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Abstract

In this paper we study the C∗-fixed points in moduli spaces of Higgs bundles over a
compact Riemann surface for a complex semisimple Lie group and its real forms. These
fixed points are called Hodge bundles and correspond to complex variations of Hodge
structure. We introduce a topological invariant for Hodge bundles that generalizes the
Toledo invariant appearing for Hermitian Lie groups. An important result of this paper
is a bound on this invariant which generalizes the Milnor–Wood inequality for a Hodge
bundle in the Hermitian case, and is analogous to the Arakelov inequalities of classical
variations of Hodge structure. When the generalized Toledo invariant is maximal, we
establish rigidity results for the associated variations of Hodge structure which gener-
alize known rigidity results for maximal Higgs bundles and their associated maximal
representations in the Hermitian case.

1. Introduction

Since their introduction in Hitchin’s seminal paper [Hit87], Higgs bundles over a compact
Riemann surface have been of tremendous interest in geometry, topology and theoretical physics.
Within the moduli space of Higgs bundles there is a special subvariety determined by the fixed
points of a natural C∗-action. These fixed points are called Hodge bundles and correspond to
holonomies of complex variations of Hodge structure. They are part of the global nilpotent cone,
and coincide with critical points of a natural energy function on the moduli space. The impor-
tance of the C∗-fixed points also stems from the fact that, roughly speaking, the subvariety of
Hodge bundles determines the topology of the moduli space of Higgs bundles (see [Hit87, GHS14,
GH13, Got94]). In this paper we investigate some basic properties of Hodge bundles and their
moduli.

To describe our results, let G be a complex semisimple Lie group with Lie algebra g, and let
X be a compact Riemann surface with genus g ! 2 and canonical bundle K. A G-Higgs bundle
on X is a pair (E, ϕ), where E is a holomorphic principal G-bundle on X and ϕ ∈ H0(E(g) ⊗ K)

Received 8 February 2021, accepted in final form 18 January 2023, published online 25 April 2023.
2020 Mathematics Subject Classification 14H60 (primary), 57R57, 58D29 (secondary).
Keywords: Higgs bundle, prehomogeneous vector space, variation of Hodge structure.

The second author was partially supported by supported by the NSF under award no. 1604263 and no. 2103685,
and NSF grants DMS-1107452, 1107263 and 1107367 ‘RNMS: GEometric structures And Representation varieties’
(the GEAR Network). The third author was partially supported by the Spanish MINECO under the ICMAT Severo
Ochoa grant no. SEV-2015-0554, and grant no. MTM2016-81048-P.

© 2023 The Author(s). This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited. Compositio Mathematica is
© Foundation Compositio Mathematica.

3�����  0�4��:2 ������� �������
�����
�	
�
 /54�310��75471�/"��.�/:4021��74!1:�4�"�
:1��

http://www.compositio.nl/
http://www.ams.org/msc/
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1112/S0010437X23007157


O. Biquard et al.

is a holomorphic section of the Lie algebra bundle twisted by K. The moduli space of polystable
G-Higgs bundles will be denoted by M(G). By the nonabelian Hodge correspondence, the moduli
space M(G) is homeomorphic to the character variety R(G) of conjugacy classes of reductive
representations ρ : π1(X) → G.

The C∗-action on the Higgs bundle moduli space is defined by λ · (E, ϕ) = (E, λϕ). To
describe the C∗-fixed points, fix a Z-grading g =

⊕
j∈Z gj . Let ζ ∈ g0 be the grading element,

that is, [ζ, x] = jx for all x ∈ gj , and let G0 < G be the centralizer of ζ. A Higgs bundle (E, ϕ)
is said to be a Hodge bundle of type (G0, gk) if E reduces to a holomorphic G0-bundle EG0 , and
ϕ ∈ H0(EG0(gk) ⊗ K). A polystable Higgs bundle is a fixed point if and only if it is a Hodge
bundle [Sim92]. In fact it suffices to consider Hodge bundles of type (G0, g1) (see § 4.2 for more
details).

The representations ρ : π1(X) → G associated to Hodge bundles factor through a real form
ρ : π1(X) → GR → G of Hodge type, that is, a real form such that the rank of its maximal
compact subgroup is equal to the rank of G0. If HR

0 < G0 is a maximal compact subgroup, then
the homogeneous space GR/HR

0 has a natural complex structure and is called a period domain.
The holomorphic tangent bundle of GR/HR

0 decomposes as
⊕

j!0 GR ×HR
0

gj . In [Sim92], Simpson
showed that the representations ρ : π1(X) → GR < G arising from Hodge bundles of type (G0, g1)
define ρ-equivariant holomorphic maps

fρ : X̃ → GR/HR
0

such that ∂fρ is valued in the first graded piece GR ×HR
0

g1 of the holomorphic tangent bundle.
Such pairs (ρ, fρ) are called variations of Hodge structure.

When the grading in the above discussion is g = g−1 ⊕ g0 ⊕ g1, the real form GR < G is a
group of Hermitian type and the period domain GR/HR

0 is the Riemannian symmetric space
of GR. In this case, the symmetric space is Kähler and Hodge bundles define representations
ρ : π1(X) → GR and ρ-equivariant holomorphic maps to the symmetric space of GR. Pulling
back the Kähler form and integrating it over X defines an invariant which is usually called the
Toledo invariant τ(ρ). The Toledo invariant is defined for all representations into Hermitian Lie
groups and satisfies the Milnor–Wood inequality

|τ(ρ)| " (2g − 2) rk(GR/HR).

This inequality was first proven by Milnor [Mil58] for PSL2R, and more generally in [DT87,
BIW03]. Using Higgs bundles, one can also define the Toledo invariant and obtain the
Milnor–Wood inequality [Hit87, BGG03, BGR17].

The set of representations which maximize the invariant are called maximal representations
and have many interesting geometric features. For example, maximal representations define
connected components of the character variety which consist entirely of discrete and faithful
representations [BIW10]. For PSL2R, maximal representations correspond to Fuchsian represen-
tations and the representation uniformizing the Riemann surface X defines the unique maximal
Hodge bundle. There are two classes of Hermitian groups, those of tube type and those of nontube
type. Generalizing the complex hyperbolic geometry results of [Tol89], maximal representations
into nontube-type groups always factor through a maximal subtube up to a compact factor
[BGG03, BIW03, BGR17]. For example SU(p, p) is the maximal subtube of SU(p, q) when q ! p.

Hodge bundles of type (G0, g1) form their own moduli space M(G0, g1). Consider a Z-grading
g =

⊕
j∈Z gj with grading element ζ. Define a character of the Lie algebra g0,

χT : g0 → C, χT (x) = B(x, ζ)B(γ, γ),
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where B is the Killing form of g and γ is the longest root such that the root space gγ ⊂ g1.
As explained in § 3.3, the normalization constant B(γ, γ) normalizes the minimum of the holo-
morphic sectional curvature of the period domain to be −1. Recall that a Hodge bundle of type
(G0, g1) is a pair (E, ϕ), where E is a holomorphic G0-bundle and ϕ ∈ H0(E(g1) ⊗ K). For some
positive integer q, the multiple q · χT exponentiates to a character χ : G0 → C∗ of the Lie group
G0 and defines a line bundle E(χ). We define the Toledo invariant of a Hodge bundle (E, ϕ) by

τ(E, ϕ) =
1
q

deg E(χ).

For gradings g−1 ⊕ g0 ⊕ g1, the Lie algebra character χT and the invariant τ agree with the
definitions of the Toledo character and invariant for Hermitian groups in [BGR17].

To generalize the notion of rank, we use the fact that the space g1 is a prehomogeneous
vector space (PHVS) for the action of G0. That is, g1 has a unique open dense G0-orbit Ω ⊂ g1.
The theory of PHVSs was introduced by Sato (see [SK77, Kim03, Mor91, Man13]) and provides
an ideal set of tools to study our problem. Let e ∈ Ω ⊂ g1 be any point in the open orbit and
complete it to an sl2-triple {f, h, e} with h ∈ g0. We define the rank of (G0, g1) by

rkT (G0, g1) = 1
2χT (h).

In § 3 we show that this is independent of the choices made. Again, for Hermitian groups this
definition recovers the rank of the symmetric space.

Let us state our first main result.

Theorem A (Corollary 5.5). A polystable Hodge bundle (E, ϕ) of type (G0, g1) satisfies the
inequality

|τ(E, ϕ)| " (2g − 2) rkT (G0, g1). (1.1)

Remark 1.1. In terms of variations of Hodge structure, the Toledo invariant is the degree of
the pullback of a natural line bundle on the period domain GR/(G0 ∩ HR). Inequality (1.1) is
simply saying that this is bounded by the Euler characteristic times a number (the rank) which
is determined by the Lie theory of the period domain. In Proposition 3.12, we prove that the
rank is the negative inverse of the maximal value of the holomorphic sectional curvature (in the
+1 space) of the period domain, which coincides with the usual rank in the case of Hermitian
symmetric spaces.

Remark 1.2. We refer to inequality (1.1) as the Arakelov–Milnor inequality as it generalizes
the Milnor–Wood inequality when the Higgs bundle defines a variation of Hodge structure in
a Hermitian symmetric space, and is analogous to the Arakelov inequalities for variations of
Hodge structure. These are generalizations of the classical Arakelov inequality for the degree of
the relative canonical bundle of a family of curves over another curve (see, for example, [Pet90,
JZ02, Vie09, VZ03, MVZ12]). As in the Milnor–Wood case, maximality of the bound in the
Arakelov inequalities is accompanied by some rigidity phenomena. As already mentioned, in the
Hermitian case for the grading g−1 ⊕ g0 ⊕ g1, the character χT and the invariant τ agree with
the definition of the Toledo character and the Toledo invariant for Hermitian groups in [BGR17],
and the rank of (G0, g1) coincides, as mentioned above, with the rank of the symmetric space.

We refer to Hodge bundles with |τ(E, ϕ)| = rkT (G0, g1)(2g − 2) as maximal Hodge bundles
of type (G0, g1). As in the Hermitian case of [BGR17], the Arakelov–Milnor inequality follows
from a more general and more precise inequality established in Theorem 5.3. Indeed, the stability
of a Hodge bundle of type (G0, g1) depends on a parameter α = λζ with λ ∈ R. In Theorem 5.3
we give an inequality for an α-semistable Hodge bundle (E, ϕ). Moreover, we give a refined
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inequality which depends on the orbit in g1 which contains the generic value of ϕ. While we
are mostly interested in the case α = 0, since this relates to the stability of the Higgs bundle
obtained from (E, ϕ) by extension of structure group, considering the arbitrary value of the α
case has proven to be a powerful tool to study the moduli space for α = 0 (see [BGG03, GHS14]).
We believe that the same principle will apply in this general situation.

Example 1.3. The inequality is usually easy to write down in concrete cases. For example, for
G = SO2p+qC and G0 = GLpC × SOqC, one finds that rkT (G0, g1) = 2 min(p, q) if q > 1 and 1 if
q = 1. Let us take q > 1. A bundle (E, ϕ) of type (G0, g1) can be written as E = V ⊕ W ⊕ V ∗,
where V is a GLpC-bundle and W is a SOqC-bundle, and the Higgs field has the form

ϕ =








0 θ 0
0 0 −θT

0 0 0









where θ : W → V ⊗ K. One obtains τ(E, ϕ) = 2 deg V , and it follows that inequality (1.1) takes
the form (actually deg V " 0)

deg V ! −min(p, q)(2g − 2).

As mentioned above, we actually prove a more precise inequality, which depends on the orbit
which contains the generic value of ϕ. In our case, if the image of θT in W is the sum of a
nondegenerate subspace of dimension r1 and of a totally isotropic subspace of dimension r2,
then the inequality can be refined as

deg V ! −
(

r1 +
r2

2

)
(2g − 2). (1.2)

These values are calculated in Example 3.7.

Fundamental in the proof of the Arakelov–Milnor inequality (1.1) is the construction of a
maximal Jacobson–Morozov (JM) regular prehomogeneous vector subspace (PHVSS) of (G0, g1)
and the existence of a polynomial relative invariant for this subspace. This is the analogue of a
maximal subtube in the Hermitian case. To explain this, let {f, h, e} ⊂ g be an sl2-triple such
that [h, e] = 2e and [e, f ] = h. The weights of adh are integral. When the weights of adh are
all even, {f, h, e} is called an even sl2-triple and defines a Z-grading g =

⊕
j∈Z gj with grading

element h/2 and e ∈ g1. In fact e ∈ Ω ⊂ g1 is in the open G0-orbit (see § 2.2). A PHVS (G0, g1) is
called regular if the G0-stabilizer of a point in the open orbit Ω is reductive. For gradings arising
from even sl2-triples {f, h, e}, (G0, g1) is regular since the G0-centralizer of e ∈ Ω coincides with
the G-centralizer of the sl2C-subalgebra. In this case, we refer to (G0, g1) as a JM-regular PHVS.

Fix a basis {f, h, e} of sl2C and let T < PSL2C be the connected subgroup with Lie algebra
〈h〉. The Hodge bundle associated to the representation uniformizing the Riemann surface X is
given by (ET, e), where ET is the holomorphic frame bundle of K−1 and e ∈ H0(ET(〈e〉) ⊗ K).
For SL2C, we take ET to be the frame bundle of a square root of K−1. Suppose {f, h, e} ⊂ g
is an even sl2-triple and consider the associated JM-regular PHVS (G0, g1). From our setup, it
follows that extending structure group (ET(G0), e) defines a maximal Hodge bundle,

τ(ET(G0), e) = rkT (G0, g1)(2g − 2).

Let C < G0 be the G-centralizer of the sl2C-subalgebra. Since T and C are commuting subgroups
of G0, we can form a G0-bundle ET ⊗G0 EC out of ET and a holomorphic C-bundle EC. Since
C acts trivially on 〈e〉, we have e ∈ H0(EC ⊗G0 ET(〈e〉) ⊗ K). Moreover, this process does not
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change the Toledo invariant and defines a map

Ψe : N (C) !! Mmax(G0, g1)

EC
! !! (EC ⊗G0 ET, e)

from the moduli space of degree zero polystable C-bundles to the moduli space of maximal Hodge
bundles of type (G0, g1).

Theorem B (Theorem 6.2). If (G0, g1) is a JM-regular prehomogeneous vector space, then the
map Ψe defines an isomorphism between the moduli space of degree zero polystable C-bundles
and the moduli space of maximal Hodge bundles of type (G0, g1).

Remark 1.4. We note that the map Ψe is a moduli space version of a restriction of the so-called
global Slodowy slice map of [CS21]. In [BCGGO21], an extension of the map Ψe to the entire
Slodowy slice gives rise to the Cayley correspondence used to describe certain components of the
moduli space of GR-Higgs bundles related to higher Teichmüller theory, generalizing the Cayley
correspondence for the Hermitian group case given in [BGR17]. It would be interesting to extend
these results to the full Slodowy slice for every even sl2-triple.

When (G0, g1) is JM-regular, the representations ρ : π1(X) → G associated to maximal
Hodge bundles of type (G0, g1) are described by the following theorem.

Theorem C (Theorem 6.5). Fix a Riemann surface X of genus g ! 2 and suppose (G0, g1)
is a JM-regular PHVS associated to an even sl2-triple {f, h, e}. Let S < G be the associated
connected subgroup and let C be the G-centralizer of {f, h, e}. The Higgs bundle associated to a
reductive representation ρ : π1(X) → G is a maximal Hodge bundle of type (G0, g1) if and only
if ρ is a product ρ = ρu ∗ ρC, where

− ρu : π1(X) → SR < S is the uniformizing PSL2R-representation of X if S ∼= PSL2C and a lift
of the uniformizing representation to SL2R if S ∼= SL2C, and

− ρC : π1(X) → CR < C is any representation into the compact real form of C.

The representations ρ = ρu ∗ ρC : π1(X) → G all factor through a real form of Hodge type
GR < G which is canonically associated to the grading

⊕
j∈Z gj (see Proposition 3.8). Moreover,

the GR-centralizer of any such representation is compact, and hence these representations do not
factor through any proper parabolic subgroups PR < GR.

From the above results, it follows that the equivariant holomorphic map fρ : X̃ → GR/HR
0

associated to such a maximal variation of Hodge structure (ρ, fρ) is a totally geodesic embedding
which maximizes the holomorphic sectional curvature. In this paper we discuss how the choice
of the Toledo character is related to a metric of minimal holomorphic sectional curvature −1 on
GR/HR

0 , providing an alternative proof of Theorem A. Our bounds for the sectional curvature
give the bounds found in [Li22] in the case of SLnC.

Now consider a general grading g =
⊕

j∈Z gj with grading element ζ, not necessarily coming
from an sl2-triple. Pick a point e ∈ Ω ⊂ g1 in the open G0-orbit, and complete e to an sl2-triple
{f, h, e} with h ∈ g0. If (G0, g1) is not a JM-regular PHVS, then s = ζ − h/2 is nonzero and we
define Ĝ0 < G0 to be the G0 centralizer of s and ĝ1 = {x ∈ g1 | [s, x]} = 0. With this setup, Ĝ0

is reductive and (Ĝ0, ĝ1) defines a PHVSS of (G0, g1) which contains e ∈ Ω̂ ⊂ ĝ1 in the open
orbit (see § 2.4). Moreover, the G0-centralizer Ĉ of the sl2-triple {f, h, e} satisfies Ĉ < Ĝ0. We
call (Ĝ0, ĝ1) a maximal JM-regular PHVSS of (G0, g1).

In § 6.3, we show that all maximal Hodge bundles of type (G0, g1) reduce to a maximal
Hodge bundles of type (Ĝ0, ĝ1) (see Proposition 6.15). We then show that the moduli space
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Mmax(G0, g1) of maximal Hodge bundles of type (G0, g1) is isomorphic to the moduli space of
polystable Ĉ-bundles and deduce rigidity results for maximal variations of Hodge structure (see
Theorems 6.16 and 6.17). This recovers rigidity results for maximal variations of Hodge structure
in the Hermitian case.

2. Prehomogeneous vector spaces, Z-gradings and the Toledo character

For this section, let G be a complex reductive Lie group with Lie algebra g. Throughout the
paper, the word character will be used to refer to a Lie group morphism χ : G → C∗ and also a
Lie algebra morphism χ : g → C, what type of object is being considered should be clear from
the context.

2.1 Prehomogeneous vector spaces
We gather together some basic facts about PHVSs. The main references are [Kim03, Kna02,
Mor91, SK77].

A prehomogeneous vector space for G is a finite-dimensional complex vector space V together
with a holomorphic representation ρ : G → GL(V ) such that V has an open G-orbit. Such an
open orbit is necessarily unique and dense. If V is a PHVS, let Ω denote the open orbit in V and
S = V \ Ω be the singular set. For x ∈ V , denote the G-stabilizer of x by Gx. A PHVS vector
space V is called regular if Gx is reductive for x ∈ Ω, otherwise it is called nonregular.

We say that (H, W ) is a PHVSS of (G, V ) if (H, W ) is a PHVS, H ⊂ G is a subgroup, W ⊂ V
is a vector subspace, and the action of H is the restriction of the action of G.

Example 2.1.

(1) The vector space Cn is a PHVS for the standard representation of GLnC. For this example,
Ω = Cn \ {0}, and it is regular only when n = 1.

(2) The vector space Mp,q of p × q matrices is a PHVS for the action of S(GLpC × GLqC)
given by (A, B) · M = AMB−1. Here, Ω = {M ∈ Mp,q | rk(M) = min(p, q)}. This example
is regular only when p = q.

(3) The vector space Mp,q is also a PHVS for the action of GLpC × SOqC given by (A, B) · M =
AMB−1. Here Ω = {M ∈ Mp,q | rk(M · MT) = min(p, q)}. Also, the vector space Mp,q ⊕
Mq,r is a PHVS for the action of S(GLpC × GLqC × GLrC) given by (A, B, C) · (M, N) =
(AMB−1, BNC−1). Here Ω = {(M, N) ∈ Mp,q ⊕ Mq,r | rk(MN) = min(p, q, r)}.

The first example is regular when p " q and the second example is regular when p = r
and p " q. Note that the inclusions

Mp,q !! Mp,q ⊕ Mq,p GLpC × SOqC !! S(GLpC × GLqC × GLpC)

M
! !! (M,−MT), (A, B) ! !! (A, B, (AT)−1)

make (GLpC × SOqC, Mp,q) a PHVSS of (S(GLpC × GLqC × GLpC), Mp,q ⊕ Mq,p).

Let V be a PHVS for G with representation ρ. A nonconstant rational function F : V → C
is called a relative invariant if there exists a Lie group character χ : G → C∗ such that

F (ρ(g) · x) = χ(g)F (x) for all g ∈ G and x ∈ V .

Here are some fundamental facts appearing in [SK77, §4].
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Proposition 2.2. Let V be a PHVS for G with representation ρ.

(i) Up to a constant, a relative invariant is uniquely determined by its corresponding character.
In particular, any relative invariant is a homogeneous function.

(ii) V is regular if and only if the singular set S is a hypersurface.
(iii) Let χ : G → C∗ be a character. Then there is a relative invariant for χ if and only if χ is

trivial on the stabilizers of points in Ω, that is, χ|Gx = 1 for all x ∈ Ω.

Example 2.3. The regular PHVS Mp,p from Example 2.1(2) has a relative invariant F : Mp,p →
C given by F (M) = det(M). The associated character χ : G → C∗ is given by χ(A, B) =
det(A) det(B)−1 since

F ((A, B) · M) = det(AMB−1) = χ(A, B)F (M).

The regular PHVS Mp,q ⊕ Mq,p with p " q from Example 2.1(3) has a relative-invariant given
by F (M, N) = det(MN). The associated character is χ(A, B, C) = det(A) det(C−1) since

F ((A, B, C) · (M, N)) = det(AMB−1BNC−1) = χ(A, B, C)F (M, N).

This relative invariant also defines a relative invariant for the GLpC × SOqC PHVSS given
by (M, N) = (M,−MT). For (A, B) ∈ GLpC × SOqC, the associated character is χ(A, B) =
det(AAT) = det(A)2.

2.2 Prehomogeneous vector spaces associated to Z-gradings
A Z-grading of a semisimple Lie algebra g is a decomposition

g =
⊕

j∈Z
gj such that [gi, gj ] ⊂ gi+j .

The subalgebra p =
⊕

j!0 gj is a parabolic subalgebra with Levi subalgebra g0 ⊂ p. There is an
element ζ ∈ g0 such that gj = {X ∈ g | [ζ, x] = jx}; the element ζ is called the grading element
of the Z-grading.

Given a Z-grading g =
⊕

j∈Z gj , let G0 < G be the centralizer of ζ; G0 acts on each factor
gj . The relation between Z-gradings and PHVSs is given by the following theorem of Vinberg
(see [Kna02, Theorem 10.19]).

Proposition 2.4. For each j -= 0, gj is a PHVS for G0.

Prehomogeneous vector spaces arising from Z-gradings of g are said to be of parabolic type.
From now on, we will consider only PHVSs of parabolic type.

Example 2.5. All of the PHVSs from Example 2.1 are of parabolic type. Below the parabolic
refers to the subgroup with Lie algebra p =

⊕
j!0 gj .

− For (S(GLpC × GLqC), Mp,q), G = SLp+qC and the parabolic is the stabilizer a p-plane in
Cp+q.

− For (GLpC × SOqC, Mp,q), G = SO2p+qC and the parabolic is the stabilizer of an isotropic
p-plane in C2p+q.

− For (S(GLpC × GLqC × GLrC), Mp,q ⊕ Mq,r), G = SLp+q+rC and the parabolic is the stabi-
lizer of a flag Cp ⊂ Cp+q ⊂ Cp+q+r.

Consider a nonzero nilpotent element e ∈ g. By the Jacobson–Morozov theorem, e can be
completed to an sl2-triple {f, h, e} ⊂ g, that is, a triple satisfying the bracket relations of sl2C:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Moreover, given {h, e} so that [h, e] = 2e and h ∈ ade(g), there is a unique f ∈ g such that
{f, h, e} is an sl2-triple.
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Given an sl2-triple {f, h, e}, the semisimple element h acts on g with integral weights and
thus defines a Z-grading g =

⊕
j∈Z gj , where gj = {x ∈ g | adh(x) = jx}. Note that e ∈ g2. We

have the following result of Kostant and Malcev (see [Kna02, Theorem 10.10]).

Proposition 2.6. Let {f, h, e} ⊂ g be an sl2-triple with associated Z-grading g =
⊕

j∈Z gj , and
let G0 < G be the associated analytic subgroup with Lie algebra g0. Then e is in the open orbit
Ω of the PHVS (G0, g2).

Corollary 2.7. The PHVS (G0, g2) arising from an sl2-triple {f, h, e} is regular.

Proof. Since e ∈ Ω ⊂ g2, we need to show that the stabilizer Ge
0 is reductive. The group G0

centralizes h, so the stabilizer Ge
0 of e stabilizes both h and e. By the uniqueness part of the

Jacobson–Morozov theorem, Ge
0 stabilizes the sl2-triple. As the centralizer of an sl2-subalgebra

is reductive (see [CM93, Lemma 3.7.3]), we conclude that Ge
0 is reductive. #

Let B : g × g → C denote the Killing form of g. Given an sl2-triple, {f, h, e} ⊂ g with
associated Z-grading g =

⊕
j∈Z gj , define the Lie algebra character χh : g0 → C by

χh(x) = 1
2B(h, x). (2.1)

Proposition 2.8. There is a positive integer q such that q · χh exponentiates to a character

χh,q : G0 → C∗

which has a relative invariant of degree q · B(h/2, h/2).

Remark 2.9. In fact, we will prove that the associated relative invariant is a polynomial in
Proposition 3.16.

Proof. Let ge
0 ⊂ g0 be the Lie algebra of the G0-stabilizer of e ∈ g2. For x ∈ ge

0, we have

B(h, x) = B([e, f ], x) = B(f, [e, x]) = 0.

Thus, χh(ge
0) = 0, and there is a positive integer q so that q · χh exponentiates to a character

which is trivial on the identity component of Ge
0. Since Ge

0 has a finite number of components,
we can choose q so that q · χh exponentiates to a character χh,q : G0 → C∗ whose restriction to
Ge

0 is trivial. Hence, by part (iii) of Proposition 2.2, the character χh,q has a relative invariant
F : g2 → C such that F (e) -= 0. For the degree, we have Adexp(th)(e) = exp(2t)e. Thus,

F (exp(t)e) = F

(
exp

(
t
h

2

)
· e

)
= χh,q

(
exp

(
t
h

2

))
F (e) = exp

(
tq · B

(
h

2
,
h

2

))
F (e). (2.2)

By Proposition 2.2 F is homogeneous, and so has degree q · B(h/2, h/2). #
Remark 2.10. Not every regular PHVS of the form (G0, g2) arises from an sl2-triple. For examples
in E6, E7 and E8 see [Rub11, Remark 4.18]. In fact, the B3 example in [Rub11, Table 1] gives a
very simple example of a regular PHVS which does not arise from an sl2-triple. For such regular
PHVSs the grading element ζ does not have a relative invariant.

2.3 Canonical Z-gradings associated to parabolics
In this section we fix some normalizations for the Z-gradings we will consider.

Up to conjugation, all Z-gradings of g arise from labeling the nodes of the Dynkin diagram of g
with nonnegative integers [Vin94, Chapter 3.5]. This works as follows. Let t ⊂ g be a Cartan sub-
algebra and ∆ = ∆(g, t) be the corresponding set of roots. Pick a set of simple roots Π ⊂ ∆ and
let ∆+ ⊂ ∆ be the set of positive roots. Every root α ∈ ∆+ can be written as α =

∑
αi∈Π niαi,

where all ni are nonnegative integers. For each αi ∈ Π, choose nonnegative integers pi,
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that is, label the nodes of the Dynkin diagram of Π with nonnegative integers pi. This choice
defines a Z-grading g =

⊕
j∈Z gj , where gj is the direct sum of all root spaces gα such that

α =
∑

αi∈Π niαi and j =
∑

i nipi.
In the above construction, the associated parabolic p =

⊕
j!0 gj and the Levi subalgebra

g0 depend only on the labels pi mod 2. Namely, up to conjugation, parabolic subalgebras p are
determined by subsets Θ ⊂ Π, where

pΘ = t ⊕
⊕

α∈span(Θ)∩∆+

g−α ⊕
⊕

α∈∆+

gα.

We define the canonical Z-grading of pΘ by labeling the αi-node of the Dynkin diagram 0 if
αi ∈ Θ and 1 if αi ∈ Π \ Θ. That is, gj is given by

gj =
⊕

gα, where α =
∑

αi∈Π

niαi and j =
∑

αi∈Π\Θ
ni.

Remark 2.11. We will often consider PHVSs of parabolic type and of the form (G0, g1) where g1

is the weight-1 piece of the canonical grading of a parabolic subalgebra of g. This is not a major
restriction since, given a general PHVS (G0, gk) of parabolic type, the subalgebra consisting of
graded pieces gj with j = 0 mod k is reductive and gk is the weight 1 piece of the canonical
grading of a parabolic in this subalgebra.

An sl2-triple {f, h, e} ⊂ g is called even if adh has only even eigenvalues. Parabolic sub-
algebras arising from even sl2-triples are called even Jacobson–Morozov parabolics. For such
parabolics, the canonical grading is given by adh/2; the PHVS (G0, g1) is regular by Corollary 2.7
and, by Proposition 2.8, there is a relative invariant associated to the character χh from (2.1).
As a result we will call a PHVS (G0, g1) which arises from an even sl2-triple a JM-regular PHVS.

Example 2.12. When Θ = ∅, G0 is Cartan subgroup and g1 is the direct sum of simple root
spaces. Such a PHVS (G0, g1) is always JM-regular and arises from a principal sl2-triple. Here
Ω ⊂ g consists of vectors with nonzero projection onto each simple root space and the stabilizer
of such a point is the center of G.

Example 2.13. Let η =
∑

αi∈Π niαi be the longest root of ∆+. For g not of type E8, F4, G2, there
is at least one simple root αi with ni = 1. For such a root set Θ = Π \ {αi}. In this case, the
canonical Z-grading of the parabolic pΘ is given by

g = g−1 ⊕ g0 ⊕ g1.

For these examples, (G0, g1) is regular if and only if it is JM-regular. The associated flag variety
G/PΘ is the compact dual of a Hermitian symmetric space and (G0, g1) is regular if and only
if the associated Hermitian symmetric space is of tube type. An example of this is given in
Example 2.1, in which case the symmetric space of SU(p, q) is the relevant Hermitian symmetric
space; it is of tube type only when q = p.

Remark 2.14. In Example 2.13, the space g1 is an irreducible G0-representation. In general, if
(G0, g1) is a PHVS such that G0 acts irreducibly on g1, then (G0, g1) is regular if and only if it is
JM-regular. For example, this implies that the PHVS (GLpC × SOqC, Mp,q) from Examples 2.1
and 2.5 is JM-regular whenever p " q. The regular PHVS (S(GLpC × GLqC × GLpC), Mp,q ⊕
Mq,p) from Examples 2.1 and 2.5 does not come from a maximal parabolic of SL2p+qC but it is
still a JM-regular PHVS when p " q.
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Example 2.15. The simplest example of a PHVS (G0, g1) which is regular but not JM-regular
occurs in SO7C with Θ = {α2}, that is, with labeled Dynkin diagram

1 0 1

Here (G0, g1) ∼= (GL1C × GL2C, C2 ⊕ C2) for the action (λ, A) · (v, w) = (λvA−1, AwT). A point
in the open orbit is given by v = (1, 0) and w = (1, 0). For this point, the G0-stabilizer is given
by λ = 1 and A =

(
1 0
0 ξ

)
for ξ ∈ C∗. Geometrically, this parabolic stabilizes an isotropic flag of

the form C ⊂ C3 ⊂ C7.

2.4 Jacobson–Morozov regular prehomogeneous vector subspaces
Fix a Z-grading g =

⊕
j∈Z gj with grading element ζ and consider a PHVS (G0, g1). Following

the proof [CM93, Theorem 3.3.1] of the Jacobson–Morozov theorem, one can show that any
nonzero element e ∈ g1 can be completed to an sl2-triple {f, h, e} with f ∈ g−1 and h ∈ g0.

The semisimple element h defines a new grading g =
⊕

j∈Z g̃j where

g̃j = {x ∈ g | adh(x) = jx}.

Define ĝj = gj ∩ g̃2j and the subalgebra ĝ ⊂ g given by

ĝ =
⊕

j∈Z
ĝj . (2.3)

Note that h and ζ are both in ĝ0 and e ∈ ĝ1. The difference s = ζ − h/2 is semisimple or
zero since ζ and h/2 are semisimple and [ζ, h/2] = 0. Thus, ĝ is reductive since ĝ = gs is the
centralizer of s. The following proposition is immediate.

Proposition 2.16. Let Ĝ0 < G be the G0-centralizer of h. Then (Ĝ0, ĝ1) is a PHVSS of (G0, g1)
which is JM-regular and e is in the open Ĝ0-orbit Ω̂ ⊂ ĝ1.

Definition 2.17. If e ∈ Ω is in the open G0-orbit, then (Ĝ0, ĝ1) will be called a maximal JM-
regular PHVSS of (G0, g1). For any e ∈ g1 \ {0}, we will call (Ĝ0, ĝ1) a maximal JM-regular
PHVSS for e.

Remark 2.18. If (G0, g1) is JM-regular, then for any e ∈ Ω an associated sl2-triple has the form
{f, 2ζ, e}. In this case, (G0, g1) = (Ĝ0, ĝ1).

Example 2.19. Consider the PHVS (S(GLpC × GLqC), Mp,q) from Example 2.1(2). If p -= q,
then the PHVS is not JM-regular. For p > q, a maximal JM-regular PHVSS is isomorphic
to (S(GLqC × GLqC × GLp−qC), Mq,q), for the action (A, B, C) · M = AMB−1. In general, the
maximal JM-regular PHVSS of the PHVSs (G0, g1) from Example 2.13 is related to the maximal
subtube of the associated Hermitian symmetric space.

For the PHVS (GLpC × SOqC, Mp,q) from the first example of Example 2.1(3) with p > q, the
PHVS is not JM-regular and a maximal JM-regular PHVSS is isomorphic to (GLqC × GLp−qC ×
SOqC, Mq,q), where the action is given by (A, B, C) · M = AMC−1. The maximal JM-regular
PHVSS of (S(GLpC × GLqC × GLrC), Mp,q ⊕ Mq,r) can be described similarly. For the regular
(non-JM-regular) PHVS (G0, g1) = (GL1C × GL2C, C2 ⊕ C2) from Example 2.15, the maximal
JM-regular PHVSS (Ĝ0, ĝ1) containing (v, w) = ((1, 0), (1, 0)) is

Ĝ0 =
{

(λ, A) ∈ GL1C × GL2C
∣∣∣ A =

((
a 0
0 b

))}
and ĝ1 = 〈v〉 ⊕ 〈w〉.
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The construction of a maximal JM-regular PHVSS of (G0, g1) containing e ∈ g1 depends on
e and a choice of sl2-triple {f, h, e}. However, if e, e′ ∈ g1 are in the same G0-orbit then any two
maximal JM-regular PHVSSs containing e and e′ are G0-conjugate.

Proposition 2.20. Let e, e′ ∈ g1 so that e′ ∈ G0 · e, and let {f, h, e}, {f ′, h′, e′} be two
sl2-triples with h, h′ ∈ g0. Then there is g ∈ G0 so that

{f ′, h′, e′} = {Adg f, Adg h, Adg e}.

In particular, the associated maximal JM-regular PHVSSs (Ĝ0, ĝ1) and (Ĝ′
0, ĝ

′
1) containing e and

e′ respectively are G0-conjugate.

Proof. We may assume e = e′. Let g =
⊕

j∈Z g̃j be the Z-grading associated to the sl2-triple
{f, h, e} and ge be the centralizer of e and ue =[e, g] ∩ ge =ge ∩

⊕
j>0 g̃j . We have h′ − h ∈ ue

since [h − h′, e] = 0 and [e, f − f ′] = h′ − h. Since h, h′ ∈ g0, following the proof [CM93,
Theorem 3.4.7], we can inductively construct Z ∈ g0 ∩ ue so that Adexp(Z)(h) =h+ (h′ − h)= h′.
Note that Adexp(Z) e = e, and, by the uniqueness part of the Jacobson–Morozov theorem, we have
Adexp(Z) f = f ′. #

Finally, we note that every e ∈ g1 defines a parabolic subgroup of P0,e < G0. For e ∈ g1 \ {0},
let {f, h, e} be an associated sl2-triple with h ∈ g0. If g =

⊕
j∈Z g̃j is the Z-grading with grading

element h, then p̃ =
⊕

j!0 g̃j is a parabolic subalgebra of g. Moreover, p̃ depends only on e ∈
g1 \ {0} and not on the sl2-triple {f, h, e} (see, for example, [CM93, Remark 3.8.5]). Note that
the parabolic p̃ can also be defined by

p̃ = {x ∈ g | Adexp(−t(h/2)) is bounded as t → ∞}. (2.4)

The parabolic subalgebra p0(e) ⊂ g0 is defined by

p0,e = g0 ∩ p̃.

We will denote the associated parabolic subgroup by P0,e < G0. Note that ĝ0 ⊂ p0,e and Ĝ0 < P0,e

define a Levi subalgebra and subgroup, respectively.

Proposition 2.21. Let e ∈ g1 \ {0} and {f, h, e} be an sl2-triple with h ∈ g0. If s = ζ − h/2,
then

p0,e = {x ∈ g0 | Adexp(ts) x is bounded as t → ∞}.

Proof. The proposition follows immediately from the description of p̃ in (2.4) and the fact that
Adexp(tζ) x = x for all x ∈ g0. #

3. The Toledo character and period domains

In this section we generalize notions from [BGR17], which concerned Z-gradings g = g−1 ⊕
g0 ⊕ g1, to arbitrary Z-gradings.

3.1 The Toledo character and rank
Let G be a complex semisimple Lie group with Lie algebra g and Killing form B. Fix a Z-grading
g =

⊕
j∈Z gj with grading element ζ. Recall that (G0, g1) is a PHVS, and let Ω ⊂ g1 be the open

G0-orbit. Since g0 is the centralizer of ζ, B(ζ,−) : g0 → C defines a character.

Definition 3.1. The Toledo character χT : g0 → C is defined by

χT (x) = B(ζ, x)B(γ, γ),

where γ is the longest root such that gγ ⊂ g1.
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Remark 3.2. The normalization factor B(γ, γ) guarantees that the Toledo character is indepen-
dent of the choice of invariant bilinear form B.

Let e, e′ ∈ g1 \ {0} such that e′ ∈ G0 · e and let {f, h, e}, {f ′, h′, e′} be two sl2-triples with
h, h′ ∈ g0. By Proposition 2.20, there is g ∈ G0 such that {Adg f, Adg h, Adg e} = {f ′, h′, e′}.
Since Adg ζ = ζ, we have

χT (h) = B(ζ, h)B(γ, γ) = B(Adg ζ,Adg h)B(γ, γ) = χT (h′). (3.1)

As a result, we make the following definition.

Definition 3.3. Let e ∈ g1 and {f, h, e} be an sl2-triple with h ∈ g0. Define the Toledo rank of
e by

rkT (e) = 1
2χT (h).

Define the Toledo rank of the PHVS (G0, g1) by

rkT (G0, g1) = rkT (e) for e ∈ Ω.

Remark 3.4. Note that if (G0, g1) is a JM-regular PHVS, then rkT (G0, g1) = B(ζ, ζ)B(γ, γ).

Example 3.5. For the PHVSs (G0, g1) from Example 2.13, the Toledo rank of (G0, g1) agrees
with the rank of the associated Hermitian symmetric space.

Proposition 3.6. Let e ∈ g1 and {f, h, e} be an associated sl2-triples with h ∈ g0. Then

rkT (e) = B

(
h

2
,
h

2

)
B(γ, γ). (3.2)

Proof. Write ζ = h/2 + s. Note that s ∈ ge and h/2 ∈ ade(g). Thus, B(h/2, s) = 0 and

rkT (e) = B

(
ζ,

h

2

)
B(γ, γ) = B

(
h

2
+ s,

h

2

)
B(γ, γ) = B

(
h

2
,
h

2

)
B(γ, γ). #

Example 3.7. We illustrate these notions in the case of Example 1.3, with G = SO2p+qC and G0 =
GLpC × SOqC. Taking an isotropic basis of C2p+q = Cp ⊕ Cq ⊕ Cp, such that 〈ei, e2p+q+1−i〉 = 1,
we have the grading element

ζ =




Idp

0
− Idp



 .

Then g1 = Hom(Cp, Cq), where u ∈ Hom(Cp, Cq) represents the matrix

e =




−uT

u



 , in which uT
ij = up+1−j,q+1−i.

The orbits are classified by two integers (r1, r2), such that the image of u ∈ Hom(Cp, Cq) is the
sum of a nondegenerate subspace of dimension r1 and a totally isotropic subspace of dimension
r2. Let Jr be the rank r matrix

Jr =
(

1
. . .

1

)
.
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Then one can take

u =





Idr2

Idr1

0
Jr1

0




, h =





0
2 Idr1

Idr2

Idr2

0
− Idr2

− Idr2

−2 Idr1

0





.

(The formula for u is valid if r2 + r1 " q/2; the reader will modify u accordingly if r2 + r1 > q/2.
The formula for h remains the same.) Take the standard invariant form B(X, Y ) = tr(XY ). If
q > 1 we have B(γ, γ) = 1 and therefore rkT e = 1

4B(h, h) = 2r1 + r2. On the other hand χT (x) =
B(ζ, x), so that we will have τ(E, ϕ) = 2 deg V if the Higgs bundle (E, ϕ) is given as V ⊕ W ⊕ V ∗

with V a GLpC-bundle and W a SOqC-bundle. This justifies inequality (1.2) as a consequence
of Corollary 5.5.

3.2 Real forms and period domains
Let g be a complex semisimple Lie algebra and consider a conjugate linear involution σ : g → g.
The fixed point set gσ ⊂ g is a real subalgebra such that gσ ⊗ C = g. Such a subalgebra is called
a real form of g. On the level of groups, a real form Gσ < G is the fixed point set of an anti-
holomorphic involution σ : G → G. A real form is called compact if Gσ is compact or gσ is the
Lie algebra of a maximal compact subgroup. Compact real forms exist and are unique up to
conjugation.

Real forms of g can be equivalently defined in terms of complex linear involutions θ : g → g.
Namely, Cartan proved that, given a real form σ, there is a compact real form τ : g → g such
that σ ◦ τ = τ ◦ σ, and that given a complex linear involution θ, there is a compact real form
τ : g → g such that θ ◦ τ = τ ◦ θ. The correspondence is then given by setting θ = σ ◦ τ . A real
subalgebra σ : g → g is said to be of Hodge type if σ is an inner automorphism of g. If τ is a
compact real form such that θ = τ ◦ σ = σ ◦ τ, then σ is of Hodge type if and only if there is a
Cartan subalgebra t ⊂ g such that θ|t = Id .

Given a complex linear involution θ : g → g, we will write g = h ⊕ m for ±1-eigenspaces of
θ, namely θ|h = Id and θm = − Id. We will call the decomposition g = h ⊕ m the complexified
Cartan decomposition of a real form gR ⊂ g. There is a real form of Hodge type associated to
every Z-grading of g.

Proposition 3.8. Let g =
⊕

j∈Z gj be a Z-grading, and define θ : g → g by

θ|gj = (−1)j Id .

Then θ is a Lie algebra involution which defines a real form of Hodge type.

Proof. It is clear that θ is a Lie algebra involution. Moreover, from the constructions in § 2.3,
g0 contains a Cartan subalgebra of g. Hence, the real form associated to the involution θ is of
Hodge type. #
Example 3.9. For gradings of the form g = g−1 ⊕ g0 ⊕ g1, the canonical real forms are exactly
the set of real forms of Hermitian type. For example, the real form of SLp+qC associated to the
PHVS (S(GLpC × GLqC, Mp,q) from Examples 2.1 and 2.5 is SU(p, q).
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The real form of SO2p+qC associated to the PHVS (GLpC × SOqC, Mp,q) from
Examples 2.1 and 2.5 is SO(2p, q). Similarly, the real form of SLp+q+rC associated to the PHVS
(S(GLpC × GLqC × GLrC), Mp,q ⊕ Mq,r) is SU(p + r, q). For the regular (non JM-regular) PHVS
from Example 2.15, the associated real form of SO7C is SO(3, 4). For the JM-regular PHVS asso-
ciated to a principal sl2-triple (Example 2.12), the associated real form is the split real form if
the split real form is of Hodge type, otherwise it is the quasisplit real form which is nonsplit. For
example, for G = SL2pC, the split real form is SL2pR but the canonical real form associated to
the grading is SU(p, p).

Remark 3.10. Given a compact real form τ, B(−τ(x), y) defines a nondegenerate positive definite
Hermitian inner product on g. Thus, τ(gj) = g−j for any Z-grading g =

⊕
j gj .

Let θ be the involution from Proposition 3.8 and τ be a compact real form such that σ =
θ ◦ τ : g → g is the associated real form of Hodge type. Let GR < G be the associated real form
of G and let HR < GR be the associated maximal compact subgroup. Note that the real form σ
restricts to a compact real form on g0. Set HR

0 = G0 ∩ GR.
Consider the homogeneous space

D = GR/HR
0 .

Note that there is a fibration D → GR/HR over the Riemannian symmetric space of GR. In fact,
the homogeneous space D has a natural homogeneous complex structure. Indeed, the tangent
bundle of D = GR/HR

0 is isomorphic to the associated bundle

TD ∼= GR ×HR
0

gR/hR
0 .

Let gR = hR
0 ⊕ qR be an orthogonal decomposition and q = qR ⊗ C. Then the complexified tan-

gent bundle is TCD ∼= GR ×HR
0

q, and a complex structure on D is equivalent to an HR
0 -invariant

decomposition q = q− ⊕ q+ such that σ(q+) = q− and [q±, q±] ⊂ q±. The decomposition q =
q− ⊕ q+ is given by setting

q+ =
⊕

j>0

gj and q− =
⊕

j<0

gj .

The complex manifold D is called a period domain for GR. Note that the holomorphic tangent
bundle of a period domain decomposes as

T 1,0
C D ∼= GR × HR

0 q+ =
⊕

j>0

GR ×HR
0

gj .

Example 3.11. For the PHVSs from Example 2.13, GR < G is a Hermitian real form and HR
0 <

GR is a maximal compact subgroup. Hence, the period domain D = GR/HR
0 is the Riemannian

symmetric space for GR. For the PHVS (G0, g1) from Example 2.12, G0 < G is a Cartan sub-
group, GR is the quasisplit real form of Hodge type and the period domain is D = GR/U(1)rk(g).
For the PHVS (GLpC × SO(p, C), Mp,q) from Examples 2.1 and 3.9, GR = SO(2p, q) and the
period domain is D = SO(2p, q)/(Up × SOq).

3.3 The Toledo character and holomorphic sectional curvature
Here we discuss how the choice of the Toledo character is related to a metric of minimal
holomorphic sectional curvature −1 on GR/HR

0 .
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As is well known, one can define an invariant Hermitian metric on GR/HR
0 by using the

Hermitian scalar product

〈x, y〉 = B(x∗, y) if x, y ∈ gk,

where x∗ = −τ(x) and τ is the compact conjugation fixed on g. This does not give a Kähler
metric (the corresponding 2-form is not closed) but one can still define the holomorphic sec-
tional curvature K of its Chern connection. We have the well-known formula (see, for example,
[CMSP17])

K(x) = − |[x, x∗]|2

|x|4 .

We are interested in the function K on g1. It is known (and re-proved quickly below) that critical
points of K are obtained on elements e such that {e∗, h = [e, e∗], e} is an sl2-triple. For such e,
we have |[e, e∗]|2 = 〈[[e, e∗], e], e〉 = 2|e|2, and |e|2 = 〈[ζ, e], e〉 = 〈ζ, [e, e∗]〉, therefore

K(e) = − 2
B(ζ, h)

,

which is, up to a constant, the inverse of the Toledo rank defined earlier. Then we will prove the
following proposition.

Proposition 3.12. The maximum of K on g1 is attained on the open orbit, and is equal to
−2/B(ζ, hreg), where e is in the open orbit and {e∗, hreg = [e, e∗], e} is an sl2-triple.

The minimum of K on g1 is attained on a minimal orbit, and is equal to −B(γ, γ) for a long
root γ ∈ ∆1 (the minimum is attained on eγ , which belongs to a minimal orbit).

Therefore, after multiplying the Hermitian metric by B(γ, γ), we obtain a normalized metric
with normalized holomorphic sectional curvature

−1 " Knorm " − 1
rkT (G0, g1)

.

At a general critical point e ∈ g1 of the curvature (therefore {e∗, [e, e∗], e} is an sl2-triple), we
have the normalized value Knorm(e) = −1/ rkT (e).

From the Toledo character we obtain a GR-invariant 2-form on GR/HR
0 by

ω(x, y) = iχT ([x, y]0), for x, y ∈ qR,

where [x, y]0 is the projection of the bracket onto g0. This actually defines a pseudo-Hermitian
metric, which coincides with the previous normalized metric in the horizontal directions (i.e., in
g1). This explains the choice of the normalization for the Toledo character.

Proof of Proposition 3.12. For completeness, we begin by proving that the critical points come
from sl2-triples {e∗, [e, e∗], e}. Since K(e) is invariant by homothety, we can restrict to variations
ė ⊥ e. Then

K̇ = − 2
|e|4 〈[e, e

∗], [ė, e∗] + [e, ė∗]〉 = − 4
|e|42〈[[e, e

∗], e], ė〉

It follows that for a critical point, [[e, e∗], e] = λe, and up to renormalizing e one can suppose
λ = 2.
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We will now establish a second variation formula. Start from an sl2-triple (h = [e, e∗], e, e∗)
and take a vector x ⊥ e such that |x| = |e|. Consider

e(t) = cos(t)e + sin(t)x =
(

1 − t2

2

)
e + tx + o(t2).

Then e(t) has constant norm, and, up to order 2,

[e(t), e(t)∗] = [e, e∗] + t([x, e∗] + [e, x∗]) + t2([x, x∗] − [e, e∗]).

Therefore, again up to order 2,

−|e|4K(e(t)) = |[e(t), e(t)∗]|2

= |[e, e∗]|2 + t2(|[x, e∗] + [e, x∗]|2 + 22〈[e, e∗], [x, x∗] − [e, e∗]〉).

We have already noticed above that |[e, e∗]|2 = 2|e|2 = 2|x|2, and therefore

d2

dt2

∣∣∣∣
t=0

|e|4K(e(t)) = 2(4|x|2 − 2〈[h, x], x〉 − |[x, e∗] + [e, x∗]|2)

= 4〈(2 − adh)x, x〉 − 2|[x, e∗] + [e, x∗]|2. (3.3)

We first deduce that the maximum is attained on the open orbit. Observe that e is in the
open orbit if and only if g1 ∩ ker ade∗ = 0. Therefore, if e is not in the open orbit, we can take
x ∈ ker ade∗ . Since adh " 0 on ker ade∗ , it follows from (3.3) that in the direction of x we have

d2

dt2

∣∣∣∣
t=0

|e|4K(e(t)) ! 8|x|2,

and therefore the maximum cannot be attained at e. This proves the claim that the maximum
is obtained on the open orbit.

To find the minimum, we use the following fact [Man13, Corollary 7, p. 100]. Denote u the
subspace of g1 given as the sum of the eigenspaces of adh for the eigenvalues at least 2. Then
all orbits in the closure of the orbit of e meet u. Therefore, suppose that the orbit of e is not
minimal. It follows that we can take x ∈ u, and (3.3) gives us, in the direction of x,

d2

dt2

∣∣∣∣
t=0

|e|4K(e(t)) " −2|[x, e∗] + [e, x∗]|2.

Such x cannot be in the kernel of ade∗ (adh " 0 on this kernel). Therefore, the right-hand side is
nonzero, so that the minimum cannot be attained at e. Therefore, the minimum can be attained
only at a minimal orbit.

There can be several minimal orbits if the prehomogeneous space is not irreducible. They
are the orbits of elements eγ for γ ∈ ∆ the longest root. As we have seen, K(eγ) = −2/|eγ |2 =
−4/|hγ |2 = −B(γ, γ). The result follows. #
Remark 3.13. If we fix an orbit O, then Knorm must have a maximum on O. It follows from
the proof of the proposition, and in particular from the description of the orbits in the closure
of O, that the maximum on O is achieved at some element e ∈ O such that (e∗, [e, e∗], e) is an
sl2-triple; it is therefore equal to Knorm(e) = −1/ rkT (e). In particular, we obtain that for any
x ∈ O,

− 1 " Knorm(x) " − 1
rkT (e)

. (3.4)

Example 3.14. The case G = SLnC is particularly simple to calculate. A first observation is
that any nilpotent element e ∈ slnC belongs to the open orbit of the nilpotent subalgebra of a
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parabolic algebra of slnC. It follows that e can be considered as a point in the open orbit of a g1

for some grading of slnC. This observation is not essential for our calculation but relates every
nilpotent e to variations of Hodge structures.

We now calculate the corresponding bounds for the holomorphic sectional curvature,

−1 " K " − 1
rkT e

,

where, by (3.2), we have rkT e = 1
4B(h, h)B(γ, γ) = 1

2B(h, h) since B(γ, γ) = 2 in sln for the
standard invariant form tr(XY ). If we have a Jordan block of size k, the eigenvalues of h are k −
1, k − 3,. . . , −(k − 1), therefore B(h, h) = (k − 1)2 + (k − 3)2 + · · · + (−(k − 1))2 = 1

3k(k2 − 1).
Finally, if e has Jordan blocks of size k1, k2, . . . , kj we obtain

rkT e =
1
6

j∑

1

ki(k2
i − 1).

This gives immediately some curvature bounds in [Li22].

Proposition 3.15. Let e ∈ g1 and let Ω ⊂ g1 be the open G0-orbit of the PHVS (G0, g1). Then

0 " rkT (e) " rkT (G0, g1),

with equality if and only if e ∈ Ω.

Proof. We give an indirect proof applying Proposition 3.12 and Remark 3.13. The Toledo rank
is related to the normalized holomorphic sectional curvature Knorm of the corresponding period
domain by Knorm(e) = −1/ rkT (e) if (f, h, e) is a real sl2-triple (in a given orbit one can always
find an e which is part of such a triple; see Remark 3.13). Then it is proved that Knorm(e) "
Knorm(e′) if the orbit of e is included in the closure of the orbit of e′. Moreover, the maximum
of Knorm is attained only on the open orbit. The proposition follows. #

We end this section with a proposition which will be used often in subsequent sections.

Proposition 3.16. If (G0, g1) is a JM-regular PHVS, then there is positive integer multiple
q · χT of the Toledo character which exponentiates to a character χT,q : G0 → C∗ which has a
polynomial relative invariant of degree q · rkT (G0, g1).

Proof. By Proposition 2.8, there is a positive integer multiple q · χT of the Toledo character
which exponentiates to a character χT,q : G0 → C∗ which has a relative invariant F of degree
q · rkT (G0, g1). We prove that F is a polynomial by proving that it attains a finite value on any
element e′ ∈ g1.

First note that if e′ = 0, then (2.2) implies F (0) = 0. For e′ -= 0, complete e′ into an sl2-triple
{f ′, h′, e′} with f ′ ∈ g−1 and h′ ∈ g0. Then e′ + ker(adf ′) cuts all other G-orbits, but this is not
true in general for G0-orbits. Nevertheless, it remains true that e′ + ker(adf ′) cuts the open
orbit, because g0 · e′ + (ker(adf ′) ∩ g1) = g1, which implies that G0 · (e′ + ker(adf ′)) contains an
open neighborhood of e′. So up to conjugating by some element of G0 we can suppose that
e = e′ + X with [f ′, X] = 0. Since X belongs to the nonpositive eigenspaces of adh′ , it follows
that e′ = limt→+∞ et(h′−h) · e. Therefore,

F (e′) = lim
t→+∞

χh,q(et(h′−h))F (e) = lim
t→+∞

etqχh(h′−h)F (e).

This is finite if χh(h′ − h) " 0, that is, if B(h, h′) " B(h, h). Since h′ = [e′, f ′] and [h, e′] = 2e′,
we have B(h, h′) = 2B(e′, f ′) and B(h, h) = 2B(e, f), so the inequality to prove is

B(e′, f ′) " B(e, f).
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As before, we may use the Hermitian scalar product from the associate real form and assume
that (e′)∗ = f ′. We claim that we can also assume e∗ = f while keeping the condition e ∈ e′ +
ker(adf ′). Indeed, since [f ′, X] = 0 we have [e, e∗] = [e′, f ′]+[X, X∗] so we want [X, X∗]=h − h′;
but h − h′ centralizes the triple {e′, f ′, h′} and preserves the slice e′ + ker(adf ′). Thus, it is
sufficient to conjugate e by an element of the centralizer of {e′, f ′, h′} in G0 to obtain [e, e∗] = h.

Then 〈e′, X〉 = 1
2〈[h

′, e′], X〉 = 1
2〈h

′, [X, f ′]〉 = 0. It follows that B(e′, f ′) = |e′|2 and B(e, f) =
|e|2 = |e′|2 + |X|2 ! B(e′, f ′). The proposition follows. #

4. Higgs bundles and variations of Hodge structure

For this section let X be a compact Riemann surface of genus g ! 2 and let K be its canonical
bundle.

4.1 Higgs bundles and Hodge bundles
Let G be a complex reductive Lie group with Lie algebra g and nondegenerate G-invariant
bilinear 〈·, ·〉. Let ρ : G → GL(V ) be a holomorphic representation. If E → X is a G-bundle, we
will denote the V -bundle E ×G V associated to E via the representation ρ by E(V ).

Definition 4.1. A (G, V )-Higgs pair is a pair (E, ϕ) where E is a holomorphic principal
G-bundle on X and ϕ is a holomorphic section of E(V ) ⊗ K.

When V = g and the representation ρ is the adjoint representation, a (G, g)-Higgs pair is
called a G-Higgs bundle. Suppose GR < G is a real form with complexified maximal compact H <
G and complexified Cartan decomposition g = h ⊕ m. When ρ : H → GL(m) is the restriction of
the adjoint representation of G, then an (H, m)-Higgs pair is called a GR-Higgs bundle.

Remark 4.2. When GR is compact, a GR-Higgs bundle is just a holomorphic G-bundle. When
GR = G (viewed as a real form of G × G), a GR-Higgs bundle is a G-Higgs bundle.

If E is a principal G-bundle and Ĝ < G is a subgroup, then a structure group reduction
of E to Ĝ is a section σ of the bundle E(G/Ĝ). Associated to such a reduction is a principal
Ĝ-subbundle Eσ ⊂ E such that Eσ(G) is canonically isomorphic to E.

Definition 4.3. Let G be a complex reductive Lie group and ρ : G → GL(V ) be a holomorphic
representation. Let Ĝ < G and V̂ ⊂ V be a ρ(Ĝ)-invariant subspace. We say that a (G, V )-Higgs
pair (E, ϕ) reduces to a (Ĝ, V̂ )-Higgs pair, if there is a holomorphic reduction EĜ of E to Ĝ such
that ϕ ∈ H0(EĜ(V̂ ) ⊗ K) ⊂ H0(EĜ(V ) ⊗ K).

For example, if GR < G is a real form, H < G is the complexification of a maximal compact
of GR and g = h ⊕ m is complexified Cartan decomposition, then a G-Higgs bundle (E, ϕ)
reduces to a GR-Higgs bundle if there is a holomorphic reduction EH of E to H
such that ϕ ∈ H0(EH(m) ⊗ K).

Example 4.4. Let {f, h, e} be a basis for sl2C, and let T < PSL2C be the subgroup with Lie
algebra 〈h〉. Note that T ∼= C∗ and the adjoint action of T on 〈e〉 is given by λ · e = λe. So, if
ET is the frame bundle of K−1, then the associated bundle ET(〈e〉) ⊗ K ∼= OX . Hence, we have
a PSL2C-Higgs bundle

(ET(PSL2C), e).

Since deg(K) is even, this example can be lifted to SL2C. The lifted action of the subgroup
C∗ ∼= T̂ < SL2C with Lie algebra 〈h〉 is given by λ · e = λ2e. As a result, if ET̂ is the frame
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bundle of a square root K−1/2 of K−1, then (ET̂(SL2C), e) defines an SL2C-Higgs bundle. These
Higgs bundles will be the fundamental building blocks for the results of § 6.

Now suppose G is a complex reductive Lie group and g =
⊕

j∈Z gj is a Z-grading of its Lie
algebra with grading element ζ ∈ g0. Let G0 < G be the centralizer of ζ. Note that exp(λζ) is
in the center of G0 and Ad(exp(λζ)) acts on each gj by λj · Id. Let (EG0 , ϕ) be a (G0, gk)-Higgs
pair. Note that the central element exp((λ/k)ζ) ∈ G0 defines a holomorphic automorphism of
EG0 and acts on ϕ by multiplication by λ. As a result we have an isomorphism of (G0, gk)-Higgs
pairs

(EG0 , ϕ) ∼= (EG0 , λϕ) for all λ ∈ C∗. (4.1)

Extending the structure group defines a G-Higgs bundle (EG, ϕ),

(EG, ϕ) = (EG0(G), ϕ),

since EG0(gk) ⊂ EG0 [g] ∼= EG(g). Moreover, (EG, ϕ) ∼= (EG, λϕ) for all λ ∈ C∗.

Definition 4.5. A G-Higgs bundle (E, ϕ) is called a Hodge bundle of type (G0, gk) if it reduces
to a (G0, gk)-Higgs pair.

Example 4.6. The Higgs bundles from Example 4.4 are Hodge bundles for the grading g = g−1 ⊕
g0 ⊕ g1 = 〈f〉 ⊕ 〈h〉 ⊕ 〈e〉. In these cases, G0 is a Cartan subgroup of G.

Given a Z-grading g =
⊕

j∈Z gj , we can define a subalgebra g̃ consisting of summands gj

with j = 0 mod k. Note that g̃ has an associated Z-grading with gk = g̃1. Let G̃ < G be the
associated reductive subgroup. The following proposition is immediate.

Proposition 4.7. Let (E, ϕ) be a G-Higgs bundle which is a Hodge bundle of type (G0, gk).
Then (E, ϕ) reduces to a G̃-Higgs bundle and, as a G̃-Higgs bundle, it is a Hodge bundle of type
(G0, g̃1).

As a result, we will usually consider Hodge bundles of type (G0, g1). Recall from
Proposition 3.8 that there is a canonical real form GR < G of Hodge type associated to a
Z-grading. The complexified Cartan decomposition g = h ⊕ m satisfies g2j ⊂ h and g2j+1 ⊂ m, in
particular G0 < H. As a result, a G-Higgs bundle which is a Hodge bundle of type (G0, g1) reduces
to a GR-Higgs bundle. Combining this observation with Proposition 4.7 gives the following result
which was first observed by Simpson [Sim92, § 4].

Proposition 4.8. Let (E, ϕ) be a G-Higgs bundle which is a Hodge bundle of type (G0, gk).
Then (E, ϕ)-reduces to a G̃R-Higgs bundle, where G̃R < G is a real group of Hodge type. In fact,
G̃R is the real form of the subgroup G̃ < G from Proposition 4.7 associated to the grading of g̃.

Example 4.9. The Hodge bundles in Example 4.4 thus reduce to the real forms PSL2R < PSL2C
and SL2R < SL2C.

The above results also apply to GR-Higgs bundles. Namely, fix a real form GR < G with a
maximal compact subgroup HR < GR. Let H < G be the complexification of HR and g = h ⊕ m
be a complexified Cartan decomposition. Consider a Z-grading of g given by g =

⊕
j∈Z hj ⊕ mj

with grading element ζ ∈ h0. Let H0 < H be the centralizer of ζ. Given an (H0, mk)-Higgs pair
(EH0 , ϕ), extending the structure group to H defines a GR-Higgs bundle (EH0(H), ϕ) such that
(EH0(H), ϕ) ∼= (EH0(H), λϕ) for all λ ∈ C∗.
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A GR-Higgs bundle (E, ϕ) is called a Hodge bundle of type (H0, mk) if it reduces to a (H0, mk)-
Higgs pair. Consider the subalgebra g̃ = h̃ ⊕ m̃ given by

h̃ =
⊕

j=0 mod 2k

hj and m̃ =
⊕

j=k mod 2k

mj .

Let g̃R ⊂ g̃ be the associated real form of Hodge type with complexified Cartan decomposition
g̃ = h̃ ⊕ m̃. As in the complex case, we have the following result.

Proposition 4.10. Let (E, ϕ) be a GR-Higgs bundle which is a Hodge bundle of type (H0, mk).
Then there is a reductive subgroup G̃R < GR of Hodge type such that (E, ϕ) reduces to a
G̃R-Higgs bundle. Moreover, the resulting G̃R-Higgs bundle is a (H0, m̃1) = (G̃0, g̃1)-Hodge
bundle.

As a result, we will mostly consider Hodge bundles of type (G0, g1).

4.2 Moduli spaces and fixed points
To form a moduli space of Higgs pairs, we need to define suitable notions of stability. We
describe this below and refer to [GGM09, BGM03] for more details. Let G be a complex reduc-
tive Lie group and ρ : G → GL(V ) be a holomorphic representation. Fix a maximal compact
subgroup KR < G and let kR be its Lie algebra. An element s ∈ ikR defines subspaces of V via
the representation ρ:

V 0
s = {v ∈ V | ρ(ets)v = v} and Vs = {v ∈ V | ρ(ets)(v) is bounded as t → ∞}.

When ρ : G → GL(g) is the adjoint representation, gs = ps ⊂ g is a parabolic subalgebra with
Levi subalgebra g0

s = ls ⊂ ps. The associated subgroups Ls < Ps are given by

Ls = {g ∈ G | Ad(g)s = s} and Ps = {g ∈ G | Ad(ets)(g) is bounded as t → ∞}.

Moreover, s defines a character χs : ps → C by

χs(x) = 〈s, x〉 for x ∈ ps.

Let E be a G-bundle, s ∈ ikR and Ps < G be the associated parabolic subgroup. A reduc-
tion of structure group of E to Ps is a Ps-subbundle EPs ⊂ E; this is equivalent to a section
σ ∈ Γ(E(G/Ps)) of the associated bundle. We will denote the associated Ps-subbundle by Eσ.
The degree of such a reduction will be defined using Chern–Weil theory. Since Ps is homo-
topy equivalent to the maximal compact KR

s = KR ∩ Ls of Ls, given a reduction of structure
σ of E to Ps, there is a further reduction of E to KR

s which is unique up to homotopy. Let
Eσ′ ⊂ E be the resulting KR

s principal bundle. The curvature FA of a connection A on Eσ′

satisfies FA ∈ Ω2(X, Eσ′(kR
s )). Thus, evaluating the character χs on the curvature, we have

χs(FA) ∈ Ω(X, iR), and we define the degree of σ as

deg E(σ, s) =
i

2π

∫

X
χs(FA). (4.2)

If a multiple of q · χs exponentiates to a character χ̃s : Ps → C∗ and σ ∈ Γ(E(G/Ps)) is a
reduction, then Eσ ×χs C∗ = Eσ(χ̃s) is a line bundle and deg E(σ, s) = (1/q) deg Eσ(χ̃s). When
s is in the center z of g then Ps = G. In this case, the degree given in (4.2) is simply the degree of
E with respect to χs, and will be denoted by degχ(E). Again, if a multiple q · χs exponentiates
to a character χ̃ : G → C∗ we have

degχ(E) =
1
q

deg E(χ̃). (4.3)
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Let dρ : g → gl(V ) be the differential of ρ and let zR be the center of kR and kR = kR
ss = z⊥.

Define
kR
ρ = kR

ss ⊕ (ker(dρ|zR))⊥.

We are now ready to define α-stability notions for α ∈ izR.

Definition 4.11. Let α ∈ izR. A (G, V )-Higgs pair (E, ϕ) is:

− α-semistable if for any s ∈ ikR and any holomorphic reduction σ ∈ H0(E(G/Ps)) such that
ϕ ∈ H0(Eσ(Vs) ⊗ K), we have deg E(σ, s) ! 〈α, s〉;

− α-stable if it is α-semistable and for any s ∈ ikR
ρ and any holomorphic reduction σ ∈

H0(E(G/Ps) such that ϕ ∈ H0(Eσ(Vs) ⊗ K), we have deg E(σ, s) > 〈α, s〉;
− α-polystable if it is α-semistable and whenever s ∈ ikR and σ ∈ H0(E(G/Ps)) satisfy ϕ ∈

H0(Eσ(Vs) ⊗ K) and deg E(σ, s) = 〈α, s〉, there is a further holomorphic reduction σ′ ∈
H0(Eσ(Ps/Ls)) such that ϕ ∈ H0(Eσ′(V 0

s ) ⊗ K).

The moduli space of α-polystable (G, V )-Higgs pairs over X is defined as the set of iso-
morphism classes of α-polystable (G, V )-Higgs pairs and will be denoted by Mα(G, V ). A GIT
construction of these spaces is given by Schmitt in [Sch08] and by Simpson for the moduli space
of 0-polystable G-Higgs bundles [Sim94].

Remark 4.12. When α = 0, we refer to 0-stability simply as stability (similarly for semistability
and polystability), and denote the moduli space by M(G, V ). The moduli space of polystable
G-Higgs bundles will be denoted by M(G), and, for a real form GR < G, the moduli space of
polystable GR-Higgs bundles will be denoted by M(GR).

There is a natural C∗-action on the moduli spaces of α-polystable Higgs pairs given by
λ · (E, ϕ) = (E, λϕ). If g =

⊕
j∈Z gj is a Z-grading, then the C∗-action is trivial on the moduli

space of (G0, gk)-Higgs pairs by (4.1). As a result, polystable Higgs bundles which are Hodge
bundles define fixed points of the C∗-action on the moduli space of Higgs bundles. Simpson
proved the converse [Sim88, Sim92]. Namely, all C∗-fixed points in the moduli space of Higgs
bundles are Hodge bundles. In fact, if a Higgs bundle is a Hodge bundle, then polystability of
the Higgs bundle is equivalent to polystability of the associated pair. To explain why this is true,
we need to use the correspondence between stability and solutions to gauge-theoretic equations.

We first describe this for GR-Higgs bundles. Fix a maximal compact subgroup KR < G and
let τ : g → g be the resulting conjugate linear involution. Now fix a real form GR < G such that
KR ∩ GR = HR is a maximal compact subgroup of GR and let H < G be the complexification
of HR. Let g = h ⊕ m be the complexified Cartan decomposition of the real form. Consider a
GR-Higgs bundle (E, ϕ). A metric on E is by definition a structure group reduction h ∈
Γ(E(H/HR)) of E to HR. Associated to a metric h, there is a unique connection Ah (the Chern
connection) which is compatible with the reduction and the holomorphic structure. Let Eh be the
HR-subbundle associated to a metric h. Then E(m) is canonically identified with Eh(m). The
compact real form τ defines an anti-holomorphic involution of Eh(m). Combining this with
conjugation of 1-forms defines an involution

τ : Ω0,1(Eh(m)) → Ω0,1(Eh(m)).

The Higgs field ϕ ∈ H0(E(m) ⊗ K) defines a (1, 0)-form valued in E(m). Thus [ϕ,−τ(ϕ)] defines
a 2-form valued in Eh[hR], and we can make sense of the equation

Fh + [ϕ,−τ(ϕ)] = 0, (4.4)
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where Fh is the curvature of the Chern connection. These are the Hitchin equations. The following
theorem relates solutions of the Hitchin equations with stability; it was proven by Hitchin [Hit87]
for SL2C and by Simpson [Sim88] for complex reductive Lie groups (see [GGM09] for the general
statement).

Theorem 4.13. A GR-Higgs bundle (E, ϕ) is polystable if and only if there exists a metric h
on E which solves the Hitchin equations (4.4).

Remark 4.14. When the group GR is compact, then the Hitchin equations are just Fh = 0. That
is, there is a flat metric on the bundle, and the classical results of Narasimhan and Seshadri [NS65]
and of Ramanathan [Ram75].

For general (G, V )-Higgs pairs, we fix a maximal compact KR < G and a KR invariant
Hermitian inner product on V. Now the action of KR on V is Hamiltonian and has an asso-
ciated moment map µ : V → (kR)∗ → kR, where we use the inner product on kR to identify (kR)∗

with kR. If ϕ ∈ Ω1,0(E(V )), then one can define a bundle version of the moment map so that
µ(ϕ) ∈ Ω1,1(E(kR)), and polystability of (G, V )-Higgs pairs is equivalent the existence of a met-
ric h solving the equation Fh + µ(ϕ) = 0 (see [GGM09] for more details). For G-Higgs bundles,
we fix a compact real form KR < G and let τ : g → g be the associated involution. The Hermi-
tian inner product on g is given by B(·,−τ(·)) and the moment map µG : g → kR is given by
µG(x) = [x,−τ(x)].

For (G0, gk)-Higgs pairs, we choose a compact real form KR < G such that τ |g0 = Id . Recall
from Remark 3.10 that τ(gj) = g−j for all j. As a result, KR

0 = G0 ∩ KR is a compact form of G0

and B(x,−τ(y)) defines a KR
0 -invariant Hermitian form on gk. The moment map µG0 : gk → kR

0

is then given by restricting the moment map µG : g → kR and orthogonally projecting onto kR
0 .

That is, µG0(x) is the orthogonal projection of [x,−τ(x)] onto kR
0 . But for x ∈ gk, orthogonal

projection is unnecessary since [x,−τ(x)] ∈ kR
0 . Thus, a (G0, gk)-Higgs pair (E, ϕ) is polystable

if and only if there is a metric h ∈ Γ(E/KR
0 ) such that Fh + [ϕ,−τ(ϕ)] = 0. Such a metric solves

the Hitchin equations (4.4) for the associated G-Higgs bundle (E(G), ϕ). Conversely, using an
averaging argument, Simpson [Sim88] showed that, if (E, ϕ) is a polystable G-Higgs bundle which
is a Hodge bundle, then the metric solving the Hitchin equations is compatible with the Hodge
bundle reduction. We summarize this in a proposition.

Proposition 4.15 [Sim88]. A (G0, gk)-Higgs pair (E, ϕ) is polystable as a (G0, gk)-Higgs pair
if and only if the associated G-Higgs bundle (E(G), ϕ) is polystable as a G-Higgs bundle. In
particular, there is a well-defined map of moduli spaces

M(G0, gk) → M(G)

whose image consists of C∗-fixed points, and every C∗-fixed point in M(G) is in the image of
such a map for some (G0, gk).

Remark 4.16. For stable and simple Higgs bundles, the associated type of Hodge bundle is
unique.

Remark 4.17. Note that for gradings g = g−1 ⊕ g0 ⊕ g1, (G0, g−1 ⊕ g1)-pair stability agrees with
Higgs bundle stability. This is not true for other gradings. Namely, (G0,

⊕
j )=0 gj) or (G0, g−1 ⊕⊕

j>0 gj)-pair stability does not imply Higgs bundle stability.

Example 4.18. The PSL2C-Higgs bundle (ET, e) from Example 4.4 is polystable. Since ET is the
frame bundle of K−1, a metric on ET defines a metric on the Riemann surface X. A solution to the
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Hitchin equations in this case is equivalent to a metric of constant curvature on X (see [Hit87]).
As a result, the Higgs bundle (ET, e) will be referred to as the uniformizing Higgs bundle for X.

4.3 Character varieties and variations of Hodge structure
Given a polystable GR-Higgs bundle (E, ϕ), there is a metric h on E solving the Hitchin
equations (4.4). For such a metric h, the connection

D = Ah + ϕ − τ(ϕ)

defines a flat connection on the GR-bundle Eh(GR), where Eh is the HR-bundle associated to the
metric h. As a result, a polystable GR-Higgs bundle (E, ϕ) defines representations ρ : π1(X) →
GR such that Eh(GR) ∼= X̃ ×ρ GR.

Given a representation ρ : π1(X) → GR, a metric hρ on a flat bundle X̃ ×ρ GR can be
interpreted as a ρ-equivariant map to the Riemannian symmetric space of GR:

hρ : X̃ → GR/HR.

A metric hρ is called harmonic if it is a critical point of the energy function

E(hρ) =
1
2

∫

X
|dhρ|2.

This makes sense since, for two-dimensional domains, the energy only depends on the conformal
structure of the domain. It turns out that a metric h solves the Hitchin equations (4.4) if and
only if the ρ-equivariant map hρ : X̃ → GR/HR is harmonic.

Remark 4.19. In this correspondence, the Higgs field ϕ is identified with the (1, 0)-part of the
differential of the map hρ. As a result, for the uniformizing Higgs bundle (ET, e), the harmonic
metric hρ : X̃ → H2 is a ρ-equivariant biholomorphism. Thus, X = H2/ρ(π1(X)) and ρ is the
uniformizing representation of the Riemann surface.

A representation ρ : π1(X) → GR is called reductive if postcomposing ρ with the adjoint
representation of GR decomposes as a direct sum of irreducible representations. Corlette’s
theorem [Cor88] (proven by Donaldson [Don87] for SL2C) asserts that given a representation
ρ : π1(X) → GR, there exists a ρ-equivariant harmonic map hρ : X̃ → GR/HR if and only if ρ
is reductive. Denote the set of reductive representations ρ : π1(X) → GR by Hom+(π1(X), GR).
The moduli space of GR-conjugacy classes of representations π1(X) in GR is called the character
variety and denoted by

R(GR) = Hom+(π1(X), GR)/GR.

Combining Corlette’s theorem with the Hitchin–Kobayashi correspondence defines a homeo-
morphism M(GR) ∼= R(GR) between the moduli space of GR-Higgs bundles on X and the
GR-character variety. This is called the nonabelian Hodge correspondence.

Let ρ : π1(X) → GR be a representation and G̃R < GR be a reductive subgroup. We say that
ρ factors through G̃R if ρ can be written as ρ : π1(X) → G̃R ↪→ GR. The following proposition is
immediate from the nonabelian Hodge correspondence.

Proposition 4.20. Let G̃R < GR be a reductive subgroup with maximal compact H̃R < HR and
let ρ : π1(X) → GR be a reductive representation. The following assertions are equivalent.

− ρ factors through G̃R.
− The ρ-equivariant harmonic map hρ factors as hρ : X̃ → G̃R/H̃R ↪→ GR/HR.
− The associated GR-Higgs bundle reduces to a polystable G̃R-Higgs bundle.
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We now describe the special properties of the representations and harmonic maps aris-
ing from C∗-fixed points in the Higgs bundle moduli space. Let GR < G be a real form of
Hodge type with maximal compact HR and complexified Cartan decomposition g = h ⊕ m. Fix a
Z-grading g =

⊕
j∈Z gj such that g2j ⊂ h and g2j+1 ⊂ m for all j. Recall that the homogeneous

space D = GR/HR
0 is a period domain. The holomorphic tangent bundle decomposes as

T 1,0
C D =

⊕

j>0

(T 1,0
C D)j =

⊕

j>0

GR ×HR
0

gj .

Definition 4.21. Fix a period domain D = GR/HR
0 . A variation of Hodge structure over X

is a pair (ρ, fρ), where ρ : π1(X) → GR is a representation and fρ : X̃ → D is a ρ-equivariant
holomorphic map such that

∂fρ(K−1) ⊂ (T 1,0
C D)1.

The following proposition describes the representations and harmonic maps associated to
polystable Higgs bundles fixed by the C∗-action.

Proposition 4.22. Let ρ : π1(X) → GR be a reductive representation. Then the Higgs bundle
associated to ρ is a C∗-fixed point if and only if ρ factors through a reductive subgroup G̃R < GR

of Hodge type, and there is a period domain G̃R/H̃R
0 such that the associated ρ-equivariant

harmonic map hρ : X̃ → G̃R/HR lifts to a variation of Hodge structure

G̃R/H̃R
0

""

X̃
hρ

!!

fρ ##"""""""
G̃R/H̃R !! GR/HR

5. Toledo invariant and Arakelov–Milnor inequality

Let G be a complex semisimple Lie group and g =
⊕

j∈Z gj be a Z-grading with grading element
ζ ∈ g0, and let G0 < G be the centralizer of ζ. Consider the PHVS (G0, g1) and recall from (3.1)
that the Toledo character χT : g0 → C is given by χT (x) = B(ζ, x)B(γ, γ). Recall that the degree
of a bundle with respect to a character is defined by (4.3).

Definition 5.1. Let (E, ϕ) be a (G0, g1)-Higgs pair and χT : G0 → C∗ be the Toledo character.
Then the Toledo invariant τ(E, ϕ) is defined by

τ(E, ϕ) = degχT
(E).

Remark 5.2. For the grading g = g−1 ⊕ g0 ⊕ g1, the canonical real form GR < G from
Proposition (3.8) is a Hermitian Lie group. For such real forms, a GR-Higgs bundle is a
(G0, g−1 ⊕ g1)-Higgs pair. The Toledo invariant of such a Higgs bundle agrees with the Toledo
invariant defined above [BGR17].

Recall Definition 3.3 of the Toledo rank rkχT (v) of a point v ∈ g1. We define the Toledo rank
rkT (ϕ) of a (G0, g1)-Higgs pair (E, ϕ) to be

rkT (ϕ) = rkT (ϕ(x)) for a generic x ∈ X.

Theorem 5.3. Let G be a complex semisimple Lie group and g =
⊕

j∈Z gj be a Z-grading with
grading element ζ ∈ g0. Let G0 < G be the centralizer of ζ and α = λζ for λ ∈ R. If (E, ϕ) is an
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α-semistable (G0, g1)-Higgs pair, then the Toledo invariant τ(E, ϕ) satisfies the inequality

− rkT (ϕ)(2g − 2) + λ(B(γ, γ)B(ζ, ζ) − rkT (ϕ)) " τ(E, ϕ) " λB(γ, γ)B(ζ, ζ).

Before proving the theorem we list some immediate consequences.

Corollary 5.4. Assume (G0, g1) is a JM-regular PHVS and set α = λζ. Then the Toledo
invariant of a α-semistable (G0, g1)-Higgs pair (E, ϕ) satisfies

− rkT (ϕ)(2g − 2) + λ(rkT (G0, g1) − rkT (ϕ)) " τ(E, ϕ) " λ rk(G0, g1).

For the application to Higgs bundles fixed by the C∗-action we are interested in the case
α = 0.

Corollary 5.5. For α = 0, the Toledo invariant τ(E, ϕ) of a polystable (G0, g1)-pair satisfies
the inequality − rkT (ϕ)(2g − 2) " τ(E, ϕ) " 0. In particular,

|τ(E, ϕ)| " rkT (G0, g1)(2g − 2).

Proof. This is a direct application of Theorem 5.3 in the case λ = 0, for which in fact it is
enough to assume the semistability of (E, ϕ). However, with the extra assumption of polysta-
bility, the result can also be deduced from our holomorphic sectional curvature computations
in Proposition 3.12, as we shall now explain. By Theorem 4.13 such (E, ϕ) admits a solution h
to the Hitchin equations (4.4), so we have a variation of Hodge structure as studied in § 4.3. In
particular, we obtain an equivariant horizontal holomorphic map f : X̃ → GR/HR

0 . Denote by ω
the 2-form associated to the Hermitian metric on GR/HR

0 considered in § 3.3, normalized to have
horizontal holomorphic sectional curvature −1 " K " −1/ rkT (G0, g1). By the Schwarz lemma,
one has

1
2π

∫

X
f∗ω " rkT (G0, g1)(2g − 2).

The result will then follow from the identification

f∗ω = −χT (iFh),

where Fh is the curvature as in (4.4). From (4.4) we have χT (Fh) = −χT ([ϕ, ϕ∗]); locally writing
ϕ = a dz, we obtain

χT (Fh) = −B(ζ, [a, a∗])B(γ, γ)dz ∧ dz̄

= −B([ζ, a], a∗)B(γ, γ)dz ∧ dz̄

= −B(a, a∗)B(γ, γ)dz ∧ dz̄

= −〈a, a〉dz ∧ dz̄.

On the other hand, f∗ω = ω(a, ā)dz ∧ dz̄ = i〈a, a〉dz ∧ dz̄. Therefore f∗ω = −χT (iFh), which
completes the proof.

The same argument gives the more precise inequality τ(E, ϕ) ! − rkT (ϕ)(2g − 2), starting
from the holomorphic curvature estimate (3.4). #

Since the Toledo invariant has discrete values, it is constant on the connected components of
the moduli space of polystable (G0, g1)-Higgs pairs M(G0, g1). As a result, we have the following
decomposition of M(G0, g1).
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Corollary 5.6. The moduli space of polystable (G0, g1)-Higgs pairs decomposes as

M(G0, g1) =
∐

− rkT (G0,g1)(2g−2)"τ"0

Mτ (G0, g1),

where (E, ϕ) ∈ Mτ (G0, g1) if and only if τ(E, ϕ) = τ.

Remark 5.7. We will discuss the special properties of the space Mτ (G0, g1) for the minimal value
τ = −(2g − 2) rkT (G0, g1) in the next section.

Proof of Theorem 5.3. The upper bound follows immediately from stability. Note that s =
−B(γ, γ)ζ is in the center of g0 and has the property that Ad(ets)(x) is bounded as t → ∞ for all
x ∈ g1. Since s is in the center of g0, the associated parabolic is all of G0. Hence, α-semistability
of (E, ϕ) implies

deg E(−B(γ, γ)ζ) ! B(α,−B(γ, γ)ζ).

Since −τ(E, ϕ) = deg E(−B(γ, γ)ζ) and α = λζ we have τ(E, ϕ) " λB(γ, γ)B(ζ, ζ).
The lower bound is more interesting. For generic x ∈ X, ϕ(x) ∈ g1 is in a fixed G0-orbit.

Let e be any element in this orbit and {f, h, e} be an associated sl2-triple with h ∈ g0. Let
(Ĝ0, ĝ1) be the associated maximal JM-regular PHVSS of (G0, g1) for e (see Definition 2.17). By
Proposition 2.16, e ∈ Ω̂ ⊂ g1 is in the open Ĝ0-orbit. Recall from Proposition 2.21 that e defines
a parabolic subalgebra p0,e ⊂ g0 and a corresponding parabolic subgroup P0,e < G0. Since the
construction of P0,e is canonical, we obtain a holomorphic reduction of structure group of E to
P0,e on the open subset of X where rkT (ϕ(x)) = rkT (e). This can be extended to a reduction
over all of X. Let Eσ be the associated P0,e-bundle.

Set ζ̂ = h/2 and write ζ = ζ̂ + s. Recall from Proposition 2.21 that the parabolic subalgebra
p0,e is given by

p0,e = {x ∈ g0 | Ad(ets)x is bounded as t → ∞}.

By definition of the Toledo character, we have

χT (x) = B(γ, γ)(B(ζ̂, x) + B(s, x)).

Thus,
deg E(σ, B(γ, γ)s) = τ(E, ϕ) − degχ̂T

(Eσ), (5.1)

where χ̂T : p0,e → C is the character defined by χ̂T (x) = B(γ, γ)B(ζ̂, x).
The Levi factor of P0,e is isomorphic to Ĝ0. Hence, projecting onto the Levi factor defines

a holomorphic reduction Eσ(Ĝ0) with ϕ ∈ H0(Eσ(Ĝ0)(ĝ1) ⊗ K). Recall from Proposition 3.16
that there is a positive integer q such that the character q · χ̂T exponentiates to a character of
χ̂T,q : Ĝ0 → C∗ which has a polynomial relative invariant F : ĝ1 → C of degree q · χ̂T (ζ̂). Since ϕ

is generically in the open Ĝ0-orbit of ĝ1, applying the relative invariant to the Higgs field defines
a nonzero holomorphic section of a line bundle Eσ(χ̂T,q) ⊗ Kq·χ̂T (ζ̂):

F (ϕ) ∈ H0(Eσ(χ̂T,q) ⊗ Kq·χ̂T (ζ̂)) \ {0}.

Note that degχ̂T
(Eσ) = (1/q) deg(Eσ(χ̂T,q)). Thus, we have

degχ̂T
(Eσ) ! −χ̂T (ζ̂)(2g − 2). (5.2)

We now use the assumption that (E, ϕ) is α-semistable for α = λζ. Since [s, ĝ1] = 0, we
have ĝ1 ⊂ gs

1. Thus, we have ϕ ∈ H0(Eσ(ĝs
1) ⊗ K). By the definition of the stability for α = λζ,
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we have
B(λζ, B(γ, γ)s) " deg E(σ, B(γ, γ)s).

Combining this with (5.1) and (5.2) gives an inequality for the Toledo invariant:

−χ̂T (ζ̂)(2g − 2) + λB(γ, γ)B(ζ, s) " τ(E, ϕ).

To finish the proof, recall that B(ζ̂, s) = 0 and B(γ, γ)B(ζ, ζ̂) = rkT (ϕ). Thus,

−χ̂T (ζ̂) = B(γ, γ)B(ζ̂, ζ̂) = B(γ, γ)B(ζ, ζ̂) = rkT (ϕ)

and

λB(γ, γ)B(ζ, s) = λ(B(γ, γ)B(ζ, ζ) − B(γ, γ)B(ζ, ζ̂)) = λ(B(γ, γ)B(ζ, ζ) − rkT (ϕ)).

Hence, we obtain the desired inequality

− rkT (ϕ)(2g − 2) + λ(B(γ, γ)B(ζ, ζ) − rkT (ϕ)) " τ(E, ϕ). #

6. Rigidity results for maximal Hodge bundles and variations of Hodge structure

For this section let G be a complex semisimple Lie group with Lie algebra g and let X be a
compact Riemann surface of genus g ! 2 and canonical bundle K. Fix a Z-grading g =

⊕
j∈Z gj

with grading element ζ and let G0 < G be the centralizer of ζ.
We will call a polystable (G0, g1)-Higgs pair (E, ϕ) maximal if the absolute value of the

Toledo invariant is maximized. By Corollary 5.5, the Toledo invariant τ(E, ϕ) of a polystable
(G0, g1)-Higgs pair on X satisfies the inequality

− rkT (G0, g1)(2g − 2) " τ(E, ϕ) " 0.

Thus, (E, ϕ) is maximal if and only if τ(E, ϕ) = − rkT (G0, g1)(2g − 2).

6.1 The JM-regular case
We start with the JM-regular case. Assume (G0, g1) is a JM-regular PHVS. Fix e ∈ Ω and let
{f, h, e} = {f, 2ζ, e} be the associated sl2-triple. Let S < G be the connected subgroup with Lie
algebra spanned by {f, h, e}. Note that S is isomorphic to PSL2C or SL2C depending on G and
the sl2-triple. Finally, let C < G be the reductive group which centralizes the sl2-triple {f, h, e}.
Note that C = Ge

0 < G0 is also the G0-stabilizer of e.
Let T < S be the connected subgroup with Lie algebra 〈h〉, and note that T < G0. Recall the

uniformizing Hodge bundle (ET, e) for X from Examples 4.4 and 4.18. Here ET is the holomorphic
frame bundle of K−1 if S = PSL2C and the holomorphic frame bundle of K−1/2 if S = SL2C.
Since ET(〈e〉) ⊗ K ∼= O, the Lie algebra element e defines a holomorphic section of ET(〈e〉) ⊗ K.
Moreover, (ET, e) is polystable, and a solution to the Hitchin equations is equivalent to a metric
of constant curvature on X. Extending the structure group to G0 defines a maximal polystable
(G0, g1)-Higgs pair.

Proposition 6.1. The (G0, g1)-Higgs pair (ET(G0), e) is polystable and maximal.

Proof. First note that (E, ϕ) = (ET(G0), e) is polystable since (ET, e) polystable. By construc-
tion, we have τ(E, ϕ) = − rkT (G0, g1)(2g − 2). #

Other examples of maximal (G0, g1)-Higgs pairs are given by twisting the above uniformiz-
ing Higgs bundle by a holomorphic C-bundle. Let EC be a holomorphic C-bundle on X.
Since T and C are commuting subgroups of G0, the multiplication map m : T × C → G0 is a
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group homomorphism. Thus, we can form a G0-bundle

ET ⊗G0 EC = (ET × EC) ×m G0.

This is the principal bundle version of the tensor product of vector bundles, where GLmC and
GLnC are commuting subgroups of GLmnC.

As with vector bundles, given metrics hT and hC on ET and EC respectively, there is a metric
hT ⊗ hC on ET ⊗G0 EC. More specifically, metrics on ET and EC are reductions of structure
group to the maximal compact subgroups, say ETR ⊂ ET and ECR ⊂ EC. The metric hT ⊗ hC

on ET ⊗G0 EC is the reduction of structure group given by ETR ⊗GR
0

ECR ⊂ ET ⊗G0 EC, where
GR

0 ⊂ G0 is a maximal compact subgroup containing CR and TR. Similarly, given connections
AT and AC on ET and EC respectively, AT + AC defines a connection on ET ⊗G0 EC and the
curvature satisfies

FAT+AC = FAT + FAC .

These formulas make sense because the tensor product is made from the T × C-principal bundle
ET × EC by applying the multiplication m : T × C → G0, with corresponding Lie algebra mor-
phism t ⊕ c → t + c ⊂ g0. In the case of the general linear group, this corresponds to first forming
the product bundle as a GLmC × GLnC-principal bundle and then producing the tensor product
as a GLmnC-principal bundle by applying the multiplication map GLmC × GLnC → GLmnC
given by (g, g′) 4→ g ⊗ g′.

Since C acts trivially on 〈e〉, we have

e ∈ H0((ET ⊗G0 EC)(g1) ⊗ K).

Also, since the Lie algebra c is perpendicular to ζ, the Toledo invariant is unchanged:

τ((ET ⊗G0 EC, e)) = τ(ET(G0), e).

Moreover, if EC is a polystable C-bundle1, then there is a metric hC on EC whose associated
Chern connection is flat (see Remark 4.14). As a result, if hT is a metric on ET solving the
Hitchin equations for (ET, e), then hT ⊗ hC solves the Hitchin equations for the Higgs bundle
(ET ⊗G0 EC(G), e). Hence, if EC is a polystable C-bundle, then (ET ⊗G0 EC, e) is a polystable
(G0, g1)-Higgs pair.

So far, we have shown that there is a well-defined map

Ψe : N (C) !! Mmax(G0, g1)

EC
! !! (ET ⊗G0 EC, e)

(6.1)

from the moduli space N (C) of polystable C-bundles to the moduli space of polystable (G0, g1)-
Higgs pairs which are maximal. The map Ψe from (6.1) is a moduli space version of a restriction
of the global Slodowy slice map from [CS21] and generalizes a restriction of the Cayley
correspondence in the case of a Z-grading defining a Hermitian group [BGR17].

Theorem 6.2. The map Ψe : N (C) → Mmax(G0, g1) from (6.1) defines an isomorphism
between the moduli space of polystable C-bundles and the moduli space of polystable maximal
(G0, g1)-Higgs pairs.

Remark 6.3. For classical Lie groups, the centralizers C < G of sl2-triples are easily described in
terms of partitions [SS70] (see [CM93, Theorem 6.1.3]).

1 In particular, EC must have degree zero with respect to any character χ : c → C.
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Proof. We first show that Ψe is surjective. Let (E, ϕ) be a polystable maximal (G0, g1)-Higgs
pair. As above, let ET be the holomorphic frame bundle of K−1 or K−1/2 if S is isomorphic to
PSL2C or SL2C, respectively. Note that

E(g1) ⊗ K ∼= (E−1
T ⊗G0 E)(g1).

Since (G0, ϕ) is JM-regular, we have rkT (G0, g1) = χT (ζ), where ζ = h/2. Also, by
Proposition 3.16, a positive multiple of the Toledo character q · χT (x) = q · B(γ, γ)B(ζ, x) expo-
nentiates to a character χT,q : G0 → C∗ which has a polynomial relative invariant F : g1 → C of
degree q · rkT (G0, g1). As in the proof of Theorem 5.3, applying the relative invariant F to the
Higgs field defines a nonzero holomorphic section

F (ϕ) ∈ H0(E(χT,q) ⊗ Kq rkT (G0,g1)).

The degree of E(χT,q) ⊗ Kq rkT (G0,g1) is q(τ(E, ϕ) + rkT (G0, g1)(2g − 2)) = 0. Thus, F (ϕ) is
nowhere vanishing, and rkT (ϕ(x)) = rkT (G0, g1) for all x ∈ X. That is, ϕ(x) is in the open
orbit Ω for all x ∈ X.

Thus the Higgs field ϕ is defines a holomorphic section of E(Ω) ⊗ K. But Ω = G0/C and
E(Ω) ⊗ K ∼= (E−1

T ⊗G0 E)(G0/C). Thus, the Higgs field defines a holomorphic reduction of struc-
ture group of (E−1

T ⊗G0 E) to C. Let EC be the resulting holomorphic C-bundle. Twisting both
sides by ET, we obtain an isomorphism

E ∼= ET ⊗G0 EC.

By construction, ϕ ∈ H0((ET ⊗G0 EC)(〈e〉) ⊗ K). Since a (G0, g1)-Higgs pairs (E, ϕ) is isomor-
phic to (E, λϕ) for all λ ∈ C∗, we can take ϕ = e.

To complete the proof of surjectivity, we show that if (E, ϕ) = (ET ⊗G0 EC), e) is a polystable
(semistable) (G0, g1)-Higgs pair, then EC is a polystable (semistable) bundle. Suppose that we
have a reduction (EP′

s
, σ′) of the structure group of EC to the parabolic subgroup P′

s ⊂ C defined
by an s ∈ icR, where cR is the Lie algebra of the maximal compact subgroup CR of C. The element
s defines a parabolic subgroup Ps ⊂ G0 as well, and, using the map C/P′

s → G0/Ps, we obtain
from σ′ a reduction σ of the structure group of E to Ps, resulting in a Ps-bundle EPs . Since
C stabilizes e ∈ g1, we have e ∈ g0

1,s. Since 〈s, h〉 = 0, there is no contribution coming from the
twisting E ⊗G0 E−1

T in the computation of deg E(σ, s). Hence, deg(E)(σ, s) = deg(EC)(σ′, s),
and (semi)stability of (E, ϕ) implies the (semi)stability of EC. For polystability, one must just
check additionally that in the equality case, reduction for the Levi subgroup Ls ⊂ Ps to an
ELs ⊂ E implies reduction for the Levi subgroup L′

s ⊂ P′
s, but it is sufficient to take EL′

s
=

(ELs ⊗G0 E−1
T ) ∩ EC.

For injectivity, note that two polystable C-bundles EC and E′
C define the same point in

Mmax(G0, g1) if there is a holomorphic isomorphism of G0-bundles

Φ : EC ⊗G0 ET → E′
C ⊗G0 ET

such that Φ∗e = e. Since the G0 stabilizer of e ∈ g1 is C, we conclude that Φ induces an iso-
morphism between EC and E′

C. Note that injectivity implies that the automorphism group of
Ψe(EC) is equal to the automorphism group of the polystable C-bundle EC. #

The component count for the moduli space of polystable C-Higgs bundles is given the number
of topologically distinct C-bundles on X which have degree zero with respect to any character
χ : c → C. For example, when C is connected and Γ < π1(C) is the torsion subgroup, N (C) has
|Γ| connected components. As an immediate corollary, we have the following component count.
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Corollary 6.4. We have π0(Mmax(G0, g1)) = π0(N (C)). In particular, the component count
is given by the number of topological degree zero C-bundles on X.

We now use Theorem 6.2 to deduce rigidity results for variations of Hodge structure. Consider
the complex linear involution θ : g → g which is (−1)j Id on each graded factor gj . Recall from
§ 3.2 that a compact real form τ : g → g satisfies τ(gj) = g−j . Moreover, we can choose such a
τ so that the sl2-triple {f, h, e} satisfies f = −τ(e). Let GR < G be the associated real form
of Hodge type. By construction, the subgroup S < G defines a subgroup SR < GR which is
isomorphic to PSL2R if S ∼= PSL2C and isomorphic to SL2R if S ∼= SL2C. Also by construction,
the GR-centralizer of SR is the compact real form CR < C of the centralizer of S.

Since CR and SR are commuting subgroups of GR, given representations ρ1 : π1(X) → SR

and ρ2 : π1(X) → CR, we can form a new representation, multiplying the images

ρ1 ∗ ρ2 : π1(X) → GR, (ρ1 ∗ ρ2)(γ) = ρ1(γ) · ρ2(γ).

Recall that (G0, g1) is JM-regular if and only if it arises from an even sl2-triple.

Theorem 6.5. Let G be a complex semisimple Lie group with Lie algebra g. Let {f, h, e} ⊂ g
be an even sl2-triple and g =

⊕
j∈Z gj be the associated Z-grading with grading element h/2, let

S < G be the associated connected subgroup and let C < G be the centralizer of {f, h, e}. Suppose
ρ : π1(X) → G is a reductive representation. The Higgs bundle associated to ρ is a maximal
Hodge bundle of type (G0, g1) if and only if, up to conjugation, ρ = ρu ∗ ρC : π1(X) → G, where

− ρu : π1(X) → SR < S is (a lift of) the uniformizing representation of X, and
− ρC : π1(X) → CR < C is any representation into the compact real form of C.

Remark 6.6. Note that the representations ρ = ρu ∗ ρC : π1(X) → G all factor through the
canonical real form of Hodge type GR < G associated to the grading

⊕
j∈Z gj . Moreover, the

GR-centralizer of any such representations is compact since the GR-centralizer of SR is CR,
which is compact. As a result, representations associated to maximal Hodge bundles of type
(G0, g1) do not factor through proper parabolic subgroups PR < GR.

Proof. The proof is immediate from the nonabelian Hodge correspondence and Theorem 6.2.
Namely, given an even sl2-triple {f, h, e} with associated grading

⊕
j∈Z gj , every polystable

(G0, g1)-Higgs pair (E, ϕ) with Toledo invariant − rkT (G0, g1)(2g − 2) is isomorphic to (ET ⊗G0

EC, e), where (ET, e) is a uniformizing Higgs bundle of X and EC is a polystable C-bundle. A
solution to the Hitchin equations is given by hT ⊗ hC, where hT solves the Hitchin equations for
the uniformizing Higgs bundle (ET, e) and the Chern connection of hC is flat. The associated
flat connection is then

AhT + e − τ(e) + AhC .

As a result, the associated representation ρ : π1(X) → G is given by ρu ∗ ρC, where ρu : π1(X) →
SR < S is the uniformizing representation of X if S ∼= PSL2C and a lift of the uniformizing
representation if S ∼= SL2C and ρC : π1(X) → CR < C is a representation into the compact real
form of C. #

Let Σ be a closed topological surface of genus g ! 2. For SR isomorphic to PSL2R or SL2R,
injective representations ρ : π1(Σ) → SR with discrete image are called Fuchsian representations.
The set of conjugacy classes of Fuchsian representations defines an open and closed set in the
character variety R(SR), each connected component of which is identified with the Teichmüller
space of the surface Σ by the uniformization theorem.
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Corollary 6.7. Suppose (G0, g1) is JM-regular and let ρ : π1(Σ) → G be a reductive
representation. There exists a Riemann surface structure Xρ on Σ such that the Higgs bundle
associated to ρ is a maximal Hodge bundle of type (G0, g1) on Xρ if and only if

ρ = ρFuch ∗ ρCR ,

where ρFuch : π1(Σ) → SR is a Fuchsian representation and ρCR : π1(Σ) → CR is a representation
into the compact real form of C. In particular, for any such representations, the associated
Riemann surface Xρ is unique.

The following corollary is also immediate from Theorem 6.5.

Corollary 6.8. Suppose (G0, g1) is JM-regular. A variation of Hodge structure (ρ, fρ) associ-

ated to a Hodge bundle of type (G0, g1) is maximal if and only if fρ : X̃ → GR/HR
0 is a totally

geodesic embedding which maximizes the holomorphic sectional curvature. In particular, the
image of fρ is independent of ρ and rigid.

6.2 Some explicit examples
We list some explicit examples for (G0, g1) JM-regular.

Example 6.9. When G0 < G is a Cartan subgroup, (G0, g1) is a JM-regular PHVS associated to a
principal sl2-triple. In this case, the group C is the center of G. The Higgs bundles (EC ⊗G0 ET, e)
associated to maximal (G0, g1)-Higgs pairs are the image of 0 under the Hitchin section [Hit92].

Example 6.10. For JM-regular PHVSs (G0, g1) associated to gradings g = g−1 ⊕ g0 ⊕ g1, the
real form GR < G is a Hermitian Lie group of tube type (see Example 3.9). In this case, the
above results recover the subset of the results in [BGR17]. In this case, there is a particular
stratum of the boundary of the noncompact Riemannian symmetric space GR/HR called the
Shilov boundary. The group CR is isomorphic to the stabilizer of a generic point in the Shilov
boundary.

Example 6.11. We now describe the JM-regular (GLpC × SOqC, Mp,q) with q ! p from
Examples 2.1, 2.5 and 3.9 in more detail. Fix a decomposition C2p+q = Cp ⊕ Cq ⊕ Cp with
orthogonal structure Q(x, y, z) = xzT + xTz + yyT. Then we may write so2p+qC as

so2p+qC =









A W X
Y B −WT

Z −Y T −AT





∣∣∣∣∣∣

A ∈ Mp,p, B = −BT ∈ Mq,q, W ∈ Mp,q

X = −XT ∈ Mp,p, Y ∈ Mq,p, Z = −ZT ∈ Mp,p





.

The even sl2-triple is given by

f =




0 0 0(

2 Idp
0

)
0 0

0 (−2 Idp 0 ) 0



 , h =




2 Idp 0 0

0 0 0
0 0 −2 Idp



 , e =




0 ( Idp 0 ) 0
0 0

(− Idp
0

)

0 0 0



 ,

where Idp is the p × p identity matrix. The Z-grading is g−2 ⊕ g1 ⊕ g0 ⊕ g1 ⊕ g2 where the space
gj is the jth super block diagonal.

The subgroup G0 < SO2p+qC is GLpC × SOqC and the G0-stabilizer of e is given by

C = Ge
0 =









A 0 0
0

(
A 0
0 B

)
0

0 0 (A−1)T





∣∣∣∣∣∣
AAT = Id and BBT = Id





∼= S(OpC × Oq−pC).

Using the standard representation of SO2p+qC, an SO2p+qC-Higgs bundle is a triple (E, Q,Φ),
where E is a rank 2p + q holomorphic bundle with trivialized determinant bundle, Q is
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an everywhere nondegenerate symmetric bilinear form on E and Φ ∈ H0(End(E) ⊗ K) is a
K-twisted endomorphism of E which is skew symmetric with respect to Q. An SO2p+qC is a
Hodge bundle of type (G0, g1) if E splits holomorphically as E = V ⊕ W ⊕ V ∗, where V is a
rank-p isotropic subbundle and W is a rank-q orthogonal subbundle, and with respect to this
splitting we have

Φ =




0 θ 0
0 0 −θT

0 0 0



 : V ⊕ W ⊕ V ∗ → (V ⊕ W ⊕ V ∗) ⊗ K. (6.2)

Such a Higgs bundle is a maximal (G0, g1)-Higgs pair if and only if W decomposes
holomorphically and orthogonally as W = Up ⊕ Uq−p and V = Up ⊗ K−1 and

θ =
(
IdUp 0

)
: W = Up ⊕ Uq−p → Up = V ⊗ K.

In this example, the group C = S(OpC × Oq−pC) and the space of such Higgs bundles is param-
eterized by the polystable S(OpC × Oq−pC) bundle Up ⊕ Uq−p. These Higgs bundles reduce
to SO(2p, q)-Higgs bundles and the resulting representations ρ : π1(X) → SO(2p, q) are con-
jugate to ρu ∗ ρCR ,where ρu : π1(X) → PSL2R is the uniformizing representation of X and
ρCR : π1(X) → S(Op × Oq−p) is any representation. When p = 1, this is agrees with Example 6.10
for the Hermitian Lie group SO(2, q).

Remark 6.12. For the JM-regular PHVS (S(GLpC × GLqC × GLpC), Mp,q ⊕ Mq,p) with q ! p
from Examples 2.1, 2.5 and 3.9, the moduli space SL2p+qC-Higgs bundles which are maximal
Hodge bundles of type (G0, g1) can be described similarly. Namely, they are given by pairs
(E, Φ) where E is a holomorphic rank-(2p + q) vector bundle with trivialized determinant and Φ
is a traceless K-twisted endomorphism of E such that E = (Up ⊗ K−1) ⊕ Up ⊕ Uq−p ⊕ (Up ⊗ K),
det(Up)3 = det(Uq−p) and

Φ =





0 Idp 0 0
0 0 0 Idp

0 0 0 0
0 0 0 0



 : E → E ⊗ K.

Example 6.13. There is a class of nilpotent elements called distinguished nilpotents which play
an important role in the Bala–Carter theory classification of nilpotent orbits in g. A nilpotent
e ∈ g is distinguished if and only if the centralizer of an associated sl2-triple C < G is discrete.
Such sl2-triples are necessarily even, and hence the resulting moduli space of maximal JM-regular
(G0, g1)-Higgs pairs is discrete. In particular, the associated C∗-fixed points in the G-Higgs bundle
moduli space are isolated.

The principal sl2-triples are always distinguished and give rise to the isolated fixed points from
Example 6.9. In type A, this is the only distinguished nilpotent. However, in all other types there
are many distinguished nilpotents. For example, for g = sonC a nilpotent is distinguished if and
only if it is associated to a partition n = 1 · n1 + · · · + 1 · nk, where each nj is odd. For g = sp2nC
a nilpotent is distinguished if and only if it is associated to a partition 2n = 1 · n1 + · · · + 1 · nk,
with each nj even. Moreover, for the Lie group G2 there are two even sl2-triples and both
are distinguished. See [CM93, §§ 6 & 8] for more details. This means that the moduli space of
G-Higgs bundles has isolated fixed points which do not arise from the Hitchin section when g
is not of type A.
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Example 6.14. In [BCGGO21], a class of even nilpotents is identified called magical nilpotents.
For such even sl2-triples, there is a real form GR < G such that the associated maximal (G0, g1)-
Higgs pairs define GR-Higgs bundles which are local minima of the energy function on the moduli
space GR-Higgs bundles. For such Hodge bundles, the global Slodowy slice map from [CS21]
descends to moduli spaces and describes connected components of the moduli space M(GR)
with many interesting properties. In particular, the associated components of the character
variety R(GR) define the higher Teichmüller components conjectured by Guichard, Labourie
and Wienhard [GLW21, GW18]. There are four families of magical nilpotents two of which
appear in Examples 6.9 and 6.10.

6.3 The non-JM-regular case
We now describe the moduli space of maximal (G0, g1)-Higgs pairs when (G0, g1) is not
JM-regular. Assume (G0, g1) is not a JM-regular PHVS. Let Ω ⊂ g1 be the open G0-orbit. For
e ∈ Ω we complete it to an sl2-triple {f, h, e} with h ∈ g0 and set s = ζ − h/2. Recall s -= 0
exactly when (G0, g1) is not JM-regular. A maximal JM-regular PHVSS (Ĝ0, ĝ1) for (G0, g1)
is given by letting Ĝ0 < G0 be the G0-centralizer of s and ĝ1 = {x ∈ g1 | [s, x] = 0}. Recall also
that s determines a parabolic subgroup Ps < G0 and Ĝ0 < Ps is the Levi subgroup.

Proposition 6.15. Assume (G0, g1) is not JM-regular and let (Ĝ0, ĝ1) be a maximal
JM-regular PHVSS. Then there are no stable (G0, g1)-Higgs pairs which are maximal.
Moreover, every maximal polystable (G0, g1)-Higgs pair with Toledo invariant reduces to a
polystable maximal (Ĝ0, ĝ1)-Higgs pair.

Proof. Let (E, ϕ) be a polystable maximal (G0, g1)-Higgs pair. Since (E, ϕ) is maximal, ϕ(x)
is in the open orbit Ω for generic x ∈ X. Let e ∈ Ω, {f, h, e} be an sl2-triple with h ∈ g0 and
(Ĝ0, ĝ1) be the associated maximal JM-regular PHVSS of (G0, g1). Let s = ζ − h/2, and Ps < G0

be the associated parabolic subgroup. As in the proof of Theorem 5.3, the Higgs field defines a
reduction of structure group σ of E to a Ps-bundle Eσ such that ϕ ∈ H0(Eσ(g1,s) ⊗ K). Since
(E, ϕ) is maximal, we have deg E(σ, s) = 0. Hence, (E, ϕ) is not stable and there is a holomorphic
reduction σ̂ to the Levi subgroup Ĝ0 < Ps with ϕ ∈ H0(Eσ̂(ĝ1) ⊗ K. Thus, (E, ϕ) reduces to a
polystable maximal (Ĝ0, ĝ1)-Higgs pair. #

Let Ĉ < Ĝ0 be the Ĝ0-stabilizer of the sl2-triple {f, h, e}. Note that {f, h, e, s} ⊂ g gener-
ates a subalgebra isomorphic to gl2C, and Ĉ is the G-centralizer of the {f, h, e, s}. As in the
JM-regular case, extending the structure group of the uniformizing Higgs bundle (ET, e) to G0

defines a polystable maximal (G0, g1)-Higgs pair (ET(G0), e). Moreover, if EĈ is a polystable
Ĉ-bundle, then (ET ⊗G0 EĈ, e) is a polystable maximal (G0, g1)-Higgs pair. Thus we have a map

Ψ̂e : N (Ĉ) !! Mmax(G0, g1)

EĈ
! !! (ET ⊗G0 EĈ, e)

(6.3)

from the moduli space of polystable Ĉ-bundles on X to the moduli space of maximal (G0, g1)-
Higgs pairs.

Theorem 6.16. If (G0, g1) is not JM-regular, then map Ψ̂e : N (Ĉ) → Mmax(G0, g1) from (6.3)
defines an isomorphism between the moduli space of polystable Ĉ-bundles and the moduli space
of polystable maximal (G0, g1)-Higgs pairs.

Proof. Surjectivity of the map Ψ̂e follows from Proposition 6.15 and the proof of surjectivity in
the JM-regular case. For injectivity, note that two polystable Ĉ-bundles EĈ and E′

Ĉ
define the
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same point in Mmax(G0, g1) if there is a holomorphic isomorphism of G0-bundles

Φ : EĈ ⊗G0 ET → E′
Ĉ
⊗G0 ET

such that Φ∗e = e. Unlike the JM-regular case, the G0-stabilizer of e is not Ĉ. However,
EĈ ⊗G0 ET

∼= E′
Ĉ
⊗G0 ET implies that Φ acts trivially on ET. In particular, Φ is valued in the

G0-centralizer of {h, e}. By the uniqueness part of the Jacobson–Morozov theorem, this is the
G0-centralizer of the sl2-triple {f, h, e} which is Ĉ. Hence, Φ induces a holomorphic isomorphism
of the Ĉ-bundles. #

The rigidity results for variations of Hodge structure in the JM-regular case have analogues in
the non-JM-regular setting. Namely, Consider the Cartan involution θ : g → g which is (−1)j Id
on gj and choose the compact real form τ : g → g such that τ(gj) = g−j and τ(e) = −f . Let
GR < G, SR < S, ĈR < Ĉ be the associated real forms. The proof of the following theorem is
immediate.

Theorem 6.17. Suppose (G0, g1) is not JM-regular, and ρ : π1(X) → G is a reductive
representation. The Higgs bundle associated to ρ is a maximal Hodge bundle of type (G0, g1)
if and only if, up to conjugation, ρ = ρu ∗ ρĈ : π1(X) → G, where

− ρu : π1(X) → SR < S is (a lift of) the uniformizing representation of X, and
− ρĈ : π1(X) → ĈR < Ĉ is any representation into the compact real form of Ĉ.

Remark 6.18. As in the JM-regular case, such representations factor through the real form
GR < G. However, unlike the JM-regular setting, the GR-centralizer of these representations
is not necessarily compact since Ĉ is not the full G-centralizer of the sl2-triple {f, h, e}.

Note that Corollary 6.8 now holds without the JM-regular assumption.

Corollary 6.19. Consider a PHVS (G0, g1). A variation of Hodge structure (ρ, fρ) associated

to a maximal Hodge bundle of type (G0, g1) if and only if fρ : X̃ → GR/HR
0 is a totally geodesic

embedding which maximizes the holomorphic sectional curvature. If (G0, g1) is not JM-regular
then fρ factors through a maximal JM-regular subdomain

fρ : X̃ → ĜR/ĤR
0 ↪→ GR/HR

0 .

Example 6.20. Recall from Examples 2.1 and 2.19 that the PHVS (GLpC × SOqC, Mp,q) with
q < p is not JM-regular and a maximal JM-regular PHVSS is isomorphic to (GLqC × GLp−qC ×
SOqC, Mq,q). Following Example 6.11, an SO2p+qC-Higgs bundle (E, Q,Φ) is a Hodge bundle
of type (G0, g1) if and only if E splits holomorphically as V ⊕ W ⊕ V ∗, where V is a rank-p
isotropic subbundle and the Higgs field is determined by a holomorphic map θ : W → V ⊗ K
as in (6.2). Such a Higgs bundle is a maximal (G0, g1)-Higgs pair if and only if V decomposes
holomorphically as V = WK−1 ⊕ Vq−p, where rk(Vq − p) is a rank-(q − p) degree zero polystable
vector bundle and

θ =
(

IdW

0

)
W → (WK−1 ⊕ Vq−p) ⊗ K = V ⊗ K.

The resulting representation ρ : π1(X) → SO2p+qC factors through SO(2q, q) × Up−q <
SO(2p, q) < SO2p+qC.
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BGM03 S. B. Bradlow, O. Garćıa-Prada and I. Mundet i Riera, Relative Hitchin-Kobayashi corre-
spondences for principal pairs, Q. J. Math. 54 (2003), 171–208; MR 1989871 (2004m:53043).

BIW03 M. Burger, A. Iozzi and A. Wienhard, Surface group representations with maximal Toledo
invariant, C. R. Math. Acad. Sci. Paris 336 (2003), 387–390; MR 1979350.

BIW10 M. Burger, A. Iozzi and A. Wienhard, Surface group representations with maximal Toledo
invariant, Ann. of Math. (2) 172 (2010), 517–566; MR 2680425 (2012j:22014).

CMSP17 J. Carlson, S. Müller-Stach and C. Peters, Period mappings and period domains, second
edition, Cambridge Studies in Advanced Mathematics, vol. 168 (Cambridge University Press,
Cambridge, 2017); MR 3727160.

CS21 B. Collier and A. Sanders, (G,P)-opers and global Slodowy slices, Adv. Math. 377 (2021),
107490.

CM93 D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras,
Van Nostrand Reinhold Mathematics Series (Van Nostrand Reinhold, New York, 1993);
MR 1251060.

Cor88 K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361–382;
MR 965220 (89k:58066).

DT87 A. Domic and D. Toledo, The Gromov norm of the Kaehler class of symmetric domains,
Math. Ann. 276 (1987), 425–432; MR 875338 (88e:32057).

Don87 S. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math.
Soc. (3) 55 (1987), 127–131; MR 887285 (88g:58040).
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MR 2437660.

Sim88 C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and
applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867–918; MR 944577
(90e:58026).

Sim92 C. T. Simpson, Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci.
75 (1992), 5–95; MR 1179076 (94d:32027).

Sim94 C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective
variety. I, Publ. Math. Inst. Hautes Études Sci. 79 (1994), 47–129; MR 1307297.

SS70 T. A. Springer and R. Steinberg, Conjugacy classes, in Seminar on algebraic groups and
related finite groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture
Notes in Mathematics, vol. 131 (Springer, Berlin, 1970), 167–266; MR 0268192.

Tol89 D. Toledo, Representations of surface groups in complex hyperbolic space, J. Differential
Geom. 29 (1989), 125–133; MR 978081.

Vie09 E. Viehweg, Arakelov inequalities, in Surveys in differential geometry. Vol. XIII. Geome-
try, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry,
Surveys in Differential Geometry, vol. 13 (International Press, Somerville, MA, 2009),
245–275;
MR 2537088.

VZ03 E. Viehweg and K. Zuo, Families over curves with a strictly maximal Higgs field, Asian J.
Math. 7 (2003), 575–598; MR 2074892.
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