

1      Dynamics of Creeping Landslides Controlled by Inelastic Hydro-Mechanical Couplings

2

3                    Xiang Li<sup>1</sup>, Yanni Chen<sup>1</sup>, Alexander L. Handwerger<sup>2,3</sup> and Giuseppe Buscarnera<sup>1</sup>

4                   <sup>1</sup> Department of Civil and Environmental Engineering, Northwestern University, Evanston, USA.

5                   <sup>2</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA.

6                   <sup>3</sup>Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles,

7                   Los Angeles, USA.

8

9                    **Abstract**

10    Slow-moving landslides affect proximal infrastructures and communities, often causing extensive economic loss.

11    While many of these landslides exhibit slow and episodic sliding for decades or more, they sometimes accelerate

12    rapidly and fail catastrophically. Although it is known that the landslide dynamics are controlled by hydro-mechanical

13    processes, few analytical models enable a versatile incorporation of the inelastic behavior of the shear zone materials,

14    thus hindering an accurate quantification of how their properties modulate the magnitude and rate of coupled fluid

15    flow and landslide motion. To address this problem, we develop a simulation framework incorporating rainfall-

16    induced, deformation-mediated pore-water pressure transients at the base of active landslides. The framework involves

17    the computation of two sequential diffusion processes, one within an upper rigid-porous landslide block, and another

18    within the inelastic shear zone. Although the framework can be linked to any elastoplastic constitutive laws, here we

19    model landslide motion through an elastic-perfectly plastic frictional model, which enables us to account for standard

20    properties of earthen materials such as elastic moduli, friction angle, dilation angle, and hydraulic conductivity.

21    Numerical case studies relevant to slow-moving landslides in the California Coast Ranges show that the proposed

22    formulation captures different temporal patterns of movement induced by precipitation. In each of the case, we

23    achieved a relatively accurate match between data and simulations by incorporating positive dilation coefficients,

24    which leads to spontaneous generation of negative excess pore-water pressure and self-regulating motion. Conversely,

25    simulations with no dilation (hence, reflecting the approach of critical state) produce sharp acceleration, typical of

26 catastrophic runaway acceleration. Our findings encourage the use of the proposed framework in conjunction with  
27 constitutive laws tailored to site-specific geomaterial properties and data availability, thus favoring a versatile  
28 representation of the variety of creeping landslide trends observed in nature.

29

30

31 **Key words:** *slow-moving landslides, hydro-mechanical coupling, rainfall infiltration, constitutive models*

32 **1. Introduction**

33 Slow-moving landslides are phenomena which unfold over several years, often even decades, with  
34 major implications for the serviceability of infrastructures, the safety of communities, and the local  
35 economy (Nappo, et al., 2019; Lacroix et al., 2020). Most slow-moving landslides deform at low  
36 rates (< 1 m/year) but can cause severe damage over time (Mansour et al., 2011). Some of them  
37 can even experience catastrophic acceleration and lead to fatalities (Voight, 1978; Hendron and  
38 Patton, 1985). The mobilization of these landslides is governed by environmental factors, such as  
39 precipitation, which acts to modulate the effective stress conditions in the slope (Petley et al., 2005;  
40 Cascini et al., 2010; Oberender and Puzrin, 2016). Infiltration of water leads to pore-water pressure  
41 development, which decreases the effective normal stress and reduces the frictional strength of the  
42 landslide material. As an outcome, these types of landslides normally accelerate in the wet season  
43 and slow down or arrest in the dry season (Hilley et al., 2004; Cascini et al., 2010; Handwerger et  
44 al., 2013).

45 In conjunction with frictional shear modulated by rainfall infiltration, downslope sliding is also  
46 mediated by the tendency of geomaterials to undergo inelastic volume change. This volume change  
47 can alter fluid flow and pore-water pressure development under certain conditions (Belmans et al.,  
48 1983; Wu et al., 2016; Song et al., 2020). The role of volumetric deformation on the sliding  
49 behavior has been extensively documented through field and laboratory measurements (Iverson et  
50 al., 2000; Moore and Iverson, 2002; Agliardi et al., 2020) and numerical models (Iverson 2005;  
51 Soga et al., 2016; Bandara et al., 2016). These studies have shown that the interaction between  
52 water infiltration and material volume change (hydro-mechanical coupling) may play an important  
53 role in governing the dynamics of slow-moving landslides.

54 A variety of methods exist to model these hydro-mechanical couplings. Such approaches account  
55 for shear zone inelasticity in the coupled field equations solving for pore fluid mass and momentum  
56 balance (Zienkiewicz et al., 2000; McDougall and Hungr, 2004; Soga et al., 2016). Although these  
57 methods can be used to study landslides of any morphology and kinematics, most have relatively  
58 high computational costs, especially if a seamless link between slow hydrologic triggering and  
59 rapid post-failure movements is desirable and their dynamics unfolds over long time, of the order  
60 of years or decades. In order to reduce the computational costs of full-fledged numerical methods,  
61 analytical techniques can be used to identify the mechanisms underpinning landslide motion and  
62 explain the role of the mechanical properties of the shear zone material. For example, early  
63 contributions by Hutchinson (1986) emphasized the crucial relation between the dissipation of  
64 excess pore-water pressure (i.e., consolidation mechanisms) and the dynamics of downslope  
65 sliding. Such models, formulated to describe liquefiable soils displaying positive feedbacks  
66 between deformation and pore-water pressure growth, led to a sliding-consolidation framework  
67 able to infer landslide velocity and runout for a variety of initial conditions. Despite its many  
68 benefits, this approach does not account for the inelastic deformation of the materials during  
69 liquefaction, and therefore cannot explicitly resolve the triggering of a landslide and its role on the  
70 onset of catastrophic motion (Buscarnera and Whittle, 2012). A more profound link between  
71 landslide triggering and post-failure movement was later proposed by Iverson (2005), whose  
72 seminal work encompassed excess pore-water pressure change through basal flux boundary  
73 conditions mediated by material dilation/contraction. However, this model too did not fully resolve  
74 the effect of inelastic mechanisms mediated by the stress-strain nonlinearity, in that excess pore-  
75 water pressure dissipation was modeled via poroelastic protocols based on a constant diffusion  
76 coefficient. This assumption conflicts with the notion that inelastic deformation can lead to major

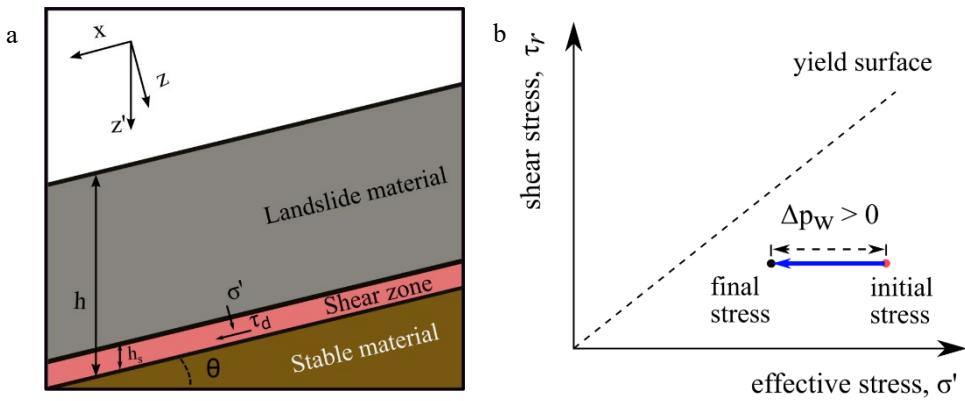
77 alterations of the shear zone diffusivity (Rice, 1975; di Prisco et al., 2015; Chen and Buscarnera,  
78 2021). These coupled effects render the process inherently poroplastic, which implies that a stress-  
79 strain constitutive law is necessary to quantify the timescale of excess pore-water pressure  
80 dissipation within the shear zone, as well as the magnitude and rate of landslide motion resulting  
81 from inelastic deformation.

82 In this paper, we account for inelastic deformation during the entire life cycle of landslide motion  
83 by developing a sliding-consolidation framework enabling the straightforward use of constitutive  
84 laws with any desired level of sophistication. Our approach ensures readily deployable, low  
85 computational cost simulations and is based on that developed by Chen and Buscarnera (2022).  
86 Specifically, the framework proposed here resolves rainfall infiltration within the active sliding  
87 block, thus connecting ground surface precipitation to the deformation dynamics. For this purpose,  
88 the model involves two sequential diffusion processes, one taking place within a layer of rigid-  
89 porous landslide material (which serves as hydrologic forcing), and another occurring within the  
90 inelastic shear zone (which affects generation and dissipation of excess pore-water pressure). First,  
91 the model is tested with reference to simple synthetic scenarios of precipitation, illustrating its  
92 performance in interpreting the interaction between matrix deformation and pore-water pressure  
93 dissipation. Then, it is used to interpret recorded time histories of landslide motion at three  
94 landslide sites located in the California Coast Ranges, USA.

## 95 **2. Model description**

96 Field evidence suggests that the deformation of creeping (i.e., slow-moving) landslides originates  
97 from localized shear zones with thickness varying between several centimeters to a few meters  
98 (Corominas et al., 2000; Leroueil, 2001; Puzrin and Schmid, 2011; Wen et al., 2017; Alonso, 2021).

99 In-situ monitoring show that for many slow-moving landslides the upper block slides downslope  
 100 as a rigid body overriding the stable material underneath (e.g., bedrock) (Fig. 1a). When  
 101 precipitation occurs, infiltration impacts, sequentially, the landslide material and the shear zone,  
 102 generating corresponding pore-water pressure transients. As an outcome, under a constant total  
 103 overburden, the effective normal stress decreases in response to the transient pore-water pressure  
 104 rise (Fig. 1b) in accordance with Terzaghi's (1925) effective stress definition. The stress  
 105 components of the shear zone material can be defined as:



106

107 **Figure 1. Schematic of slow-moving landslide slope profile and precipitation induced stress change. a) slope**  
 108 **components under infinite slope geometry, b) material stress path induced by rainfall infiltration.**

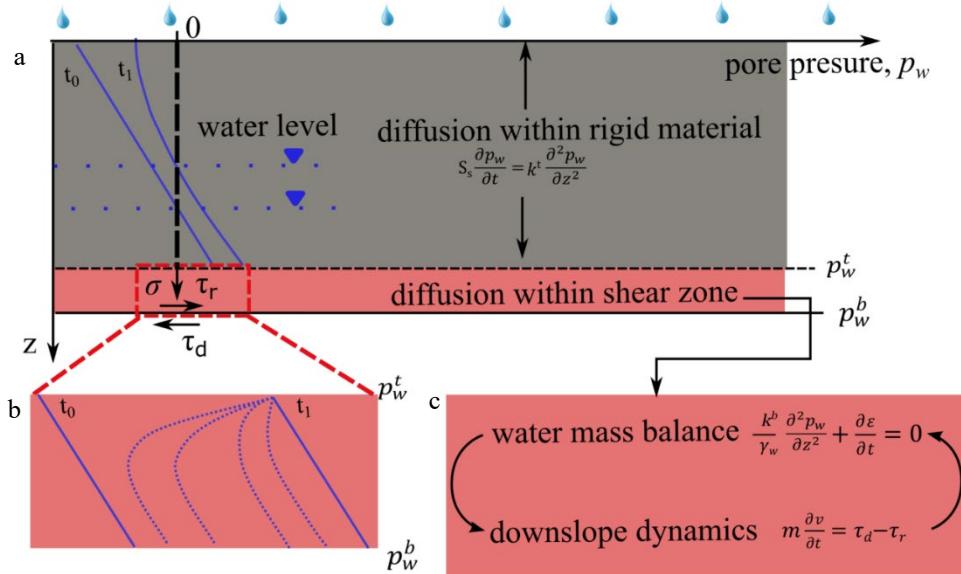
$$109 \quad \sigma_d = \gamma_{sat} h \cos^2 \theta ,$$

$$110 \quad \tau_d = \gamma_{sat} h \sin \theta \cos \theta , \quad (1)$$

$$111 \quad \sigma' = \sigma_d - p_w ,$$

112 where  $\sigma_d$  and  $\tau_d$  are the total normal stress and shear stress determined from the slope inclination  
 113  $\theta$ ,  $h$  is the thickness of the active sliding block (consists of landslide material and shear zone), and  
 114  $\gamma_{sat}$  is the saturated unit weight of the soil.  $\sigma'$  is the effective normal stress, and  $p_w$  is the pore-  
 115 water pressure. Incorporating elastoplastic constitutive models for the shear zone material enables

116 the landslide dynamics to be analyzed by simulating the deformation in both the tangential and  
 117 normal direction caused by hydrologic processes.



118

119 **Figure 2. Schematic of the 1D infinite slope model used for coupled hydro-mechanical analyses. a)** Cross section  
 120 of the landslide material. The pore-water pressure distribution (solid blue line) of a normal profile (dashed  
 121 black line) and corresponding water level (horizontal blue dots) at different times. The governing equation for  
 122 the diffusion process inside the landslide material is also illustrated. **b)** Zoom of the shear zone. The solid lines  
 123 represent the stationary pore-water pressure induced by the pressure input on top of the shear zone, while the  
 124 dashed blue lines represent for possible pore-water pressure development mediated by the dilation as explained  
 125 in Sections 3.1 and 3.2. **c)** The governing equations for the diffusion process inside the landslide material.

126 In this study, the hydro-mechanical equations controlling the dynamics of a creeping landslide are  
 127 set to address two separate diffusion processes: one within the upper landslide material, here  
 128 treated as a porous, rigid block; another within the inelastic shear zone (Fig. 2). The former  
 129 diffusion mechanism determines the main external loading, i.e., hydrological forcing for the basal  
 130 shear zone following the variation of water level and is solved with a previously developed 1D  
 131 Finite Element solver for infinite slopes (Lizarraga and Buscarnera, 2019; more details in Section

132 2.1). By contrast, the second diffusion mechanism controls the timescale of pore-water pressure  
133 development and dissipation in response to inelastic deformation within the basal shear zone. The  
134 corresponding hydro-mechanical couplings affect both diffusivity and deformability beneath the  
135 landslide mass, thus requiring the use of site-specific constitutive laws of the shear zone material  
136 (Sections 2.2 and 2.3).

137 *2.1 Pore-water pressure diffusion within the landslide material*

138 Here, we solve the water mass balance in the landslide material to determine the pore-water  
139 pressure transients induced by rainfall infiltration on top of the shear zone, which ultimately  
140 controls the hydro-mechanical coupling of the shear zone. These transients are computed on the  
141 basis of Eq. 2, where the diffusive effects are encapsulated into two constant parameters, the  
142 storage coefficient,  $S_s$ , and the saturated permeability of the landslide material,  $k^t$ , (e.g., Iverson,  
143 2000; Berti and Simoni, 2010; Cohen-Waeber et al., 2018), as follows:

$$144 S_s \frac{\partial p_w}{\partial t} = k^t \frac{\partial^2 p_w}{\partial z^2}, \quad (2)$$

145 where  $z$  is the normal distance from the ground surface. In this manuscript, the above equation is  
146 solved through the numerical algorithm proposed by Lizárraga and Buscarnera (2019). For the  
147 sake of simplicity, the hydrologic triggering is simulated by imposing flow (infiltration) conditions  
148 at the top of the landslide material and an impervious boundary at its bottom due to the  
149 impermeable bedrock below the shear zone (Baum et al., 2010). While more general analyses  
150 accounting for permeability contrasts can be carried out (Lizárraga and Buscarnera, 2019), this  
151 simplification has limited qualitative bearing on the analyses shown in this paper and will therefore  
152 be used as a convenient working hypothesis.

153 We simulate dry and wet seasonal changes that are typical of sites in California (Swain, 2021),  
154 which is the focus area of our research. During the simulated wet season, we apply a surface flux  
155 boundary condition equivalent to the precipitation. Water run-off was not considered, but its  
156 incorporation is straightforward, if needed, by accounting for moisture change at the surface (Song  
157 et al., 2021). Finally, to capture the widely observed sequence of pore-water pressure rise during  
158 the wet season, followed by its decrease during the dry season (e.g., Iverson and Major, 1987;  
159 Schulz et al., 2018a; Finnegan et al., 2021), pressure boundary conditions were imposed at the top  
160 of the slope during periods with no rainfall.

161 *2.2 Coupled flow-deformation within the shear zone*

162 Within the shear zone, coupled flow-deformation processes can be simulated by analyzing the  
163 downslope dynamics and water mass balance simultaneously (Chen and Buscarnera, 2022). In this  
164 portion of the slope, the initial stress state is altered by the interaction between water flow and  
165 deformation. From a mechanical viewpoint, the downslope dynamics implies:

166  $ma = \tau_d - \tau_r,$  (3)

167 where  $m = \rho_s h \cos \theta$ , is the total mass of the active sliding block,  $a$ , its acceleration,  $\tau_d$ , the driving  
168 shear stress (Eq. 1),  $\tau_r$ , the resisting stress, here regarded as a function of the local constitutive  
169 response, as follows:

170  $\dot{\tau}_r = G(\dot{\gamma} - \dot{\gamma}^p); \dot{\sigma}' = E_{oed}(\dot{\varepsilon} - \dot{\varepsilon}^p).$  (4)

171 where  $G$  is the elastic shear stiffness,  $E_{oed}$  is elastic oedometric modulus.  $\varepsilon$  and  $\varepsilon^p$  are the total  
172 and plastic normal strain;  $\gamma$  and  $\gamma^p$  are the total and plastic shear strain. Eq. 4 involves both shear  
173 stress and the effective normal stress; the latter is indeed a function of the normal strain and  
174 controlled by volume change. As it will be discussed below in Section 2.3, plastic strain increments

175 can be computed with constitutive models. Here, to link the shear strain to the landslide movement,  
 176 the shear strain rate,  $\dot{\gamma}$ , is computed by assuming a linear velocity ( $v$ ) profile within the shear zone  
 177 in  $z$  direction (MiDi, 2004; Pastor et al., 2015; Siman-Tov and Brodsky, 2021), as follows:

$$178 \quad \dot{\gamma} = \frac{v}{h_s \cos \theta}, \quad (5)$$

179 where  $h_s$  represents the thickness of the shear zone (Fig. 1a). This choice enables us to use Eq. (3)  
 180 ~ (5) to derive the following sliding equation:

$$181 \quad \rho_s h \cos \theta \ddot{v} = \dot{\tau}_d - G \frac{v}{h_s \cos \theta} + G \dot{\gamma}^p, \quad (6)$$

182 where  $\rho_s$  is the saturated density of soil. The effective normal stress change in Eq. 4 must follow  
 183 the rates of volume change compatible with the water mass balance in the shear zone. Here, this  
 184 process is simulated by treating the fluid as incompressible and considering the rate of volume  
 185 change as the only source of diffusive feedbacks within the shear zone (Sloan and Abbo, 1999;  
 186 Mihalache and Buscarnera, 2016), as follows:

$$187 \quad \frac{k^b}{\gamma_w} \frac{\partial^2 p_w}{\partial z^2} + \dot{\varepsilon} = 0, \quad (7)$$

188 where  $k^b$  is the saturated permeability of the shear zone material, and  $\gamma_w$  is the unit weight of  
 189 water. The normal strain rate consists of elastic and plastic deformation rates ( $\dot{\varepsilon} = \dot{\varepsilon}^e + \dot{\varepsilon}^p$ ).  
 190 Therefore, we can rewrite Eq. 7, as follows:

$$191 \quad \frac{k^b}{\gamma_w} \frac{\partial^2 p_w}{\partial z^2} + \frac{\dot{\sigma}_d - p_w^b}{E_{oed}} + \dot{\varepsilon}^p = 0, \quad (8)$$

192 from which it is readily apparent that the inelastic volume change regulates the pressure diffusion  
 193 process across the shear zone.

194 In our model, the time varying pore-water pressure input,  $\dot{p}_w^t$ , at the boundary between the  
 195 landslide material and shear zone (here computed through the uncoupled diffusion analysis in Eq.  
 196 2) will serve as a forcing in Eq. 8, which is aimed at computing the change of the pore-water  
 197 pressure at the bottom of the shear zone ( $\dot{p}_w^b$ ). While Eq. 8 is a second order partial differential  
 198 equation (PDE), a parabolic approximation of the excess pore-water pressure ( $p_w^e$ ) profile  
 199 compatible with analytical solutions of soil consolidation (Wood, 2004) is here used to condense  
 200 the analysis of the landslide dynamics to an ordinary differential equation (ODE) that can be solved  
 201 with numerical and/or analytical solutions. Specifically, use of a parabolic pressure profile implies  
 202 (equation derivation see Appendix 1):

$$203 \quad \frac{\partial^2 p_w}{\partial z^2} = \frac{2(p_w^{sb} - p_w^b)}{h_s^2 \cos^2 \theta}, \quad (9)$$

204 where  $p_w^{sb}$  represent the stationary (steady state) pore-water pressure at the bottom of shear zone  
 205 corresponding to a hydrological forcing applied on the top of the shear zone ( $p_w^{sb} = p_w^t +$   
 206  $h_s \cos \theta \gamma_w$ , and  $\Delta p_w^t = \Delta p_w^{sb}$ ),  $p_w^b$  is the pore-water pressure at the bottom of the shear zone.  
 207 Combining Eq. 9 with Eq. 7, we can then define a set of coupled governing equations conveying  
 208 the effect of the inelasticity of the shear zone material on the landslide dynamics as follows:

$$209 \quad \dot{p}_w^b = \frac{2E_{oed}k^b}{\gamma_w h_s^2 \cos^2 \theta} (p_w^{sb} - p_w^b) + E_{oed} \dot{\varepsilon}^p + \dot{\sigma}_d, \quad (10a)$$

$$210 \quad \rho_s h \cos \theta \ddot{v} = -G \frac{v}{h_s \cos \theta} + G \dot{\gamma}^p + \dot{\tau}_d. \quad (10b)$$

211 The solution to Eq. 10 can be addressed once their inelastic deformation terms are specialized with  
 212 constitutive models.

213 *2.3 Constitutive models*

214 While an extensive number of constitutive relations for earthen material is nowadays available, a  
 215 natural choice for a specialized form of the proposed framework is a perfectly plastic frictional  
 216 law (Davis and Selvadurai, 2005). In fact, such a constitutive choice enables simplicity and  
 217 straightforward identification of model parameters for a variety of landslide case studies (Van  
 218 Asch et al., 2007; Corominas et al., 2005; Conte et al., 2014; Schulz et al., 2018a). In the case of  
 219 frictional plasticity, we define:

$$220 \quad f = \tau - \sigma' \tan\varphi, \quad g = \tau - \sigma' \tan\psi, \quad (11)$$

221 where  $f$  and  $g$  are a yield function and a plastic potential, respectively.  $\varphi$  is the friction angle and  
 222  $\psi$  represents the dilation angle. In this scenario, the plastic deformation rate in both normal and  
 223 tangential directions can be obtained as:

$$224 \quad \dot{\varepsilon}^p = \Lambda \frac{\partial g}{\partial \sigma'}, \quad \dot{\gamma}^p = \Lambda \frac{\partial g}{\partial \tau_r}, \quad (12)$$

225 where  $\Lambda$  is the plastic multiplier (i.e., a scalar that accounts for the magnitude of plastic effects)  
 226 determined by the consistency condition of the yield surface. By using effective normal stress and  
 227 shear strain as control parameters (Buscarnera et al., 2011), it follows that:

$$228 \quad \Lambda = \frac{1}{H - H_2} \left( \frac{\partial f}{\partial \sigma'} \sigma' + \frac{\partial f}{\partial \tau_r} G \dot{\gamma} \right), \quad (13)$$

229 where  $H$  is the hardening modulus,  $H_2$  is a plastic modulus determined by the control conditions  
 230 used to quantify plastic effects. Based on Eq. 11, the plastic moduli can be expressed as:

$$231 \quad H = 0; \quad H_1 = -\frac{\partial f}{\partial \sigma'} E_{oed} \frac{\partial g}{\partial \sigma'} = -\tan\varphi E_{oed} \tan\psi; \quad H_2 = -\frac{\partial f}{\partial \tau_r} G \frac{\partial g}{\partial \tau_r} = -G. \quad (14)$$

232 Here,  $H = 0$  in that the selected constitutive law is perfectly plastic. Introducing Eq. 14 into Eq. 13  
 233 and combining the result with Eq. 10, the complete set of coupled governing equations based on  
 234 the selected constitutive law is:

$$235 \quad \dot{p}_w^b = \frac{k^b E_{oed}}{\gamma_w} \frac{2(p_w^{sb} - p_w^b)}{h_s^2 \cos^2 \theta} A + B \frac{1}{\tan \varphi} \frac{Gv}{h_s \cos \theta} + \dot{\sigma}_d, \quad (15a)$$

$$236 \quad \rho_s h \cos \theta \ddot{v} = \frac{k^b E_{oed}}{\gamma_w} \frac{2(p_w^{sb} - p_w^b)}{h_s^2 \cos^2 \theta} A \tan \varphi - B \frac{Gv}{h_s \cos \theta} + \dot{\tau}_d, \quad (15b)$$

237 where  $A$  and  $B$  are plastic coefficients expressed as  $A = \frac{G}{G + \tan \varphi E_{oed} \tan \psi}$ , and  $B = \frac{\tan \varphi E_{oed} \tan \psi}{G + \tan \varphi E_{oed} \tan \psi}$ ,  
 238 respectively. From Eq. 15, we can compute the interaction between shear zone hydraulic flow and  
 239 mechanical deformation when rainfall infiltration occurs.

#### 240 2.4 Nondimensionalization

241 It is often beneficial to identify nondimensional timescales controlling dynamic systems because  
 242 it helps us understand the relation between distinct timescales involved in our study such as rainfall  
 243 infiltration and material consolidation. Also, it can reduce the complexity of the governing  
 244 equations and reveal the key parameters needed to understand complex physical processes. In this  
 245 study, standard nondimensionalization strategies are used (Tan, 2011). This involves rescaling the  
 246 system variables by normalizing them for a reference quantity, here denoted through an overhead  
 247 hat (e.g.,  $\hat{t}$  for a reference time). On such basis, the normalized quantities can be displayed through  
 248 an overhead tilde (e.g.,  $\tilde{t}$  for normalized time, equals to  $t/\hat{t}$ ). Selection of reference quantities with  
 249 clear physical meaning facilitates the identification of the underlying mechanics. Here, the  
 250 reference time is selected as the duration of forcing ( $\hat{t} = T$ ), while other reference quantities are  
 251  $\hat{\sigma} = \hat{p}_w = \sigma_0 = \gamma_s h \cos^2 \theta$ ,  $\hat{t} = \tau_0 = \tan \theta \sigma_0$ ,  $\hat{a} = \tau_0 / \rho_s h \cos \theta$ ,  $\hat{v} = \hat{a} \hat{t}$ .

252 Accordingly, the governing equation (Eq. 15) can be re-written as:

253 
$$\dot{\tilde{p}}_w^b = 2T_{lc}^e A (\tilde{p}_w^{sb} - \tilde{p}_w^b) - B \frac{\tan \theta}{\tan \psi} T_{lw}^e \tilde{v} + \dot{\tilde{\sigma}}_d, \quad (16a)$$

254 
$$\ddot{\tilde{v}} = 2T_{lc}^e A \frac{\tan \psi}{\tan \theta} (\tilde{p}_w^{sb} - \tilde{p}_w^b) - B T_{lw}^e \tilde{v} + \dot{\tilde{\tau}}_d, \quad (16b)$$

255 where  $T_{lc}^e = \frac{E_{oed} k^b T}{\gamma_w h_s^2 \cos^2 \theta}$ , is the ratio of total forcing time divided by the characteristic consolidation

256 time for an elastic material, which controls the shear zone hydraulic diffusion when it deforms

257 elastically. In addition, considering the standard expression of the shear wave velocity in an elastic

258 medium,  $v_s^e = \sqrt{G/\rho}$ , it is possible to define a reference time for a shear wave to travel across the

259 active sliding block ( $\tilde{t}_h$ ) and the shear zone ( $\tilde{t}_{hs}$ ) as:

260 
$$T_{lw}^e = (\tilde{t}_h \tilde{t}_{hs})^{-1} = \frac{G T^2}{\rho h_s \cos^2 \theta}. \quad (17)$$

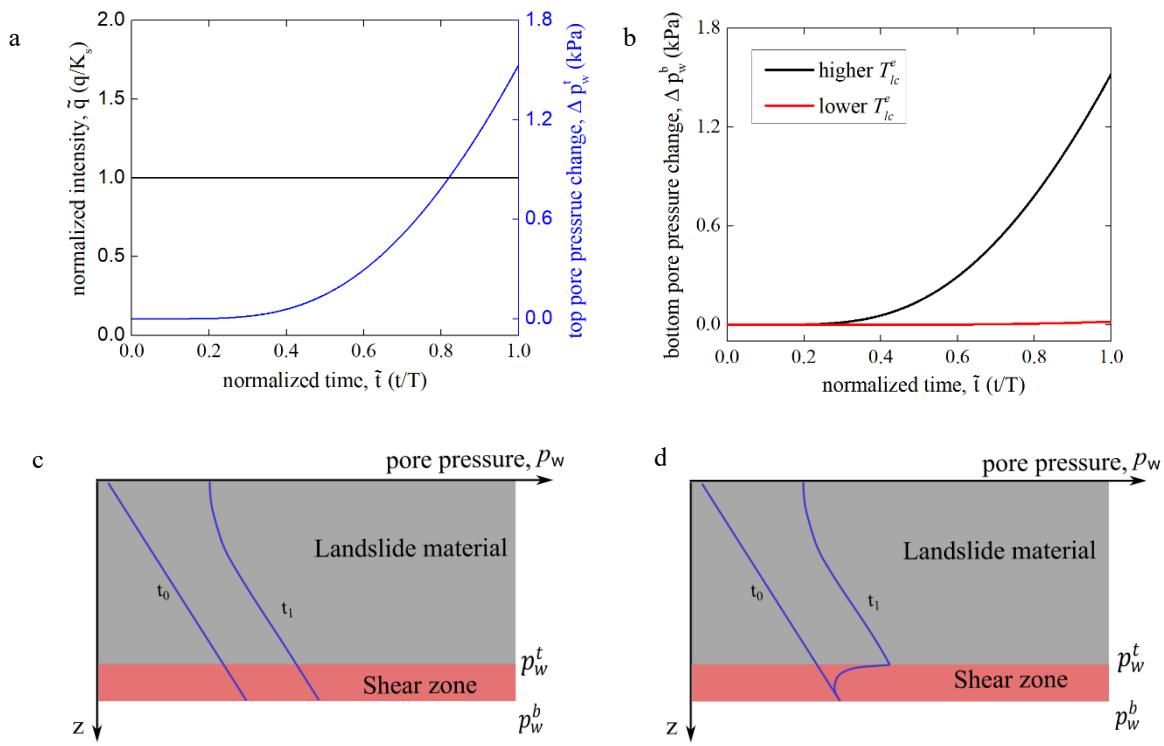
261 Therefore, the coupled behavior of a creeping landslide inside the shear zone involves a number  
262 of controlling nondimensional parameters dictating its dynamics, including the diffusion time ( $T_{lc}^e$ ),  
263 the shear wave propagation time ( $T_{lw}^e$ ), the slope inclination ( $\theta$ ), and the elastoplastic properties  
264 encapsulated into the plastic coefficients A and B.

265 **3. Model performance**

266 *3.1 Precipitation-induced diffusion and elastic response*

267 To explore our model's ability to simulate landslide movements induced by precipitation, the  
268 model is first tested with an artificial (and unrealistic) rainfall event, which lasts for 30 days ( $T$ )  
269 with a constant intensity ( $q$ ). While the analysis is purely illustrative, the range of model  
270 parameters is chosen on the basis of landslide sites in the California Coast Ranges (Keefer and

271 Johnson, 1983; Kelsey et al., 1996). Hence, the rainfall intensity is set equal to the saturated  
 272 permeability of landslide material ( $k^t$ ), here assumed to be  $3 \times 10^{-6}$  m/s (according to measurements  
 273 from Iverson and Major, 1987) and the storage coefficient ( $S_s$ ) is set to 0.26. The pore-water  
 274 pressure change at the interface between the landslide material and the active shear zone ( $\Delta p_w^t$  i.e.,  
 275  $\Delta p_w^{sb}$ ) can be computed numerically. The results are provided in Fig. 3a, which shows that the  $p_w^t$   
 276 increases monotonically after the wetting front approaches the top of the shear zone when  $\tilde{t}$  is  
 277 around 0.3.



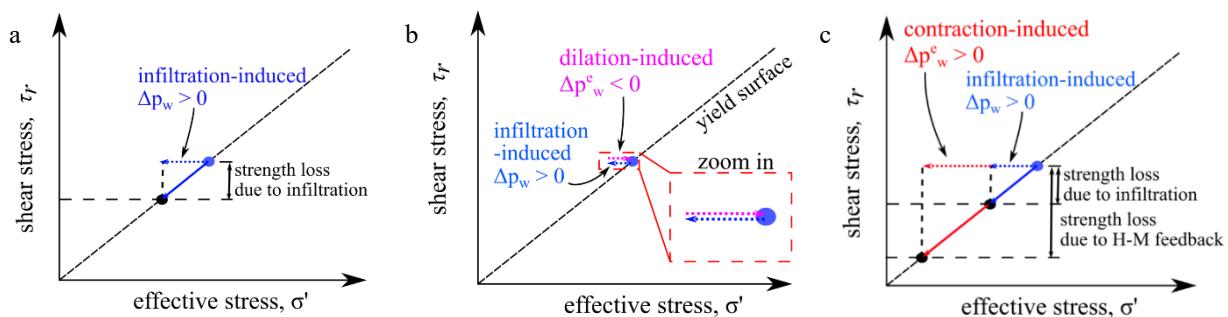
279 **Figure 3. Simulation of pore-water pressure transients caused by precipitation.** a) Simulated pore-water  
 280 pressure change at top of shear zone caused by a constant rainfall. b) Computational results of pore-water  
 281 pressure change at bottom of shear zone, corresponding to different value of  $T_{lc}^e$ ; c & d) schematics of pore-  
 282 water pressure distribution with higher and lower  $T_{lc}^e$ , where higher  $T_{lc}^e$  results from shear zone permeability  
 283 ( $k^b$ )  $5.5 \times 10^{-7}$  m/s, and lower  $T_{lc}^e$  indicate  $k^b = 5.5 \times 10^{-12}$  m/s. The thickness of the landslide material is 20m.  
 284 Stiffness parameters are taken as: oedometric modulus  $E_{oed} = 5$  MPa, and shear modulus  $G = 2$  MPa.

285 The computed  $p_w^t$  will then serve as the hydraulic boundary condition activating coupled behavior  
286 inside the deformable shear zone. Simulations are conducted for different values of  $T_{lc}^e$  (Eq. 16) to  
287 examine its role on pore-water pressure diffusion processes within the shear zone. In this study,  
288  $T_{lc}^e$  depends on the value of the hydraulic conductivity,  $k^b$ , as discussed in the previous section.  
289 Fig. 3b shows that, when  $T_{lc}^e$  is relatively high, diffusion takes place rapidly within the shear zone,  
290 thus the hydraulic response ( $\Delta p_w^b$ ) at the bottom of the shear zone follows the hydrologic forcing  
291 ( $\Delta p_w^t$ , i.e.,  $\Delta p_w^{sb}$ ). The pore-water pressure profile in this scenario is illustrated in Fig. 3c. On the  
292 contrary, pore-water pressure change can be delayed in the shear zone in the presence of low  $T_{lc}^e$   
293 values. This is illustrated in Fig. 3d, where the pore-water pressure at the bottom of the shear zone  
294 barely changes despite the application of a hydrological forcing at the top of the deformable zone.  
295 Since these tests are conducted for landslide material under an elastic regime, infiltration does not  
296 involve approaching of the yield surface and mobilization of the plastic resources of the shear zone.  
297 As an outcome, no sliding is generated.

### 298 *3.2 Model behavior under the plastic regime*

299 When the fluctuations of the effective stress state induced by infiltration are large enough to engage  
300 the frictional yield surface, plastic shear strain and consequent sliding occur. Separating from the  
301 elastic regime, the material yield surface also starts to regulate the stress changes and  
302 corresponding deformation. For example, if the material dilation angle ( $\psi$ ) is zero, no negative  
303 excess pore-water pressure can be generated. In this context, the pore-water pressure increase will  
304 be the same as triggered by water diffusion in the elastic regime (Fig. 1b). Yet, under the  
305 elastoplastic framework, the yield surface cannot be surpassed. The pore-water pressure increase  
306 will thus lead to stress changes along the yield surface (Fig. 4a). As an outcome, the shear zone

307 material will lose strength (Eq. 3), and runaway failure can be triggered. Most notably, if non-zero  
 308 plastic normal deformation is developed, negative excess pore-water pressure will be induced and  
 309 regulate the slope dynamics. Plastic dilation, if prevented, will generate negative excess pore-water  
 310 pressure (Fig. 4b), which, in order not to violate the prescribed strength criterion and sustain the  
 311 initial shear stress level, must be opposite and equal to the pressure change induced by infiltration  
 312 (Fig. 1b). Specifically, since in our analyses the shear zone material has low permeability, diffusion  
 313 within the basal sliding tends to progress slowly. Consequently, the increase of the bottom pore-  
 314 water pressure induced by infiltration is small and its value is affected by the abovementioned  
 315 negative excess pore-water pressure controlled by the dilative response of the material. Most  
 316 importantly, to comply with the strength characteristics underlying the selected perfectly plastic  
 317 MC constitutive law (i.e., a fixed yield surface), the resulting basal pore-water pressure and the  
 318 corresponding effective stress will be such that the material remains on a state of plastic sliding  
 319 throughout the forcing process, with the pore pressure decreasing only when the rainfall stops, the  
 320 material returns in a poroelastic state, and the excess pore-water pressure fully dissipates until the  
 321 landslide movement ceases. These arguments show that dilation generates self-regulating effects



322  
 323 **Figure 4. Schematics of effective stress paths at the base of a landslide predicted by the proposed framework**  
 324 **for movements induced by hydrologic forcing. a) Stress change caused by hydrological forcing in plastic regime**  
 325 **with nil normal plastic deformation. b) Dilative material generated self-regulating behavior. c) Contractive**  
 326 **material induced self-feeding mechanisms.**

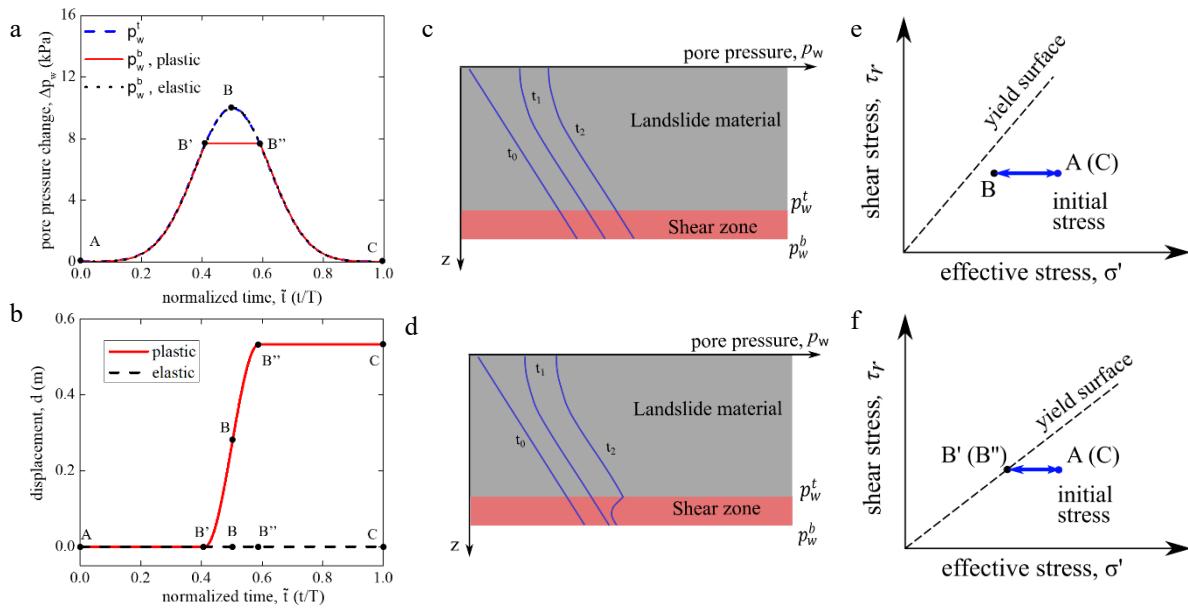
327 able to constrain the pore-water pressure build-up. In contrast, contractive deformation would lead  
328 to an opposite outcome, by generating positive excess pore-water pressure and adding to the  
329 infiltration effects (Fig. 4c), eventually leading to more strength loss and runaway failure.

330 For our first landslide simulation in the plastic regime, we model landslide motion with dilative  
331 material. We apply a simple synthetic pore-water pressure event distributed normally with a  
332 magnitude of around 11 kPa over one year ( $T = 365$  days) at the top of the shear zone to represent  
333 pore-water pressure changes expected during a water cycle consisting of wet season (e.g.,  
334 Finnegan et al., 2021) and following dry seasons in California (Fig. 5). The  $T_{lc}^e$  ( $k^b = 3 \times 10^{-9}$  m/s)  
335 is set to cause nearly instantaneous pore-water pressure change (Fig. 5a). The small values of  $k^b$   
336 used in the analyses reflect the low permeability often reported for shear zone materials of the  
337 study sites (Baum and Ried, 2000; Nereson et al., 2018). When  $\varphi = 20^\circ$ , the material yield surface  
338 is not approached and there is only elastic deformation. In contrast, a lower friction angle ( $\varphi =$   
339  $16^\circ$ ) leads to plastic shearing (Fig. 5a & b, point B' to B'') under the same hydrological forcing.

340 Fig 5a and b show that, for  $\varphi = 16^\circ$ , plasticity ensues when the imposed pore-water pressure at  
341 the top of the deformable zone is close to 8 kPa (i.e., point B', at  $\tilde{t} = 0.4$ ). Subsequently, plastic  
342 deformation begins to develop in both normal (induce volume change) and tangential directions  
343 (trigger downslope sliding, Fig. 5b). Regulated by plastic dilation, negative excess pore-water  
344 pressure is generated which prevents further pore-water pressure change. As explained in the  
345 previous example (Fig. 4b), the self-regulating effect halts the growth of pore-water pressure (Fig.  
346 5f) and prevents the landslide from losing strength and accelerating catastrophically.

347 When the pore-water pressure applied at the top of the shear zone begins to drop and drives the  
348 material back into the elastic regime (point B'',  $\tilde{t} = 0.6$ ), the pore-water pressure at the bottom of

349 the shear zone decreases and there is a transition from the plastic to elastic domain. At the same  
 350 time, sliding stops (Fig. 5b point B''), marking the end of the episodic development of negative  
 351 excess pore-water pressure coupled with downslope sliding. For the case with  $\varphi = 20^\circ$  (Fig. 5 a,  
 352 c, e), the whole process is in the elastic regime and there is no sliding nor negative excess pore-  
 353 water pressure (Fig. 5b). These results confirm that sliding occurs only if precipitation mobilizes  
 354 the inelastic resources of the shear zone material. Most notably, our model shows (similar to other  
 355 studies) that dilation in the plastic regime leads to self-regulated landslide motion.



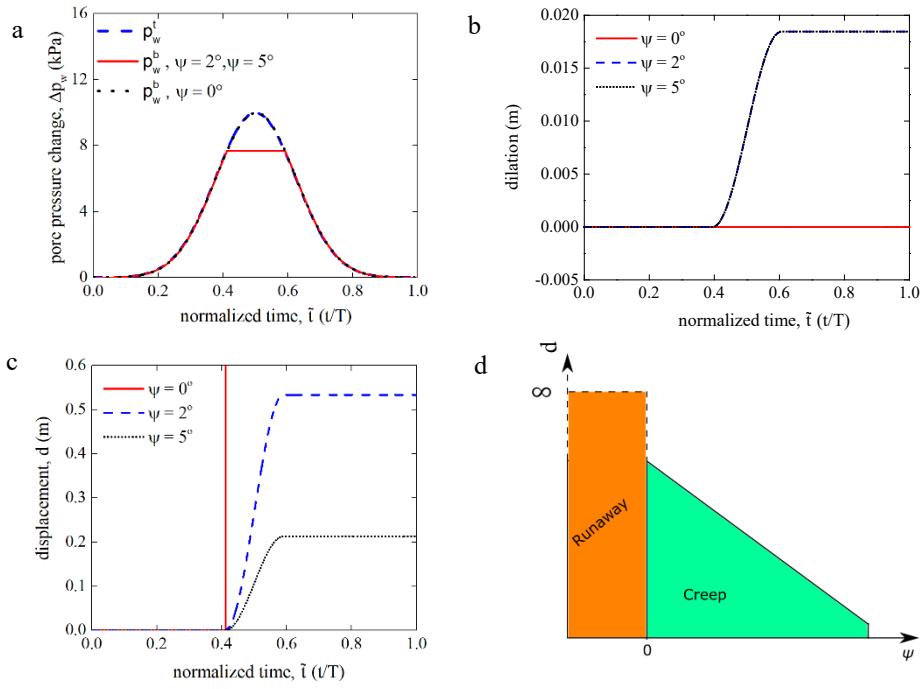
356  
 357 **Figure 5. Simulation of the hydro-mechanical response of an infinite slope subjected to imposed pore-water  
 358 pressure change at the top of its shear zone. A) top shear zone pore-water pressure changes in one year, with  
 359 the bottom response under both the elastic and plastic regime. b) Downslope displacement, c & d) pore-water  
 360 pressure profile when material is under the elastic and plastic regime. e & f) Schematic of hydrological response  
 361 in elastic and plastic regime. Synthetic slope tested here is assumed to be thickness,  $h-h_s = 7$  m ( $h_s = 0.5$  m), slope  
 362 angle  $\theta = 15^\circ$ , and dilation angle  $\psi = 2^\circ$ .**

363 *3.3 Coupling effects*

364 The dilation angle  $\psi$  governs the ratio of normal deformation divided by the sliding deformation.  
365 To further investigate its effects, the same synthetic slope and pore-water pressure variation  
366 illustrated in Fig. 5 are tested with different values of  $\psi$  ( $5^\circ$ ,  $2^\circ$ , and  $0^\circ$ ), but equal friction angle  
367 ( $\varphi = 16^\circ$ ). Among the tested cases,  $\psi = 0^\circ$  is used to explore the landslide behavior for vanishing  
368 dilation (i.e., potential approach of critical state conditions).

369 Fig. 6a shows that pore-water pressure at the bottom of the slope predicted for cases with dilative  
370 deformation (i.e.,  $\psi > 0$ ) ceases to increase following the hydrological forcing, thus leading in all  
371 cases to self-regulating effects. In contrast, these self-regulating effects vanish in the analyses  
372 conducted with  $\psi = 0^\circ$  and runaway failure occurs. Our model simulations also indicate the pore-  
373 water pressure stops changing in the plastic regime because the positive pore-water pressure  
374 caused by infiltration is balanced by the negative excess pore-water pressure that results from  
375 dilation as discussed above (Fig. 4b). In other words, for the perfectly plastic behavior inherent  
376 with the MC constitutive law used in the current analyses, once the yield surface is reached, the  
377 pore-water pressure will experience no further change (increase or decrease) until the seasonal  
378 infiltration ends. Yet the dilation angle does impact the overall landslide displacement because it  
379 represents the ratio of normal dilation divided by downslope sliding. As Fig. 6b displayed, the  
380 same amount of dilative normal deformation would be triggered with a positive  $\psi$  (to induce the  
381 negative pore-water pressure to balance the infiltration induced pore-water pressure increase).  
382 While as  $\psi$  quantifies the normal dilation divided by sliding, under same amount of dilation, the  
383 higher the  $\psi$ , the smaller the sliding will be induced. As Fig. 6c illustrated, for a dilation angle of  
384  $5^\circ$ , the simulated sliding displacement is around 0.2 m. This movement more than doubles for  $\psi$   
385 =  $2^\circ$ , reaching more than 0.5 m.

386 When  $\psi = 0^\circ$ , no dilation would be triggered (Fig. 6b). As an outcome, no negative excess pressure  
 387 can act to prevent runaway acceleration (Fig. 6c). The same analysis can be conducted for shear  
 388 zone materials experiencing contraction (i.e.,  $\psi < 0$ ). This scenario mimics so-called liquefaction  
 389 effects, i.e., self-feeding growth of excess pore-water pressure accompanied by loss of shearing  
 390 resistance (Iverson, 2005; Iverson and George, 2014; Chen and Buscarnera, 2022). The sharp  
 391 transition between these different landslide dynamic regimes is qualitatively illustrated in Fig. 6d.  
 392 While the incorporation of multiple nonlinear constitutive laws is necessary to simulate the abrupt  
 393 development of excess pore-water pressure and high mobility failure events such as liquefaction,  
 394 it is beyond the scope of this paper.



395  
 396 **Figure 6. Simulation of the hydro-mechanical response of infinite slopes with basal shear zone characterized**  
 397 **by different dilation angles. a) pore-water pressure at the top and bottom of the shear zone, b) computed normal**  
 398 **dilation, c) simulated displacement, d) relationship between sliding displacement after the hydrological pulse**  
 399 **and dilation angle, including cases leading to runaway failure.**

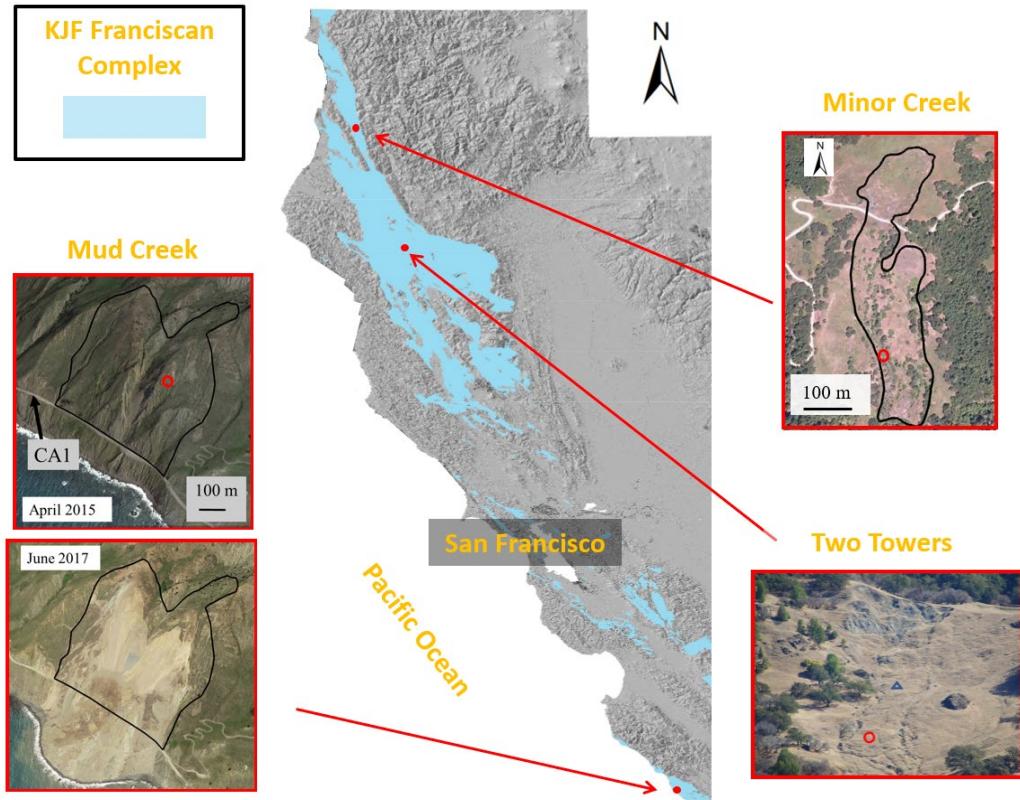
400 **4. Case studies**

401 *4.1 Sites of interests*

402 There are thousands of landslides in the California Coast Ranges (Keefer and Johnson, 1983;  
403 Kelsey et al., 1996; Bennett et al., 2016; Handwerger et al., 2019b; 2022). Landslides occur in this  
404 region due to active tectonics, mechanically weak rocks, and high precipitation (Scheingross et al.,  
405 2013; Roering et al., 2015). The precipitation in California is seasonal and most falls during the  
406 wet season between October and May (Swain, 2021). Most of the slow-moving landslides occur  
407 within the Jurassic-Cretaceous Franciscan Mélange (Fig. 7, referred to as “KJf”). The KJf is a clay-  
408 rich complex unit made of sandstone, shales, serpentinite, and conglomerates (Bailey et al., 1964;  
409 Rutte et al., 2020).

410 For our model simulations, we selected parameter value ranges for friction angle, permeability,  
411 and dilation angle from previously published studies (Keefer and Johnson, 1983; Vermeer and de  
412 Borst, 1984; Iverson and Major, 1987; Roadifer et al., 2009; Nereson et al., 2018) on landslides in  
413 the CA Coast Ranges (details in Section 4.2). However, for stiffness parameters that were not  
414 measured at these sites, we used reasonable approximations for clay-rich compositions (Obrzud,  
415 2010): oedometric modulus,  $E_{oed} = 5$  MPa, and shear modulus,  $G = 2$  MPa.

416 We selected three landslide sites to test our model: 1) Two Towers landslide, northern California  
417 (Schulz et al., 2018a; b), 2) Minor Creek landslide, northern California (Iverson and Major, 1987),  
418 and 3) Mud Creek landslide, central California (Handwerger et al., 2019). Hourly movement of  
419 Two Towers landslide was measured from 11 November 2014 to 22 July 2017 using a biaxial tilt  
420 sensor (Schulz et al., 2018a; b). The Minor Creek landslide was monitored between 1982 and 1985



421

422 **Figure 7. California Coast Ranges and Franciscan Complex lithologic unit 1 draped over a hillshade of the**  
 423 **topography with labeling and location details of the landslide sites studied in this paper (the monitoring points**  
 424 **at which each landslide displacement was measured are circled, and the water level monitoring location of Two**  
 425 **Towers landslide is shown by triangle).**

426 using extensometers (Iverson and Major, 1987). Finally, the Mud Creek landslide was monitored  
 427 between 2015 and 2017 (Handwerger et al., 2019a) through satellite interferometric synthetic  
 428 aperture radar (InSAR). In this study, the analyses are based on a 1D infinite slope geometry, in  
 429 that the length of the considered landslides are much higher than their width and depth. This  
 430 implies that the landslide is a uniform block of constant inclination with movements that do not  
 431 vary along the downslope direction. This widely used simplification is applicable to capture the  
 432 overall kinematics of the landslide (Angeli et al., 1996; Iverson, 2005; Van Asch et al., 2007; Li  
 433 et al., 2021), but it might suffer a loss of accuracy at the edges of the domain, especially in regions

434 of extension and/or compression which require a 2D or 3D model of the slope geometry. Notably,  
435 we selected these three case studies because they display distinct trends of movement over time,  
436 including slow, episodic sliding and catastrophic failure, thus allowing ideal benchmarks to verify  
437 the accuracy of the proposed framework.

438 *4.2 Parameter optimization method*

439 For the case studies in this paper, model parameters were assessed by optimization procedures  
440 focusing on the identification of best fit values for  $k^b$  (shear zone permeability),  $\varphi$  (friction angle),  
441 and  $\psi$  (dilation angle). We used a grid search inverse method to optimize these parameters  
442 (Allmendinger, 1998). This method computes the objective function (OBJ) from initial guesses  
443 based on typical ranges of these parameters and then searches the minimum OBJ.

444  $OBJ = \sum(d_o - d_s(k^b, \varphi, \psi))^2,$  (19)

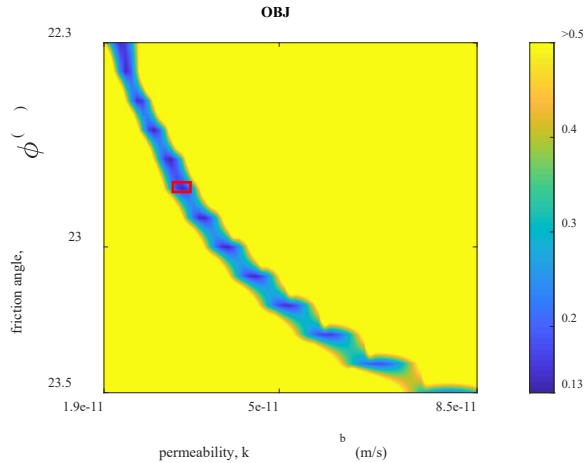
445 where  $d_o$  is observed displacement;  $d_s$  is simulated displacement. The parameters  $(k^b, \varphi, \psi)$   
446 leading to the minimum OBJ will be the optimized ones. Using the Two Towers landslide as an  
447 example, (detail given in the next section), we perform a grid search for  $\psi$  ranging between  $0.5^\circ$   
448 to  $5^\circ$  (dilation angle for clayey material is limited; Vermeer and de Borst, 1984). The permeability  
449 and friction angle for the KJf material has a large range, with permeability ranging from  $1.6 \times 10^{-5}$   
450 to  $3 \times 10^{-10}$  m/s within a single landslide body (Iverson and Major, 1987) and friction angle ranging  
451 from  $12^\circ$ ~ $50^\circ$  (Keefer and Johnson, 1983; Roadifer et al., 2009; Schulz et al., 2018b; Nereson et  
452 al., 2018). We also note that studies have shown that the permeability of the shear zone ( $k^b$ ) is often  
453 smaller than the landslide body material (Baum and Reid, 2000; Nereson et al., 2018). Thus, we  
454 performed the grid search using permeabilities between  $1.6 \times 10^{-7}$  and  $3 \times 10^{-12}$ . Our parametric

455 analysis provides a narrow band of values (dark blue in Fig. 8) with relatively small OBJ values.  
 456 Among them, the minimum value can be found. Optimized parameters are displayed in Table 1.

457 **Table 1. Properties and optimized parameters for each case study**

| Model parameters | Two Towers            | Minor Creek          | Mud Creek             | Initial values                              |
|------------------|-----------------------|----------------------|-----------------------|---------------------------------------------|
| Area (hectares)  | 1                     | 10                   | 23                    | -                                           |
| Inclination (°)  | 15                    | 15                   | 32                    | -                                           |
| Depth (m)        | 7                     | 6                    | 20                    | -                                           |
| $k^b$ (m/s)      | $3.3 \times 10^{-11}$ | $3.3 \times 10^{-9}$ | $8.8 \times 10^{-10}$ | $1.6 \times 10^{-7} \sim 3 \times 10^{-12}$ |
| $\varphi$ (°)    | 22.8                  | 19.3                 | 47.8                  | 12~50                                       |
| $\psi$ (°)       | 2                     | 2                    | 0.5                   | 0.5~5                                       |

458



459

460 **Figure 8. Inverse analyses obtained OBJ values corresponding to friction angle and permeability when  $\psi = 2^\circ$ ,**  
 461 **optimized parameter is indicated by the red polygon.**

462

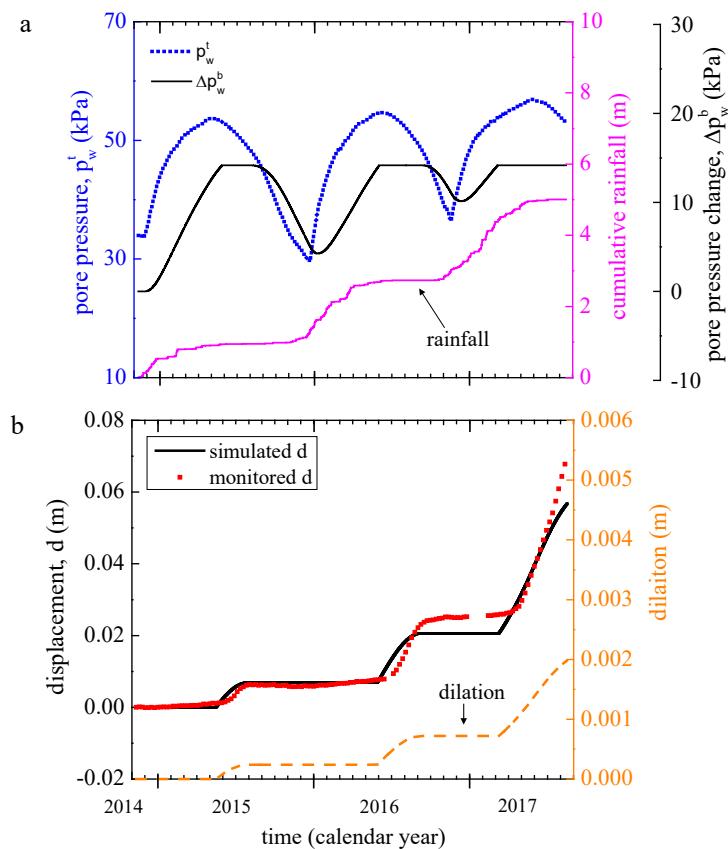
#### 463 *4.3 Two Towers landslide*

464 The Two Towers landslide (Fig. 7) is around 250 m long and averages about 40 m in width and 7  
 465 m in depth; with an average inclination of 15° (Schulz et al., 2018a). The thickness of the shear

466 zone is ~0.5 m (Schulz et al., 2018b). The groundwater head (monitored at multiple sites within  
467 the active landslide) and landslide movement (monitored from an inclinometer located at the  
468 landslide toe, Fig. 7) were monitored at multiple sites within the active landslide from November  
469 2014 to July 2017 by Schulz et al. (2018a; b). We selected the ground water head measured at the  
470 middle of the landslide (Schulz et al., 2018a), in that it is far from the boundaries and can be  
471 regarded as the representative descriptor of the hydrologic state for a translational landslide.  
472 However, it is important to point out that other options (e.g., the average of all measurement points)  
473 would also be viable choices in this modeling context. In the central portion, we used data from  
474 the piezometer located at around 5.7 m below the ground, from which the water head above  
475 landslide base is reported. The resulting pore-water pressure at the top of the shear zone ( $p_w^t$ , Fig.  
476 9a) was then computed for a scenario of downslope seepage and eventually used as boundary  
477 condition for the simulation. The cumulative rainfall during the observation period is provided in  
478 Fig. 9a. Clay swelling was observed at the site and shown to have played a major role in the  
479 landslide dynamics (Schulz et al., 2018a). However, we did not explicitly incorporate clay swelling  
480 into our model. We also note that Schulz et al. (2018a) concluded that shear-induced dilation was  
481 not evident from their field or laboratory measurements. Nonetheless, our model simulations are  
482 here aimed at testing whether dilation can explain the observed motion at the Two Towers site.

483 Fig. 9a shows the simulated pore-water pressure distribution at the top and bottom of the shear  
484 zone, characterized by delayed bottom hydrological response compared to the forcing pore-water  
485 pressure imposed at the top of the shear zone ( $p_w^t$  and corresponding  $p_w^{sb}$ ). Although the overall  
486 simulated displacement trend is consistent with the monitoring data at the Two Towers landslide  
487 site, as Fig 9c shows, a mismatch exists between model results and data. For instance, we find that  
488 the simulated movement begins earlier than the observations and underestimates the measured

489 displacement in 2016 and 2017. Because in our simulation movements are generated by hydraulic  
 490 forcing, these mismatches can be interpreted as a result inaccuracies in the pore-water pressure  
 491 simulations. Most notably, the discrepancies between our simulations and the measured motion  
 492 suggests that shear-induced dilation alone cannot explain the measured landslide response and  
 493 other mechanisms, such as clay swelling, need to be considered (Schulz et al., 2018a).



494

495 **Figure 9. Model and measured data at Two Towers landslide. a) Pore-water pressure change at top of shear**  
 496 **zone (Schulz et al., 2018a; b) based on the monitoring of water head above landslide base from a piezometer in**  
 497 **the middle of the landslide, optimized pore-water pressure distribution at the bottom of shear zone, and**  
 498 **cumulative rainfall. b) computational displacement from optimization compared to the monitored value and**  
 499 **simulated normal dilation.**

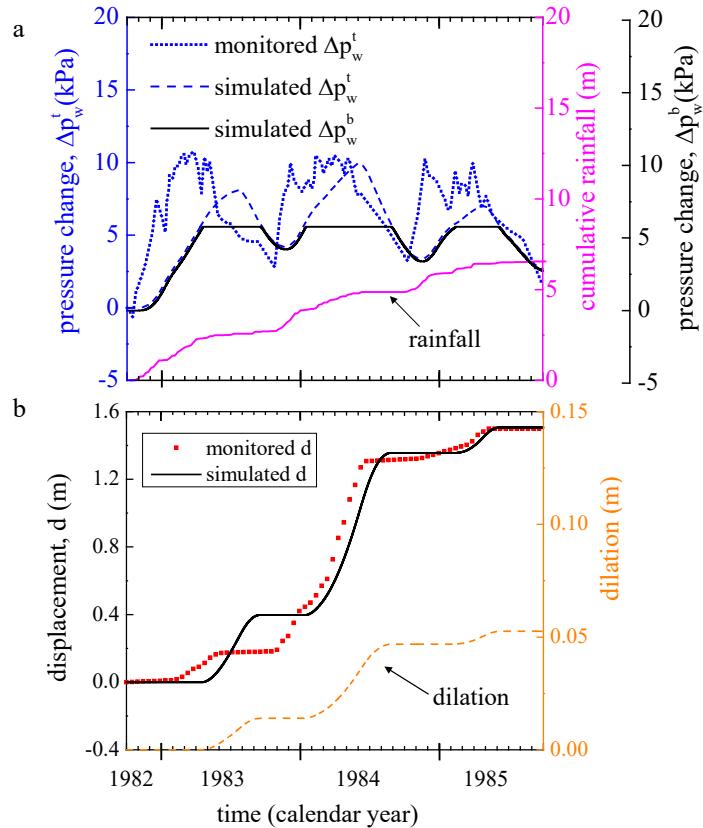
500 To quantify the movements due to dilation, we also computed the normal displacement (Fig. 9b)  
501 predicted by the model during the three-year period considered in this study. The results show an  
502 increase in plastic normal strain in correspondence with each episode of motion, with an increasing  
503 trend that produces a 2 mm total heave by the end of the considered period. Although not zero,  
504 this dilation-induced motion is predicted to be small, thus requiring very accurate measurements  
505 to verify the actual extent of dilation at the field scale.

506 *4.3 Minor Creek*

507 Minor Creek landslide (Fig. 7) is a slow-moving landslide covering about 10 hectares in Redwood  
508 Creek drainage basin, northern CA Coast Ranges. Iverson and Major (1987) collected three years  
509 of detailed rainfall, groundwater and movement data (Fig. 10a and b) of this landslide from  
510 October 1982 to September 1985. Iverson (2005) also previously explored the role of shear-  
511 induced dilation (with 3° dilation angle) as a key mechanism controlling the slow-moving behavior  
512 of Minor Creek. The average slope angle is 15°; the thickness of the landslide along its longitudinal  
513 axis is 6 m and the shear zone thickness is 1 m (Iverson and Major, 1987).

514 Saturated permeability ( $k^t = 9 \times 10^{-7}$  m/s) and storage coefficient ( $S_s = 0.45$ ) of the landslide  
515 material can be determined by simulating the monitored pore-water pressure data through trial and  
516 error (Fig. 10a). Our calculated diffusivity ( $2 \times 10^{-6}$  m<sup>2</sup>/s) and mechanical parameters (Table 1) are  
517 similar to the value back calculated by Iverson and Major (1987). Our model can capture much of  
518 displacement trend, such as seasonal and year to year changes in displacement magnitude (Fig.  
519 10c), but again we observe significant mismatches between our model results and the observed  
520 motion. Like Two Towers, we attribute these mismatches to our simulated pore-water pressure  
521 time series which differs significantly from the observed pore-water pressure. We find our model  
522 involves a several months delay in the prediction of the activation of the landslide in 1983 and

523 over predicts the total displacement by a factor of 2. Improvements to our hydraulic simulation are  
 524 needed to better account for these hydrologic changes and could be accomplished by incorporating  
 525 factors such as evapotranspiration, unsaturated effect, or lateral flow.



526

527 **Figure 10. Simulated and monitored hydrological and mechanical behaviors at the Minor Creek landslide site.**  
 528 **a) monitored and simulated pore-water pressure at top of the shear zone, simulated pore-water pressure at the**  
 529 **base of the shear zone, and cumulative rainfall, c) monitored and simulated displacement, and simulated**  
 530 **dilation.**

#### 531 4.4 Mud Creek landslide

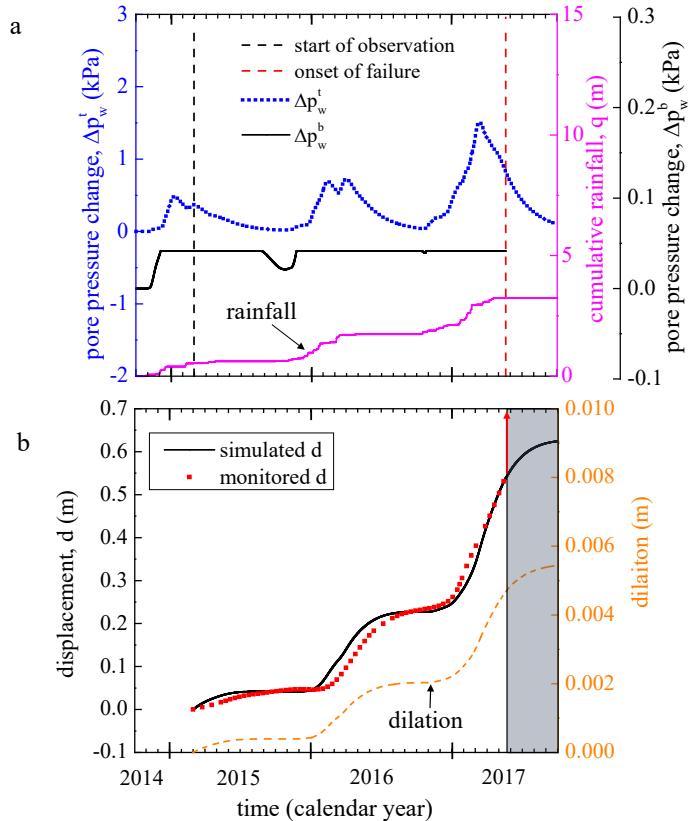
532 Our last test case is the Mud Creek landslide (Fig. 7), central California Coast Ranges. The Mud  
 533 Creek landslide displayed stable sliding for more than 8 years; however, it suddenly failed  
 534 catastrophically on a dry day (May 20, 2017) following a prolonged season of heavy rainfall. This

535 event caused major damage to California State Highway 1 and has been studied through a variety  
536 of remote sensing observations and hydrologic models (Handwerger et al., 2019a; Warrick et al.,  
537 2019). More than two years of landslide displacement was measured by InSAR before the  
538 catastrophic failure occurred and we model these measurements here (Handwerger et al., 2019a).

539 Mud Creek is characterized by relatively steep terrain with an average slope angle around 32°. We  
540 assume the shear zone is located at a depth of 20 m, which is within the range of values measured  
541 by Warrick et al., (2019). In this analysis, given the lack of ground based hydraulic observations,  
542 the pore-water pressure at the top of the shear zone ( $p_w^t$ ) is simulated using back-calculated  
543 hydraulic parameters  $k^t = 3 \times 10^{-6}$  m/s and  $S_s = 0.14 \text{ m}^{-1}$  as illustrated in Appendix 2. Using these  
544 parameters, the pore-water pressure distribution of Mud Creek landslide can be computed as  
545 illustrated by Fig. 11a (affected by the precipitation displayed as Fig. 11b).

546 The optimization strategy discussed in the previous sections is also used for this case, leading to  
547 simulation of both pore-water pressure at bottom of shear zone (Fig. 11a), sliding movement (Fig.  
548 11c), and normal deformation (Fig. 11c). The results are consistent with the InSAR observations  
549 prior to the catastrophic collapse. Notably, the optimized friction angle for Mud Creek is very high  
550 (about 48°; Table 1), which is an outcome of the steep (i.e., high initial stress ratio), deep-seated  
551 slope and nearly fully saturated initial condition (leads to high pore-water pressure). We assume  
552 saturated conditions in that field data from other landslide sites in the KJf show that the  
553 groundwater table remains within 2-3 m of the ground surface during the dry season and rises to  
554 the ground surface during the wet season (Iverson and Major, 1987; Schulz et al., 2018a; Hahm et  
555 al., 2019; Finnegan et al., 2021). Our results for Mud Creek provide a better fit of the observations  
556 compared to Two Towers and Minor Creek. Yet, mismatches in the predicted temporal evolution  
557 of the movements appear in this case study too (e.g., early activation in 2015 and 2016), and once

558 again can be attributed to the simulated early build-up of pore-water pressure (Fig. 11a). Similar  
 559 to the previous cases, dilation-induced heave (Fig. 11b) was also computed by tracking the  
 560 evolution of the plastic normal strain during sliding.



561  
 562 **Figure 11. Simulated and monitored hydrological and mechanical behaviors at the Mud Creek landslide site.**  
 563 **a) Simulated pore-water pressure distribution at top and bottom of the shear zone and cumulative rainfall, b)**  
 564 **monitored and simulated displacement by the end of stable sliding (the left boundary of the shaded rectangle**  
 565 **represents the occurrence of catastrophic failure) and simulated normal dilation.**

566 Although Mud Creek landslide did eventually fail catastrophically, a positive dilation angle (with  
 567 less than 3 mm normal deformation increase, Fig. 11d) is required to capture the pre-failure slow  
 568 movement. As a result, our model will always predict self-regulating creep. To further emphasize  
 569 this point (and highlight a key model limitation), we extend the simulation beyond the time at

570 which catastrophic failure was observed in the field, so as to show how the model would have  
571 erroneously predicted the motion (Fig. 11b). It can thus be concluded that, to capture runaway  
572 acceleration, our model would need to account for vanishing dilative effects (Fig. 6d) (Moore and  
573 Iverson, 2002).

574 **5. Discussion**

575 In this manuscript, we developed a hydro-mechanical modeling framework to describe the  
576 dynamics of landslides in response to rainfall infiltration. We showed that an elastic-perfectly  
577 plastic frictional model enables the simulation of landslide creep in the presence of plastic dilation,  
578 as well as of runaway failure due to lack of self-regulating mechanisms (e.g., shear zone having  
579 reached critical state or exhibiting plastic contraction; Fig. 6d). While the model can be used to  
580 simulate different modes of landslide movement triggered by precipitation, the formulation  
581 discussed in the paper cannot capture transitions from stable creep to runaway failure, as illustrated  
582 in our case study of the Mud Creek landslide. This finding encourages future model development  
583 to account for more realistic constitutive laws based on the critical state theory (Roscoe et al., 1958;  
584 Schofield and Wroth, 1968), which would enable the evolution of plastic deformation.

585 We studied three cases of slow-moving landslides located in California. Their velocity changes  
586 are governed by precipitation, while different magnitudes of acceleration were observed for each  
587 site. The Two Towers landslide exhibited rates from around 0.01 to 0.04 m/yr, while Minor Creek  
588 landslide exhibited rates from 0.2 to 1 m/yr with a large increase in displacement during the 1984  
589 wet season. The sliding velocity of Mud Creek landslide, before the catastrophic failure, falls in  
590 between the above two cases. It is not surprising that the three landslides experienced different  
591 magnitudes of sliding movement and exhibited different behaviors. Several factors can lead to this

592 phenomenon: topography (Table 1), local precipitation (Fig 9c; Fig 10c; Fig. 11c), groundwater  
593 hydrology, variations in material properties, stress level (i.e., thickness), and more. Considering  
594 these complex conditions, we find it may always be reasonable to use inverse analysis to optimize  
595 parameters even when landslides occur within the same region and appear similar.

596 As for our optimized parameters (Table 1), they all fall in range obtained from laboratory tests or  
597 field observations as explained in Section 4.2. Yet, the optimized friction angle of Mud Creek  
598 landslide ( $\varphi = 47.8^\circ$ ) is much larger than values typically observed from laboratory tests on  
599 landslide materials. We propose this high back calculated value results from a few reasons: first,  
600 we assume the landslide is fully saturated and has zero cohesion. If we accounted for cohesion and  
601 lower pore-water pressures this would offset the strength required by the friction angle to maintain  
602 stability. Second, Mud Creek landslide was steep (average slope angle  $32^\circ$ ) which requires a  
603 relatively high friction angle ( $\sim 30^\circ$ ) to remain stable during the dry season.

604 Both the Minor Creek and Two Towers landslides have been the subject of previous investigations  
605 and modeling efforts (e.g., Iverson and Major, 1987; Iverson, 2005; Schulz et al., 2018a). Iverson  
606 (2005) explained the seasonal dynamics of Minor Creek landslide using a shear-induced dilation  
607 model with interfacial hydro-mechanical coupling. In agreement with this prior work, our  
608 simulation leads to an acceptable representation of both the magnitude and the rate of sliding,  
609 which in all cases displayed the attributes of a stable, self-regulated episodic creep. Moreover,  
610 while our analysis enabled for inherent differences between the diffusivity of the landslide material  
611 and that of the basal shear zone (the latter being mediated by frictional/dilative properties), the  
612 good agreement between our results and those reported by Iverson (2005) suggest that inelastic  
613 effects play a limited role in the diffusivity of landslides not yet undergoing runaway motion (i.e.,  
614 not having reached local shear instability conditions and/or critical state). This argument is also

615 relevant for more recent extensions of coupled sliding-consolidation analyses specific for multi-  
616 dimensional domains (Iverson and George, 2014; George and Iverson, 2014). However, since  
617 these approaches also rely on poroelastic diffusivity models, the potential implications of inelastic  
618 deformation on the pore-water pressure diffusivity may warrant further study, especially in the  
619 presence of liquefied materials (Rice, 1975; Chen and Buscarnera, 2022).

620 The activation and arrest of Two Towers landslide site was closely examined by Schulz et al.  
621 (2018a) through a limit equilibrium method incorporating a new strength coefficient governed by  
622 clay swelling. They concluded that the additional strength imparted by swelling effects controlled  
623 the lag between the water level fluctuation and landslide activation. In our work, we found that  
624 shear-induced dilation can also partially explain the lag between when pore-water pressures above  
625 the shear zone rise and when the landslide starts to move, with notable mismatches described above.  
626 However, we note again that Schulz et al. (2018a) concluded that neither field measurement nor  
627 laboratory tests indicated shear-induced dilation at the Two Towers landslide. These observations  
628 warrant questions as to why a dilation model was used in this work. One of the core reasons behind  
629 this choice is that dilation is commonly invoked as a key strengthening mechanism that permits  
630 slow and stable motion of creeping landslides (Iverson et al., 2000; Iverson, 2005; Agliardi, et al.,  
631 2020), and it thus deserves full consideration whenever testing any new hydro-mechanical  
632 formulation for the prediction of landslide motion. Hence, one of our key goals was to determine  
633 to what extent dilation can explain any of the observed behaviors documented in the literature.  
634 Despite the ability of our model to capture the overall trends at the Two Towers site, the difficulty  
635 of achieving an accurate match of both hydraulic and mechanical response (paired with the already  
636 mentioned challenges of constraining the value of dilation in the field) indicates that dilation alone  
637 may not suffice to explain the observed dynamics and must then be studied in conjunction with

638 other processes, such as clay swelling. In our opinion, only fully coupled, deformation-based  
639 approaches encompassing all the potential causes of self-regulating motion can definitively reveal  
640 which factors play a primary role, as opposed to those that are secondary and may be regarded as  
641 inessential to explain field observations. While this more complete analysis was not attempted here,  
642 our proposed framework enables future extensions through the incorporation of constitutive laws  
643 with suction-induced swelling and other moisture-regulated inelastic processes (Song et al., 2020).

644 While we have shown that the flow-deformation coupling may in part regulate landslide behaviors,  
645 there are other widely used models to simulate slow-moving landslides. The most common of these  
646 are viscoplastic models (Van Asch et al., 2007; Angeli et al., 1996; Oberender and Puzrin, 2016),  
647 which can be used to depict the time-dependent behaviors of earthen materials (Mitchell et al.,  
648 1968; Liingaard et al., 2004; Marinelli et al., 2018). Ring shear tests of samples taken from Two  
649 Towers landslide showed the friction angle varies  $\sim 21^\circ$  and  $\sim 24^\circ$  with shear rates from 0.01 to 1  
650 mm/s (Schulz et al., 2018b). These findings imply some the landslide material exhibits some rate  
651 dependency, although at the range of the sliding rates exhibited in the field. It thus indicates that  
652 viscoplastic models can be used to capture creeping landslide movement under quasi-static  
653 conditions (Li et al., 2023). However, these models may not always be appropriate for landslides  
654 forming within earthen materials exhibiting negligible viscosity (Iverson, 2020). In this manuscript,  
655 the proposed hydro-mechanical coupled framework was able to describe landslide creep without  
656 incorporating earthen material viscosity. Yet, its mathematical formulation does not hinder the  
657 possibility of accounting for viscous effects, which can be readily inserted by expressing the  
658 inelastic strain rate in Eq. (15) by a viscoplastic flow rule. In a future perspective, this possibility  
659 can prove useful to quantify the peak velocity of flow-like landslides (Chen and Buscarnera, 2022),

660 as well as to replicate temporal patterns of landslide creep more complex than standard episodic  
661 slips (Li et al., 2023).

662 **6. Conclusions**

663 We developed a modelling framework enabling the study of rainfall induced landslide dynamics,  
664 with the goal to account for the interaction between precipitation, pore-water pressure change, and  
665 inelastic deformation within the shear zone of active landslides. Our framework involves two  
666 sequential diffusion processes, one within a rigid landslide block and another within an  
667 inelastically deformable basal shear zone. While the former is used to simulate hydraulic forcing  
668 across the landslide material, the latter enables explicit consideration of the inelasticity of the shear  
669 zone material, thus modulating the timescale of sliding and pore-water pressure diffusion through  
670 dedicated constitutive laws. Spatial condensation procedures are used to derive a set of coupled  
671 ordinary differential equations reflective of the landslide dynamics and accounting for the  
672 feedback between transient water flow, inertial movement, and material inelasticity. To illustrate  
673 the main characteristics of the proposed framework, the model was linked with a perfectly plastic  
674 frictional law enabling dilation and/or contraction of the shear zone material during sliding.

675 We showed that the model can operate both under elastic and plastic regimes. By suppressing  
676 plastic effects, our model is able to simulate delayed hydraulic forcing as a function of the  
677 diffusivity of both the landslide material and shear zone. Moreover, we found that sliding can be  
678 simulated if the hydraulic forcing drives the effective stress state to the plastic regime. The  
679 simulations indicate that the onset of plasticity starts to generate negative excess pore-water  
680 pressure, which regulates the sliding dynamics through constitutive feedbacks modulating the  
681 effective diffusivity of the basal shear zone. Case studies indicate that distinct types of landslide

682 behaviors can be simulated satisfactorily with reduced computational cost and a limited number  
683 of model parameters. Our model framework enables the computation of self-feeding catastrophic  
684 failure in the presence of either contractive shear zone material (e.g., liquefaction events) or critical  
685 state conditions (i.e., no dilation or contraction) and self-regulating (i.e., dilatative) episodic and/or  
686 quasi-steady landslide motion. The main advantage of our proposed framework is the virtually  
687 endless opportunities it offers to augment the constitutive description of the shear zone material  
688 that can describe various mechanical-hydrologic feedbacks.

689

## 690 **ACKNOWLEDGEMENTS**

691 This work was supported by Grant No. ICER-1854951 awarded by the U.S. National Science  
692 Foundation. Part of this research was carried out at the Jet Propulsion Laboratory, California  
693 Institute of Technology, under a contract with the National Aeronautics and Space Administration  
694 (80NM0018D0004).

695

696

## 697 **Appendix 1. Simplification of water mass balance using Parabolic assumption**

698 In this manuscript, in order to solve the 2nd order PDE,  $\frac{k^b}{\gamma_w} \frac{\partial^2 p_w}{\partial z^2} + \dot{\varepsilon} = 0$ , a parabolic  $p_w^e$  (excess  
699 pore-water pressure) profile (Wood, 2004) is used to simplify the computation. We write the total  
700 pore-water pressure expression:

701  $p_w = p_w^s + p_w^e$ , (A1)

702 where  $p_w^s$  is the stationary (steady state) pore-water pressure, its value is influenced  
 703 instantaneously by the applied pore-water pressure at the top of the shear zone. Here, we assume  
 704 that the  $p_w^e$  distributed in a parabolic profile (Wood, 2004) as illustrated in Fig. A1:

705 
$$p_w^e = a\xi^2 + b\xi + c. \quad (A2)$$

706 where  $\xi$  represents the normal distance from the base of shear zone. We can thus obtain that at the  
 707 bottom of the shear zone, where  $\xi = 0$ :

708 
$$c = p_w^{eb} = p_w^b - p_w^{sb}. \quad (A3)$$

709 Where the superscript b indicates the pore-water pressures values are for the basal shear zone.  
 710 While, at the top of the shear zone,  $\xi = h_s \cos\theta$ ,  $p_w^{et} = 0$  because the top of the shear zone is  
 711 assumed to be drained (no excess pore-water pressure can be built up), thus:

712 
$$ah_s^2 \cos^2\theta + bh_s \cos\theta + p_w^{eb} = p_w^{et} = 0. \quad (A4)$$

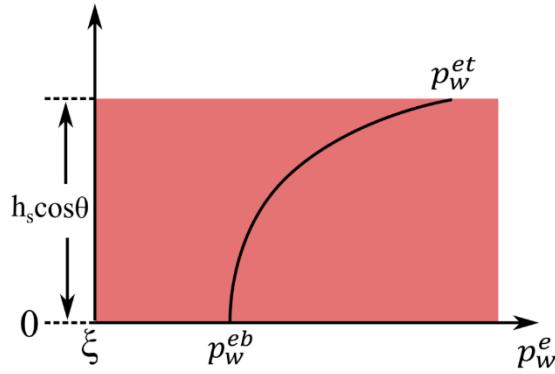
713 Meanwhile, the bottom of shear zone is undrained, so that the  $p_w^e$  distribution will be symmetric  
 714 above and below the  $\xi = 0$  surface. Therefore, at  $\xi = -h_s \cos\theta$ :

715 
$$ah_s^2 \cos^2\theta - bh_s \cos\theta + p_w^{eb} = 0. \quad (A5)$$

716 Adding Eq. A4 with Eq. A5, we get:

717 
$$a = \frac{-p_w^{eb}}{h_s^2 \cos^2\theta}. \quad (A6)$$

718 As the stationary (steady state) pressure will be changed simultaneously within the whole shear  
 719 zone, from Eq. A2 and Eq. A6, we can get:  $\frac{\partial^2 p_w}{\partial z^2} = \frac{\partial^2 (p_w^e)}{\partial \xi^2} = 2a = 2 \frac{p_w^{sb} - p_w^b}{h_s^2 \cos^2\theta}$ .



720

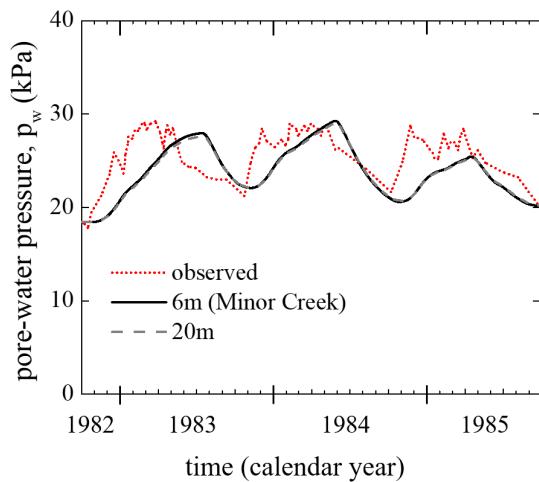
721 **Figure A1. Schematic of parabolic distributed  $p_w^e$ .**

722

723 **Appendix 2. Hydrological parameter determination of Mud Creek landslide**

724 There are no ground-based observations of pore-water pressure changes for the Mud Creek  
 725 landslide. In order to obtain the hydrological response for Mud Creek landslide, we used field data  
 726 from the Minor Creek landslide site to train our hydrological model. Both Minor Creek and Mud  
 727 Creek landslide located in KJf, we assumed that the sliding surface of them experience similar  
 728 hydrological changes driven by rainfall. Our assumption is reasonable based on the hydrological  
 729 observations of KJf at numerous sites throughout California (Iverson and Major, 1987; Schulz et  
 730 al., 2018a; Hahm et al., 2019; Finnegan et al., 2021).

731 In order to calibrate the model parameters for Mud Creek landslide, we adjusted the simulated  
 732 landslide thickness for Minor Creek to 20 m thick (i.e., Mud Creek thickness); we then back  
 733 calculated the parameters that would lead to simulation results that match the Minor Creek  
 734 observation. Fig. A2 shows the  $k^t = 3 \times 10^{-6}$  m/s (saturated permeability of landslide material) and  
 735  $S_s$  (storage coefficient) changes to  $0.14 \text{ m}^{-1}$  are reasonable values. The back calculated diffusivity  
 736  $2 \times 10^{-5} \text{ m}^2/\text{s}$  still falls in the range of estimation.



737

738 **Figure A2. Calibration of Mud Creek hydraulic parameters of the landslide material, simulation of Minor**  
739 **Creek compared with 20 m depth.**

740 **Reference**

741 Agliardi, F., Scuderi, M. M., Fusi, N., & Collettini, C. (2020). Slow-to-fast transition of giant creeping  
742 rocksides modulated by undrained loading in basal shear zones. *Nature communications*, 11(1), 1-  
743 11.

744 Allmendinger, R. W. (1998). Inverse and forward numerical modeling of trishear fault-propagation folds.  
745 *Tectonics*, 17(4), 640-656.

746 Alonso, E. E. (2021). Triggering and motion of landslides. *Géotechnique*, 71(1), 3-59.

747 Angeli, M.-G., Gasparetto, P., Menotti, R. M., Pasuto, A., & Silvano, S. (1996). A visco-plastic model for  
748 slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy. *Quarterly Journal of Engineering  
749 Geology and Hydrogeology*, 29(3), 233-240.

750 Bailey, E. H., Irwin, W. P., & Jones, D. L. (1964). Franciscan and related rocks, and their significance in  
751 the geology of western California. Retrieved from

752 Bandara, S., Ferrari, A., & Laloui, L. (2016). Modelling landslides in unsaturated slopes subjected to  
753 rainfall infiltration using material point method. *International Journal for Numerical and Analytical  
754 Methods in Geomechanics*, 40(9), 1358-1380.

755 Baum, R., & Reid, M. (2000). *Ground water isolation by low-permeability clays in landslide shear zones*.  
756 Paper presented at the Landslides in Research, Theory and Practice: Proceedings of the 8th  
757 International Symposium on Landslides held in Cardiff on 26–30 June 2000.

758 Baum, R. L., Godt, J. W., & Savage, W. Z. (2010). Estimating the timing and location of shallow rainfall-  
759 induced landslides using a model for transient, unsaturated infiltration. *Journal of Geophysical  
760 Research: Earth Surface*, 115(F3).

761 Belmans, C., Wesseling, J. G., & Feddes, R. A. (1983). Simulation model of the water balance of a cropped  
762 soil: SWATRE. *Journal of Hydrology*, 63(3-4), 271-286.

763 Bennett, G. L., Roering, J. J., Mackey, B. H., Handwerger, A. L., Schmidt, D. A., & Guillod, B. P. (2016).  
764 Historic drought puts the brakes on earthflows in Northern California. *Geophysical Research  
765 Letters*, 43(11), 5725-5731.

766 Berti, M., & Simoni, A. (2010). Field evidence of pore pressure diffusion in clayey soils prone to landsliding.  
767 *Journal of Geophysical Research: Earth Surface*, 115(F3).

768 Buscarnera, G., & Di Prisco, C. (2011). Stability criteria for unsaturated shallow slopes. *Géotechnique  
769 Letters*, 1(4), 85-90.

770 Buscarnera, G., & Whittle, A. J. (2012). Constitutive modelling approach for evaluating the triggering of  
771 flow slides. *Canadian Geotechnical Journal*, 49(5), 499-511.

772 Cascini, L., Calvello, M., & Grimaldi, G. M. (2010). Groundwater modeling for the analysis of active slow-  
773 moving landslides. *Journal of Geotechnical and Geoenvironmental Engineering*, 136(9), 1220-  
774 1230.

775 Chen, Y., & Buscarnera, G. (2021). Numerical simulation of unstable suction transients in unsaturated soils:  
776 the role of wetting collapse. *International Journal for Numerical and Analytical Methods in  
777 Geomechanics*, 45(11), 1569-1587.

778 Chen, Y., & Buscarnera, G. (2022). Unified modeling framework of flowslide triggering and runout.  
779 *Géotechnique*, 1-37.

780 Cohen-Waeber, J., Bürgmann, R., Chaussard, E., Giannico, C., & Ferretti, A. (2018). Spatiotemporal  
781 patterns of precipitation-modulated landslide deformation from independent component analysis  
782 of InSAR time series. *Geophysical Research Letters*, 45(4), 1878-1887.

783 Conte, E., Donato, A., & Troncone, A. (2014). A finite element approach for the analysis of active slow-  
784 moving landslides. *Landslides*, 11(4), 723-731.

785 Corominas, J., Moya, J., Ledesma, A., Lloret, A., & Gili, J. A. (2005). Prediction of ground displacements  
786 and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain).  
787 *Landslides*, 2(2), 83-96.

788 Corominas, J., Moya, J., Lloret, A., Gili, J., Angeli, M., Pasuto, A., & Silvano, S. (2000). Measurement of  
789 landslide displacements using a wire extensometer. *Engineering geology*, 55(3), 149-166.

790 Davis, R. O., & Selvadurai, A. P. (2005). *Plasticity and geomechanics*: Cambridge university press.

791 Di Prisco, C., Mancinelli, L., Zanelotti, L., & Pisaniò, F. (2015). Numerical stability analysis of submerged  
792 slopes subject to rapid sedimentation processes. *Continuum Mechanics and Thermodynamics*,  
793 27(1), 157-172.

794 Finnegan, N., Perkins, J., Nereson, A., & Handwerger, A. (2021). Unsaturated Flow Processes and the  
795 Onset of Seasonal Deformation in Slow-Moving Landslides. *Journal of Geophysical Research: Earth  
796 Surface*, 126(5), e2020JF005758.

797 fr/MIDI/, G. M. g. p. u.-m. f. h. w. l. u.-m. (2004). On dense granular flows. *The European Physical Journal E*, 14, 341-365.

798 George, D. L., & Iverson, R. M. (2014). A depth-averaged debris-flow model that includes the effects of  
799 evolving dilatancy. II. Numerical predictions and experimental tests. *Proceedings of the Royal  
800 Society A: Mathematical, Physical and Engineering Sciences*, 470(2170), 20130820.

801 Hahm, W. J., Rempe, D. M., Dralle, D. N., Dawson, T. E., Lovill, S. M., Bryk, A. B., . . . Dietrich, W. E.  
802 (2019). Lithologically controlled subsurface critical zone thickness and water storage capacity  
803 determine regional plant community composition. *Water Resources Research*, 55(4), 3028-3055.

804 Handwerger, A. L., Fielding, E. J., Huang, M. H., Bennett, G. L., Liang, C., & Schulz, W. H. (2019).  
805 Widespread initiation, reactivation, and acceleration of landslides in the northern California Coast  
806 Ranges due to extreme rainfall. *Journal of Geophysical Research: Earth Surface*, 124(7), 1782-  
807 1797.

808 Handwerger, A. L., Fielding, E. J., Sangha, S. S., & Bekaert, D. P. (2022). Landslide sensitivity and  
809 response to precipitation changes in wet and dry climates. *Geophysical Research Letters*,  
810 e2022GL099499.

811 Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M., & Bürgmann, R. (2019). A shift from  
812 drought to extreme rainfall drives a stable landslide to catastrophic failure. *Scientific reports*, 9(1),  
813 1-12.

814 Handwerger, A. L., Roering, J. J., & Schmidt, D. A. (2013). Controls on the seasonal deformation of slow-  
815 moving landslides. *Earth and Planetary Science Letters*, 377, 239-247.

816 Hendron Jr, A., & Patton, F. D. (1985). The vaiont slide. A geotechnical analysis based on new geologic  
817 observations of the failure surface. Volume 1. Main text. Retrieved from

818 Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., & Rocca, F. (2004). Dynamics of slow-moving  
819 landslides from permanent scatterer analysis. *Science*, 304(5679), 1952-1955.

820 Hutchinson, J. (1986). A sliding-consolidation model for flow slides. *Canadian Geotechnical Journal*, 23(2),  
821 115-126.

822 Iverson, R. M. (2000). Landslide triggering by rain infiltration. *Water Resources Research*, 36(7), 1897-  
823 1910.

824 Iverson, R. M. (2005). Regulation of landslide motion by dilatancy and pore pressure feedback. *Journal of  
825 Geophysical Research: Earth Surface*, 110(F2).

826 Iverson, R. M. (2020). Landslide disparities, flume discoveries, and Oso despair. *Perspectives of Earth and  
827 Space Scientists*, 1(1), e2019CN000117.

828 Iverson, R. M., & George, D. L. (2014). A depth-averaged debris-flow model that includes the effects of  
829 evolving dilatancy. I. Physical basis. *Proceedings of the Royal Society A: Mathematical, Physical  
830 and Engineering Sciences*, 470(2170), 20130819.

831 Iverson, R. M., & Major, J. J. (1987). Rainfall, ground-water flow, and seasonal movement at Minor Creek  
832 landslide, northwestern California: Physical interpretation of empirical relations. *Geological  
833 Society of America Bulletin*, 99(4), 579-594.

834 Iverson, R. M., Reid, M., Iverson, N. R., LaHusen, R., Logan, M., Mann, J., & Brien, D. (2000). Acute  
835 sensitivity of landslide rates to initial soil porosity. *Science*, 290(5491), 513-516.

836 Keefer, D. K., & Johnson, A. M. (1983). Earth flows; morphology, mobilization, and movement (2330-  
837 7102). Retrieved from

838

839 Kelsey, H., Coghlán, M., Pitlick, J., & Best, D. (1996). Geomorphic analysis of streamside landslides in the  
840 Redwood Creek basin, northwestern California. Paper presented at the International Journal of  
841 Rock Mechanics and Mining Sciences and Geomechanics Abstracts.

842 Lacroix, P., Handwerger, A. L., & Bièvre, G. (2020). Life and death of slow-moving landslides. *Nature*  
843 *Reviews Earth & Environment*, 1-16.

844 Leroueil, S. (2001). Natural slopes and cuts: movement and failure mechanisms. *Géotechnique*, 51(3), 197-  
845 243.

846 Li, X., Lizárraga, J. J., & Buscarnera, G. (2021). Regional-scale simulation of flowslide triggering in  
847 stratified deposits. *Engineering geology*, 292, 106248.

848 Liingaard, M., Augustesen, A., & Lade, P. V. (2004). Characterization of models for time-dependent  
849 behavior of soils. *International Journal of Geomechanics*, 4(3), 157-177.

850 Lizárraga, J. J., & Buscarnera, G. (2019). Spatially distributed modeling of rainfall-induced landslides in  
851 shallow layered slopes. *Landslides*, 16(2), 253-263.

852 Mansour, M. F., Morgenstern, N. R., & Martin, C. D. (2011). Expected damage from displacement of slow-  
853 moving slides. *Landslides*, 8(1), 117-131.

854 McDougall, S., & Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-  
855 dimensional terrain. *Canadian Geotechnical Journal*, 41(6), 1084-1097.

856 Marinelli, F., Pisanò, F., Di Prisco, C., & Buscarnera, G. (2018). Model-based interpretation of undrained  
857 creep instability in loose sands. *Géotechnique*, 68(6), 504-517.

858 Mitchell, J. K., Campanella, R. G., & Singh, A. (1968). Soil creep as a rate process. *Journal of the Soil*  
859 *Mechanics and Foundations Division*, 94(1), 231-253.

860 Mihalache, C., & Buscarnera, G. (2016). Diffusive instability of pore pressure transients in deformable  
861 unsaturated soils. *Journal of Engineering Mechanics*, 142(11), 04016091.

862 Moore, P. L., & Iverson, N. R. (2002). Slow episodic shear of granular materials regulated by dilatant  
863 strengthening. *Geology*, 30(9), 843-846.

864 Nappo, N., Peduto, D., Mavrouli, O., van Westen, C. J., & Gullà, G. (2019). Slow-moving landslides  
865 interacting with the road network: Analysis of damage using ancillary data, in situ surveys and  
866 multi-source monitoring data. *Engineering geology*, 260, 105244.

867 Nereson, A., Davila Olivera, S., & Finnegan, N. (2018). Field and Remote-Sensing Evidence for Hydro-  
868 mechanical Isolation of a Long-Lived Earthflow in Central California. *Geophysical Research*  
869 *Letters*, 45(18), 9672-9680.

870 Oberender, P. W., & Puzrin, A. M. (2016). Observation-guided constitutive modelling for creeping  
871 landslides. *Géotechnique*, 66(3), 232-247.

872 Obrzud, R. (2010). The hardening soil model: A practical guidebook: Zace Services.

873 Pastor, M., Martin Stickle, M., Dutto, P., Mira, P., Fernández Merodo, J., Blanc, T., Benítez, A. (2015). A  
874 viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides.  
875 *Continuum Mechanics and Thermodynamics*, 27(1), 21-47.

876 Petley, D., Mantovani, F., Bulmer, M., & Zannoni, A. (2005). The use of surface monitoring data for the  
877 interpretation of landslide movement patterns. *Geomorphology*, 66(1-4), 133-147.

878 Puzrin, A. M., & Schmid, A. (2011). Progressive failure of a constrained creeping landslide. *Proceedings*  
879 *of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 467(2133), 2444-2461.

880 Rice, J. R. (1975). On the stability of dilatant hardening for saturated rock masses. *Journal of Geophysical*  
881 *Research*, 80(11), 1531-1536.

882 Roadifer, J. W., Forrest, M. P., & Lindquist, E. (2009). Evaluation of shear strength of mélange foundation  
883 at Calaveras Dam. Paper presented at the Proceedings of the 29th US Soc. for Dams, Annual  
884 Meeting and Conference: "Managing our Water Retention Systems", April.

885 Roering, J. J., Mackey, B. H., Handwerger, A. L., Booth, A. M., Schmidt, D. A., Bennett, G. L., & Cerovski-  
886 Darriau, C. (2015). Beyond the angle of repose: A review and synthesis of landslide processes in  
887 response to rapid uplift, Eel River, Northern California. *Geomorphology*, 236, 109-131.

888 Roscoe, K. H., Schofield, A., & Wroth, a. P. (1958). On the yielding of soils. *Géotechnique*, 8(1), 22-53.

889 Rutte, D., Garber, J., Kylander-Clark, A., & Renne, P. R. (2020). An exhumation pulse from the nascent  
890 Franciscan subduction zone (California, USA). *Tectonics*, 39(10), e2020TC006305.

891 Scheingross, J. S., Minchew, B. M., Mackey, B. H., Simons, M., Lamb, M. P., & Hensley, S. (2013). Fault-  
892 zone controls on the spatial distribution of slow-moving landslides. *Bulletin*, 125(3-4), 473-489.

893 Schofield, A. N., & Wroth, P. (1968). Critical state soil mechanics (Vol. 310): McGraw-hill London.

894 Schulz, W. H., Smith, J. B., Wang, G., Jiang, Y., & Roering, J. J. (2018). Clayey landslide initiation and  
895 acceleration strongly modulated by soil swelling. *Geophysical Research Letters*, 45(4), 1888-1896.

896 Schulz, W., Smith, J., Wang, G., Jiang, Y., Deuell, A., Reeves, R., . . . Roering, J. (2018). Data from in-  
897 situ landslide monitoring, Trinity county, California. *US Geol. Survey, Reston, VA, USA*.

898 Siman-Tov, S., & Brodsky, E. E. (2021). Distinguishing between rheophysical regimes of fluid-saturated  
899 granular-flows using dilatancy and acoustic emission measurements. *Granular Matter*, 23(2), 1-11.

900 Sloan, S. W., & Abbo, A. J. (1999). Biot consolidation analysis with automatic time stepping and error  
901 control Part 1: theory and implementation. *International Journal for Numerical and Analytical  
902 Methods in Geomechanics*, 23(6), 467-492.

903 Soga, K., Alonso, E., Yerro, A., Kumar, K., & Bandara, S. (2016). Trends in large-deformation analysis of  
904 landslide mass movements with particular emphasis on the material point method. *Géotechnique*,  
905 66(3), 248-273.

906 Song, Z., Li, X., Lizárraga, J. J., Zhao, L., & Buscarnera, G. (2020). Spatially distributed landslide  
907 triggering analyses accounting for coupled infiltration and volume change. *Landslides*, 17(12),  
908 2811-2824.

909 Song, Z., Li, X., Lizárraga, J. J., Zhao, L., & Buscarnera, G. (2021). Shallow landslide triggering in  
910 unsaturated vegetated slopes: Efficient computation of susceptibility maps. *Computers &  
911 Geosciences*, 154, 104826.

912 Swain, D. L. (2021). A shorter, sharper rainy season amplifies California wildfire risk. *Geophysical  
913 Research Letters*, 48(5), e2021GL092843.

914 Tan, Q.-M. (2011). Dimensional analysis: with case studies in mechanics: Springer Science & Business  
915 Media.

916 Terzaghi, K. (1925). Principles of soil mechanics. *Engineering News-Record*, 95(19-27), 19-32.

917 Van Asch, T. W., Van Beek, L., & Bogaard, T. (2007). Problems in predicting the mobility of slow-moving  
918 landslides. *Engineering geology*, 91(1), 46-55.

919 Vermeer, P. A., & De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock. *HERON*, 29  
920 (3), 1984.

921 Voight, B. (1978). Rockslides and avalanches: Elsevier Scientific Pub. Co.

922 Warrick, J. A., Ritchie, A. C., Schmidt, K. M., Reid, M. E., & Logan, J. (2019). Characterizing the  
923 catastrophic 2017 Mud Creek landslide, California, using repeat structure-from-motion (SfM)  
924 photogrammetry. *Landslides*, 16(6), 1201-1219.

925 Wen, T., Tang, H., Wang, Y., Lin, C., & Xiong, C. (2017). Landslide displacement prediction using the  
926 GA-LSSVM model and time series analysis: a case study of Three Gorges Reservoir, China.  
927 *Natural Hazards and Earth System Sciences*, 17(12), 2181-2198.

928 Wood, D. M. (2004). Geotechnical Modelling (Applied geotechnics; v. 1): Taylor & Francis Group/Books.

929 Wu, L.-Z., Selvadurai, A. P. S., Zhang, L. M., Huang, R.-Q., & Huang, J. (2016). Poro-mechanical coupling  
930 influences on potential for rainfall-induced shallow landslides in unsaturated soils. *Advances in  
931 water resources*, 98, 114-121.

932 Zienkiewicz, O. C., Taylor, R. L., Taylor, R. L., & Taylor, R. L. (2000). The finite element method: solid  
933 mechanics (Vol. 2): Butterworth-heinemann.

934