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Abstract 9 

Slow-moving landslides affect proximal infrastructures and communities, often causing extensive economic loss. 10 

While many of these landslides exhibit slow and episodic sliding for decades or more, they sometimes accelerate 11 

rapidly and fail catastrophically. Although it is known that the landslide dynamics are controlled by hydro-mechanical 12 

processes, few analytical models enable a versatile incorporation of the inelastic behavior of the shear zone materials, 13 

thus hindering an accurate quantification of how their properties modulate the magnitude and rate of coupled fluid 14 

flow and landslide motion. To address this problem, we develop a simulation framework incorporating rainfall-15 

induced, deformation-mediated pore-water pressure transients at the base of active landslides. The framework involves 16 

the computation of two sequential diffusion processes, one within an upper rigid-porous landslide block, and another 17 

within the inelastic shear zone. Although the framework can be linked to any elastoplastic constitutive laws, here we 18 

model landslide motion through an elastic-perfectly plastic frictional model, which enables us to account for standard 19 

properties of earthen materials such as elastic moduli, friction angle, dilation angle, and hydraulic conductivity. 20 

Numerical case studies relevant to slow-moving landslides in the California Coast Ranges show that the proposed 21 

formulation captures different temporal patterns of movement induced by precipitation. In each of the case, we 22 

achieved a relatively accurate match between data and simulations by incorporating positive dilation coefficients, 23 

which leads to spontaneous generation of negative excess pore-water pressure and self-regulating motion. Conversely, 24 

simulations with no dilation (hence, reflecting the approach of critical state) produce sharp acceleration, typical of 25 



catastrophic runaway acceleration. Our findings encourage the use of the proposed framework in conjunction with 26 

constitutive laws tailored to site-specific geomaterial properties and data availability, thus favoring a versatile 27 

representation of the variety of creeping landslide trends observed in nature. 28 
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1. Introduction  32 

Slow-moving landslides are phenomena which unfold over several years, often even decades, with 33 

major implications for the serviceability of infrastructures, the safety of communities, and the local 34 

economy (Nappo, et al., 2019; Lacroix et al., 2020). Most slow-moving landslides deform at low 35 

rates (< 1 m/year) but can cause severe damage over time (Mansour et al., 2011). Some of them 36 

can even experience catastrophic acceleration and lead to fatalities (Voight, 1978; Hendron and 37 

Patton, 1985). The mobilization of these landslides is governed by environmental factors, such as 38 

precipitation, which acts to modulate the effective stress conditions in the slope (Petley et al., 2005; 39 

Cascini et al., 2010; Oberender and Puzrin, 2016). Infiltration of water leads to pore-water pressure 40 

development, which decreases the effective normal stress and reduces the frictional strength of the 41 

landslide material. As an outcome, these types of landslides normally accelerate in the wet season 42 

and slow down or arrest in the dry season (Hilley et al., 2004; Cascini et al., 2010; Handwerger et 43 

al., 2013).  44 

In conjunction with frictional shear modulated by rainfall infiltration, downslope sliding is also 45 

mediated by the tendency of geomaterials to undergo inelastic volume change. This volume change 46 

can alter fluid flow and pore-water pressure development under certain conditions (Belmans et al., 47 

1983; Wu et al., 2016; Song et al., 2020). The role of volumetric deformation on the sliding 48 

behavior has been extensively documented through field and laboratory measurements (Iverson et 49 

al., 2000; Moore and Iverson, 2002; Agliardi et al., 2020) and numerical models (Iverson 2005; 50 

Soga et al., 2016; Bandara et al., 2016). These studies have shown that the interaction between 51 

water infiltration and material volume change (hydro-mechanical coupling) may play an important 52 

role in governing the dynamics of slow-moving landslides.  53 



A variety of methods exist to model these hydro-mechanical couplings. Such approaches account 54 

for shear zone inelasticity in the coupled field equations solving for pore fluid mass and momentum 55 

balance (Zienkiewicz et al., 2000; McDougall and Hungr, 2004; Soga et al., 2016). Although these 56 

methods can be used to study landslides of any morphology and kinematics, most have relatively 57 

high computational costs, especially if a seamless link between slow hydrologic triggering and 58 

rapid post-failure movements is desirable and their dynamics unfolds over long time, of the order 59 

of years or decades. In order to reduce the computational costs of full-fledged numerical methods, 60 

analytical techniques can be used to identify the mechanisms underpinning landslide motion and 61 

explain the role of the mechanical properties of the shear zone material. For example, early 62 

contributions by Hutchinson (1986) emphasized the crucial relation between the dissipation of 63 

excess pore-water pressure (i.e., consolidation mechanisms) and the dynamics of downslope 64 

sliding. Such models, formulated to describe liquefiable soils displaying positive feedbacks 65 

between deformation and pore-water pressure growth, led to a sliding-consolidation framework 66 

able to infer landslide velocity and runout for a variety of initial conditions. Despite its many 67 

benefits, this approach does not account for the inelastic deformation of the materials during 68 

liquefaction, and therefore cannot explicitly resolve the triggering of a landslide and its role on the 69 

onset of catastrophic motion (Buscarnera and Whittle, 2012). A more profound link between 70 

landslide triggering and post-failure movement was later proposed by Iverson (2005), whose 71 

seminal work encompassed excess pore-water pressure change through basal flux boundary 72 

conditions mediated by material dilation/contraction. However, this model too did not fully resolve 73 

the effect of inelastic mechanisms mediated by the stress-strain nonlinearity, in that excess pore-74 

water pressure dissipation was modeled via poroelastic protocols based on a constant diffusion 75 

coefficient. This assumption conflicts with the notion that inelastic deformation can lead to major 76 



alterations of the shear zone diffusivity (Rice, 1975; di Prisco et al., 2015; Chen and Buscarnera, 77 

2021). These coupled effects render the process inherently poroplastic, which implies that a stress-78 

strain constitutive law is necessary to quantify the timescale of excess pore-water pressure 79 

dissipation within the shear zone, as well as the magnitude and rate of landslide motion resulting 80 

from inelastic deformation.  81 

In this paper, we account for inelastic deformation during the entire life cycle of landslide motion 82 

by developing a sliding-consolidation framework enabling the straightforward use of constitutive 83 

laws with any desired level of sophistication. Our approach ensures readily deployable, low 84 

computational cost simulations and is based on that developed by Chen and Buscarnera (2022). 85 

Specifically, the framework proposed here resolves rainfall infiltration within the active sliding 86 

block, thus connecting ground surface precipitation to the deformation dynamics. For this purpose, 87 

the model involves two sequential diffusion processes, one taking place within a layer of rigid-88 

porous landslide material (which serves as hydrologic forcing), and another occurring within the 89 

inelastic shear zone (which affects generation and dissipation of excess pore-water pressure). First, 90 

the model is tested with reference to simple synthetic scenarios of precipitation, illustrating its 91 

performance in interpreting the interaction between matrix deformation and pore-water pressure 92 

dissipation. Then, it is used to interpret recorded time histories of landslide motion at three 93 

landslide sites located in the California Coast Ranges, USA.  94 

2. Model description 95 

Field evidence suggests that the deformation of creeping (i.e., slow-moving) landslides originates 96 

from localized shear zones with thickness varying between several centimeters to a few meters 97 

(Corominas et al., 2000; Leroueil, 2001; Puzrin and Schmid, 2011; Wen et al., 2017; Alonso, 2021). 98 



In-situ monitoring show that for many slow-moving landslides the upper block slides downslope 99 

as a rigid body overriding the stable material underneath (e.g., bedrock) (Fig. 1a). When 100 

precipitation occurs, infiltration impacts, sequentially, the landslide material and the shear zone, 101 

generating corresponding pore-water pressure transients. As an outcome, under a constant total 102 

overburden, the effective normal stress decreases in response to the transient pore-water pressure 103 

rise (Fig. 1b) in accordance with Terzaghi’s (1925) effective stress definition. The stress 104 

components of the shear zone material can be defined as:  105 

 106 

Figure 1. Schematic of slow-moving landslide slope profile and precipitation induced stress change. a) slope 107 

components under infinite slope geometry, b) material stress path induced by rainfall infiltration.  108 

𝜎𝜎𝑑𝑑 = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃  , 109 

𝜏𝜏𝑑𝑑 = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃
 ,                                                                                                                       (1) 110 

 𝜎𝜎 
′ = 𝜎𝜎𝑑𝑑 − 𝑝𝑝𝑤𝑤, 111 

where 𝜎𝜎𝑑𝑑 and 𝜏𝜏𝑑𝑑 are the total normal stress and shear stress determined from the slope inclination 112 

𝜃𝜃, ℎ is the thickness of the active sliding block (consists of landslide material and shear zone), and 113 

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠 is the saturated unit weight of the soil. 𝜎𝜎 
′ is the effective normal stress, and 𝑝𝑝𝑤𝑤 is the pore-114 

water pressure. Incorporating elastoplastic constitutive models for the shear zone material enables 115 

a b 



the landslide dynamics to be analyzed by simulating the deformation in both the tangential and 116 

normal direction caused by hydrologic processes.  117 

 118 

Figure 2. Schematic of the 1D infinite slope model used for coupled hydro-mechanical analyses. a) Cross section 119 

of the landslide material. The pore-water pressure distribution (solid blue line) of a normal profile (dashed 120 

black line) and corresponding water level (horizontal blue dots) at different times. The governing equation for 121 

the diffusion process inside the landslide material is also illustrated. b) Zoom of the shear zone. The solid lines 122 

represent the stationary pore-water pressure induced by the pressure input on top of the shear zone, while the 123 

dashed blue lines represent for possible pore-water pressure development mediated by the dilation as explained 124 

in Sections 3.1 and 3.2. c) The governing equations for the diffusion process inside the landslide material. 125 

In this study, the hydro-mechanical equations controlling the dynamics of a creeping landslide are 126 

set to address two separate diffusion processes: one within the upper landslide material, here 127 

treated as a porous, rigid block; another within the inelastic shear zone (Fig. 2). The former 128 

diffusion mechanism determines the main external loading, i.e., hydrological forcing for the basal 129 

shear zone following the variation of water level and is solved with a previously developed 1D 130 

Finite Element solver for infinite slopes (Lizarraga and Buscarnera, 2019; more details in Section 131 

a 

c b 



2.1). By contrast, the second diffusion mechanism controls the timescale of pore-water pressure 132 

development and dissipation in response to inelastic deformation within the basal shear zone. The 133 

corresponding hydro-mechanical couplings affect both diffusivity and deformability beneath the 134 

landslide mass, thus requiring the use of site-specific constitutive laws of the shear zone material 135 

(Sections 2.2 and 2.3).    136 

2.1 Pore-water pressure diffusion within the landslide material 137 

Here, we solve the water mass balance in the landslide material to determine the pore-water 138 

pressure transients induced by rainfall infiltration on top of the shear zone, which ultimately 139 

controls the hydro-mechanical coupling of the shear zone. These transients are computed on the 140 

basis of Eq. 2, where the diffusive effects are encapsulated into two constant parameters, the 141 

storage coefficient, 𝑆𝑆𝑠𝑠, and the saturated permeability of the landslide material, 𝑘𝑘𝑡𝑡, (e.g., Iverson, 142 

2000; Berti and Simoni, 2010; Cohen-Waeber et al., 2018), as follows: 143 

𝑆𝑆𝑠𝑠
𝜕𝜕𝑝𝑝𝑤𝑤
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑡𝑡 𝜕𝜕
2𝑝𝑝𝑤𝑤
𝜕𝜕𝑧𝑧2

,                                                                                                                                              (2) 144 

where 𝑧𝑧 is the normal distance from the ground surface. In this manuscript, the above equation is 145 

solved through the numerical algorithm proposed by Lizárraga and Buscarnera (2019). For the 146 

sake of simplicity, the hydrologic triggering is simulated by imposing flow (infiltration) conditions 147 

at the top of the landslide material and an impervious boundary at its bottom due to the 148 

impermeable bedrock below the shear zone (Baum et al., 2010). While more general analyses 149 

accounting for permeability contrasts can be carried out (Lizarraga and Buscarnera, 2019), this 150 

simplification has limited qualitative bearing on the analyses shown in this paper and will therefore 151 

be used as a convenient working hypothesis.  152 



We simulate dry and wet seasonal changes that are typical of sites in California (Swain, 2021), 153 

which is the focus area of our research. During the simulated wet season, we apply a surface flux 154 

boundary condition equivalent to the precipitation. Water run-off was not considered, but its 155 

incorporation is straightforward, if needed, by accounting for moisture change at the surface (Song 156 

et al., 2021). Finally, to capture the widely observed sequence of pore-water pressure rise during 157 

the wet season, followed by its decrease during the dry season (e.g., Iverson and Major, 1987; 158 

Schulz et al., 2018a; Finnegan et al., 2021), pressure boundary conditions were imposed at the top 159 

of the slope during periods with no rainfall.  160 

2.2 Coupled flow-deformation within the shear zone  161 

Within the shear zone, coupled flow-deformation processes can be simulated by analyzing the 162 

downslope dynamics and water mass balance simultaneously (Chen and Buscarnera, 2022). In this 163 

portion of the slope, the initial stress state is altered by the interaction between water flow and 164 

deformation. From a mechanical viewpoint, the downslope dynamics implies: 165 

𝑚𝑚𝑚𝑚 = 𝜏𝜏𝑑𝑑 − 𝜏𝜏𝑟𝑟 ,                                                                                                                                                                     (3) 166 

where m = 𝜌𝜌𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, is the total mass of the active sliding block, a, its acceleration, 𝜏𝜏𝑑𝑑, the driving 167 

shear stress (Eq. 1), 𝜏𝜏𝑟𝑟, the resisting stress, here regarded as a function of the local constitutive 168 

response, as follows: 169 

𝜏̇𝜏𝑟𝑟 = 𝐺𝐺(𝛾̇𝛾 − 𝛾̇𝛾𝑝𝑝); 𝜎̇𝜎′ = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝜀𝜀̇ − 𝜀𝜀̇𝑝𝑝).                                                                                                                         (4) 170 

where 𝐺𝐺 is the elastic shear stiffness, 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 is elastic oedometric modulus. 𝜀𝜀 and 𝜀𝜀𝑝𝑝 are the total 171 

and plastic normal strain; 𝛾𝛾 and 𝛾𝛾𝑝𝑝 are the total and plastic shear strain. Eq. 4 involves both shear 172 

stress and the effective normal stress; the latter is indeed a function of the normal strain and 173 

controlled by volume change. As it will be discussed below in Section 2.3, plastic strain increments 174 



can be computed with constitutive models. Here, to link the shear strain to the landslide movement, 175 

the shear strain rate, 𝛾̇𝛾, is computed by assuming a linear velocity (𝑣𝑣) profile within the shear zone 176 

in z direction (MiDi, 2004; Pastor et al., 2015; Siman-Tov and Brodsky, 2021), as follows: 177 

𝛾̇𝛾 = 𝑣𝑣
ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 ,                                                                                                                                            (5) 178 

where ℎ𝑠𝑠 represents the thickness of the shear zone (Fig. 1a). This choice enables us to use Eq. (3) 179 

~ (5) to derive the following sliding equation: 180 

𝜌𝜌𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣̈𝑣 = 𝜏̇𝜏𝑑𝑑 −G 𝑣𝑣
ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝐺𝐺𝛾̇𝛾𝑝𝑝,                                                                                                                (6) 181 

where 𝜌𝜌𝑠𝑠 is the saturated density of soil. The effective normal stress change in Eq. 4 must follow 182 

the rates of volume change compatible with the water mass balance in the shear zone. Here, this 183 

process is simulated by treating the fluid as incompressible and considering the rate of volume 184 

change as the only source of diffusive feedbacks within the shear zone (Sloan and Abbo, 1999; 185 

Mihalache and Buscarnera, 2016), as follows: 186 

𝑘𝑘𝑏𝑏

𝛾𝛾𝑤𝑤

𝜕𝜕2𝑝𝑝𝑤𝑤
𝜕𝜕𝑧𝑧2

+ 𝜀𝜀  ̇ = 0,                                                                                                                            (7) 187 

where 𝑘𝑘𝑏𝑏 is the saturated permeability of the shear zone material, and 𝛾𝛾𝑤𝑤 is the unit weight of 188 

water. The normal strain rate consists of elastic and plastic deformation rates (𝜀𝜀  ̇ = 𝜀𝜀̇𝑒𝑒 + 𝜀𝜀̇𝑝𝑝). 189 

Therefore, we can rewrite Eq. 7, as follows: 190 

𝑘𝑘𝑏𝑏

𝛾𝛾𝑤𝑤

𝜕𝜕2𝑝𝑝𝑤𝑤
𝜕𝜕𝑧𝑧2

+ 𝜎̇𝜎𝑑𝑑−𝑝̇𝑝𝑤𝑤𝑏𝑏

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
+ 𝜀𝜀̇𝑝𝑝 = 0,                                                                                                                               (8) 191 

from which it is readily apparent that the inelastic volume change regulates the pressure diffusion 192 

process across the shear zone.  193 



In our model, the time varying pore-water pressure input, 𝑝̇𝑝𝑤𝑤𝑡𝑡 , at the boundary between the 194 

landslide material and shear zone (here computed through the uncoupled diffusion analysis in Eq. 195 

2) will serve as a forcing in Eq. 8, which is aimed at computing the change of the pore-water 196 

pressure at the bottom of the shear zone (𝑝̇𝑝𝑤𝑤𝑏𝑏 ). While Eq. 8 is a second order partial differential 197 

equation (PDE), a parabolic approximation of the excess pore-water pressure (𝑝𝑝𝑤𝑤𝑒𝑒 ) profile 198 

compatible with analytical solutions of soil consolidation (Wood, 2004) is here used to condense 199 

the analysis of the landslide dynamics to an ordinary differential equation (ODE) that can be solved 200 

with numerical and/or analytical solutions. Specifically, use of a parabolic pressure profile implies 201 

(equation derivation see Appendix 1): 202 

𝜕𝜕2𝑝𝑝𝑤𝑤
𝜕𝜕𝑧𝑧2

= 2(𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠−𝑝𝑝𝑤𝑤𝑏𝑏 )
ℎ𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃

,                                                                                                                             (9) 203 

where 𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠 represent the stationary (steady state) pore-water pressure at the bottom of shear zone 204 

corresponding to a hydrological forcing applied on the top of the shear zone (𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑤𝑤𝑡𝑡 +205 

ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾𝑤𝑤 , and ∆𝑝𝑝𝑤𝑤𝑡𝑡 = ∆𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠 ), 𝑝𝑝𝑤𝑤𝑏𝑏  is the pore-water pressure at the bottom of the shear zone. 206 

Combining Eq. 9 with Eq. 7, we can then define a set of coupled governing equations conveying 207 

the effect of the inelasticity of the shear zone material on the landslide dynamics as follows:  208 

𝑝̇𝑝𝑤𝑤𝑏𝑏 = 2𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑏𝑏

𝛾𝛾𝑤𝑤ℎ𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃
(𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠 − 𝑝𝑝𝑤𝑤𝑏𝑏 ) + 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝜀𝜀̇𝑝𝑝 + 𝜎̇𝜎𝑑𝑑 ,                                                                                  (10a) 209 

𝜌𝜌𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣̈𝑣 = −G 𝑣𝑣
ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝐺𝐺𝛾̇𝛾𝑝𝑝 + 𝜏̇𝜏𝑑𝑑.                                                                                                          (10b) 210 

The solution to Eq. 10 can be addressed once their inelastic deformation terms are specialized with 211 

constitutive models.  212 

2.3 Constitutive models 213 



While an extensive number of constitutive relations for earthen material is nowadays available, a 214 

natural choice for a specialized form of the proposed framework is a perfectly plastic frictional 215 

law (Davis and Selvadurai, 2005). In fact, such a constitutive choice enables simplicity and 216 

straightforward identification of model parameters for a variety of landslide case studies (Van 217 

Asch et al., 2007; Corominas et al., 2005; Conte et al., 2014; Schulz et al., 2018a). In the case of 218 

frictional plasticity, we define: 219 

𝑓𝑓 = 𝜏𝜏 − 𝜎𝜎′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,        𝑔𝑔 = 𝜏𝜏 − 𝜎𝜎′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,                                                                                                 (11) 220 

where 𝑓𝑓 and 𝑔𝑔 are a yield function and a plastic potential, respectively. 𝜑𝜑 is the friction angle and 221 

𝜓𝜓 represents the dilation angle. In this scenario, the plastic deformation rate in both normal and 222 

tangential directions can be obtained as:  223 

𝜀𝜀̇𝑝𝑝 = 𝛬𝛬 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

;  𝛾̇𝛾𝑝𝑝 = 𝛬𝛬 𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏𝑟𝑟

,                                                                                                                    (12) 224 

where 𝛬𝛬 is the plastic multiplier (i.e., a scalar that accounts for the magnitude of plastic effects) 225 

determined by the consistency condition of the yield surface. By using effective normal stress and 226 

shear strain as control parameters (Buscarnera et al., 2011), it follows that: 227 

𝛬𝛬 = 1
𝐻𝐻−𝐻𝐻2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

𝜎𝜎′ + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏𝑟𝑟

𝐺𝐺 𝛾̇𝛾),                                                                                                            (13) 228 

where H is the hardening modulus, 𝐻𝐻2 is a plastic modulus determined by the control conditions 229 

used to quantify plastic effects. Based on Eq. 11, the plastic moduli can be expressed as: 230 

𝐻𝐻 = 0; 𝐻𝐻1 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

= −𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;  𝐻𝐻2 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏𝑟𝑟

𝐺𝐺 𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏𝑟𝑟

= −𝐺𝐺.                               (14) 231 



Here, H = 0 in that the selected constitutive law is perfectly plastic. Introducing Eq. 14 into Eq. 13 232 

and combining the result with Eq. 10, the complete set of coupled governing equations based on 233 

the selected constitutive law is: 234 

𝑝̇𝑝𝑤𝑤𝑏𝑏 = 𝑘𝑘𝑏𝑏𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝛾𝛾𝑤𝑤

2(𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠−𝑝𝑝𝑤𝑤𝑏𝑏 )
ℎ𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃

 𝐴𝐴 + 𝐵𝐵 1
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 𝐺𝐺𝐺𝐺
ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝜎̇𝜎𝑑𝑑 ,                                                                               (15a) 235 

𝜌𝜌𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣̈𝑣 = 𝑘𝑘𝑏𝑏𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝛾𝛾𝑤𝑤

2(𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠−𝑝𝑝𝑤𝑤𝑏𝑏 )
ℎ𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃

𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −𝐵𝐵 𝐺𝐺𝐺𝐺
ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝜏̇𝜏𝑑𝑑 ,                                                                               (15b) 236 

where A and B are plastic coefficients expressed as A = 𝐺𝐺
𝐺𝐺+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

, and 𝐵𝐵 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐺𝐺+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 , 237 

respectively. From Eq. 15, we can compute the interaction between shear zone hydraulic flow and 238 

mechanical deformation when rainfall infiltration occurs.  239 

2.4 Nondimensionalization  240 

It is often beneficial to identify nondimensional timescales controlling dynamic systems because 241 

it helps us understand the relation between distinct timescales involved in our study such as rainfall 242 

infiltration and material consolidation. Also, it can reduce the complexity of the governing 243 

equations and reveal the key parameters needed to understand complex physical processes. In this 244 

study, standard nondimensionalization strategies are used (Tan, 2011). This involves rescaling the 245 

system variables by normalizing them for a reference quantity, here denoted through an overhead 246 

hat (e.g., 𝑡̂𝑡 for a reference time). On such basis, the normalized quantities can be displayed through 247 

an overhead tilde (e.g., 𝑡̃𝑡 for normalized time, equals to t/𝑡̂𝑡). Selection of reference quantities with 248 

clear physical meaning facilitates the identification of the underlying mechanics. Here, the 249 

reference time is selected as the duration of forcing (𝑡̂𝑡 = 𝑇𝑇), while other reference quantities are 250 

𝜎𝜎� = 𝑝̂𝑝𝑤𝑤 = 𝜎𝜎0 = 𝛾𝛾𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃, 𝜏̂𝜏 = 𝜏𝜏0 = tan𝜃𝜃 𝜎𝜎0,𝑎𝑎� = 𝜏𝜏0/𝜌𝜌𝑠𝑠ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑣𝑣� = 𝑎𝑎�𝑡̂𝑡. 251 



Accordingly, the governing equation (Eq. 15) can be re-written as: 252 

𝑝𝑝�̇𝑤𝑤𝑏𝑏 = 2𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒𝐴𝐴(𝑝𝑝�𝑤𝑤𝑠𝑠𝑠𝑠 − 𝑝𝑝�𝑤𝑤𝑏𝑏 ) − 𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃
𝑡𝑡𝑡𝑡𝑡𝑡𝜓𝜓

𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒 𝑣𝑣� + 𝜎𝜎�̇𝑑𝑑  ,                                                                                                  (16a) 253 

𝑣𝑣�̈ = 2𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒𝐴𝐴
𝑡𝑡𝑡𝑡𝑡𝑡𝜓𝜓
𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃

(𝑝𝑝�𝑤𝑤𝑠𝑠𝑠𝑠 − 𝑝𝑝�𝑤𝑤𝑏𝑏 ) − 𝐵𝐵𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒 𝑣𝑣� + 𝜏̇̃𝜏𝑑𝑑  ,                                                                                                (16b) 254 

where 𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒 = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘𝑏𝑏𝑇𝑇
𝛾𝛾𝑤𝑤ℎ𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃

, is the ratio of total forcing time divided by the characteristic consolidation 255 

time for an elastic material, which controls the shear zone hydraulic diffusion when it deforms 256 

elastically. In addition, considering the standard expression of the shear wave velocity in an elastic 257 

medium, 𝑣𝑣𝑠𝑠𝑒𝑒 = �𝐺𝐺/𝜌𝜌, it is possible to define a reference time for a shear wave to travel across the 258 

active sliding block (𝑡̃𝑡ℎ) and the shear zone (𝑡̃𝑡ℎ𝑠𝑠) as: 259 

𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒 = (𝑡̃𝑡ℎ𝑡̃𝑡ℎ𝑠𝑠)−1 = 𝐺𝐺𝑇𝑇2

𝜌𝜌ℎℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃
 .                                                                                                                          (17) 260 

Therefore, the coupled behavior of a creeping landslide inside the shear zone involves a number 261 

of controlling nondimensional parameters dictating its dynamics, including the diffusion time (𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒 ), 262 

the shear wave propagation time (𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒 ), the slope inclination (𝜃𝜃), and the elastoplastic properties 263 

encapsulated into the plastic coefficients A and B. 264 

3. Model performance 265 

3.1 Precipitation-induced diffusion and elastic response  266 

To explore our model’s ability to simulate landslide movements induced by precipitation, the 267 

model is first tested with an artificial (and unrealistic) rainfall event, which lasts for 30 days (𝑇𝑇) 268 

with a constant intensity (𝑞𝑞 ). While the analysis is purely illustrative, the range of model 269 

parameters is chosen on the basis of landslide sites in the California Coast Ranges (Keefer and 270 



Johnson, 1983; Kelsey et al., 1996). Hence, the rainfall intensity is set equal to the saturated 271 

permeability of landslide material (𝑘𝑘𝑡𝑡), here assumed to be 3x10-6 m/s (according to measurements 272 

from Iverson and Major, 1987) and the storage coefficient (𝑆𝑆𝑠𝑠) is set to 0.26. The pore-water 273 

pressure change at the interface between the landslide material and the active shear zone (∆𝑝𝑝𝑤𝑤𝑡𝑡  i.e., 274 

∆𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠) can be computed numerically. The results are provided in Fig. 3a, which shows that the 𝑝𝑝𝑤𝑤𝑡𝑡  275 

increases monotonically after the wetting front approaches the top of the shear zone when 𝑡̃𝑡 is 276 

around 0.3.  277 

 278 

Figure 3. Simulation of pore-water pressure transients caused by precipitation. a) Simulated pore-water 279 

pressure change at top of shear zone caused by a constant rainfall. b) Computational results of pore-water 280 

pressure change at bottom of shear zone, corresponding to different value of 𝑻𝑻𝒍𝒍𝒍𝒍𝒆𝒆 ; c & d) schematics of pore-281 

water pressure distribution with higher and lower 𝑻𝑻𝒍𝒍𝒍𝒍𝒆𝒆 , where higher 𝑻𝑻𝒍𝒍𝒍𝒍𝒆𝒆  results from shear zone permeability 282 

(𝒌𝒌𝒃𝒃) 5.5 x10-7 m/s, and lower 𝑻𝑻𝒍𝒍𝒍𝒍𝒆𝒆  indicate 𝒌𝒌𝒃𝒃 =5.5 x10-12 m/s. The thickness of the landslide material is 20m. 283 

Stiffness parameters are taken as: oedometric modulus 𝑬𝑬𝒐𝒐𝒐𝒐𝒐𝒐 = 5 MPa, and shear modulus G = 2 MPa. 284 

b a 

c d 



The computed 𝑝𝑝𝑤𝑤𝑡𝑡  will then serve as the hydraulic boundary condition activating coupled behavior 285 

inside the deformable shear zone. Simulations are conducted for different values of 𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒  (Eq. 16) to 286 

examine its role on pore-water pressure diffusion processes within the shear zone. In this study, 287 

𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒  depends on the value of the hydraulic conductivity, 𝑘𝑘𝑏𝑏, as discussed in the previous section.  288 

Fig. 3b shows that, when 𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒  is relatively high, diffusion takes place rapidly within the shear zone, 289 

thus the hydraulic response (∆𝑝𝑝𝑤𝑤𝑏𝑏 ) at the bottom of the shear zone follows the hydrologic forcing 290 

(∆𝑝𝑝𝑤𝑤𝑡𝑡 , i.e., ∆𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠). The pore-water pressure profile in this scenario is illustrated in Fig. 3c. On the 291 

contrary, pore-water pressure change can be delayed in the shear zone in the presence of low 𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒  292 

values. This is illustrated in Fig. 3d, where the pore-water pressure at the bottom of the shear zone 293 

barely changes despite the application of a hydrological forcing at the top of the deformable zone. 294 

Since these tests are conducted for landslide material under an elastic regime, infiltration does not 295 

involve approaching of the yield surface and mobilization of the plastic resources of the shear zone. 296 

As an outcome, no sliding is generated.  297 

3.2 Model behavior under the plastic regime 298 

When the fluctuations of the effective stress state induced by infiltration are large enough to engage 299 

the frictional yield surface, plastic shear strain and consequent sliding occur. Separating from the 300 

elastic regime, the material yield surface also starts to regulate the stress changes and 301 

corresponding deformation. For example, if the material dilation angle (ψ) is zero, no negative 302 

excess pore-water pressure can be generated. In this context, the pore-water pressure increase will 303 

be the same as triggered by water diffusion in the elastic regime (Fig. 1b). Yet, under the 304 

elastoplastic framework, the yield surface cannot be surpassed. The pore-water pressure increase 305 

will thus lead to stress changes along the yield surface (Fig. 4a). As an outcome, the shear zone 306 



material will lose strength (Eq. 3), and runaway failure can be triggered. Most notably, if non-zero 307 

plastic normal deformation is developed, negative excess pore-water pressure will be induced and 308 

regulate the slope dynamics. Plastic dilation, if prevented, will generate negative excess pore-water 309 

pressure (Fig. 4b), which, in order not to violate the prescribed strength criterion and sustain the 310 

initial shear stress level, must be opposite and equal to the pressure change induced by infiltration 311 

(Fig. 1b). Specifically, since in our analyses the shear zone material has low permeability, diffusion 312 

within the basal sliding tends to progress slowly. Consequently, the increase of the bottom pore-313 

water pressure induced by infiltration is small and its value is affected by the abovementioned 314 

negative excess pore-water pressure controlled by the dilative response of the material. Most 315 

importantly, to comply with the strength characteristics underlying the selected perfectly plastic 316 

MC constitutive law (i.e., a fixed yield surface), the resulting basal pore-water pressure and the 317 

corresponding effective stress will be such that the material remains on a state of plastic sliding 318 

throughout the forcing process, with the pore pressure decreasing only when the rainfall stops, the 319 

material returns in a poroelastic state, and the excess pore-water pressure fully dissipates until the 320 

landslide movement ceases. These arguments show that dilation generates self-regulating effects  321 

 322 

Figure 4. Schematics of effective stress paths at the base of a landslide predicted by the proposed framework 323 

for movements induced by hydrologic forcing. a) Stress change caused by hydrological forcing in plastic regime 324 

with nil normal plastic deformation. b) Dilative material generated self-regulating behavior. c) Contractive 325 

material induced self-feeding mechanisms.   326 

c b a 



able to constrain the pore-water pressure build-up. In contrast, contractive deformation would lead 327 

to an opposite outcome, by generating positive excess pore-water pressure and adding to the 328 

infiltration effects (Fig. 4c), eventually leading to more strength loss and runaway failure. 329 

For our first landslide simulation in the plastic regime, we model landslide motion with dilative 330 

material. We apply a simple synthetic pore-water pressure event distributed normally with a 331 

magnitude of around 11 kPa over one year (𝑇𝑇 = 365 days) at the top of the shear zone to represent 332 

pore-water pressure changes expected during a water cycle consisting of wet season (e.g., 333 

Finnegan et al., 2021) and following dry seasons in California (Fig. 5). The 𝑇𝑇𝑙𝑙𝑙𝑙𝑒𝑒  (𝑘𝑘𝑏𝑏 = 3x10-9 m/s) 334 

is set to cause nearly instantaneous pore-water pressure change (Fig. 5a). The small values of 𝑘𝑘𝑏𝑏 335 

used in the analyses reflect the low permeability often reported for shear zone materials of the 336 

study sites (Baum and Ried, 2000; Nereson et al., 2018). When 𝜑𝜑 = 20°, the material yield surface 337 

is not approached and there is only elastic deformation. In contrast, a lower friction angle (𝜑𝜑 = 338 

16°) leads to plastic shearing (Fig. 5a & b, point B’ to B’’) under the same hydrological forcing. 339 

Fig 5a and b show that, for 𝜑𝜑 = 16°, plasticity ensues when the imposed pore-water pressure at 340 

the top of the deformable zone is close to 8 kPa (i.e., point B’, at 𝑡̃𝑡 = 0.4). Subsequently, plastic 341 

deformation begins to develop in both normal (induce volume change) and tangential directions 342 

(trigger downslope sliding, Fig. 5b). Regulated by plastic dilation, negative excess pore-water 343 

pressure is generated which prevents further pore-water pressure change. As explained in the 344 

previous example (Fig. 4b), the self-regulating effect halts the growth of pore-water pressure (Fig. 345 

5f) and prevents the landslide from losing strength and accelerating catastrophically.   346 

When the pore-water pressure applied at the top of the shear zone begins to drop and drives the 347 

material back into the elastic regime (point B’’, 𝑡̃𝑡 = 0.6), the pore-water pressure at the bottom of 348 



the shear zone decreases and there is a transition from the plastic to elastic domain. At the same 349 

time, sliding stops (Fig. 5b point B’’), marking the end of the episodic development of negative 350 

excess pore-water pressure coupled with downslope sliding. For the case with 𝜑𝜑 = 20° (Fig. 5 a, 351 

c, e), the whole process is in the elastic regime and there is no sliding nor negative excess pore-352 

water pressure (Fig. 5b). These results confirm that sliding occurs only if precipitation mobilizes 353 

the inelastic resources of the shear zone material. Most notably, our model shows (similar to other 354 

studies) that dilation in the plastic regime leads to self-regulated landslide motion. 355 

 356 

Figure 5. Simulation of the hydro-mechanical response of an infinite slope subjected to imposed pore-water 357 

pressure change at the top of its shear zone. A) top shear zone pore-water pressure changes in one year, with 358 

the bottom response under both the elastic and plastic regime. b) Downslope displacement, c & d) pore-water 359 

pressure profile when material is under the elastic and plastic regime. e & f) Schematic of hydrological response 360 

in elastic and plastic regime. Synthetic slope tested here is assumed to be thickness, h-hs = 7 m (hs = 0.5 m), slope 361 

angle ϴ = 15°, and dilation angle 𝝍𝝍 = 𝟐𝟐°. 362 

3.3 Coupling effects  363 

a c 

d 

e 

f b 



The dilation angle 𝜓𝜓 governs the ratio of normal deformation divided by the sliding deformation. 364 

To further investigate its effects, the same synthetic slope and pore-water pressure variation 365 

illustrated in Fig. 5 are tested with different values of  𝜓𝜓 (5°, 2°, and 0°), but equal friction angle 366 

(𝜑𝜑 =16°). Among the tested cases, 𝜓𝜓 = 0° is used to explore the landslide behavior for vanishing 367 

dilation (i.e., potential approach of critical state conditions). 368 

Fig. 6a shows that pore-water pressure at the bottom of the slope predicted for cases with dilative 369 

deformation (i.e., 𝜓𝜓 > 0) ceases to increase following the hydrological forcing, thus leading in all 370 

cases to self-regulating effects. In contrast, these self-regulating effects vanish in the analyses 371 

conducted with 𝜓𝜓 = 0° and runaway failure occurs. Our model simulations also indicate the pore-372 

water pressure stops changing in the plastic regime because the positive pore-water pressure 373 

caused by infiltration is balanced by the negative excess pore-water pressure that results from 374 

dilation as discussed above (Fig. 4b). In other words, for the perfectly plastic behavior inherent 375 

with the MC constitutive law used in the current analyses, once the yield surface is reached, the 376 

pore-water pressure will experience no further change (increase or decrease) until the seasonal 377 

infiltration ends. Yet the dilation angle does impact the overall landslide displacement because it 378 

represents the ratio of normal dilation divided by downslope sliding. As Fig. 6b displayed, the 379 

same amount of dilative normal deformation would be triggered with a positive 𝜓𝜓 (to induce the 380 

negative pore-water pressure to balance the infiltration induced pore-water pressure increase). 381 

While as 𝜓𝜓 quantifies the normal dilation divided by sliding, under same amount of dilation, the 382 

higher the 𝜓𝜓, the smaller the sliding will be induced. As Fig. 6c illustrated, for a dilation angle of 383 

5°, the simulated sliding displacement is around 0.2 m. This movement more than doubles for 𝜓𝜓 384 

= 2°, reaching more than 0.5 m.  385 



When 𝜓𝜓 = 0°, no dilation would be triggered (Fig. 6b). As an outcome, no negative excess pressure 386 

can act to prevent runaway acceleration (Fig. 6c). The same analysis can be conducted for shear 387 

zone materials experiencing contraction (i.e., 𝜓𝜓<0). This scenario mimics so-called liquefaction 388 

effects, i.e., self-feeding growth of excess pore-water pressure accompanied by loss of shearing 389 

resistance (Iverson, 2005; Iverson and George, 2014; Chen and Buscarnera, 2022). The sharp 390 

transition between these different landslide dynamic regimes is qualitatively illustrated in Fig. 6d. 391 

While the incorporation of multiple nonlinear constitutive laws is necessary to simulate the abrupt 392 

development of excess pore-water pressure and high mobility failure events such as liquefaction, 393 

it is beyond the scope of this paper. 394 

 395 

Figure 6. Simulation of the hydro-mechanical response of infinite slopes with basal shear zone characterized 396 

by different dilation angles. a) pore-water pressure at the top and bottom of the shear zone, b) computed normal 397 

dilation, c) simulated displacement, d) relationship between sliding displacement after the hydrological pulse 398 

and dilation angle, including cases leading to runaway failure. 399 
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4. Case studies  400 

4.1 Sites of interests 401 

There are thousands of landslides in the California Coast Ranges (Keefer and Johnson, 1983; 402 

Kelsey et al., 1996; Bennett et al., 2016; Handwerger et al., 2019b; 2022). Landslides occur in this 403 

region due to active tectonics, mechanically weak rocks, and high precipitation (Scheingross et al., 404 

2013; Roering et al., 2015). The precipitation in California is seasonal and most falls during the 405 

wet season between October and May (Swain, 2021). Most of the slow-moving landslides occur 406 

within the Jurassic-Cretaceous Franciscan Mélange (Fig. 7, referred to as “KJf”). The KJf is a clay-407 

rich complex unit made of sandstone, shales, serpentinite, and conglomerates (Bailey et al., 1964; 408 

Rutte et al., 2020).  409 

For our model simulations, we selected parameter value ranges for friction angle, permeability, 410 

and dilation angle from previously published studies (Keefer and Johnson, 1983; Vermeer and de 411 

Borst, 1984; Iverson and Major, 1987; Roadifer et al., 2009; Nereson et al., 2018) on landslides in 412 

the CA Coast Ranges (details in Section 4.2). However, for stiffness parameters that were not 413 

measured at these sites, we used reasonable approximations for clay-rich compositions (Obrzud, 414 

2010): oedometric modulus, 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 5 MPa, and shear modulus, G = 2 MPa. 415 

We selected three landslide sites to test our model: 1) Two Towers landslide, northern California 416 

(Schulz et al., 2018a; b), 2) Minor Creek landslide, northern California (Iverson and Major, 1987), 417 

and 3) Mud Creek landslide, central California (Handwerger et al., 2019). Hourly movement of 418 

Two Towers landslide was measured from 11 November 2014 to 22 July 2017 using a biaxial tilt 419 

sensor (Schulz et al., 2018a; b). The Minor Creek landslide was monitored between 1982 and 1985  420 



 421 

Figure 7. California Coast Ranges and Franciscan Complex lithologic unit 1 draped over a hillshade of the 422 

topography with labeling and location details of the landslide sites studied in this paper (the monitoring points 423 

at which each landslide displacement was measured are circled, and the water level monitoring location of Two 424 

Towers landslide is shown by triangle). 425 

using extensometers (Iverson and Major, 1987). Finally, the Mud Creek landslide was monitored 426 

between 2015 and 2017 (Handwerger et al., 2019a) through satellite interferometric synthetic 427 

aperture radar (InSAR). In this study, the analyses are based on a 1D infinite slope geometry, in 428 

that the length of the considered landslides are much higher than their width and depth. This 429 

implies that the landslide is a uniform block of constant inclination with movements that do not 430 

vary along the downslope direction. This widely used simplification is applicable to capture the 431 

overall kinematics of the landslide (Angeli et al., 1996; Iverson, 2005; Van Asch et al., 2007; Li 432 

et al., 2021), but it might suffer a loss of accuracy at the edges of the domain, especially in regions 433 



of extension and/or compression which require a 2D or 3D model of the slope geometry. Notably, 434 

we selected these three case studies because they display distinct trends of movement over time, 435 

including slow, episodic sliding and catastrophic failure, thus allowing ideal benchmarks to verify 436 

the accuracy of the proposed framework.    437 

4.2 Parameter optimization method 438 

For the case studies in this paper, model parameters were assessed by optimization procedures 439 

focusing on the identification of best fit values for 𝑘𝑘𝑏𝑏 (shear zone permeability), 𝜑𝜑 (friction angle), 440 

and 𝜓𝜓  (dilation angle). We used a grid search inverse method to optimize these parameters 441 

(Allmendinger, 1998). This method computes the objective function (OBJ) from initial guesses 442 

based on typical ranges of these parameters and then searches the minimum OBJ.  443 

𝑂𝑂𝑂𝑂𝑂𝑂 = ∑(𝑑𝑑𝑜𝑜 − 𝑑𝑑𝑠𝑠(𝑘𝑘𝑏𝑏,𝜑𝜑 ,𝜓𝜓 ))2,                                                                                                       (19) 444 

where 𝑑𝑑𝑜𝑜  is observed displacement; 𝑑𝑑𝑠𝑠  is simulated displacement. The parameters (𝑘𝑘𝑏𝑏,𝜑𝜑,𝜓𝜓 ) 445 

leading to the minimum OBJ will be the optimized ones. Using the Two Towers landslide as an 446 

example, (detail given in the next section), we perform a grid search for 𝜓𝜓 ranging between 0.5° 447 

to 5° (dilation angle for clayey material is limited; Vermeer and de Borst, 1984). The permeability 448 

and friction angle for the KJf material has a large range, with permeability ranging from 1.6x10-5 449 

to 3x10-10 m/s within a single landslide body (Iverson and Major, 1987) and friction angle ranging 450 

from 12°~50° (Keefer and Johnson, 1983; Roadifer et al., 2009; Schulz et al., 2018b; Nereson et 451 

al., 2018). We also note that studies have shown that the permeability of the shear zone (kb) is often 452 

smaller than the landslide body material (Baum and Reid, 2000; Nereson et al., 2018). Thus, we 453 

performed the grid search using permeabilities between 1.6x10-7 and 3x10-12. Our parametric 454 



analysis provides a narrow band of values (dark blue in Fig. 8) with relatively small OBJ values. 455 

Among them, the minimum value can be found. Optimized parameters are displayed in Table 1.  456 

Table 1. Properties and optimized parameters for each case study 457 

Model parameters Two Towers Minor Creek Mud Creek Initial values 

Area (hectares) 1 10 23 - 

Inclination (°) 15 15 32 - 

Depth (m) 7 6 20 - 

𝑘𝑘𝑏𝑏 (m/s) 3.3 x10-11 3.3 x10-9 8.8 x10-10 1.6x10-7 ~ 3x10-12 

𝜑𝜑 (°) 22.8 19.3 47.8 12~50 

ψ (°) 2 2 0.5 0.5~5 

 458 

 459 

Figure 8. Inverse analyses obtained OBJ values corresponding to friction angle and permeability when 𝝍𝝍 = 𝟐𝟐°, 460 

optimized parameter is indicated by the red polygon. 461 

 462 

4.3 Two Towers landslide 463 

The Two Towers landslide (Fig. 7) is around 250 m long and averages about 40 m in width and 7 464 

m in depth; with an average inclination of 15° (Schulz et al., 2018a). The thickness of the shear 465 
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zone is ~0.5 m (Schulz et al., 2018b). The groundwater head (monitored at multiple sites within 466 

the active landslide) and landslide movement (monitored from an inclinometer located at the 467 

landslide toe, Fig. 7) were monitored at multiple sites within the active landslide from November 468 

2014 to July 2017 by Schulz et al. (2018a; b). We selected the ground water head measured at the 469 

middle of the landslide (Schulz et al., 2018a), in that it is far from the boundaries and can be 470 

regarded as the representative descriptor of the hydrologic state for a translational landslide. 471 

However, it is important to point out that other options (e.g., the average of all measurement points) 472 

would also be viable choices in this modeling context. In the central portion, we used data from 473 

the piezometer located at around 5.7 m below the ground, from which the water head above 474 

landslide base is reported. The resulting pore-water pressure at the top of the shear zone (𝑝𝑝𝑤𝑤𝑡𝑡 , Fig. 475 

9a) was then computed for a scenario of downslope seepage and eventually used as boundary 476 

condition for the simulation. The cumulative rainfall during the observation period is provided in 477 

Fig. 9a. Clay swelling was observed at the site and shown to have played a major role in the 478 

landslide dynamics (Schulz et al., 2018a). However, we did not explicitly incorporate clay swelling 479 

into our model. We also note that Schulz et al. (2018a) concluded that shear-induced dilation was 480 

not evident from their field or laboratory measurements. Nonetheless, our model simulations are 481 

here aimed at testing whether dilation can explain the observed motion at the Two Towers site. 482 

Fig. 9a shows the simulated pore-water pressure distribution at the top and bottom of the shear 483 

zone, characterized by delayed bottom hydrological response compared to the forcing pore-water 484 

pressure imposed at the top of the shear zone (𝑝𝑝𝑤𝑤𝑡𝑡  and corresponding 𝑝𝑝𝑤𝑤𝑠𝑠𝑏𝑏). Although the overall 485 

simulated displacement trend is consistent with the monitoring data at the Two Towers landslide 486 

site, as Fig 9c shows, a mismatch exists between model results and data. For instance, we find that 487 

the simulated movement begins earlier than the observations and underestimates the measured 488 



displacement in 2016 and 2017. Because in our simulation movements are generated by hydraulic 489 

forcing, these mismatches can be interpreted as a result inaccuracies in the pore-water pressure 490 

simulations. Most notably, the discrepancies between our simulations and the measured motion 491 

suggests that shear-induced dilation alone cannot explain the measured landslide response and 492 

other mechanisms, such as clay swelling, need to be considered (Schulz et al., 2018a). 493 

 494 

Figure 9. Model and measured data at Two Towers landslide. a) Pore-water pressure change at top of shear 495 

zone (Schulz et al., 2018a; b) based on the monitoring of water head above landslide base from a piezometer in 496 

the middle of the landslide, optimized pore-water pressure distribution at the bottom of shear zone, and 497 

cumulative rainfall. b) computational displacement from optimization compared to the monitored value and 498 

simulated normal dilation.  499 
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To quantify the movements due to dilation, we also computed the normal displacement (Fig. 9b) 500 

predicted by the model during the three-year period considered in this study. The results show an 501 

increase in plastic normal strain in correspondence with each episode of motion, with an increasing 502 

trend that produces a 2 mm total heave by the end of the considered period. Although not zero, 503 

this dilation-induced motion is predicted to be small, thus requiring very accurate measurements 504 

to verify the actual extent of dilation at the field scale. 505 

4.3 Minor Creek 506 

Minor Creek landslide (Fig. 7) is a slow-moving landslide covering about 10 hectares in Redwood 507 

Creek drainage basin, northern CA Coast Ranges. Iverson and Major (1987) collected three years 508 

of detailed rainfall, groundwater and movement data (Fig. 10a and b) of this landslide from 509 

October 1982 to September 1985. Iverson (2005) also previously explored the role of shear-510 

induced dilation (with 3° dilation angle) as a key mechanism controlling the slow-moving behavior 511 

of Minor Creek. The average slope angle is 15°; the thickness of the landslide along its longitudinal 512 

axis is 6 m and the shear zone thickness is 1 m (Iverson and Major, 1987). 513 

Saturated permeability (𝑘𝑘𝑡𝑡 = 9x10-7 m/s) and storage coefficient (𝑆𝑆𝑠𝑠 = 0.45) of the landslide 514 

material can be determined by simulating the monitored pore-water pressure data through trial and 515 

error (Fig. 10a). Our calculated diffusivity (2x10-6 m2/s) and mechanical parameters (Table 1) are 516 

similar to the value back calculated by Iverson and Major (1987). Our model can capture much of 517 

displacement trend, such as seasonal and year to year changes in displacement magnitude (Fig. 518 

10c), but again we observe significant mismatches between our model results and the observed 519 

motion. Like Two Towers, we attribute these mismatches to our simulated pore-water pressure 520 

time series which differs significantly from the observed pore-water pressure. We find our model 521 

involves a several months delay in the prediction of the activation of the landslide in 1983 and 522 



over predicts the total displacement by a factor of 2. Improvements to our hydraulic simulation are 523 

needed to better account for these hydrologic changes and could be accomplished by incorporating 524 

factors such as evapotranspiration, unsaturated effect, or lateral flow.  525 

 526 

Figure 10. Simulated and monitored hydrological and mechanical behaviors at the Minor Creek landslide site. 527 

a) monitored and simulated pore-water pressure at top of the shear zone, simulated pore-water pressure at the 528 

base of the shear zone, and cumulative rainfall, c) monitored and simulated displacement, and simulated 529 

dilation. 530 

4.4 Mud Creek landslide 531 

Our last test case is the Mud Creek landslide (Fig. 7), central California Coast Ranges. The Mud 532 

Creek landslide displayed stable sliding for more than 8 years; however, it suddenly failed 533 

catastrophically on a dry day (May 20, 2017) following a prolonged season of heavy rainfall. This 534 
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event caused major damage to California State Highway 1 and has been studied through a variety 535 

of remote sensing observations and hydrologic models (Handwerger et al., 2019a; Warrick et al., 536 

2019). More than two years of landslide displacement was measured by InSAR before the 537 

catastrophic failure occurred and we model these measurements here (Handwerger et al., 2019a). 538 

Mud Creek is characterized by relatively steep terrain with an average slope angle around 32°. We 539 

assume the shear zone is located at a depth of 20 m, which is within the range of values measured 540 

by Warrick et al., (2019). In this analysis, given the lack of ground based hydraulic observations, 541 

the pore-water pressure at the top of the shear zone (𝑝𝑝𝑤𝑤𝑡𝑡 ) is simulated using back-calculated 542 

hydraulic parameters 𝑘𝑘𝑡𝑡 = 3 x10-6 m/s and 𝑆𝑆𝑠𝑠 = 0.14 m-1 as illustrated in Appendix 2. Using these 543 

parameters, the pore-water pressure distribution of Mud Creek landslide can be computed as 544 

illustrated by Fig. 11a (affected by the precipitation displayed as Fig. 11b). 545 

The optimization strategy discussed in the previous sections is also used for this case, leading to 546 

simulation of both pore-water pressure at bottom of shear zone (Fig. 11a), sliding movement (Fig. 547 

11c), and normal deformation (Fig. 11c). The results are consistent with the InSAR observations 548 

prior to the catastrophic collapse. Notably, the optimized friction angle for Mud Creek is very high 549 

(about 48°; Table 1), which is an outcome of the steep (i.e., high initial stress ratio), deep-seated 550 

slope and nearly fully saturated initial condition (leads to high pore-water pressure). We assume 551 

saturated conditions in that field data from other landslide sites in the KJf show that the 552 

groundwater table remains within 2-3 m of the ground surface during the dry season and rises to 553 

the ground surface during the wet season (Iverson and Major, 1987; Schulz et al., 2018a; Hahm et 554 

al., 2019; Finnegan et al., 2021). Our results for Mud Creek provide a better fit of the observations 555 

compared to Two Towers and Minor Creek. Yet, mismatches in the predicted temporal evolution 556 

of the movements appear in this case study too (e.g., early activation in 2015 and 2016), and once 557 



again can be attributed to the simulated early build-up of pore-water pressure (Fig. 11a). Similar 558 

to the previous cases, dilation-induced heave (Fig. 11b) was also computed by tracking the 559 

evolution of the plastic normal strain during sliding.  560 

 561 

Figure 11. Simulated and monitored hydrological and mechanical behaviors at the Mud Creek landslide site. 562 

a) Simulated pore-water pressure distribution at top and bottom of the shear zone and cumulative rainfall, b) 563 

monitored and simulated displacement by the end of stable sliding (the left boundary of the shaded rectangle 564 

represents the occurrence of catastrophic failure) and simulated normal dilation. 565 

Although Mud Creek landslide did eventually fail catastrophically, a positive dilation angle (with 566 

less than 3 mm normal deformation increase, Fig. 11d) is required to capture the pre-failure slow 567 

movement. As a result, our model will always predict self-regulating creep. To further emphasize 568 

this point (and highlight a key model limitation), we extend the simulation beyond the time at 569 
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which catastrophic failure was observed in the field, so as to show how the model would have 570 

erroneously predicted the motion (Fig. 11b). It can thus be concluded that, to capture runaway 571 

acceleration, our model would need to account for vanishing dilative effects (Fig. 6d) (Moore and 572 

Iverson, 2002).  573 

5. Discussion 574 

In this manuscript, we developed a hydro-mechanical modeling framework to describe the 575 

dynamics of landslides in response to rainfall infiltration. We showed that an elastic-perfectly 576 

plastic frictional model enables the simulation of landslide creep in the presence of plastic dilation, 577 

as well as of runaway failure due to lack of self-regulating mechanisms (e.g., shear zone having 578 

reached critical state or exhibiting plastic contraction; Fig. 6d). While the model can be used to 579 

simulate different modes of landslide movement triggered by precipitation, the formulation 580 

discussed in the paper cannot capture transitions from stable creep to runaway failure, as illustrated 581 

in our case study of the Mud Creek landslide. This finding encourages future model development 582 

to account for more realistic constitutive laws based on the critical state theory (Roscoe et al., 1958; 583 

Schofield and Wroth, 1968), which would enable the evolution of plastic deformation.  584 

We studied three cases of slow-moving landslides located in California. Their velocity changes 585 

are governed by precipitation, while different magnitudes of acceleration were observed for each 586 

site. The Two Towers landslide exhibited rates from around 0.01 to 0.04 m/yr, while Minor Creek 587 

landslide exhibited rates from 0.2 to 1 m/yr with a large increase in displacement during the 1984 588 

wet season. The sliding velocity of Mud Creek landslide, before the catastrophic failure, falls in 589 

between the above two cases. It is not surprising that the three landslides experienced different 590 

magnitudes of sliding movement and exhibited different behaviors. Several factors can lead to this 591 



phenomenon: topography (Table 1), local precipitation (Fig 9c; Fig 10c; Fig. 11c), groundwater 592 

hydrology, variations in material properties, stress level (i.e., thickness), and more. Considering 593 

these complex conditions, we find it may always be reasonable to use inverse analysis to optimize 594 

parameters even when landslides occur within the same region and appear similar. 595 

As for our optimized parameters (Table 1), they all fall in range obtained from laboratory tests or 596 

field observations as explained in Section 4.2. Yet, the optimized friction angle of Mud Creek 597 

landslide (𝜑𝜑  =47.8°) is much larger than values typically observed from laboratory tests on 598 

landslide materials. We propose this high back calculated value results from a few reasons: first, 599 

we assume the landslide is fully saturated and has zero cohesion. If we accounted for cohesion and 600 

lower pore-water pressures this would offset the strength required by the friction angle to maintain 601 

stability. Second, Mud Creek landslide was steep (average slope angle 32°) which requires a 602 

relatively high friction angle (~30 °) to remain stable during the dry season.  603 

Both the Minor Creek and Two Towers landslides have been the subject of previous investigations 604 

and modeling efforts (e.g., Iverson and Major, 1987; Iverson, 2005; Schulz et al., 2018a). Iverson 605 

(2005) explained the seasonal dynamics of Minor Creek landslide using a shear-induced dilation 606 

model with interfacial hydro-mechanical coupling. In agreement with this prior work, our 607 

simulation leads to an acceptable representation of both the magnitude and the rate of sliding, 608 

which in all cases displayed the attributes of a stable, self-regulated episodic creep. Moreover, 609 

while our analysis enabled for inherent differences between the diffusivity of the landslide material 610 

and that of the basal shear zone (the latter being mediated by frictional/dilative properties), the 611 

good agreement between our results and those reported by Iverson (2005) suggest that inelastic 612 

effects play a limited role in the diffusivity of landslides not yet undergoing runaway motion (i.e., 613 

not having reached local shear instability conditions and/or critical state). This argument is also 614 



relevant for more recent extensions of coupled sliding-consolidation analyses specific for multi-615 

dimensional domains (Iverson and George, 2014; George and Iverson, 2014). However, since 616 

these approaches also rely on poroelastic diffusivity models, the potential implications of inelastic 617 

deformation on the pore-water pressure diffusivity may warrant further study, especially in the 618 

presence of liquefied materials (Rice, 1975; Chen and Buscarnera, 2022). 619 

The activation and arrest of Two Towers landslide site was closely examined by Schulz et al. 620 

(2018a) through a limit equilibrium method incorporating a new strength coefficient governed by 621 

clay swelling. They concluded that the additional strength imparted by swelling effects controlled 622 

the lag between the water level fluctuation and landslide activation. In our work, we found that 623 

shear-induced dilation can also partially explain the lag between when pore-water pressures above 624 

the shear zone rise and when the landslide starts to move, with notable mismatches described above. 625 

However, we note again that Schulz et al. (2018a) concluded that neither field measurement nor 626 

laboratory tests indicated shear-induced dilation at the Two Towers landslide. These observations 627 

warrant questions as to why a dilation model was used in this work. One of the core reasons behind 628 

this choice is that dilation is commonly invoked as a key strengthening mechanism that permits 629 

slow and stable motion of creeping landslides (Iverson et al., 2000; Iverson, 2005; Agliardi, et al., 630 

2020), and it thus deserves full consideration whenever testing any new hydro-mechanical 631 

formulation for the prediction of landslide motion. Hence, one of our key goals was to determine 632 

to what extent dilation can explain any of the observed behaviors documented in the literature. 633 

Despite the ability of our model to capture the overall trends at the Two Towers site, the difficulty 634 

of achieving an accurate match of both hydraulic and mechanical response (paired with the already 635 

mentioned challenges of constraining the value of dilation in the field) indicates that dilation alone 636 

may not suffice to explain the observed dynamics and must then be studied in conjunction with 637 



other processes, such as clay swelling. In our opinion, only fully coupled, deformation-based 638 

approaches encompassing all the potential causes of self-regulating motion can definitively reveal 639 

which factors play a primary role, as opposed to those that are secondary and may be regarded as 640 

inessential to explain field observations. While this more complete analysis was not attempted here, 641 

our proposed framework enables future extensions through the incorporation of constitutive laws 642 

with suction-induced swelling and other moisture-regulated inelastic processes (Song et al., 2020).  643 

While we have shown that the flow-deformation coupling may in part regulate landslide behaviors, 644 

there are other widely used models to simulate slow-moving landslides. The most common of these 645 

are viscoplastic models (Van Asch et al., 2007; Angeli et al., 1996; Oberender and Puzrin, 2016), 646 

which can be used to depict the time-dependent behaviors of earthen materials (Mitchell et al., 647 

1968; Liingaard et al., 2004; Marinelli et al., 2018). Ring shear tests of samples taken from Two 648 

Towers landslide showed the friction angle varies ~21° and ~24° with shear rates from 0.01 to 1 649 

mm/s (Schulz et al., 2018b). These findings imply some the landslide material exhibits some rate 650 

dependency, although at the range of the sliding rates exhibited in the field. It thus indicates that 651 

viscoplastic models can be used to capture creeping landslide movement under quasi-static 652 

conditions (Li et al., 2023). However, these models may not always be appropriate for landslides 653 

forming within earthen materials exhibiting negligible viscosity (Iverson, 2020). In this manuscript, 654 

the proposed hydro-mechanical coupled framework was able to describe landslide creep without 655 

incorporating earthen material viscosity. Yet, its mathematical formulation does not hinder the 656 

possibility of accounting for viscous effects, which can be readily inserted by expressing the 657 

inelastic strain rate in Eq. (15) by a viscoplastic flow rule. In a future perspective, this possibility 658 

can prove useful to quantify the peak velocity of flow-like landslides (Chen and Buscarnera, 2022), 659 



as well as to replicate temporal patterns of landslide creep more complex than standard episodic 660 

slips (Li et al., 2023). 661 

6. Conclusions 662 

We developed a modelling framework enabling the study of rainfall induced landslide dynamics, 663 

with the goal to account for the interaction between precipitation, pore-water pressure change, and 664 

inelastic deformation within the shear zone of active landslides. Our framework involves two 665 

sequential diffusion processes, one within a rigid landslide block and another within an 666 

inelastically deformable basal shear zone. While the former is used to simulate hydraulic forcing 667 

across the landslide material, the latter enables explicit consideration of the inelasticity of the shear 668 

zone material, thus modulating the timescale of sliding and pore-water pressure diffusion through 669 

dedicated constitutive laws. Spatial condensation procedures are used to derive a set of coupled 670 

ordinary differential equations reflective of the landslide dynamics and accounting for the 671 

feedback between transient water flow, inertial movement, and material inelasticity. To illustrate 672 

the main characteristics of the proposed framework, the model was linked with a perfectly plastic 673 

frictional law enabling dilation and/or contraction of the shear zone material during sliding. 674 

We showed that the model can operate both under elastic and plastic regimes. By suppressing 675 

plastic effects, our model is able to simulate delayed hydraulic forcing as a function of the 676 

diffusivity of both the landslide material and shear zone. Moreover, we found that sliding can be 677 

simulated if the hydraulic forcing drives the effective stress state to the plastic regime. The 678 

simulations indicate that the onset of plasticity starts to generate negative excess pore-water 679 

pressure, which regulates the sliding dynamics through constitutive feedbacks modulating the 680 

effective diffusivity of the basal shear zone. Case studies indicate that distinct types of landslide 681 



behaviors can be simulated satisfactorily with reduced computational cost and a limited number 682 

of model parameters. Our model framework enables the computation of self-feeding catastrophic 683 

failure in the presence of either contractive shear zone material (e.g., liquefaction events) or critical 684 

state conditions (i.e., no dilation or contraction) and self-regulating (i.e., dilatative) episodic and/or 685 

quasi-steady landslide motion. The main advantage of our proposed framework is the virtually 686 

endless opportunities it offers to augment the constitutive description of the shear zone material 687 

that can describe various mechanical-hydrologic feedbacks.  688 
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 696 

Appendix 1. Simplification of water mass balance using Parabolic assumption 697 

In this manuscript, in order to solve the 2nd order PDE, 𝑘𝑘
𝑏𝑏

𝛾𝛾𝑤𝑤

𝜕𝜕2𝑝𝑝𝑤𝑤
𝜕𝜕𝑧𝑧2

+ 𝜀𝜀  ̇ = 0, a parabolic 𝑝𝑝𝑤𝑤𝑒𝑒  (excess 698 

pore-water pressure) profile (Wood, 2004) is used to simplify the computation. We write the total 699 

pore-water pressure expression: 700 

𝑝𝑝𝑤𝑤 = 𝑝𝑝𝑤𝑤𝑠𝑠 + 𝑝𝑝𝑤𝑤𝑒𝑒 ,                                                                                                                             (A1) 701 



where 𝑝𝑝𝑤𝑤𝑠𝑠  is the stationary (steady state) pore-water pressure, its value is influenced 702 

instantaneously by the applied pore-water pressure at the top of the shear zone. Here, we assume 703 

that the 𝑝𝑝𝑤𝑤𝑒𝑒  distributed in a parabolic profile (Wood, 2004) as illustrated in Fig. A1: 704 

𝑝𝑝𝑤𝑤𝑒𝑒 = 𝑎𝑎𝜉𝜉2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐.                                                                                                                       (A2) 705 

where 𝜉𝜉 represents the normal distance from the base of shear zone. We can thus obtain that at the 706 

bottom of the shear zone, where 𝜉𝜉 = 0: 707 

𝑐𝑐 = 𝑝𝑝𝑤𝑤𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑤𝑤𝑏𝑏 − 𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠.                                                                                                                     (A3) 708 

Where the superscript b indicates the pore-water pressures values are for the basal shear zone. 709 

While, at the top of the shear zone, 𝜉𝜉 = ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃, 𝑝𝑝𝑤𝑤𝑒𝑒𝑒𝑒 = 0 because the top of the shear zone is 710 

assumed to be drained (no excess pore-water pressure can be built up), thus: 711 

𝑎𝑎ℎ𝑠𝑠
2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑏𝑏ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 𝑝𝑝𝑤𝑤𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑤𝑤𝑒𝑒𝑒𝑒 = 0.                                                                                                         (A4) 712 

Meanwhile, the bottom of shear zone is undrained, so that the 𝑝𝑝𝑤𝑤𝑒𝑒  distribution will be symmetric 713 

above and below the 𝜉𝜉 = 0 surface. Therefore, at 𝜉𝜉 = −ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃: 714 

𝑎𝑎ℎ𝑠𝑠
2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 − 𝑏𝑏ℎ𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 𝑝𝑝𝑤𝑤𝑒𝑒𝑒𝑒 = 0.                                                                                                             (A5) 715 

Adding Eq. A4 with Eq. A5, we get: 716 

𝑎𝑎 = −𝑝𝑝𝑤𝑤𝑒𝑒𝑒𝑒

ℎ𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃
.                                                                                                                                      (A6) 717 

As the stationary (steady state) pressure will be changed simultaneously within the whole shear 718 

zone, from Eq. A2 and Eq. A6, we can get: 𝜕𝜕
2𝑝𝑝𝑤𝑤
𝜕𝜕𝑧𝑧2

= 𝜕𝜕2(𝑝𝑝𝑤𝑤𝑒𝑒 )
 𝜕𝜕𝜉𝜉2

= 2𝑎𝑎 = 2 𝑝𝑝𝑤𝑤𝑠𝑠𝑠𝑠−𝑝𝑝𝑤𝑤𝑏𝑏

ℎ𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃
.  719 



 720 

Figure A1. Schematic of parabolic distributed 𝒑𝒑𝒘𝒘𝒆𝒆 . 721 

 722 

Appendix 2. Hydrological parameter determination of Mud Creek landslide 723 

There are no ground-based observations of pore-water pressure changes for the Mud Creek 724 

landslide. In order to obtain the hydrological response for Mud Creek landslide, we used field data 725 

from the Minor Creek landslide site to train our hydrological model. Both Minor Creek and Mud 726 

Creek landslide located in KJf, we assumed that the sliding surface of them experience similar 727 

hydrological changes driven by rainfall. Our assumption is reasonable based on the hydrological 728 

observations of KJf at numerous sites throughout California (Iverson and Major, 1987; Schulz et 729 

al., 2018a; Hahm et al., 2019; Finnegan et al., 2021).   730 

In order to calibrate the model parameters for Mud Creek landslide, we adjusted the simulated 731 

landslide thickness for Minor Creek to 20 m thick (i.e., Mud Creek thickness); we then back 732 

calculated the parameters that would lead to simulation results that match the Minor Creek 733 

observation. Fig. A2 shows the 𝑘𝑘𝑡𝑡 = 3 x10-6 m/s (saturated permeability of landslide material) and 734 

Ss (storage coefficient) changes to 0.14 m-1 are reasonable values. The back calculated diffusivity 735 

2x10-5 m2/s still falls in the range of estimation. 736 



 737 

Figure A2. Calibration of Mud Creek hydraulic parameters of the landslide material, simulation of Minor 738 
Creek compared with 20 m depth.  739 
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