same.) Take the standard invariant form B(X,Y) = tr(XY). If
q > 1 we have B(v,7) = 1 and therefore rky e = ;1 B(h, h) = 2r1 + r2. On the other hand xr(z) =
B((, ), so that we will have 7(E, ¢) = 2deg V if the Higgs bundle (E, ¢) is givenas V& W @ V*
with V' a GL,C-bundle and W a SO,C-bundle. This justifies inequality (1.2) as a consequence
of Corollary 5.5.

3.2 Real forms and period domains

Let g be a complex semisimple Lie algebra and consider a conjugate linear involution o : g — g.
The fixed point set g° C g is a real subalgebra such that g7 ® C = g. Such a subalgebra is called
a real form of g. On the level of groups, a real form G? < G is the fixed point set of an anti-
holomorphic involution ¢ : G — G. A real form is called compact if G? is compact or g7 is the
Lie algebra of a maximal compact subgroup. Compact real forms exist and are unique up to
conjugation.

Real forms of g can be equivalently defined in terms of complex linear involutions 0 : g — g.
Namely, Cartan proved that, given a real form o, there is a compact real form 7: g — g such
that 0 o7 = 700, and that given a complex linear involution #, there is a compact real form
7 :g — g such that 8 o7 = 7 0 6. The correspondence is then given by setting § = o o 7. A real
subalgebra o : g — g is said to be of Hodge type if o is an inner automorphism of g. If 7 is a
compact real form such that 8 = 700 = g o7, then ¢ is of Hodge type if and only if there is a
Cartan subalgebra t C g such that 0] = 1d.

Given a complex linear involution 0 : g — g, we will write g = h @ m for £1-eigenspaces of
6, namely 0|, = Id and 0, = —Id. We will call the decomposition g = & m the complezified
Cartan decomposition of a real form g® C g. There is a real form of Hodge type associated to
every Z-grading of g.

PROPOSITION 3.8. Let g = @jez g; be a Z-grading, and define 6 : g — g by
Olg, = (1)’ 1d.
Then 0 is a Lie algebra involution which defines a real form of Hodge type.

Proof. Tt is clear that 6 is a Lie algebra involution. Moreover, from the constructions in §2.3,
go contains a Cartan subalgebra of g. Hence, the real form associated to the involution 6 is of
Hodge type. O

Ezxample 3.9. For gradings of the form g = g_1 & go ® g1, the canonical real forms are exactly
the set of real forms of Hermitian type. For example, the real form of SL,;,C associated to the
PHVS (S(GL,C x GL,C, M, ;) from Examples 2.1 and 2.5 is SU(p, q).
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The real form of SOg,;,C associated to the PHVS (GL,C x SO,C,M,,) from
Examples 2.1 and 2.5 is SO(2p, ¢). Similarly, the real form of SL,,4,C associated to the PHVS
(S(GL,C x GL,C x GL,C), M), , & M, ) is SU(p + r, q). For the regular (non JM-regular) PHVS
from Example 2.15, the associated real form of SO7C is SO(3,4). For the JM-regular PHV'S asso-
ciated to a principal sla-triple (Example 2.12), the associated real form is the split real form if
the split real form is of Hodge type, otherwise it is the quasisplit real form which is nonsplit. For
example, for G = SL9,C, the split real form is SL2,R but the canonical real form associated to
the grading is SU(p, p).

Remark 3.10. Given a compact real form 7, B(—7(x), y) defines a nondegenerate positive definite
Hermitian inner product on g. Thus, 7(g;) = g—; for any Z-grading g = @j g;-

Let 0 be the involution from Proposition 3.8 and 7 be a compact real form such that o =
forT:g— gis the associated real form of Hodge type. Let GR < G be the associated real form
of G and let H® < GR be the associated maximal compact subgroup. Note that the real form o
restricts to a compact real form on gg. Set HéR = Go N GR,

Consider the homogeneous space

D = G®/H§.

Note that there is a fibration D — G®/H® over the Riemannian symmetric space of GX. In fact,
the homogeneous space D has a natural homogeneous complex structure. Indeed, the tangent
bundle of D = G®/Hf is isomorphic to the associated bundle

TD = G* X HE g*/ho-

Let g® = b @ q® be an orthogonal decomposition and q = g® ® C. Then the complexified tan-
gent bundle is TcD = GR XgE and a complex structure on D is equivalent to an HéR-invariant
decomposition q = q_— @ q+ such that o(q4) =q- and [q+,q+] C q+. The decomposition q =

q— @ q4 is given by setting
0 =P, and 9- =P
7>0 7<0

The complex manifold D is called a period domain for GR. Note that the holomorphic tangent
bundle of a period domain decomposes as

Te°D = G* x Hyq, = @D G xyz g;.
§>0
Ezample 3.11. For the PHVSs from Example 2.13, G® < G is a Hermitian real form and H](l)% <
GR is a maximal compact subgroup. Hence, the period domain D = GR/ H](lf is the Riemannian
symmetric space for GR. For the PHVS (Go, g1) from Example 2.12, Gy < G is a Cartan sub-
group, GR is the quasisplit real form of Hodge type and the period domain is D = GR /U(1)™k(9),
For the PHVS (GL,C x SO(p,C), M, ) from Examples 2.1 and 3.9, GR =S0(2p,q) and the
period domain is D = SO(2p, ¢)/(U, x SOy).

3.3 The Toledo character and holomorphic sectional curvature
Here we discuss how the choice of the Toledo character is related to a metric of minimal
holomorphic sectional curvature —1 on G® /HE.
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As is well known, one can define an invariant Hermitian metric on G®/ H%g by using the
Hermitian scalar product

<$,y>:B(II)*,y) ifmv?/Egka

where z* = —7(z) and 7 is the compact conjugation fixed on g. This does not give a Ké&hler
metric (the corresponding 2-form is not closed) but one can still define the holomorphic sec-

tional curvature K of its Chern connection. We have the well-known formula (see, for example,
[CMSP17])

[, %]
K(z) = ———"—F—
We are interested in the function K on g;. It is known (and re-proved quickly below) that critical
points of K are obtained on elements e such that {e*, h = [e,e*], e} is an sla-triple. For such e,
we have [[e, ¢*]|? = ([[e, "], €], €} = 2|e[2, and |e[? = ([¢, ], €) = (¢, [e, "]}, therefore
2
K(e) = —————,
= "Bew

which is, up to a constant, the inverse of the Toledo rank defined earlier. Then we will prove the
following proposition.

PRrOPOSITION 3.12. The maximum of K on g, is attained on the open orbit, and is equal to
—2/B((, hreg), where e is in the open orbit and {e*, hyeg = [e,€*], e} is an sly-triple.

The minimum of K on g; is attained on a minimal orbit, and is equal to —B(~y,y) for a long
root v € Ay (the minimum is attained on e~, which belongs to a minimal orbit).

Therefore, after multiplying the Hermitian metric by B(vy,~), we obtain a normalized metric
with normalized holomorphic sectional curvature

1
—-1< K S S E—
~X norm -~ I'kT(GO’ gl)
At a general critical point e € g1 of the curvature (therefore {e*,[e,e*],e} is an sly-triple), we

have the normalized value Kyorm(€) = —1/1rkp(e).
From the Toledo character we obtain a GE-invariant 2-form on GE/HF by
w(z,y) = ixr([z.ylo), forz,y € q",

where [x,y]o is the projection of the bracket onto gg. This actually defines a pseudo-Hermitian
metric, which coincides with the previous normalized metric in the horizontal directions (i.e., in
g1). This explains the choice of the normalization for the Toledo character.

Proof of Proposition 3.12. For completeness, we begin by proving that the critical points come
from slo-triples {e*, [e, e*], e}. Since K (e) is invariant by homothety, we can restrict to variations
é 1 e. Then

K =—{le,e] 6] + [e,¢7) = —,644?R<[[e, e’ el é)

It follows that for a critical point, [[e, e*],e] = Ae, and up to renormalizing e one can suppose
A=2.
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We will now establish a second variation formula. Start from an sly-triple (h = [e, e*], e, €¥)
and take a vector x L e such that |z| = |e|]. Consider
2

e(t) = cos(t)e + sin(t)z = (1 - t2>e + tx + o(t?).

Then e(t) has constant norm, and, up to order 2,
[e(t), e(t)*] = [e, "] + t([z, €] + [e, ™)) + £2([, 2] — [e, €"]).
Therefore, again up to order 2,
—[el*K (e(t)) = [le(t). e(t)*]|”
= |le,€’]1> + (|[z, €] + [e, 2> + 2R([e, €], [z, %] — [e, €7])).
We have already noticed above that |[e, e*]|? = 2|e|> = 2|x|2, and therefore
d2 * *
p7e] le[* K (e(t)) = 2(4]z|? — 2([h, 2], 2) — |[z,e*] + [e, 2*] )
t=0
= 4((2 - adp )z, ) — 2|z, €] + [e, 2], (3.3)

We first deduce that the maximum is attained on the open orbit. Observe that e is in the
open orbit if and only if g; Nkerad.» = 0. Therefore, if e is not in the open orbit, we can take
x € ker ade+. Since ad;, < 0 on ker ade~, it follows from (3.3) that in the direction of x we have

d2

d?|,_,
and therefore the maximum cannot be attained at e. This proves the claim that the maximum
is obtained on the open orbit.

To find the minimum, we use the following fact [Man13, Corollary 7, p. 100]. Denote u the
subspace of g; given as the sum of the eigenspaces of ad; for the eigenvalues at least 2. Then

all orbits in the closure of the orbit of e meet u. Therefore, suppose that the orbit of e is not
minimal. It follows that we can take z € u, and (3.3) gives us, in the direction of z,

el K (e(t)) = 8|z,

—a| 'K (e(t) < =2l €] + [e, 7],

Such = cannot be in the kernel of ade~ (ad;, < 0 on this kernel). Therefore, the right-hand side is
nonzero, so that the minimum cannot be attained at e. Therefore, the minimum can be attained
only at a minimal orbit.

There can be several minimal orbits if the prehomogeneous space is not irreducible. They
are the orbits of elements e, for v € A the longest root. As we have seen, K (e,) = —2/|e,|*> =
—4/|hy|> = —B(v,7). The result follows. O

Remark 3.13. If we fix an orbit O, then Kpomm must have a maximum on O. It follows from
the proof of the proposition, and in particular from the description of the orbits in the closure
of O, that the maximum on O is achieved at some element e € O such that (e*,[e,e*],e) is an
slg-triple; it is therefore equal to Kyorm(e) = —1/rkp(e). In particular, we obtain that for any
zeO,

1
rkp(e)
Example 3.14. The case G = SL,,C is particularly simple to calculate. A first observation is
that any nilpotent element e € sl,C belongs to the open orbit of the nilpotent subalgebra of a

1< Knom () < . (3.4)
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parabolic algebra of sl,,C. It follows that e can be considered as a point in the open orbit of a g;
for some grading of sl,C. This observation is not essential for our calculation but relates every
nilpotent e to variations of Hodge structures.

We now calculate the corresponding bounds for the holomorphic sectional curvature,

1<K < -

rkpe’

where, by (3.2), we have rkre = 1B(h,h)B(v,v) = £B(h, h) since B(vy,7) =2 in s, for the
standard invariant form tr(XY"). If we have a Jordan block of size k, the eigenvalues of h are k —
1, k=3, .., —(k—1), therefore B(h,h) = (k — 1)* 4+ (k = 3)2 4+ -- - + (—(k — 1))* = 2k(k* - 1).
Finally, if e has Jordan blocks of size k1, kg, ..., k; we obtain

1<~
rkpe = Gzlzki(ki —-1).

This gives immediately some curvature bounds in [Li22].

PROPOSITION 3.15. Let e € g1 and let Q2 C g; be the open Go-orbit of the PHVS (Gg, g1). Then
0 < rkp(e) < rkp(Go, 1),

with equality if and only if e € Q2.

Proof. We give an indirect proof applying Proposition 3.12 and Remark 3.13. The Toledo rank
is related to the normalized holomorphic sectional curvature Ko of the corresponding period
domain by Knorm(e) = —1/rky(e) if (f, h,e) is a real sly-triple (in a given orbit one can always
find an e which is part of such a triple; see Remark 3.13). Then it is proved that Kyomm(e) <
Kporm(€') if the orbit of e is included in the closure of the orbit of €. Moreover, the maximum
of Kyorm 18 attained only on the open orbit. The proposition follows. O

We end this section with a proposition which will be used often in subsequent sections.

PROPOSITION 3.16. If (Go,g81) is a JM-regular PHVS, then there is positive integer multiple
q - xT of the Toledo character which exponentiates to a character xr 4 : Go — C* which has a
polynomial relative invariant of degree q - rkp(Go, g1).

Proof. By Proposition 2.8, there is a positive integer multiple ¢ - yr of the Toledo character
which exponentiates to a character x4 : Go — C* which has a relative invariant F' of degree
q - tkp(Go, g1). We prove that F' is a polynomial by proving that it attains a finite value on any
element ¢’ € g;.

First note that if ¢ = 0, then (2.2) implies F(0) = 0. For €’ # 0, complete €’ into an sla-triple
{f',I €'} with f" € g_1 and I/ € go. Then €’ + ker(ads) cuts all other G-orbits, but this is not
true in general for Gg-orbits. Nevertheless, it remains true that e’ + ker(ady) cuts the open
orbit, because go - €’ + (ker(ady) N g1) = g1, which implies that Go - (¢/ 4 ker(ad)) contains an
open neighborhood of €. So up to conjugating by some element of Gy we can suppose that
e=¢€ + X with [f’, X] = 0. Since X belongs to the nonpositive eigenspaces of ady, it follows
that € = limy_, ;o e/’ =7 . ¢. Therefore,

Fe') = lim_xg(e® M) F(e) = Tim e p(e)

This is finite if x5 (h' — h) < 0, that is, if B(h,h') < B(h,h). Since b’ = [¢/, f'] and [h, €] = 2¢/,
we have B(h,h') = 2B(¢/, f') and B(h,h) = 2B(e, f), so the inequality to prove is

B(e, f') < Ble, f).
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As before, we may use the Hermitian scalar product from the associate real form and assume
that (e¢')* = f’. We claim that we can also assume e* = f while keeping the condition e € e’ +
ker(ad). Indeed, since [f/, X| = 0 we have [e, e*] = [¢/, f']+[X, X*] so we want [X, X*|=h — }/;
but h — k' centralizes the triple {€/, f/,h’} and preserves the slice €’ +ker(ads ). Thus, it is
sufficient to conjugate e by an element of the centralizer of {€’, f', '} in Gy to obtain [e, e*] = h.

Then (¢/, X) = 3([W,¢'], X) = 3(I, [X, f']) = 0. It follows that B(e', f') = |¢/|* and B(e, f) =
le|? = |€/|?> + | X|?> = B(¢/, f'). The proposition follows. O

4. Higgs bundles and variations of Hodge structure

For this section let X be a compact Riemann surface of genus g > 2 and let K be its canonical
bundle.

4.1 Higgs bundles and Hodge bundles

Let G be a complex reductive Lie group with Lie algebra g and nondegenerate G-invariant
bilinear (-,-). Let p : G — GL(V') be a holomorphic representation. If £ — X is a G-bundle, we
will denote the V-bundle E xg V associated to E via the representation p by E(V).

DEFINITION 4.1. A (G, V)-Higgs pair is a pair (E,¢) where E is a holomorphic principal
G-bundle on X and ¢ is a holomorphic section of E(V) ® K.

When V = g and the representation p is the adjoint representation, a (G, g)-Higgs pair is
called a G-Higgs bundle. Suppose G® < G is a real form with complexified maximal compact H <
G and complexified Cartan decomposition g = h @ m. When p : H — GL(m) is the restriction of
the adjoint representation of G, then an (H,m)-Higgs pair is called a GR-Higgs bundle.

Remark 4.2. When GR is compact, a GR-Higgs bundle is just a holomorphic G-bundle. When
GR = G (viewed as a real form of G x G), a GR-Higgs bundle is a G-Higgs bundle.

If E is a principal G-bundle and G < G is a subgroup, then a structure group reduction
of E to G is a section o of the bundle E(G/G). Associated to such a reduction is a principal
G-subbundle E, C E such that E;(G) is canonically isomorphic to E.

DEFINITION 4.3. Let G be a complex reductive Lie group and p : G — GL(V') be a holomorphic
representation. Let G < G and V' C V be a p(G)-invariant subspace. We say that a (G, V')-Higgs
pair (E, ) reduces to a (G, V')-Higgs pair, if there is a holomorphic reduction E¢ of E to G such

that ¢ € HY(E4(V) ® K) C HY(E4(V) ® K).
For example, if GR < G is a real form, H < G is the complexification of a maximal compact
of GR and g=bh®m is complexified Cartan decomposition, then a G-Higgs bundle (E,¢)

reduces to a GE-Higgs bundle if there is a holomorphic reduction Ey of E to H
such that ¢ € H(Ex(m) ® K).

Ezample 4.4. Let {f, h,e} be a basis for sloC, and let T < PSLyC be the subgroup with Lie
algebra (h). Note that T = C* and the adjoint action of T on (e) is given by A-e = Ae. So, if
Er is the frame bundle of K !, then the associated bundle Et({e)) ® K = Ox. Hence, we have
a PSLoC-Higgs bundle

(ET (PSLQ(C) s 6) .

Since deg(K) is even, this example can be lifted to SLyC. The lifted action of the subgroup
C* = T < SLoC with Lie algebra (h) is given by \-e = A2e. As a result, if Ej; is the frame
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bundle of a square root K~/2 of K~ then (E+(SL2C), e) defines an SLyC-Higgs bundle. These
Higgs bundles will be the fundamental building blocks for the results of §6.

Now suppose G is a complex reductive Lie group and g = ez, 85 18 a Z-grading of its Lie
algebra with grading element ¢ € go. Let Go < G be the centralizer of (. Note that exp(\() is
in the center of Go and Ad(exp(X()) acts on each g; by M - Id. Let (Eg,, ») be a (Go, gx)-Higgs
pair. Note that the central element exp((A\/k)() € Go defines a holomorphic automorphism of
Eq, and acts on ¢ by multiplication by A. As a result we have an isomorphism of (Go, g )-Higgs
pairs

(Egy, ) = (Egy, Ap) forall A e C*. (4.1)

Extending the structure group defines a G-Higgs bundle (Eg, ¢),

(EGa 90) = (EGO (G)7 90)7
since Fg,(g9k) C FEg,lg] = Ec(g). Moreover, (Eg, ¢) = (Eg, Ap) for all A € C*.

DEFINITION 4.5. A G-Higgs bundle (F, ¢) is called a Hodge bundle of type (Go, g) if it reduces
to a (Go, gr)-Higgs pair.

Ezxample 4.6. The Higgs bundles from Example 4.4 are Hodge bundles for the grading g = g_1 &
g0 @ g1 = (f) @ (h) @ (e). In these cases, G is a Cartan subgroup of G.

Given a Z-grading g = P jez 85, we can define a subalgebra g consisting of summands g;

with j = 0 mod k. Note that § has an associated Z-grading with g = §1. Let G < G be the
associated reductive subgroup. The following proposition is immediate.

PROPOSITION 4.7. Let (E,¢) be a G-Higgs bundle which is a Hodge bundle of type (Go, gk)-
Then (E, ¢) reduces to a G Higgs bundle and, as a G- Higgs bundle, it is a Hodge bundle of type

(Go, 91)-

As a result, we will usually consider Hodge bundles of type (Gg,g1). Recall from
Proposition 3.8 that there is a canonical real form GR < G of Hodge type associated to a
Z-grading. The complexified Cartan decomposition g = h & m satisfies go; C h and goj11 C m, in
particular Go < H. As a result, a G-Higgs bundle which is a Hodge bundle of type (G, g1) reduces
to a GR-Higgs bundle. Combining this observation with Proposition 4.7 gives the following result
which was first observed by Simpson [Sim92, §4].

PROPOSITION 4.8. Let (E,¢) be a G-Higgs bundle which is a Hodge bundle of type (Go, gk)-
Then (E, ¢)-reduces to a GR—H1ggs bundle, where GR < G is a real group of Hodge type. In fact,
GR is the real form of the subgroup G < G from Proposition 4.7 associated to the grading of §.

Ezample 4.9. The Hodge bundles in Example 4.4 thus reduce to the real forms PSLyR < PSLoC
and SLoR < SL,C.

The above results also apply to GR-Higgs bundles. Namely, fix a real form GR < G with a
maximal compact subgroup H® < G®. Let H < G be the complexification of HX® and g =h ®m
be a complexified Cartan decomposition. Consider a Z-grading of g given by g = @jez h; ®m;
with grading element ¢ € ho. Let Hy < H be the centralizer of (. Given an (Hg, my)-Higgs pair
(Eg,, ), extending the structure group to H defines a GR-Higgs bundle (Ey,(H), ) such that
(En,(H),¢) = (En,(H), Ap) for all A € C*.
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A GR-Higgs bundle (E, ¢) is called a Hodge bundle of type (Ho, my) if it reduces to a (Ho, my)-
Higgs pair. Consider the subalgebra g = h & m given by

6: @ []j and m= @ m;.

7=0 mod 2k j=k mod 2k

Let QR C g be the associated real form of Hodge type with complexified Cartan decomposition
g = h®m. As in the complex case, we have the following result.

PROPOSITION 4.10. Let (E,¢) be a Gﬂf—Higgs bundle which is a Hodge bundle of type (Ho, my,).
Then there is a reductive subgroup GR < GER of Hodge type such that (E,¢) ‘reduces to a
GR-Higgs bundle. Moreover, the resulting GR-Higgs bundle is a (Hg,m;) = (Go, §1)-Hodge
bundle.

As a result, we will mostly consider Hodge bundles of type (G, g1).

4.2 Moduli spaces and fixed points

To form a moduli space of Higgs pairs, we need to define suitable notions of stability. We
describe this below and refer to [GGM09, BGMO03] for more details. Let G be a complex reduc-
tive Lie group and p: G — GL(V) be a holomorphic representation. Fix a maximal compact
subgroup K® < G and let £® be its Lie algebra. An element s € i€® defines subspaces of V via
the representation p:

VOi={veV|ple®w=v} and V,={veV|p(e)(v)is bounded as t — oc}.

When p: G — GL(g) is the adjoint representation, gs = ps C g is a parabolic subalgebra with
Levi subalgebra g? = [, C p,. The associated subgroups Ls < P are given by

Ls ={g€G|Ad(g9)s =s} and Ps={gec G| Ad(e”)(g) is bounded as t — oc}.
Moreover, s defines a character y; : ps — C by
Xs(x) = (s,z) for x € p;.

Let E be a G-bundle, s € it® and P, < G be the associated parabolic subgroup. A reduc-
tion of structure group of E to Py is a Ps-subbundle Ep  C E; this is equivalent to a section
o € I'(E(G/P;)) of the associated bundle. We will denote the associated Pg-subbundle by E,.
The degree of such a reduction will be defined using Chern—Weil theory. Since Py is homo-
topy equivalent to the maximal compact KISR =KRNL, of L, given a reduction of structure
o of E to Py, there is a further reduction of E to K¥ which is unique up to homotopy. Let
E, C E be the resulting KI;& principal bundle. The curvature F4 of a connection A on FE
satisfies Fa € Q?(X, E,(€})). Thus, evaluating the character ys on the curvature, we have
Xs(F4) € Q(X,iR), and we define the degree of o as

deg E(0, 5) = % /X o(Fa). (4.2)

If a multiple of ¢ - xs exponentiates to a character xs: Ps — C* and o € I'(E(G/Py)) is a
reduction, then E, x,, C* = E,(Xs) is a line bundle and deg E(o, s) = (1/q) deg Es(Xs). When
s is in the center 3 of g then Py = G. In this case, the degree given in (4.2) is simply the degree of
E with respect to xs, and will be denoted by deg, (F). Again, if a multiple g - x5 exponentiates
to a character y : G — C* we have

deg, (E) = ;deg E(x). (4.3)
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Let dp : g — gl(V) be the differential of p and let 3X be the center of €¥ and €} = £& = 3+
Define

€ = ¢5 @ (ker(dplg)) L

We are now ready to define a-stability notions for a € i3X.
DEFINITION 4.11. Let a € 43%. A (G, V)-Higgs pair (E, ) is:

— a-semistable if for any s € it® and any holomorphic reduction o € H°(E(G/Ps)) such that
o € HY(E,(Vs) ® K), we have deg E(0,s) > (a, s);

— a-stable if it is a-semistable and for any s & iEE and any holomorphic reduction o €
HO(E(G/Py) such that ¢ € HY(E, (V) ® K), we have deg E(c, 5) > (a, s);

— a-polystable if it is a-semistable and whenever s € % and o € H(FE(G/Py)) satisfy ¢ €
H(E,(Vs) ® K) and deg E(c,s) = (a, s), there is a further holomorphic reduction o €
HY(E,(Ps/Ly)) such that ¢ € HY(E,/(V?) ® K).

The moduli space of a-polystable (G,V)-Higgs pairs over X is defined as the set of iso-
morphism classes of a-polystable (G, V')-Higgs pairs and will be denoted by M*(G, V). A GIT
construction of these spaces is given by Schmitt in [Sch08] and by Simpson for the moduli space
of 0-polystable G-Higgs bundles [Sim94].

Remark 4.12. When a = 0, we refer to O-stability simply as stability (similarly for semistability
and polystability), and denote the moduli space by M(G, V). The moduli space of polystable
G-Higgs bundles will be denoted by M(G), and, for a real form GR < G, the moduli space of
polystable GR-Higgs bundles will be denoted by M(GF).

There is a natural C*-action on the moduli spaces of a-polystable Higgs pairs given by
A (E,¢) = (E,Ap). If g =€D;cz0; is a Z-grading, then the C*-action is trivial on the moduli
space of (Go, gr)-Higgs pairs by (4.1). As a result, polystable Higgs bundles which are Hodge
bundles define fixed points of the C*-action on the moduli space of Higgs bundles. Simpson
proved the converse [Sim88, Sim92]. Namely, all C*-fixed points in the moduli space of Higgs
bundles are Hodge bundles. In fact, if a Higgs bundle is a Hodge bundle, then polystability of
the Higgs bundle is equivalent to polystability of the associated pair. To explain why this is true,
we need to use the correspondence between stability and solutions to gauge-theoretic equations.

We first describe this for GR-Higgs bundles. Fix a maximal compact subgroup K < G and
let 7 : g — g be the resulting conjugate linear involution. Now fix a real form G® < G such that
KR N GR = HR is a maximal compact subgroup of GF and let H < G be the complexification
of HR. Let g = h ® m be the complexified Cartan decomposition of the real form. Consider a
GR-Higgs bundle (F,p). A metric on F is by definition a structure group reduction h €
['(E(H/HR)) of E to HR. Associated to a metric h, there is a unique connection Aj; (the Chern
connection) which is compatible with the reduction and the holomorphic structure. Let E}, be the
H®-subbundle associated to a metric h. Then E(m) is canonically identified with FEj,(m). The
compact real form 7 defines an anti-holomorphic involution of Ej(m). Combining this with
conjugation of 1-forms defines an involution

7 Q% (B (m)) — Q0L (B (m)).

The Higgs field ¢ € H°(E(m) ® K) defines a (1,0)-form valued in E(m). Thus [¢, —7(¢)] defines
a 2-form valued in Ej,[h¥], and we can make sense of the equation

Fi+p, =7(0)] = 0, (4.4)
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where F}, is the curvature of the Chern connection. These are the Hitchin equations. The following
theorem relates solutions of the Hitchin equations with stability; it was proven by Hitchin [Hit87]
for SLoC and by Simpson [Sim88] for complex reductive Lie groups (see [GGMO09] for the general
statement).

THEOREM 4.13. A GR-Higgs bundle (E, ¢) is polystable if and only if there exists a metric h
on E which solves the Hitchin equations (4.4).

Remark 4.14. When the group GF is compact, then the Hitchin equations are just Fj, = 0. That
is, there is a flat metric on the bundle, and the classical results of Narasimhan and Seshadri [NS65]
and of Ramanathan [Ram75].

For general (G,V)-Higgs pairs, we fix a maximal compact K® < G and a K® invariant
Hermitian inner product on V. Now the action of KR on V is Hamiltonian and has an asso-
ciated moment map : V — (£8)* — €%, where we use the inner product on €* to identify (€¥)*
with €%, If ¢ € QY0(E(V)), then one can define a bundle version of the moment map so that
u(p) € QVL(E(ER)), and polystability of (G, V)-Higgs pairs is equivalent the existence of a met-
ric h solving the equation Fj, + p(¢) = 0 (see [GGMO09] for more details). For G-Higgs bundles,
we fix a compact real form K® < G and let 7 : g — g be the associated involution. The Hermi-
tian inner product on g is given by B(-, —7(-)) and the moment map puq : g — € is given by
a(x) = 2, ().

For (G, gx)-Higgs pairs, we choose a compact real form K® < G such that T|go = Id. Recall
from Remark 3.10 that 7(g;) = g—; for all j. As a result, Kif = Go N K~ is a compact form of Gg
and B(z, —7(y)) defines a K§-invariant Hermitian form on gi. The moment map puc, : gx — €&
is then given by restricting the moment map ug : g — €® and orthogonally projecting onto E%%.
That is, pg, () is the orthogonal projection of [z, —7(x)] onto E&. But for x € gy, orthogonal
projection is unnecessary since [z, —7(x)] € £&. Thus, a (Go, gx)-Higgs pair (E,¢) is polystable
if and only if there is a metric h € I'(E/Kg) such that F}, + [¢, —7(¢)] = 0. Such a metric solves
the Hitchin equations (4.4) for the associated G-Higgs bundle (E(G), ¢). Conversely, using an
averaging argument, Simpson [Sim88] showed that, if (F, ¢) is a polystable G-Higgs bundle which
is a Hodge bundle, then the metric solving the Hitchin equations is compatible with the Hodge
bundle reduction. We summarize this in a proposition.

PROPOSITION 4.15 [Sim88|. A (Gy, gx)-Higgs pair (E, ) is polystable as a (G, gx)-Higgs pair
if and only if the associated G-Higgs bundle (E(G), ) is polystable as a G-Higgs bundle. In
particular, there is a well-defined map of moduli spaces

M(Go, g) — M(G)

whose image consists of C*-fixed points, and every C*-fixed point in M(G) is in the image of
such a map for some (G, g).

Remark 4.16. For stable and simple Higgs bundles, the associated type of Hodge bundle is
unique.

Remark 4.17. Note that for gradings g = g—1 @ go @ ¢1, (Go, g—1 @ g1)-pair stability agrees with
Higgs bundle stability. This is not true for other gradings. Namely, (Go, P 40 g;) or (Go,g-1 @
&b >0 g;)-pair stability does not imply Higgs bundle stability.

Ezample 4.18. The PSLyC-Higgs bundle (Er,e) from Example 4.4 is polystable. Since Er is the
frame bundle of K !, a metric on Et defines a metric on the Riemann surface X. A solution to the
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Hitchin equations in this case is equivalent to a metric of constant curvature on X (see [Hit87]).
As a result, the Higgs bundle (Er,e) will be referred to as the uniformizing Higgs bundle for X.

4.3 Character varieties and variations of Hodge structure
Given a polystable G®-Higgs bundle (E,¢), there is a metric h on E solving the Hitchin
equations (4.4). For such a metric h, the connection

D=Ay+¢—-71(p)

defines a flat connection on the GR-bundle Ej(GR), where Ej, is the H®-bundle associated to the
metric h. As a result, a polystable G®-Higgs bundle (E, ) defines representations p : m (X) —
GR such that Ej,(GF) = X x, GX.

Given a representation p:m(X) — GE, a metric h, on a flat bundle X x » GE can be
interpreted as a p-equivariant map to the Riemannian symmetric space of GR:

hp : X — GR/HR.

A metric h, is called harmonic if it is a critical point of the energy function

1
£(hy) = 5 [ lan,f.

This makes sense since, for two-dimensional domains, the energy only depends on the conformal
structure of the domain. It turns out that a metric h solves the Hitchin equations (4.4) if and
only if the p-equivariant map h, : X — GR/HR is harmonic.

Remark 4.19. In this correspondence, the Higgs field ¢ is identified with the (1,0)-part of the
differential of the map h,. As a result, for the uniformizing Higgs bundle (Er, e), the harmonic
metric Ay, : X — H2 is a p-equivariant biholomorphism. Thus, X = H2/p(r1(X)) and p is the
uniformizing representation of the Riemann surface.

A representation p: 71(X) — GR is called reductive if postcomposing p with the adjoint
representation of GR decomposes as a direct sum of irreducible representations. Corlette’s
theorem [Cor88] (proven by Donaldson [Don87] for SLoC) asserts that given a representation
p:m(X) — GE, there exists a p-equivariant harmonic map hp : X — GR/HR if and only if p
is reductive. Denote the set of reductive representations p : m1(X) — G® by Hom™ (7 (X), GR).
The moduli space of GR-conjugacy classes of representations 71(X) in GR is called the character
variety and denoted by

R(GR) = Hom™ (m(X), G®)/GE.

Combining Corlette’s theorem with the Hitchin—Kobayashi correspondence defines a homeo-
morphism M (G®) = R(G®) between the moduli space of GR-Higgs bundles on X and the
GR-character variety. This is called the nonabelian Hodge correspondence.

Let p : m1(X) — GR be a representation and G® < GR be a reductive subgroup. We say that
p factors through GR if p can be written as p : w1 (X) — G® — GR. The following proposition is
immediate from the nonabelian Hodge correspondence.

PROPOSITION 4.20. Let GR < GR be a reductive subgroup with maximal compact HR < HR and
let p: 7 (X) — GE be a reductive representation. The following assertions are equivalent.

— p factors through GR. B o
— The p-equivariant harmonic map h, factors as h, : X — (N}R/HR — GR/HE,
— The associated GR-Higgs bundle reduces to a polystable GF-Higgs bundle.
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We now describe the special properties of the representations and harmonic maps aris-
ing from C*-fixed points in the Higgs bundle moduli space. Let G® < G be a real form of
Hodge type with maximal compact H® and complexified Cartan decomposition g = h @ m. Fix a
Z-grading g = @jez g; such that go; C h and goj+1 C m for all j. Recall that the homogeneous
space D = GR/ H§ is a period domain. The holomorphic tangent bundle decomposes as

1,0 1,0 R
T2"D = P(I"D); = P C* xyz 95
j>0 3>0
DEFINITION 4.21. Fix a period domain D = G®/HE. A variation of Hodge structure over X

is a pair (p, f,), where p:m(X) — G¥ is a representation and f,: X — D is a p-equivariant
holomorphic map such that

df, (K™Y c (15°D);.

The following proposition describes the representations and harmonic maps associated to
polystable Higgs bundles fixed by the C*-action.

PROPOSITION 4.22. Let p : m1(X) — GF be a reductive representation. Then the Higgs bundle
associated to p is a C*-fixed point if and only if p factors through a reductive subgroup GR < GR
of Hodge type, and there is a period domain GR/ﬁ1§ such that the associated p-equivariant
harmonic map h,, : X —GR JHR lifts to a variation of Hodge structure

G* /HE
l

)N( . N GR/ﬁR , GR/HR
P

P

5. Toledo invariant and Arakelov—Milnor inequality

Let G be a complex semisimple Lie group and g = ez 8j be a Z-grading with grading element
¢ € go, and let Go < G be the centralizer of (. Consider the PHVS (Go, g1) and recall from (3.1)
that the Toledo character xr : go — C is given by xr(z) = B({,x)B(7,7). Recall that the degree
of a bundle with respect to a character is defined by (4.3).

DEFINITION 5.1. Let (E, ¢) be a (Go, g1)-Higgs pair and x7 : Gg — C* be the Toledo character.
Then the Toledo invariant 7(FE, ¢) is defined by

T(E, @) = deg,,.(E).

Remark 5.2. For the grading g=g_1 ®go® g1, the canonical real form GF < G from
Proposition (3.8) is a Hermitian Lie group. For such real forms, a GR-Higgs bundle is a
(Go, g—1 ©® g1)-Higgs pair. The Toledo invariant of such a Higgs bundle agrees with the Toledo
invariant defined above [BGR17].

Recall Definition 3.3 of the Toledo rank rk,.. (v) of a point v € g;. We define the Toledo rank
rkr(p) of a (Go, g1)-Higgs pair (E, ¢) to be

rkr () = rkp(p(z)) for a generic x € X.

THEOREM 5.3. Let G be a complex semisimple Lie group and g = ®jeZ g; be a Z-grading with
grading element ( € go. Let Go < G be the centralizer of ( and o = A\ for A € R. If (E, ¢) is an
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a-semistable (Go, g1)-Higgs pair, then the Toledo invariant T(E, ¢) satisfies the inequality

—1k(9)(29 — 2) + MB(7,7)B(¢, ) — rkr(9)) < 7(E, ) < AB(7,7)B((, ¢).

Before proving the theorem we list some immediate consequences.

COROLLARY 5.4. Assume (Go,g1) is a JM-regular PHVS and set o = A(. Then the Toledo
invariant of a a-semistable (G, g1)-Higgs pair (E, ¢) satisfies

—1kr()(29 = 2) + A(rkr(Go, g1) — rkr(p)) < 7(E, ) < Ark(Go, g1)-

For the application to Higgs bundles fixed by the C*-action we are interested in the case
a=0.

COROLLARY 5.5. For a = 0, the Toledo invariant 7(E, ) of a polystable (Go, g1)-pair satisfies
the inequality —rkr(¢)(29 —2) < 7(E, ) < 0. In particular,

|T(E7 SO)‘ < rkT(G()?gl)(zg - 2)

Proof. This is a direct application of Theorem 5.3 in the case A =0, for which in fact it is
enough to assume the semistability of (£, ). However, with the extra assumption of polysta-
bility, the result can also be deduced from our holomorphic sectional curvature computations
in Proposition 3.12, as we shall now explain. By Theorem 4.13 such (F, ¢) admits a solution h
to the Hitchin equations (4.4), so we have a variation of Hodge structure as studied in §4.3. In
particular, we obtain an equivariant horizontal holomorphic map f : X — GE / H%{. Denote by w
the 2-form associated to the Hermitian metric on G® /HE considered in § 3.3, normalized to have
horizontal holomorphic sectional curvature —1 < K < —1/rky(Go, g1). By the Schwarz lemma,
one has

1
o /X [fw < 1kp(Go, g1)(29 — 2).

The result will then follow from the identification

f*(/.) = 7XT(/L'F’Z)7

where F}, is the curvature as in (4.4). From (4.4) we have x7(F}) = —x71([p, ¢*]); locally writing
p = adz, we obtain

xr(Fp) = =B(C, [a,a™]) B(y,7)dz A dz
— B(¢,al,a") B(7,7)dz A dz
= —B(a,a”)B(y,v)dz Ndz
= —(a,a)dz N\ dz.
On the other hand, f*w = w(a,a)dz A dzZ =i(a,a)dz A dz. Therefore f*w = —xr(iF}), which
completes the proof.

The same argument gives the more precise inequality 7(F, ¢) > —rky(p)(2g — 2), starting
from the holomorphic curvature estimate (3.4). O

Since the Toledo invariant has discrete values, it is constant on the connected components of
the moduli space of polystable (Gg, g1)-Higgs pairs M(Go, g1). As a result, we have the following
decomposition of M(Go, g1).
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COROLLARY 5.6. The moduli space of polystable (G, g1)-Higgs pairs decomposes as
M(Go, g1) = 11 M7 (Go, 1),

— k7 (Go,81)(29—2)<7<0
where (E, ) € M™(Go, g1) if and only if T7(E, @) = T.

Remark 5.7. We will discuss the special properties of the space M™(Go, g1) for the minimal value
T = —(29 — 2) rkp(Go, g1) in the next section.

Proof of Theorem 5.3. The upper bound follows immediately from stability. Note that s =
—B(7,7)¢ is in the center of gy and has the property that Ad(e'*)(z) is bounded as t — oo for all
T € g1. Since s is in the center of gg, the associated parabolic is all of Gy. Hence, a-semistability
of (E, ) implies

deg E(~B(7,7)¢) = B(a, —=B(7,7))-

Since —7(FE, ¢) = deg E(—B(v,7)¢) and a = A( we have 7(E, ¢) < AB(~,v)B((, ).

The lower bound is more interesting. For generic z € X, ¢(x) € g; is in a fixed Gg-orbit.
Let e be any element in this orbit and {f,h,e} be an associated sly-triple with h € go. Let
(Go, 81) be the associated maximal JM- regular PHVSS of (Go, g1) for e (see Definition 2.17). B
Proposition 2.16, e € ) C g1 is in the open Go-orbit. Recall from Proposition 2.21 that e deﬁnes
a parabolic subalgebra po. C go and a corresponding parabolic subgroup P . < Gg. Since the
construction of Pg . is canonical, we obtain a holomorphic reduction of structure group of F to
Py on the open subset of X where rky(¢p(x)) = rkr(e). This can be extended to a reduction
over all of X. Let E; be the associated P .-bundle.

Set é = h/2 and write ¢ = é + s. Recall from Proposition 2.21 that the parabolic subalgebra
Po,e is given by

Poe = {7 € go| Ad(e"*)z is bounded as t — oo}.

By definition of the Toledo character, we have

xr(z) = B(1,7)(B((, @) + B(s, z)).
Thus,
deg E(UaB(fY’PY)s) = T(E,QO) - deg)A(T<EU)7 (51)

where x7 : po — C is the character defined by x7(x) = B(v, fy)B(f, x).

The Levi factor of Py is jsomorphic to Go. Hence, projecting onto the Levi factor defines
a holomorphic reduction E,(Gg) with ¢ € H*(E,(Go)(g1) ® K). Recall from Proposition 3.16
that there is a positive integer ¢ such that the character ¢ - X7 exponentiates to a character of
XT,q : Go — C* which has a polynomial relative invariant F : §; — C of degree ¢ - XT(C ). Since ¢
is generically in the open Go-orbit of g;, applying the relative invariant to the Higgs field defines
a nonzero holomorphic section of a line bundle E,(Y7,) ® K7X7();

F(p) € H(Ey(¥r,) ® K™¥7©)\ {0}.
Note that degy,.(Es) = (1/q) deg(E;(X1,q)). Thus, we have

degy, (Eq) = —x7({)(29 — 2). (5.2)

We now use the assumption that (F,p) is a-semistable for a = A(. Since [s,§1] =0, we
have g; C g§. Thus, we have p € H(E,(3;) ® K). By the definition of the stability for o = A\(,
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we have
B(X(, B(v,7)s) < deg E(o, B(77,7)s).

Combining this with (5.1) and (5.2) gives an inequality for the Toledo invariant:

~

To finish the proof, recall that B((,s) = 0 and B(vy,v)B((,{) = rkr(y). Thus,

—Xr({) = B(v,7)B((,{) = B(7,7)B((,{) = rkr(yp)

and

AB(v,7)B((, 8) = AM(B(v,7)B(¢, ) — B(v,7)B((,€)) = M(B(v,7)B((, ¢) — k().

Hence, we obtain the desired inequality

—1kr(#)(29 = 2) + A(B(7,7)B(¢, () — rkr(¢)) < 7(E, ¢). O

6. Rigidity results for maximal Hodge bundles and variations of Hodge structure

For this section let G be a complex semisimple Lie group with Lie algebra g and let X be a
compact Riemann surface of genus g > 2 and canonical bundle K. Fix a Z-grading g = P ez 9
with grading element ¢ and let Gg < G be the centralizer of (.

We will call a polystable (G, g1)-Higgs pair (E, ) mazimal if the absolute value of the
Toledo invariant is maximized. By Corollary 5.5, the Toledo invariant 7(E, ¢) of a polystable
(Go, g1)-Higgs pair on X satisfies the inequality

—1kp(Go,91)(29 — 2) < 7(E, ¢) <O0.
Thus, (E, ¢) is maximal if and only if 7(E, ¢) = —rkp(Go, g1)(29 — 2).

6.1 The JM-regular case

We start with the JM-regular case. Assume (G, g1) is a JM-regular PHVS. Fix e € Q and let
{f,h,e} = {f,2(,e} be the associated sly-triple. Let S < G be the connected subgroup with Lie
algebra spanned by {f, h,e}. Note that S is isomorphic to PSLaC or SLyC depending on G and
the slo-triple. Finally, let C < G be the reductive group which centralizes the slo-triple { f, h, e}.
Note that C = G§ < Gy is also the Go-stabilizer of e.

Let T < S be the connected subgroup with Lie algebra (h), and note that T < Gg. Recall the
uniformizing Hodge bundle (Er, e) for X from Examples 4.4 and 4.18. Here Er is the holomorphic
frame bundle of K~! if S = PSLyC and the holomorphic frame bundle of K12 if S = SL,C.
Since Et({e)) ® K = O, the Lie algebra element e defines a holomorphic section of Er({(e)) ® K.
Moreover, (ET,e) is polystable, and a solution to the Hitchin equations is equivalent to a metric
of constant curvature on X. Extending the structure group to Gg defines a maximal polystable

(Go, g1)-Higgs pair.
PROPOSITION 6.1. The (Go, g1)-Higgs pair (E1(Go), e) is polystable and maximal.

Proof. First note that (E,p) = (E1(Go), €) is polystable since (ET, e) polystable. By construc-
tion, we have 7(E, ¢) = —rky(Go, g1)(29 — 2). O

Other examples of maximal (G, g1)-Higgs pairs are given by twisting the above uniformiz-
ing Higgs bundle by a holomorphic C-bundle. Let Ec be a holomorphic C-bundle on X.
Since T and C are commuting subgroups of Gg, the multiplication map m : T x C — Gg is a
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group homomorphism. Thus, we can form a Gyp-bundle
Er RXao Ec = (ET X Ec) Xm Go.

This is the principal bundle version of the tensor product of vector bundles, where GL,,,C and
GL,,C are commuting subgroups of GL,,,,C.

As with vector bundles, given metrics ht and hc on E1 and Eg respectively, there is a metric
ht ® hc on Et ®g, Ec. More specifically, metrics on Etr and E¢ are reductions of structure
group to the maximal compact subgroups, say Err C E1 and Ecr C Ec. The metric ht ® he
on Et ®q, Ec is the reduction of structure group given by Err ®GJ§ Exr C BT ®g, Ec, where

G C Go is a maximal compact subgroup containing C® and T. Similarly, given connections
At and Ac on Et and Ec respectively, At + Ac defines a connection on Et ®¢, Ec and the
curvature satisfies

FAT+AC :FAT —I—FAC.

These formulas make sense because the tensor product is made from the T x C-principal bundle
Er x Ec by applying the multiplication m : T x C — Gg, with corresponding Lie algebra mor-
phism t ® ¢ — t 4 ¢ C go. In the case of the general linear group, this corresponds to first forming
the product bundle as a GL,,,C x GL,C-principal bundle and then producing the tensor product
as a GLy,,C-principal bundle by applying the multiplication map GL,,C x GL,C — GL,,,,C
given by (g9,9') —g®g'.

Since C acts trivially on (e), we have

e € H'((Et ®q, Ec)(g1) ® K).
Also, since the Lie algebra ¢ is perpendicular to ¢, the Toledo invariant is unchanged:
(Bt ®c, Ec, e)) = 7(E1(Go), €).

Moreover, if Eq is a polystable C-bundle!, then there is a metric hc on Ec whose associated
Chern connection is flat (see Remark 4.14). As a result, if hp is a metric on Ep solving the
Hitchin equations for (Er,e), then ht ® hc solves the Hitchin equations for the Higgs bundle
(Bt ®c, Ec(G),e). Hence, if Ec is a polystable C-bundle, then (Et ®¢, Ec,e) is a polystable
(Go, g1)-Higgs pair.

So far, we have shown that there is a well-defined map

U, : N(C) —— M™>(Go, g1) (6.1)
Ec— (ET ®Go Ec, 6) .

from the moduli space N'(C) of polystable C-bundles to the moduli space of polystable (Go, g1)-
Higgs pairs which are maximal. The map ¥, from (6.1) is a moduli space version of a restriction
of the global Slodowy slice map from [CS21] and generalizes a restriction of the Cayley
correspondence in the case of a Z-grading defining a Hermitian group [BGR17].

THEOREM 6.2. The map ¥.:N(C) — M™*(Gg,g1) from (6.1) defines an isomorphism
between the moduli space of polystable C-bundles and the moduli space of polystable maximal

(Go, g1)-Higgs pairs.

Remark 6.3. For classical Lie groups, the centralizers C < G of slo-triples are easily described in
terms of partitions [SS70] (see [CM93, Theorem 6.1.3]).

! In particular, Ec must have degree zero with respect to any character x : ¢ — C.
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Proof. We first show that W, is surjective. Let (E,¢) be a polystable maximal (G, g1)-Higgs
pair. As above, let E1 be the holomorphic frame bundle of K1 or K~/2 if S is isomorphic to
PSLoC or SLyC, respectively. Note that

E(g1) ® K = (Ex' ®q, E)(g1)-

Since (Go,y) is JM-regular, we have rkp(Go,g1) = x7(¢), where (= h/2. Also, by
Proposition 3.16, a positive multiple of the Toledo character ¢ - x7(x) = ¢ - B(~,v)B((, x) expo-
nentiates to a character x4 : Go — C* which has a polynomial relative invariant F' : gy — C of
degree q - rkr(Go, g1). As in the proof of Theorem 5.3, applying the relative invariant F' to the
Higgs field defines a nonzero holomorphic section

F(p) € HO(E(XT’,]) ® qukT(Go&u)).

The degree of E(xr,) ® K1*7(Go.81) is g(7(E, ) + tkp(Co, g1)(2g — 2)) = 0. Thus, F(p) is
nowhere vanishing, and rky(o(z)) = rkp(Go, g1) for all z € X. That is, ¢(x) is in the open
orbit 2 for all z € X.

Thus the Higgs field ¢ is defines a holomorphic section of F(2) ® K. But Q = Go/C and
E(Q)® K = (E3! ®g, E)(Go/C). Thus, the Higgs field defines a holomorphic reduction of struc-
ture group of (Ep ! ®a, F) to C. Let E¢ be the resulting holomorphic C-bundle. Twisting both
sides by ET, we obtain an isomorphism

E = Et ®q, Ec.

By construction, ¢ € H((Et ®a, Ec)({e)) ® K). Since a (Go, g1)-Higgs pairs (E, ¢) is isomor-
phic to (E, Ayp) for all A € C*, we can take ¢ = e.

To complete the proof of surjectivity, we show that if (E, ) = (ET ®q, Ec), €) is a polystable
(semistable) (Go, g1)-Higgs pair, then E¢ is a polystable (semistable) bundle. Suppose that we
have a reduction (Ep;, 0’) of the structure group of Ec to the parabolic subgroup P} C C defined
by an s € ic®, where ¢® is the Lie algebra of the maximal compact subgroup C® of C. The element
s defines a parabolic subgroup Ps; C Gg as well, and, using the map C/P’, — G(/Ps, we obtain
from ¢’ a reduction o of the structure group of E to Pg, resulting in a Ps-bundle Fp,_. Since
C stabilizes e € g1, we have e € 9(1),3- Since (s, h) = 0, there is no contribution coming from the
twisting F ®q, Ex' in the computation of deg F(c,s). Hence, deg(E)(o,s) = deg(Ec)(d, s),
and (semi)stability of (E, ) implies the (semi)stability of Ec. For polystability, one must just
check additionally that in the equality case, reduction for the Levi subgroup Ls C P4 to an
Ep, C E implies reduction for the Levi subgroup L C P}, but it is sufficient to take Ep, =
(ELS ®Xaqg EEl) N Ec.

For injectivity, note that two polystable C-bundles Ec and Ef, define the same point in
M™MEX(Gg, g1) if there is a holomorphic isomorphism of Go-bundles

®: bo®g, BT — E/C ®aGe BT

such that ®*e = e. Since the G stabilizer of e € g; is C, we conclude that ® induces an iso-
morphism between Ec and E(,. Note that injectivity implies that the automorphism group of
V. (Ec) is equal to the automorphism group of the polystable C-bundle E¢. O

The component count for the moduli space of polystable C-Higgs bundles is given the number
of topologically distinct C-bundles on X which have degree zero with respect to any character
X : ¢ — C. For example, when C is connected and I' < 71 (C) is the torsion subgroup, N (C) has
IT'| connected components. As an immediate corollary, we have the following component count.
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COROLLARY 6.4. We have mo(M™*(Gy, g1)) = mo(N(C)). In particular, the component count
is given by the number of topological degree zero C-bundles on X.

We now use Theorem 6.2 to deduce rigidity results for variations of Hodge structure. Consider
the complex linear involution 6 : g — g which is (—1)7 Id on each graded factor g;. Recall from
§3.2 that a compact real form 7 : g — g satisfies 7(g;) = g—;. Moreover, we can choose such a
7 so that the sly-triple {f,h,e} satisfies f = —7(e). Let G < G be the associated real form
of Hodge type. By construction, the subgroup S < G defines a subgroup S® < GR which is
isomorphic to PSLoR if S & PSLyC and isomorphic to SLoR if S = SLoC. Also by construction,
the GR-centralizer of SR is the compact real form C® < C of the centralizer of S.

Since C® and S® are commuting subgroups of GF, given representations p; : 71(X) — S
and py : 11 (X) — C®, we can form a new representation, multiplying the images

pr#pa:m(X) = GX, (prxp2)(7) = p1(7) - p2(7)-

Recall that (Go, g1) is JM-regular if and only if it arises from an even sly-triple.

THEOREM 6.5. Let G be a complex semisimple Lie group with Lie algebra g. Let {f, h,e} C g
be an even sly-triple and g = @ ez 9 be the associated Z-grading with grading element h/2, let
S < G be the associated connected subgroup and let C < G be the centralizer of { f, h,e}. Suppose
p:m(X)— G is a reductive representation. The Higgs bundle associated to p is a maximal
Hodge bundle of type (Go, g1) if and only if, up to conjugation, p = py * pc : m1(X) — G, where

— pu T (X) — SR < S is (a lift of) the uniformizing representation of X, and
— pc : m(X) — CR < C is any representation into the compact real form of C.

Remark 6.6. Note that the representations p = p, * pc: 71(X) — G all factor through the
canonical real form of Hodge type GF < G associated to the grading @ jez 8- Moreover, the
GR-centralizer of any such representations is compact since the GR-centralizer of SF is CK,
which is compact. As a result, representations associated to maximal Hodge bundles of type
(Go, g1) do not factor through proper parabolic subgroups P® < G,

Proof. The proof is immediate from the nonabelian Hodge correspondence and Theorem 6.2.
Namely, given an even sly-triple {f,h, e} with associated grading €D,c 9, every polystable
(Go, g1)-Higgs pair (F, ¢) with Toledo invariant — rkr(Go, g1)(2¢g — 2) is isomorphic to (ET ®¢,
Ec,e), where (Et,e) is a uniformizing Higgs bundle of X and E¢ is a polystable C-bundle. A
solution to the Hitchin equations is given by At ® hc, where h1 solves the Hitchin equations for
the uniformizing Higgs bundle (ET,e) and the Chern connection of hc is flat. The associated
flat connection is then

AhT+€—T(€)+AhC.

As a result, the associated representation p : 1 (X) — G is given by p,, * pc, where p, : 1 (X) —
SR < S is the uniformizing representation of X if S = PSL,C and a lift of the uniformizing
representation if S = SLoC and p¢ : 71 (X) — C® < C is a representation into the compact real
form of C. O

Let ¥ be a closed topological surface of genus g > 2. For S® isomorphic to PSLoR or SLsR,
injective representations p : w1 (X) — SR with discrete image are called Fuchsian representations.
The set of conjugacy classes of Fuchsian representations defines an open and closed set in the
character variety R(S®), each connected component of which is identified with the Teichmiiller
space of the surface ¥ by the uniformization theorem.
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COROLLARY 6.7. Suppose (Go,g1) is JM-regular and let p:m(¥) — G be a reductive
representation. There exists a Riemann surface structure X, on X such that the Higgs bundle
associated to p is a maximal Hodge bundle of type (Go, g1) on X, if and only if

P = PFuch * PCR,
where pruen : 71(3) — S¥ is a Fuchsian representation and pr : 71 (%) — CR is a representation
into the compact real form of C. In particular, for any such representations, the associated
Riemann surface X, is unique.

The following corollary is also immediate from Theorem 6.5.

COROLLARY 6.8. Suppose (Go, g1) is JM-regular. A variation of Hodge structure (p, f,) associ-
ated to a Hodge bundle of type (Go, g1) is maximal if and only if f, : X — GR/HE is a totally
geodesic embedding which maximizes the holomorphic sectional curvature. In particular, the
image of f, is independent of p and rigid.

6.2 Some explicit examples
We list some explicit examples for (Gg, g1) JM-regular.

Ezample 6.9. When Gy < G is a Cartan subgroup, (G, g1) is a JM-regular PHVS associated to a
principal slp-triple. In this case, the group C is the center of G. The Higgs bundles (Ec ®¢, ET,€)
associated to maximal (G, g1)-Higgs pairs are the image of 0 under the Hitchin section [Hit92].

Ezample 6.10. For JM-regular PHVSs (Gg, g1) associated to gradings g =g_1 @ go @ g1, the
real form GF < G is a Hermitian Lie group of tube type (see Example 3.9). In this case, the
above results recover the subset of the results in [BGR17]. In this case, there is a particular
stratum of the boundary of the noncompact Riemannian symmetric space GX/HR called the
Shilov boundary. The group C® is isomorphic to the stabilizer of a generic point in the Shilov
boundary.

Ezxample 6.11. We now describe the JM-regular (GL,C x SO,C, M, ,) with ¢ >p from
Examples 2.1, 2.5 and 3.9 in more detail. Fix a decomposition C?**4 = CP @ C?@® CP with
orthogonal structure Q(z,y, z) = 22T + 2Tz + yyT. Then we may write s09,,,C as

AW XT A€ M,, B=-BTeM,, WeM,,
509,4+4C = Y B W
7 YT AT )| X=-XYeM,, YeM,, Z=-2ZeM,,

The even sly-triple is given by

0 0 0 2Id, 0 0 0 (1,0) 0
F=10) 0 o, = 0 0 0 |, e=f0 0 ()],
0 (-21d, 0) 0 0 0 -2Id, 0 0 0

where Id,, is the p x p identity matrix. The Z-grading is g_2 © g1 © go © g1 @ g2 where the space
g; is the jth super block diagonal.
The subgroup Gg < SO2,+4C is GL,C x SO,C and the Go-stabilizer of e is given by

A 0 0
C=Gi=<[0 (49) 0 AAT =1d and BBT =1d 3 = S(0,C x 0,,C).
0 0 (A~HT

Using the standard representation of SOg,14C, an SO,,C-Higgs bundle is a triple (E,Q, ®),
where E is a rank 2p+ ¢ holomorphic bundle with trivialized determinant bundle, @ is
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an everywhere nondegenerate symmetric bilinear form on E and ® € H*(End(F) ® K) is a
K-twisted endomorphism of E which is skew symmetric with respect to Q. An SOsg,,C is a
Hodge bundle of type (Gog,g1) if E splits holomorphically as E =V @ W @ V*, where V is a
rank-p isotropic subbundle and W is a rank-g orthogonal subbundle, and with respect to this
splitting we have

0 0
0 9| VveoweV* - VeWaV K. (6.2)
0 0

b —

o O O

Such a Higgs bundle is a maximal (Gg,g;)-Higgs pair if and only if W decomposes
holomorphically and orthogonally as W = U, ® Uj—, and V = U, ® K ~1 and

0=dy, 0):W=U,®Usp—Up=VRK.

In this example, the group C = S(O,C x O,_,C) and the space of such Higgs bundles is param-
eterized by the polystable S(O,C x O,—,C) bundle U, & U;—,. These Higgs bundles reduce
to SO(2p, q)-Higgs bundles and the resulting representations p : 71 (X) — SO(2p,q) are con-
jugate to py * pcr ,where p, : m(X) — PSLoR is the uniformizing representation of X and
pcr : T1(X) — S(Op x Og—p) is any representation. When p = 1, this is agrees with Example 6.10
for the Hermitian Lie group SO(2, q).

Remark 6.12. For the JM-regular PHVS (S(GL,C x GL,C x GL,C), M, , ® M, ) with ¢ > p
from Examples 2.1, 2.5 and 3.9, the moduli space SLa,,C-Higgs bundles which are maximal
Hodge bundles of type (Go,g1) can be described similarly. Namely, they are given by pairs
(E, ®) where E is a holomorphic rank-(2p + ¢) vector bundle with trivialized determinant and ®
is a traceless K-twisted endomorphism of E such that E = (U, @ K1) & U, ® Uy—p & (U, ® K),
det(U,)? = det(U,—p) and

0 Idp 0 0
10 0 0 Idy|
b = 0 0 0 o0 EFE—-FEQK.
0O 0 0 o0

Example 6.13. There is a class of nilpotent elements called distinguished nilpotents which play
an important role in the Bala—Carter theory classification of nilpotent orbits in g. A nilpotent
e € g is distinguished if and only if the centralizer of an associated sls-triple C < G is discrete.
Such slo-triples are necessarily even, and hence the resulting moduli space of maximal JM-regular
(Go, g1)-Higgs pairs is discrete. In particular, the associated C*-fixed points in the G-Higgs bundle
moduli space are isolated.

The principal slo-triples are always distinguished and give rise to the isolated fixed points from
Example 6.9. In type A, this is the only distinguished nilpotent. However, in all other types there
are many distinguished nilpotents. For example, for g = 50,,C a nilpotent is distinguished if and
only if it is associated to a partition n = 1-ny + --- 4+ 1 - ng, where each n; is odd. For g = sp,,,C
a nilpotent is distinguished if and only if it is associated to a partition 2n=1-n1 +--- 4+ 1 - ng,
with each n; even. Moreover, for the Lie group Go there are two even sly-triples and both
are distinguished. See [CM93, §§6 & 8] for more details. This means that the moduli space of
G-Higgs bundles has isolated fixed points which do not arise from the Hitchin section when g
is not of type A.
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Ezample 6.14. In [BCGGO21], a class of even nilpotents is identified called magical nilpotents.
For such even slp-triples, there is a real form GF < G such that the associated maximal (Gg, g1)-
Higgs pairs define GR-Higgs bundles which are local minima of the energy function on the moduli
space GR-Higgs bundles. For such Hodge bundles, the global Slodowy slice map from [CS21]
descends to moduli spaces and describes connected components of the moduli space M(GR)
with many interesting properties. In particular, the associated components of the character
variety R(GR) define the higher Teichmiiller components conjectured by Guichard, Labourie
and Wienhard [GLW21, GW18]. There are four families of magical nilpotents two of which
appear in Examples 6.9 and 6.10.

6.3 The non-JM-regular case

We now describe the moduli space of maximal (Go,g1)-Higgs pairs when (Go,g1) is not
JM-regular. Assume (G, g1) is not a JM-regular PHVS. Let Q C g; be the open Gg-orbit. For
e € Q we complete it to an slo-triple {f, h,e} with h € go and set s =( — h/2. Recall s #0
exactly when (Gg,g1) is not JM-regular. A maximal JM-regular PHVSS (G, §1) for (Go,g1)
is given by letting Go < G be the Go-centralizer of s and g = {x € g1 |[s, ] = 0}. Recall also
that s determines a parabolic subgroup Ps < Gg and Go < P, is the Levi subgroup.

PROPOSITION 6.15. Assume (Gg,g1) is not JM-regular and let (Go,ﬂl) be a maximal
JM-regular PHVSS. Then there are no stable (Go,g1)-Higgs pairs which are maximal.
Moreover, every maximal polystable (Go,g1)-Higgs pair with Toledo invariant reduces to a
polystable maximal (Go, §1)-Higgs pair.

Proof. Let (E,¢) be a polystable maximal (G, g1)-Higgs pair. Since (E, ) is maximal, ¢(x)
is in the open orbit 2 for generic z € X. Let e € Q, {f,h,e} be an sly-triple with h € gy and
(Go, 81) be the associated maximal JM-regular PHVSS of (Gg, g1). Let s = ¢ — h/2, and Py < Gy
be the associated parabolic subgroup. As in the proof of Theorem 5.3, the Higgs field defines a
reduction of structure group o of E to a Ps-bundle E, such that p € HY(E,(g1s) ® K). Since
(E, ¢) is maximal, we have deg F(o, s) = 0. Hence, (E, ¢) is not stable and there is a holomorphic
reduction & to the Levi subgroup Gy < P, with ¢ € H(E;(§1) ® K. Thus, (E, ¢) reduces to a
polystable maximal (Go, g1)-Higgs pair. O

Let C < Gg be the Go-stabilizer of the slo-triple {f,h,e}. Note that {f, h,e, s} C g gener-
ates a subalgebra isomorphic to gl,C, and C is the G-centralizer of the {f,h,e,s}. As in the
JM-regular case, extending the structure group of the uniformizing Higgs bundle (Er,e) to Gg
defines a polystable maximal (Go, g1)-Higgs pair (E1(Go),e). Moreover, if Eg is a polystable
C-bundle, then (BT ®a, E¢,e) is a polystable maximal (Go, g1)-Higgs pair. Thus we have a map

e : N(C) —— M™(Go, g1) (63)
E@ — (ET ®ao Eé,e)

from the moduli space of polystable C-bundles on X to the moduli space of maximal (G, g1)-
Higgs pairs.

THEOREM 6.16. If (Go, g1) is not JM-regular, then map ¥, : N'(C) — M™(Gy, g1) from (6.3)
defines an isomorphism between the moduli space of polystable C-bundles and the moduli space
of polystable maximal (G, g1)-Higgs pairs.

Proof. Surjectivity of the map W, follows from Proposition 6.15 and the proof of surjectivity in
the JM-regular case. For injectivity, note that two polystable C-bundles F¢ and E’C define the
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same point in M™**(Gy, g1) if there is a holomorphic isomorphism of Gy-bundles
(O3 EC ®Go ET — Eé ®Go ET

such that ®*e = e. Unlike the JM-regular case, the Gg-stabilizer of e is not C. However,
Eq ®c, BT = Eé ®qg, £ implies that ® acts trivially on E1. In particular, ® is valued in the
Go-centralizer of {h,e}. By the uniqueness part of the Jacobson-Morozov theorem, this is the
Go-centralizer of the sly-triple {f, h,e} which is C. Hence, ® induces a holomorphic isomorphism
of the C-bundles. O

The rigidity results for variations of Hodge structure in the JM-regular case have analogues in
the non-JM-regular setting. Namely, Consider the Cartan involution # : g — g which is (—1)7 Id

on g; and choose the compact real form 7: g — g such that 7(g;) = g—; and 7(e) = —f. Let
GR < G, SR < 8, CR < C be the associated real forms. The proof of the following theorem is
immediate.

THEOREM 6.17. Suppose (Go,g1) is not JM-regular, and p:m(X)— G is a reductive
representation. The Higgs bundle associated to p is a maximal Hodge bundle of type (Go,g1)
if and only if, up to conjugation, p = py * p¢, : m1(X) — G, where

— pu :m(X) — SR < S is (a lift of) the uniformizing representation of X, and
- pe i m(X) — CR < C is any representation into the compact real form of C.

Remark 6.18. As in the JM-regular case, such representations factor through the real form
GR < G. However, unlike the JM-regular setting, the GR-centralizer of these representations
is not necessarily compact since C is not the full G-centralizer of the sla-triple { f, h, e}.

Note that Corollary 6.8 now holds without the JM-regular assumption.

COROLLARY 6.19. Consider a PHVS (Go, g1). A variation of Hodge structure (p, f,) associated
to a maximal Hodge bundle of type (Go, g1) if and only if f, : X — GR/HE is a totally geodesic
embedding which maximizes the holomorphic sectional curvature. If (Gg, g1) is not JM-regular
then f, factors through a maximal JM-regular subdomain
fo : X — GR/HE — GR/HE.
Ezample 6.20. Recall from Examples 2.1 and 2.19 that the PHVS (GL,C x SO,C, M, ,) with
g < pis not JM-regular and a maximal JM-regular PHVSS is isomorphic to (GL,C x GL,_,C x
SO,C, M, ). Following Example 6.11, an SOg,,C-Higgs bundle (E,Q,®) is a Hodge bundle
of type (Go,g1) if and only if E splits holomorphically as V& W @& V*, where V is a rank-p
isotropic subbundle and the Higgs field is determined by a holomorphic map 6 : W — V ® K
as in (6.2). Such a Higgs bundle is a maximal (G, g1)-Higgs pair if and only if V' decomposes
holomorphically as V = WK1 @ V,_,, where rk(V, — p) is a rank-(q — p) degree zero polystable
vector bundle and
9 = <IC})W> W—(WK'aV, )8 K=VaK.

The resulting representation p: 7 (X) — SOg,1,C factors through SO(2¢,q) x U,—4 <
SO(2p, q) < SOg2,+4C.
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