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Abstract

Slow-moving landslides affect proximal infrastructures and communities, often causing extensive economic loss.
While many of these landslides exhibit slow and episodic sliding for decades or more, they sometimes accelerate
rapidly and fail catastrophically. Although it is known that the landslide dynamics are controlled by hydro-mechanical
processes, few analytical models enable a versatile incorporation of the inelastic behavior of the shear zone materials,
thus hindering an accurate quantification of how their properties modulate the magnitude and rate of coupled fluid
flow and landslide motion. To address this problem, we develop a simulation framework incorporating rainfall-
induced, deformation-mediated pore-water pressure transients at the base of active landslides. The framework involves
the computation of two sequential diffusion processes, one within an upper rigid-porous landslide block, and another
within the inelastic shear zone. Although the framework can be linked to any elastoplastic constitutive laws, here we
model landslide motion through an elastic-perfectly plastic frictional model, which enables us to account for standard
properties of earthen materials such as elastic moduli, friction angle, dilation angle, and hydraulic conductivity.
Numerical case studies relevant to slow-moving landslides in the California Coast Ranges show that the proposed
formulation captures different temporal patterns of movement induced by precipitation. In each of the case, we
achieved a relatively accurate match between data and simulations by incorporating positive dilation coefficients,
which leads to spontaneous generation of negative excess pore-water pressure and self-regulating motion. Conversely,

simulations with no dilation (hence, reflecting the approach of critical state) produce sharp acceleration, typical of
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catastrophic runaway acceleration. Our findings encourage the use of the proposed framework in conjunction with
constitutive laws tailored to site-specific geomaterial properties and data availability, thus favoring a versatile

representation of the variety of creeping landslide trends observed in nature.

Key words: slow-moving landslides, hydro-mechanical coupling, rainfall infiltration, constitutive models
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1. Introduction

Slow-moving landslides are phenomena which unfold over several years, often even decades, with
major implications for the serviceability of infrastructures, the safety of communities, and the local
economy (Nappo, et al., 2019; Lacroix et al., 2020). Most slow-moving landslides deform at low
rates (< 1 m/year) but can cause severe damage over time (Mansour et al., 2011). Some of them
can even experience catastrophic acceleration and lead to fatalities (Voight, 1978; Hendron and
Patton, 1985). The mobilization of these landslides is governed by environmental factors, such as
precipitation, which acts to modulate the effective stress conditions in the slope (Petley et al., 2005;
Cascini et al., 2010; Oberender and Puzrin, 2016). Infiltration of water leads to pore-water pressure
development, which decreases the effective normal stress and reduces the frictional strength of the
landslide material. As an outcome, these types of landslides normally accelerate in the wet season
and slow down or arrest in the dry season (Hilley et al., 2004; Cascini et al., 2010; Handwerger et

al., 2013).

In conjunction with frictional shear modulated by rainfall infiltration, downslope sliding is also
mediated by the tendency of geomaterials to undergo inelastic volume change. This volume change
can alter fluid flow and pore-water pressure development under certain conditions (Belmans et al.,
1983; Wu et al., 2016; Song et al., 2020). The role of volumetric deformation on the sliding
behavior has been extensively documented through field and laboratory measurements (Iverson et
al., 2000; Moore and Iverson, 2002; Agliardi et al., 2020) and numerical models (Iverson 2005;
Soga et al., 2016; Bandara et al., 2016). These studies have shown that the interaction between
water infiltration and material volume change (hydro-mechanical coupling) may play an important

role in governing the dynamics of slow-moving landslides.
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A variety of methods exist to model these hydro-mechanical couplings. Such approaches account
for shear zone inelasticity in the coupled field equations solving for pore fluid mass and momentum
balance (Zienkiewicz et al., 2000; McDougall and Hungr, 2004; Soga et al., 2016). Although these
methods can be used to study landslides of any morphology and kinematics, most have relatively
high computational costs, especially if a seamless link between slow hydrologic triggering and
rapid post-failure movements is desirable and their dynamics unfolds over long time, of the order
of years or decades. In order to reduce the computational costs of full-fledged numerical methods,
analytical techniques can be used to identify the mechanisms underpinning landslide motion and
explain the role of the mechanical properties of the shear zone material. For example, early
contributions by Hutchinson (1986) emphasized the crucial relation between the dissipation of
excess pore-water pressure (i.e., consolidation mechanisms) and the dynamics of downslope
sliding. Such models, formulated to describe liquefiable soils displaying positive feedbacks
between deformation and pore-water pressure growth, led to a sliding-consolidation framework
able to infer landslide velocity and runout for a variety of initial conditions. Despite its many
benefits, this approach does not account for the inelastic deformation of the materials during
liquefaction, and therefore cannot explicitly resolve the triggering of a landslide and its role on the
onset of catastrophic motion (Buscarnera and Whittle, 2012). A more profound link between
landslide triggering and post-failure movement was later proposed by Iverson (2005), whose
seminal work encompassed excess pore-water pressure change through basal flux boundary
conditions mediated by material dilation/contraction. However, this model too did not fully resolve
the effect of inelastic mechanisms mediated by the stress-strain nonlinearity, in that excess pore-
water pressure dissipation was modeled via poroelastic protocols based on a constant diffusion

coefficient. This assumption conflicts with the notion that inelastic deformation can lead to major
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alterations of the shear zone diffusivity (Rice, 1975; di Prisco et al., 2015; Chen and Buscarnera,
2021). These coupled effects render the process inherently poroplastic, which implies that a stress-
strain constitutive law is necessary to quantify the timescale of excess pore-water pressure
dissipation within the shear zone, as well as the magnitude and rate of landslide motion resulting

from inelastic deformation.

In this paper, we account for inelastic deformation during the entire life cycle of landslide motion
by developing a sliding-consolidation framework enabling the straightforward use of constitutive
laws with any desired level of sophistication. Our approach ensures readily deployable, low
computational cost simulations and is based on that developed by Chen and Buscarnera (2022).
Specifically, the framework proposed here resolves rainfall infiltration within the active sliding
block, thus connecting ground surface precipitation to the deformation dynamics. For this purpose,
the model involves two sequential diffusion processes, one taking place within a layer of rigid-
porous landslide material (which serves as hydrologic forcing), and another occurring within the
inelastic shear zone (which affects generation and dissipation of excess pore-water pressure). First,
the model is tested with reference to simple synthetic scenarios of precipitation, illustrating its
performance in interpreting the interaction between matrix deformation and pore-water pressure
dissipation. Then, it is used to interpret recorded time histories of landslide motion at three

landslide sites located in the California Coast Ranges, USA.

2. Model description

Field evidence suggests that the deformation of creeping (i.e., slow-moving) landslides originates
from localized shear zones with thickness varying between several centimeters to a few meters

(Corominas et al., 2000; Leroueil, 2001; Puzrin and Schmid, 2011; Wen et al., 2017; Alonso, 2021).
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In-situ monitoring show that for many slow-moving landslides the upper block slides downslope
as a rigid body overriding the stable material underneath (e.g., bedrock) (Fig. 1a). When
precipitation occurs, infiltration impacts, sequentially, the landslide material and the shear zone,
generating corresponding pore-water pressure transients. As an outcome, under a constant total
overburden, the effective normal stress decreases in response to the transient pore-water pressure
rise (Fig. 1b) in accordance with Terzaghi’s (1925) effective stress definition. The stress

components of the shear zone material can be defined as:
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Figure 1. Schematic of slow-moving landslide slope profile and precipitation induced stress change. a) slope

components under infinite slope geometry, b) material stress path induced by rainfall infiltration.
04 = ¥sachcos?0,

Tq =V, hsinbcoso, (1)

r_
0 = 0gq — Pw:

where g, and 1, are the total normal stress and shear stress determined from the slope inclination
0, h is the thickness of the active sliding block (consists of landslide material and shear zone), and
Y<q 18 the saturated unit weight of the soil. o is the effective normal stress, and p,, is the pore-

water pressure. Incorporating elastoplastic constitutive models for the shear zone material enables
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the landslide dynamics to be analyzed by simulating the deformation in both the tangential and

normal direction caused by hydrologic processes.

presure, p,,

Figure 2. Schematic of the 1D infinite slope model used for coupled hydro-mechanical analyses. a) Cross section
of the landslide material. The pore-water pressure distribution (solid blue line) of a normal profile (dashed
black line) and corresponding water level (horizontal blue dots) at different times. The governing equation for
the diffusion process inside the landslide material is also illustrated. b) Zoom of the shear zone. The solid lines
represent the stationary pore-water pressure induced by the pressure input on top of the shear zone, while the
dashed blue lines represent for possible pore-water pressure development mediated by the dilation as explained
in Sections 3.1 and 3.2. ¢) The governing equations for the diffusion process inside the landslide material.

In this study, the hydro-mechanical equations controlling the dynamics of a creeping landslide are
set to address two separate diffusion processes: one within the upper landslide material, here
treated as a porous, rigid block; another within the inelastic shear zone (Fig. 2). The former
diffusion mechanism determines the main external loading, i.e., hydrological forcing for the basal

shear zone following the variation of water level and is solved with a previously developed 1D

Finite Element solver for infinite slopes (Lizarraga and Buscarnera, 2019; more details in Section
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2.1). By contrast, the second diffusion mechanism controls the timescale of pore-water pressure
development and dissipation in response to inelastic deformation within the basal shear zone. The
corresponding hydro-mechanical couplings affect both diffusivity and deformability beneath the
landslide mass, thus requiring the use of site-specific constitutive laws of the shear zone material

(Sections 2.2 and 2.3).
2.1 Pore-water pressure diffusion within the landslide material

Here, we solve the water mass balance in the landslide material to determine the pore-water
pressure transients induced by rainfall infiltration on top of the shear zone, which ultimately
controls the hydro-mechanical coupling of the shear zone. These transients are computed on the
basis of Eq. 2, where the diffusive effects are encapsulated into two constant parameters, the
storage coefficient, S, and the saturated permeability of the landslide material, k¢, (e.g., Iverson,

2000; Berti and Simoni, 2010; Cohen-Waeber et al., 2018), as follows:

§. %P _ prw @)

S ot dz2’

where z is the normal distance from the ground surface. In this manuscript, the above equation is
solved through the numerical algorithm proposed by Lizarraga and Buscarnera (2019). For the
sake of simplicity, the hydrologic triggering is simulated by imposing flow (infiltration) conditions
at the top of the landslide material and an impervious boundary at its bottom due to the
impermeable bedrock below the shear zone (Baum et al., 2010). While more general analyses
accounting for permeability contrasts can be carried out (Lizarraga and Buscarnera, 2019), this
simplification has limited qualitative bearing on the analyses shown in this paper and will therefore

be used as a convenient working hypothesis.
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We simulate dry and wet seasonal changes that are typical of sites in California (Swain, 2021),
which is the focus area of our research. During the simulated wet season, we apply a surface flux
boundary condition equivalent to the precipitation. Water run-off was not considered, but its
incorporation is straightforward, if needed, by accounting for moisture change at the surface (Song
et al., 2021). Finally, to capture the widely observed sequence of pore-water pressure rise during
the wet season, followed by its decrease during the dry season (e.g., Iverson and Major, 1987;
Schulz et al., 2018a; Finnegan et al., 2021), pressure boundary conditions were imposed at the top

of the slope during periods with no rainfall.
2.2 Coupled flow-deformation within the shear zone

Within the shear zone, coupled flow-deformation processes can be simulated by analyzing the
downslope dynamics and water mass balance simultaneously (Chen and Buscarnera, 2022). In this
portion of the slope, the initial stress state is altered by the interaction between water flow and

deformation. From a mechanical viewpoint, the downslope dynamics implies:
ma =7ty — T, 3)

where m = pshcos@, is the total mass of the active sliding block, a, its acceleration, 7,4, the driving
shear stress (Eq. 1), t,, the resisting stress, here regarded as a function of the local constitutive

response, as follows:

T, =Gy —VP); 6’ = Epeq(€ — £P). 4)

where G is the elastic shear stiffness, E,.4 is elastic oedometric modulus. € and €P are the total
and plastic normal strain; y and yP are the total and plastic shear strain. Eq. 4 involves both shear
stress and the effective normal stress; the latter is indeed a function of the normal strain and

controlled by volume change. As it will be discussed below in Section 2.3, plastic strain increments
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can be computed with constitutive models. Here, to link the shear strain to the landslide movement,
the shear strain rate, y, is computed by assuming a linear velocity (v) profile within the shear zone

in z direction (MiDi, 2004; Pastor et al., 2015; Siman-Tov and Brodsky, 2021), as follows:

4

y = )

" hgcos6’

where h, represents the thickness of the shear zone (Fig. 1a). This choice enables us to use Eq. (3)

~ (5) to derive the following sliding equation:

pshcos@P = 1, —G—— + GyP, (6)

hgcosf

where p; is the saturated density of soil. The effective normal stress change in Eq. 4 must follow
the rates of volume change compatible with the water mass balance in the shear zone. Here, this
process is simulated by treating the fluid as incompressible and considering the rate of volume
change as the only source of diffusive feedbacks within the shear zone (Sloan and Abbo, 1999;

Mihalache and Buscarnera, 2016), as follows:

kb a2p,,
Yw 0z2

+¢ =0, (7N

where kP is the saturated permeability of the shear zone material, and ¥, is the unit weight of
water. The normal strain rate consists of elastic and plastic deformation rates (¢ = €€ + £P).

Therefore, we can rewrite Eq. 7, as follows:

kP 9%py | Ga-Pl | .
— —e —— gp = O'
Yw 022 + Eoea + (8)

from which it is readily apparent that the inelastic volume change regulates the pressure diffusion

process across the shear zone.
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In our model, the time varying pore-water pressure input, pf,, at the boundary between the
landslide material and shear zone (here computed through the uncoupled diffusion analysis in Eq.
2) will serve as a forcing in Eq. 8, which is aimed at computing the change of the pore-water
pressure at the bottom of the shear zone (pZ). While Eq. 8 is a second order partial differential
equation (PDE), a parabolic approximation of the excess pore-water pressure (pg ) profile
compatible with analytical solutions of soil consolidation (Wood, 2004) is here used to condense
the analysis of the landslide dynamics to an ordinary differential equation (ODE) that can be solved
with numerical and/or analytical solutions. Specifically, use of a parabolic pressure profile implies

(equation derivation see Appendix 1):

azpw — z(p\i/b_p\l/,l/) (9)
922 hZcos20 ’

where p3? represent the stationary (steady state) pore-water pressure at the bottom of shear zone
corresponding to a hydrological forcing applied on the top of the shear zone (p3? = pi, +
hgcos@y,,, and Apf, = Aps?), pL is the pore-water pressure at the bottom of the shear zone.
Combining Eq. 9 with Eq. 7, we can then define a set of coupled governing equations conveying

the effect of the inelasticity of the shear zone material on the landslide dynamics as follows:

. 2Egeqk? . .

p\f’v = ywhgc‘(i)sze (plfvb - p\?v) + Eoedep + g, (10a)
b v D .

pshcosOv Cm + GyP + 4. (10b)

The solution to Eq. 10 can be addressed once their inelastic deformation terms are specialized with

constitutive models.

2.3 Constitutive models
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While an extensive number of constitutive relations for earthen material is nowadays available, a
natural choice for a specialized form of the proposed framework is a perfectly plastic frictional
law (Davis and Selvadurai, 2005). In fact, such a constitutive choice enables simplicity and
straightforward identification of model parameters for a variety of landslide case studies (Van
Asch et al., 2007; Corominas et al., 2005; Conte et al., 2014; Schulz et al., 2018a). In the case of

frictional plasticity, we define:
f=1—0'tanp, g=1—0d'tany, (11)

where f and g are a yield function and a plastic potential, respectively. ¢ is the friction angle and
Y represents the dilation angle. In this scenario, the plastic deformation rate in both normal and

tangential directions can be obtained as:

. g . ag
Pp=p%9.5p - %9
&P = Aam’ yP = Aarr’ (12)

where A is the plastic multiplier (i.e., a scalar that accounts for the magnitude of plastic effects)
determined by the consistency condition of the yield surface. By using effective normal stress and

shear strain as control parameters (Buscarnera et al., 2011), it follows that:

__1 of ,  Of .
A= H-H, (8010 + oty GY). (13)

where H is the hardening modulus, H, is a plastic modulus determined by the control conditions

used to quantify plastic effects. Based on Eq. 11, the plastic moduli can be expressed as:

H=0; H =—-2LE 2% = —tangE, gtany; H, = — 2L 629 = —¢. (14)

% Oedﬁ dt, 01y
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Here, H = 0 in that the selected constitutive law is perfectly plastic. Introducing Eq. 14 into Eq. 13
and combining the result with Eq. 10, the complete set of coupled governing equations based on

the selected constitutive law is:

koned 2(p\§vb_p3/) 1 Gv

.b — + .
= oy, 15a
Pw yw  hZcos?0 tang hgcosO d (15a)
. kPEyeq 2(pSP-pk) Gv .
hcosfi = —=¢ Atang —B +1 15b
Ps yw  hZcos20 ¢ hgcosO d> ( )
. . G tan@Egeqtan

where 4 and B are plastic coefficients expressed as 4 = ,and B = Eocqtany ,

G+tan@E eqtany G+tan@E eqtany

respectively. From Eq. 15, we can compute the interaction between shear zone hydraulic flow and

mechanical deformation when rainfall infiltration occurs.
2.4 Nondimensionalization

It is often beneficial to identify nondimensional timescales controlling dynamic systems because
it helps us understand the relation between distinct timescales involved in our study such as rainfall
infiltration and material consolidation. Also, it can reduce the complexity of the governing
equations and reveal the key parameters needed to understand complex physical processes. In this
study, standard nondimensionalization strategies are used (Tan, 2011). This involves rescaling the
system variables by normalizing them for a reference quantity, here denoted through an overhead
hat (e.g., t for a reference time). On such basis, the normalized quantities can be displayed through
an overhead tilde (e.g., t for normalized time, equals to #/f). Selection of reference quantities with
clear physical meaning facilitates the identification of the underlying mechanics. Here, the
reference time is selected as the duration of forcing (£ = T'), while other reference quantities are

6 =P, = 0y = yshcos?0,t =14 = tan b oy, a = 74/pshcosd, ¥ = at.
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Accordingly, the governing equation (Eq. 15) can be re-written as:

tan @

B = 2TEAG — BE) — B o Ty + 64, (162)
22 tany , . ~ ~ 2
v=2TeA— Py — D) — BTG, U + 14, (16b)
b
where T, = %, is the ratio of total forcing time divided by the characteristic consolidation
wits

time for an elastic material, which controls the shear zone hydraulic diffusion when it deforms
elastically. In addition, considering the standard expression of the shear wave velocity in an elastic
medium, v§ = /G /p, it is possible to define a reference time for a shear wave to travel across the

active sliding block (£j,) and the shear zone () as:

GT?

Tiy = Entns) ™ = Sroag - (17)

Therefore, the coupled behavior of a creeping landslide inside the shear zone involves a number
of controlling nondimensional parameters dictating its dynamics, including the diffusion time (T}%.),
the shear wave propagation time (T},), the slope inclination (8), and the elastoplastic properties

encapsulated into the plastic coefficients A and B.

3. Model performance
3.1 Precipitation-induced diffusion and elastic response

To explore our model’s ability to simulate landslide movements induced by precipitation, the
model is first tested with an artificial (and unrealistic) rainfall event, which lasts for 30 days (T)
with a constant intensity (q). While the analysis is purely illustrative, the range of model

parameters is chosen on the basis of landslide sites in the California Coast Ranges (Keefer and
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Johnson, 1983; Kelsey et al., 1996). Hence, the rainfall intensity is set equal to the saturated
permeability of landslide material (k?), here assumed to be 3x10m/s (according to measurements
from Iverson and Major, 1987) and the storage coefficient (S;) is set to 0.26. The pore-water
pressure change at the interface between the landslide material and the active shear zone (Ap}, i.e.,
ApsP) can be computed numerically. The results are provided in Fig. 3a, which shows that the p¢,

increases monotonically after the wetting front approaches the top of the shear zone when  is

around 0.3.
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Figure 3. Simulation of pore-water pressure transients caused by precipitation. a) Simulated pore-water
pressure change at top of shear zone caused by a constant rainfall. b) Computational results of pore-water
pressure change at bottom of shear zone, corresponding to different value of T},; ¢ & d) schematics of pore-
water pressure distribution with higher and lower T§,, where higher T}, results from shear zone permeability

(kP) 5.5 x107 m/s, and lower T¢, indicate k” =5.5 x10"'2 m/s. The thickness of the landslide material is 20m.

Stiffness parameters are taken as: oedometric modulus E,.; = 5 MPa, and shear modulus G =2 MPa.
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The computed pf, will then serve as the hydraulic boundary condition activating coupled behavior
inside the deformable shear zone. Simulations are conducted for different values of T} (Eq. 16) to
examine its role on pore-water pressure diffusion processes within the shear zone. In this study,

TE depends on the value of the hydraulic conductivity, k?, as discussed in the previous section.

Fig. 3b shows that, when T. is relatively high, diffusion takes place rapidly within the shear zone,
thus the hydraulic response (ApZ) at the bottom of the shear zone follows the hydrologic forcing
(Ap},, i.e., ApSP). The pore-water pressure profile in this scenario is illustrated in Fig. 3c. On the
contrary, pore-water pressure change can be delayed in the shear zone in the presence of low T
values. This is illustrated in Fig. 3d, where the pore-water pressure at the bottom of the shear zone
barely changes despite the application of a hydrological forcing at the top of the deformable zone.
Since these tests are conducted for landslide material under an elastic regime, infiltration does not
involve approaching of the yield surface and mobilization of the plastic resources of the shear zone.

As an outcome, no sliding is generated.
3.2 Model behavior under the plastic regime

When the fluctuations of the effective stress state induced by infiltration are large enough to engage
the frictional yield surface, plastic shear strain and consequent sliding occur. Separating from the
elastic regime, the material yield surface also starts to regulate the stress changes and
corresponding deformation. For example, if the material dilation angle () is zero, no negative
excess pore-water pressure can be generated. In this context, the pore-water pressure increase will
be the same as triggered by water diffusion in the elastic regime (Fig. 1b). Yet, under the
elastoplastic framework, the yield surface cannot be surpassed. The pore-water pressure increase

will thus lead to stress changes along the yield surface (Fig. 4a). As an outcome, the shear zone
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material will lose strength (Eq. 3), and runaway failure can be triggered. Most notably, if non-zero
plastic normal deformation is developed, negative excess pore-water pressure will be induced and
regulate the slope dynamics. Plastic dilation, if prevented, will generate negative excess pore-water
pressure (Fig. 4b), which, in order not to violate the prescribed strength criterion and sustain the
initial shear stress level, must be opposite and equal to the pressure change induced by infiltration
(Fig. 1b). Specifically, since in our analyses the shear zone material has low permeability, diffusion
within the basal sliding tends to progress slowly. Consequently, the increase of the bottom pore-
water pressure induced by infiltration is small and its value is affected by the abovementioned
negative excess pore-water pressure controlled by the dilative response of the material. Most
importantly, to comply with the strength characteristics underlying the selected perfectly plastic
MC constitutive law (i.e., a fixed yield surface), the resulting basal pore-water pressure and the
corresponding effective stress will be such that the material remains on a state of plastic sliding
throughout the forcing process, with the pore pressure decreasing only when the rainfall stops, the
material returns in a poroelastic state, and the excess pore-water pressure fully dissipates until the

landslide movement ceases. These arguments show that dilation generates self-regulating effects
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Figure 4. Schematics of effective stress paths at the base of a landslide predicted by the proposed framework
for movements induced by hydrologic forcing. a) Stress change caused by hydrological forcing in plastic regime
with nil normal plastic deformation. b) Dilative material generated self-regulating behavior. ¢) Contractive

material induced self-feeding mechanisms.
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able to constrain the pore-water pressure build-up. In contrast, contractive deformation would lead
to an opposite outcome, by generating positive excess pore-water pressure and adding to the

infiltration effects (Fig. 4c), eventually leading to more strength loss and runaway failure.

For our first landslide simulation in the plastic regime, we model landslide motion with dilative
material. We apply a simple synthetic pore-water pressure event distributed normally with a
magnitude of around 11 kPa over one year (T = 365 days) at the top of the shear zone to represent
pore-water pressure changes expected during a water cycle consisting of wet season (e.g.,
Finnegan et al., 2021) and following dry seasons in California (Fig. 5). The T (k? = 3x10” m/s)
is set to cause nearly instantaneous pore-water pressure change (Fig. 5a). The small values of k?
used in the analyses reflect the low permeability often reported for shear zone materials of the
study sites (Baum and Ried, 2000; Nereson et al., 2018). When ¢ = 20°, the material yield surface
is not approached and there is only elastic deformation. In contrast, a lower friction angle (¢ =

16°) leads to plastic shearing (Fig. 5a & b, point B’ to B’”) under the same hydrological forcing.

Fig 5a and b show that, for ¢ = 16°, plasticity ensues when the imposed pore-water pressure at
the top of the deformable zone is close to 8 kPa (i.e., point B’, at £ = 0.4). Subsequently, plastic
deformation begins to develop in both normal (induce volume change) and tangential directions
(trigger downslope sliding, Fig. 5b). Regulated by plastic dilation, negative excess pore-water
pressure is generated which prevents further pore-water pressure change. As explained in the
previous example (Fig. 4b), the self-regulating effect halts the growth of pore-water pressure (Fig.

5f) and prevents the landslide from losing strength and accelerating catastrophically.

When the pore-water pressure applied at the top of the shear zone begins to drop and drives the

material back into the elastic regime (point B”’, £ = 0.6), the pore-water pressure at the bottom of
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the shear zone decreases and there is a transition from the plastic to elastic domain. At the same
time, sliding stops (Fig. 5b point B’”), marking the end of the episodic development of negative
excess pore-water pressure coupled with downslope sliding. For the case with ¢ = 20° (Fig. 5 a,
c, e), the whole process is in the elastic regime and there is no sliding nor negative excess pore-
water pressure (Fig. 5b). These results confirm that sliding occurs only if precipitation mobilizes
the inelastic resources of the shear zone material. Most notably, our model shows (similar to other

studies) that dilation in the plastic regime leads to self-regulated landslide motion.
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Figure 5. Simulation of the hydro-mechanical response of an infinite slope subjected to imposed pore-water
pressure change at the top of its shear zone. A) top shear zone pore-water pressure changes in one year, with
the bottom response under both the elastic and plastic regime. b) Downslope displacement, ¢ & d) pore-water
pressure profile when material is under the elastic and plastic regime. e & f) Schematic of hydrological response
in elastic and plastic regime. Synthetic slope tested here is assumed to be thickness, #-is =7 m (hs= 0.5 m), slope

angle @ = 15°, and dilation angle ¥ = 2°.

3.3 Coupling effects
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The dilation angle Y governs the ratio of normal deformation divided by the sliding deformation.
To further investigate its effects, the same synthetic slope and pore-water pressure variation
illustrated in Fig. 5 are tested with different values of 1 (5°, 2°, and 0°), but equal friction angle
(¢ =16°). Among the tested cases, Y = 0° is used to explore the landslide behavior for vanishing

dilation (i.e., potential approach of critical state conditions).

Fig. 6a shows that pore-water pressure at the bottom of the slope predicted for cases with dilative
deformation (i.e., i > 0) ceases to increase following the hydrological forcing, thus leading in all
cases to self-regulating effects. In contrast, these self-regulating effects vanish in the analyses
conducted with i = 0° and runaway failure occurs. Our model simulations also indicate the pore-
water pressure stops changing in the plastic regime because the positive pore-water pressure
caused by infiltration is balanced by the negative excess pore-water pressure that results from
dilation as discussed above (Fig. 4b). In other words, for the perfectly plastic behavior inherent
with the MC constitutive law used in the current analyses, once the yield surface is reached, the
pore-water pressure will experience no further change (increase or decrease) until the seasonal
infiltration ends. Yet the dilation angle does impact the overall landslide displacement because it
represents the ratio of normal dilation divided by downslope sliding. As Fig. 6b displayed, the
same amount of dilative normal deformation would be triggered with a positive 1 (to induce the
negative pore-water pressure to balance the infiltration induced pore-water pressure increase).
While as 1 quantifies the normal dilation divided by sliding, under same amount of dilation, the
higher the v, the smaller the sliding will be induced. As Fig. 6¢ illustrated, for a dilation angle of
5°, the simulated sliding displacement is around 0.2 m. This movement more than doubles for i

= 2°, reaching more than 0.5 m.
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When 1 =0°, no dilation would be triggered (Fig. 6b). As an outcome, no negative excess pressure
can act to prevent runaway acceleration (Fig. 6¢). The same analysis can be conducted for shear
zone materials experiencing contraction (i.e., <0). This scenario mimics so-called liquefaction
effects, i.c., self-feeding growth of excess pore-water pressure accompanied by loss of shearing
resistance (Iverson, 2005; Iverson and George, 2014; Chen and Buscarnera, 2022). The sharp
transition between these different landslide dynamic regimes is qualitatively illustrated in Fig. 6d.
While the incorporation of multiple nonlinear constitutive laws is necessary to simulate the abrupt
development of excess pore-water pressure and high mobility failure events such as liquefaction,

it is beyond the scope of this paper.
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Figure 6. Simulation of the hydro-mechanical response of infinite slopes with basal shear zone characterized
by different dilation angles. a) pore-water pressure at the top and bottom of the shear zone, b) computed normal
dilation, c) simulated displacement, d) relationship between sliding displacement after the hydrological pulse

and dilation angle, including cases leading to runaway failure.
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4. Case studies

4.1 Sites of interests

There are thousands of landslides in the California Coast Ranges (Keefer and Johnson, 1983;
Kelsey et al., 1996; Bennett et al., 2016; Handwerger et al., 2019b; 2022). Landslides occur in this
region due to active tectonics, mechanically weak rocks, and high precipitation (Scheingross et al.,
2013; Roering et al., 2015). The precipitation in California is seasonal and most falls during the
wet season between October and May (Swain, 2021). Most of the slow-moving landslides occur
within the Jurassic-Cretaceous Franciscan Mélange (Fig. 7, referred to as “KJf”). The KJfis a clay-
rich complex unit made of sandstone, shales, serpentinite, and conglomerates (Bailey et al., 1964;

Rutte et al., 2020).

For our model simulations, we selected parameter value ranges for friction angle, permeability,
and dilation angle from previously published studies (Keefer and Johnson, 1983; Vermeer and de
Borst, 1984; Iverson and Major, 1987; Roadifer et al., 2009; Nereson et al., 2018) on landslides in
the CA Coast Ranges (details in Section 4.2). However, for stiffness parameters that were not
measured at these sites, we used reasonable approximations for clay-rich compositions (Obrzud,

2010): oedometric modulus, E,.4; = 5 MPa, and shear modulus, G= 2 MPa.

We selected three landslide sites to test our model: 1) Two Towers landslide, northern California
(Schulz et al., 2018a; b), 2) Minor Creek landslide, northern California (Iverson and Major, 1987),
and 3) Mud Creek landslide, central California (Handwerger et al., 2019). Hourly movement of
Two Towers landslide was measured from 11 November 2014 to 22 July 2017 using a biaxial tilt

sensor (Schulz et al., 2018a; b). The Minor Creek landslide was monitored between 1982 and 1985
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Figure 7. California Coast Ranges and Franciscan Complex lithologic unit 1 draped over a hillshade of the
topography with labeling and location details of the landslide sites studied in this paper (the monitoring points
at which each landslide displacement was measured are circled, and the water level monitoring location of Two
Towers landslide is shown by triangle).

using extensometers (Iverson and Major, 1987). Finally, the Mud Creek landslide was monitored
between 2015 and 2017 (Handwerger et al., 2019a) through satellite interferometric synthetic
aperture radar (InSAR). In this study, the analyses are based on a 1D infinite slope geometry, in
that the length of the considered landslides are much higher than their width and depth. This
implies that the landslide is a uniform block of constant inclination with movements that do not
vary along the downslope direction. This widely used simplification is applicable to capture the
overall kinematics of the landslide (Angeli et al., 1996; Iverson, 2005; Van Asch et al., 2007; Li

et al., 2021), but it might suffer a loss of accuracy at the edges of the domain, especially in regions
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of extension and/or compression which require a 2D or 3D model of the slope geometry. Notably,
we selected these three case studies because they display distinct trends of movement over time,
including slow, episodic sliding and catastrophic failure, thus allowing ideal benchmarks to verify

the accuracy of the proposed framework.
4.2 Parameter optimization method

For the case studies in this paper, model parameters were assessed by optimization procedures
focusing on the identification of best fit values for k” (shear zone permeability), ¢ (friction angle),
and Y (dilation angle). We used a grid search inverse method to optimize these parameters
(Allmendinger, 1998). This method computes the objective function (OBJ) from initial guesses

based on typical ranges of these parameters and then searches the minimum OBJ.

OB] =Z(d0 _ds(ka(p'lp))zs (19)

where d, is observed displacement; d is simulated displacement. The parameters (k?, ¢, )
leading to the minimum OBJ will be the optimized ones. Using the Two Towers landslide as an
example, (detail given in the next section), we perform a grid search for Y ranging between 0.5°
to 5° (dilation angle for clayey material is limited; Vermeer and de Borst, 1984). The permeability
and friction angle for the KJf material has a large range, with permeability ranging from 1.6x107
to 3x107'° m/s within a single landslide body (Iverson and Major, 1987) and friction angle ranging
from 12°~50° (Keefer and Johnson, 1983; Roadifer et al., 2009; Schulz et al., 2018b; Nereson et
al., 2018). We also note that studies have shown that the permeability of the shear zone (£”) is often
smaller than the landslide body material (Baum and Reid, 2000; Nereson et al., 2018). Thus, we

performed the grid search using permeabilities between 1.6x107" and 3x107'2. Our parametric



455  analysis provides a narrow band of values (dark blue in Fig. 8) with relatively small OBJ values.

456  Among them, the minimum value can be found. Optimized parameters are displayed in Table 1.

457 Table 1. Properties and optimized parameters for each case study

Model parameters Two Towers Minor Creek Mud Creek Initial values
Area (hectares) 1 10 23 -
Inclination (°) 15 15 32 -
Depth (m) 7 6 20 -
kP (m/s) 3.3 x10!! 3.3x107 8.8 x101° 1.6x107 ~ 3x10°12
o (®) 22.8 19.3 47.8 12~50
v (°) 2 2 0.5 0.5~5
458
% 04
459 permeability, k " ()

460  Figure 8. Inverse analyses obtained OBJ values corresponding to friction angle and permeability when ¥ = 2°,

461  optimized parameter is indicated by the red polygon.

462

463 4.3 Two Towers landslide

464  The Two Towers landslide (Fig. 7) is around 250 m long and averages about 40 m in width and 7

465 m in depth; with an average inclination of 15° (Schulz et al., 2018a). The thickness of the shear
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zone is ~0.5 m (Schulz et al., 2018b). The groundwater head (monitored at multiple sites within
the active landslide) and landslide movement (monitored from an inclinometer located at the
landslide toe, Fig. 7) were monitored at multiple sites within the active landslide from November
2014 to July 2017 by Schulz et al. (2018a; b). We selected the ground water head measured at the
middle of the landslide (Schulz et al., 2018a), in that it is far from the boundaries and can be
regarded as the representative descriptor of the hydrologic state for a translational landslide.
However, it is important to point out that other options (e.g., the average of all measurement points)
would also be viable choices in this modeling context. In the central portion, we used data from
the piezometer located at around 5.7 m below the ground, from which the water head above
landslide base is reported. The resulting pore-water pressure at the top of the shear zone (pf,, Fig.
9a) was then computed for a scenario of downslope seepage and eventually used as boundary
condition for the simulation. The cumulative rainfall during the observation period is provided in
Fig. 9a. Clay swelling was observed at the site and shown to have played a major role in the
landslide dynamics (Schulz et al., 2018a). However, we did not explicitly incorporate clay swelling
into our model. We also note that Schulz et al. (2018a) concluded that shear-induced dilation was
not evident from their field or laboratory measurements. Nonetheless, our model simulations are

here aimed at testing whether dilation can explain the observed motion at the Two Towers site.

Fig. 9a shows the simulated pore-water pressure distribution at the top and bottom of the shear
zone, characterized by delayed bottom hydrological response compared to the forcing pore-water
pressure imposed at the top of the shear zone (pf, and corresponding p3P). Although the overall
simulated displacement trend is consistent with the monitoring data at the Two Towers landslide
site, as Fig 9c shows, a mismatch exists between model results and data. For instance, we find that

the simulated movement begins earlier than the observations and underestimates the measured
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displacement in 2016 and 2017. Because in our simulation movements are generated by hydraulic
forcing, these mismatches can be interpreted as a result inaccuracies in the pore-water pressure
simulations. Most notably, the discrepancies between our simulations and the measured motion
suggests that shear-induced dilation alone cannot explain the measured landslide response and

other mechanisms, such as clay swelling, need to be considered (Schulz et al., 2018a).
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Figure 9. Model and measured data at Two Towers landslide. a) Pore-water pressure change at top of shear
zone (Schulz et al., 2018a; b) based on the monitoring of water head above landslide base from a piezometer in
the middle of the landslide, optimized pore-water pressure distribution at the bottom of shear zone, and
cumulative rainfall. b) computational displacement from optimization compared to the monitored value and

simulated normal dilation.
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To quantify the movements due to dilation, we also computed the normal displacement (Fig. 9b)
predicted by the model during the three-year period considered in this study. The results show an
increase in plastic normal strain in correspondence with each episode of motion, with an increasing
trend that produces a 2 mm total heave by the end of the considered period. Although not zero,
this dilation-induced motion is predicted to be small, thus requiring very accurate measurements

to verify the actual extent of dilation at the field scale.
4.3 Minor Creek

Minor Creek landslide (Fig. 7) is a slow-moving landslide covering about 10 hectares in Redwood
Creek drainage basin, northern CA Coast Ranges. Iverson and Major (1987) collected three years
of detailed rainfall, groundwater and movement data (Fig. 10a and b) of this landslide from
October 1982 to September 1985. Iverson (2005) also previously explored the role of shear-
induced dilation (with 3° dilation angle) as a key mechanism controlling the slow-moving behavior
of Minor Creek. The average slope angle is 15°; the thickness of the landslide along its longitudinal

axis is 6 m and the shear zone thickness is 1 m (Iverson and Major, 1987).

Saturated permeability (k¢ = 9x107 m/s) and storage coefficient (S; = 0.45) of the landslide
material can be determined by simulating the monitored pore-water pressure data through trial and
error (Fig. 10a). Our calculated diffusivity (2x10°° m?/s) and mechanical parameters (Table 1) are
similar to the value back calculated by Iverson and Major (1987). Our model can capture much of
displacement trend, such as seasonal and year to year changes in displacement magnitude (Fig.
10c), but again we observe significant mismatches between our model results and the observed
motion. Like Two Towers, we attribute these mismatches to our simulated pore-water pressure
time series which differs significantly from the observed pore-water pressure. We find our model

involves a several months delay in the prediction of the activation of the landslide in 1983 and
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over predicts the total displacement by a factor of 2. Improvements to our hydraulic simulation are
needed to better account for these hydrologic changes and could be accomplished by incorporating

factors such as evapotranspiration, unsaturated effect, or lateral flow.
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Figure 10. Simulated and monitored hydrological and mechanical behaviors at the Minor Creek landslide site.
a) monitored and simulated pore-water pressure at top of the shear zone, simulated pore-water pressure at the

base of the shear zone, and cumulative rainfall, ¢) monitored and simulated displacement, and simulated

dilation.
4.4 Mud Creek landslide
Our last test case is the Mud Creek landslide (Fig. 7), central California Coast Ranges. The Mud

Creek landslide displayed stable sliding for more than 8 years; however, it suddenly failed

catastrophically on a dry day (May 20, 2017) following a prolonged season of heavy rainfall. This
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event caused major damage to California State Highway 1 and has been studied through a variety
of remote sensing observations and hydrologic models (Handwerger et al., 2019a; Warrick et al.,
2019). More than two years of landslide displacement was measured by InSAR before the

catastrophic failure occurred and we model these measurements here (Handwerger et al., 2019a).

Mud Creek is characterized by relatively steep terrain with an average slope angle around 32°. We
assume the shear zone is located at a depth of 20 m, which is within the range of values measured
by Warrick et al., (2019). In this analysis, given the lack of ground based hydraulic observations,
the pore-water pressure at the top of the shear zone (pf,) is simulated using back-calculated
hydraulic parameters k! = 3 x10° m/s and S; = 0.14 m™! as illustrated in Appendix 2. Using these
parameters, the pore-water pressure distribution of Mud Creek landslide can be computed as

illustrated by Fig. 11a (affected by the precipitation displayed as Fig. 11b).

The optimization strategy discussed in the previous sections is also used for this case, leading to
simulation of both pore-water pressure at bottom of shear zone (Fig. 11a), sliding movement (Fig.
11c), and normal deformation (Fig. 11c). The results are consistent with the InSAR observations
prior to the catastrophic collapse. Notably, the optimized friction angle for Mud Creek is very high
(about 48°; Table 1), which is an outcome of the steep (i.e., high initial stress ratio), deep-seated
slope and nearly fully saturated initial condition (leads to high pore-water pressure). We assume
saturated conditions in that field data from other landslide sites in the KJf show that the
groundwater table remains within 2-3 m of the ground surface during the dry season and rises to
the ground surface during the wet season (Iverson and Major, 1987; Schulz et al., 2018a; Hahm et
al., 2019; Finnegan et al., 2021). Our results for Mud Creek provide a better fit of the observations
compared to Two Towers and Minor Creek. Yet, mismatches in the predicted temporal evolution

of the movements appear in this case study too (e.g., early activation in 2015 and 2016), and once
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again can be attributed to the simulated early build-up of pore-water pressure (Fig. 11a). Similar
to the previous cases, dilation-induced heave (Fig. 11b) was also computed by tracking the

evolution of the plastic normal strain during sliding.
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Figure 11. Simulated and monitored hydrological and mechanical behaviors at the Mud Creek landslide site.
a) Simulated pore-water pressure distribution at top and bottom of the shear zone and cumulative rainfall, b)
monitored and simulated displacement by the end of stable sliding (the left boundary of the shaded rectangle
represents the occurrence of catastrophic failure) and simulated normal dilation.

Although Mud Creek landslide did eventually fail catastrophically, a positive dilation angle (with
less than 3 mm normal deformation increase, Fig. 11d) is required to capture the pre-failure slow

movement. As a result, our model will always predict self-regulating creep. To further emphasize

this point (and highlight a key model limitation), we extend the simulation beyond the time at
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which catastrophic failure was observed in the field, so as to show how the model would have
erroneously predicted the motion (Fig. 11b). It can thus be concluded that, to capture runaway
acceleration, our model would need to account for vanishing dilative effects (Fig. 6d) (Moore and

Iverson, 2002).

5. Discussion

In this manuscript, we developed a hydro-mechanical modeling framework to describe the
dynamics of landslides in response to rainfall infiltration. We showed that an elastic-perfectly
plastic frictional model enables the simulation of landslide creep in the presence of plastic dilation,
as well as of runaway failure due to lack of self-regulating mechanisms (e.g., shear zone having
reached critical state or exhibiting plastic contraction; Fig. 6d). While the model can be used to
simulate different modes of landslide movement triggered by precipitation, the formulation
discussed in the paper cannot capture transitions from stable creep to runaway failure, as illustrated
in our case study of the Mud Creek landslide. This finding encourages future model development
to account for more realistic constitutive laws based on the critical state theory (Roscoe et al., 1958;

Schofield and Wroth, 1968), which would enable the evolution of plastic deformation.

We studied three cases of slow-moving landslides located in California. Their velocity changes
are governed by precipitation, while different magnitudes of acceleration were observed for each
site. The Two Towers landslide exhibited rates from around 0.01 to 0.04 m/yr, while Minor Creek
landslide exhibited rates from 0.2 to 1 m/yr with a large increase in displacement during the 1984
wet season. The sliding velocity of Mud Creek landslide, before the catastrophic failure, falls in
between the above two cases. It is not surprising that the three landslides experienced different

magnitudes of sliding movement and exhibited different behaviors. Several factors can lead to this
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phenomenon: topography (Table 1), local precipitation (Fig 9c; Fig 10c; Fig. 11c), groundwater
hydrology, variations in material properties, stress level (i.e., thickness), and more. Considering
these complex conditions, we find it may always be reasonable to use inverse analysis to optimize

parameters even when landslides occur within the same region and appear similar.

As for our optimized parameters (Table 1), they all fall in range obtained from laboratory tests or
field observations as explained in Section 4.2. Yet, the optimized friction angle of Mud Creek
landslide (¢ =47.8°) is much larger than values typically observed from laboratory tests on
landslide materials. We propose this high back calculated value results from a few reasons: first,
we assume the landslide is fully saturated and has zero cohesion. If we accounted for cohesion and
lower pore-water pressures this would offset the strength required by the friction angle to maintain
stability. Second, Mud Creek landslide was steep (average slope angle 32°) which requires a

relatively high friction angle (~30 °) to remain stable during the dry season.

Both the Minor Creek and Two Towers landslides have been the subject of previous investigations
and modeling efforts (e.g., Iverson and Major, 1987; Iverson, 2005; Schulz et al., 2018a). Iverson
(2005) explained the seasonal dynamics of Minor Creek landslide using a shear-induced dilation
model with interfacial hydro-mechanical coupling. In agreement with this prior work, our
simulation leads to an acceptable representation of both the magnitude and the rate of sliding,
which in all cases displayed the attributes of a stable, self-regulated episodic creep. Moreover,
while our analysis enabled for inherent differences between the diffusivity of the landslide material
and that of the basal shear zone (the latter being mediated by frictional/dilative properties), the
good agreement between our results and those reported by Iverson (2005) suggest that inelastic
effects play a limited role in the diffusivity of landslides not yet undergoing runaway motion (i.e.,

not having reached local shear instability conditions and/or critical state). This argument is also
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relevant for more recent extensions of coupled sliding-consolidation analyses specific for multi-
dimensional domains (Iverson and George, 2014; George and Iverson, 2014). However, since
these approaches also rely on poroelastic diffusivity models, the potential implications of inelastic
deformation on the pore-water pressure diffusivity may warrant further study, especially in the

presence of liquefied materials (Rice, 1975; Chen and Buscarnera, 2022).

The activation and arrest of Two Towers landslide site was closely examined by Schulz et al.
(2018a) through a limit equilibrium method incorporating a new strength coefficient governed by
clay swelling. They concluded that the additional strength imparted by swelling effects controlled
the lag between the water level fluctuation and landslide activation. In our work, we found that
shear-induced dilation can also partially explain the lag between when pore-water pressures above
the shear zone rise and when the landslide starts to move, with notable mismatches described above.
However, we note again that Schulz et al. (2018a) concluded that neither field measurement nor
laboratory tests indicated shear-induced dilation at the Two Towers landslide. These observations
warrant questions as to why a dilation model was used in this work. One of the core reasons behind
this choice is that dilation is commonly invoked as a key strengthening mechanism that permits
slow and stable motion of creeping landslides (Iverson et al., 2000; Iverson, 2005; Agliardi, et al.,
2020), and it thus deserves full consideration whenever testing any new hydro-mechanical
formulation for the prediction of landslide motion. Hence, one of our key goals was to determine
to what extent dilation can explain any of the observed behaviors documented in the literature.
Despite the ability of our model to capture the overall trends at the Two Towers site, the difficulty
of achieving an accurate match of both hydraulic and mechanical response (paired with the already
mentioned challenges of constraining the value of dilation in the field) indicates that dilation alone

may not suffice to explain the observed dynamics and must then be studied in conjunction with
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other processes, such as clay swelling. In our opinion, only fully coupled, deformation-based
approaches encompassing all the potential causes of self-regulating motion can definitively reveal
which factors play a primary role, as opposed to those that are secondary and may be regarded as
inessential to explain field observations. While this more complete analysis was not attempted here,
our proposed framework enables future extensions through the incorporation of constitutive laws

with suction-induced swelling and other moisture-regulated inelastic processes (Song et al., 2020).

While we have shown that the flow-deformation coupling may in part regulate landslide behaviors,
there are other widely used models to simulate slow-moving landslides. The most common of these
are viscoplastic models (Van Asch et al., 2007; Angeli et al., 1996; Oberender and Puzrin, 2016),
which can be used to depict the time-dependent behaviors of earthen materials (Mitchell et al.,
1968; Liingaard et al., 2004; Marinelli et al., 2018). Ring shear tests of samples taken from Two
Towers landslide showed the friction angle varies ~21° and ~24° with shear rates from 0.01 to 1
mm/s (Schulz et al., 2018b). These findings imply some the landslide material exhibits some rate
dependency, although at the range of the sliding rates exhibited in the field. It thus indicates that
viscoplastic models can be used to capture creeping landslide movement under quasi-static
conditions (Li et al., 2023). However, these models may not always be appropriate for landslides
forming within earthen materials exhibiting negligible viscosity (Iverson, 2020). In this manuscript,
the proposed hydro-mechanical coupled framework was able to describe landslide creep without
incorporating earthen material viscosity. Yet, its mathematical formulation does not hinder the
possibility of accounting for viscous effects, which can be readily inserted by expressing the
inelastic strain rate in Eq. (15) by a viscoplastic flow rule. In a future perspective, this possibility

can prove useful to quantify the peak velocity of flow-like landslides (Chen and Buscarnera, 2022),
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as well as to replicate temporal patterns of landslide creep more complex than standard episodic

slips (Li et al., 2023).

6. Conclusions

We developed a modelling framework enabling the study of rainfall induced landslide dynamics,
with the goal to account for the interaction between precipitation, pore-water pressure change, and
inelastic deformation within the shear zone of active landslides. Our framework involves two
sequential diffusion processes, one within a rigid landslide block and another within an
inelastically deformable basal shear zone. While the former is used to simulate hydraulic forcing
across the landslide material, the latter enables explicit consideration of the inelasticity of the shear
zone material, thus modulating the timescale of sliding and pore-water pressure diffusion through
dedicated constitutive laws. Spatial condensation procedures are used to derive a set of coupled
ordinary differential equations reflective of the landslide dynamics and accounting for the
feedback between transient water flow, inertial movement, and material inelasticity. To illustrate
the main characteristics of the proposed framework, the model was linked with a perfectly plastic

frictional law enabling dilation and/or contraction of the shear zone material during sliding.

We showed that the model can operate both under elastic and plastic regimes. By suppressing
plastic effects, our model is able to simulate delayed hydraulic forcing as a function of the
diffusivity of both the landslide material and shear zone. Moreover, we found that sliding can be
simulated if the hydraulic forcing drives the effective stress state to the plastic regime. The
simulations indicate that the onset of plasticity starts to generate negative excess pore-water
pressure, which regulates the sliding dynamics through constitutive feedbacks modulating the

effective diffusivity of the basal shear zone. Case studies indicate that distinct types of landslide
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behaviors can be simulated satisfactorily with reduced computational cost and a limited number
of model parameters. Our model framework enables the computation of self-feeding catastrophic
failure in the presence of either contractive shear zone material (e.g., liquefaction events) or critical
state conditions (i.e., no dilation or contraction) and self-regulating (i.e., dilatative) episodic and/or
quasi-steady landslide motion. The main advantage of our proposed framework is the virtually
endless opportunities it offers to augment the constitutive description of the shear zone material

that can describe various mechanical-hydrologic feedbacks.
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Appendix 1. Simplification of water mass balance using Parabolic assumption

. . ) kb 62
In this manuscript, in order to solve the 2nd order PDE, - a:;/
w

+ ¢ = 0, a parabolic p;, (excess

pore-water pressure) profile (Wood, 2004) is used to simplify the computation. We write the total

pore-water pressure expression:

Pw = Pw + Dws (A1)
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where py, is the stationary (steady state) pore-water pressure, its value is influenced
instantaneously by the applied pore-water pressure at the top of the shear zone. Here, we assume

that the pg, distributed in a parabolic profile (Wood, 2004) as illustrated in Fig. Al:
p¢ = aé? + bé +c. (A2)

where ¢ represents the normal distance from the base of shear zone. We can thus obtain that at the

bottom of the shear zone, where & = 0:

c=pd =ph -’ (A3)

Where the superscript b indicates the pore-water pressures values are for the basal shear zone.
While, at the top of the shear zone, & = hscos6, p& = 0 because the top of the shear zone is

assumed to be drained (no excess pore-water pressure can be built up), thus:
ahs®cos?0 + bhscosO + pEP = pt = 0. (A4)

Meanwhile, the bottom of shear zone is undrained, so that the pg, distribution will be symmetric

above and below the ¢ = 0 surface. Therefore, at { = —h,cos0:
ahs®cos?6 — bhycosd + pE = 0. (A5)

Adding Eq. A4 with Eq. A5, we get:

_neb

hZcos26°

As the stationary (steady state) pressure will be changed simultaneously within the whole shear

0%pw _ 2R) _ o _ o PW PR

zone, from Eq. A2 and Eq. A6, we can get: oz oe a= nZcos26’
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Figure Al. Schematic of parabolic distributed p¢,.

Appendix 2. Hydrological parameter determination of Mud Creek landslide

There are no ground-based observations of pore-water pressure changes for the Mud Creek
landslide. In order to obtain the hydrological response for Mud Creek landslide, we used field data
from the Minor Creek landslide site to train our hydrological model. Both Minor Creek and Mud
Creek landslide located in KJf, we assumed that the sliding surface of them experience similar
hydrological changes driven by rainfall. Our assumption is reasonable based on the hydrological
observations of KJf at numerous sites throughout California (Iverson and Major, 1987; Schulz et

al., 2018a; Hahm et al., 2019; Finnegan et al., 2021).

In order to calibrate the model parameters for Mud Creek landslide, we adjusted the simulated
landslide thickness for Minor Creek to 20 m thick (i.e., Mud Creek thickness); we then back
calculated the parameters that would lead to simulation results that match the Minor Creek
observation. Fig. A2 shows the k* = 3 x10°® m/s (saturated permeability of landslide material) and
Ss (storage coefficient) changes to 0.14 m™! are reasonable values. The back calculated diffusivity

2x107° m?/s still falls in the range of estimation.
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738 Figure A2. Calibration of Mud Creek hydraulic parameters of the landslide material, simulation of Minor
739  Creek compared with 20 m depth.
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