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A splinter is a notion of singularity that has seen numerous 
recent applications, especially in connection with the direct 
summand theorem, the mixed characteristic minimal model 
program, Cohen–Macaulayness of absolute integral closures 
and cohomology vanishing theorems. Nevertheless, many 
basic questions about these singularities remain elusive. One 
outstanding problem is whether the splinter property spreads 
from a point to an open neighborhood of a noetherian scheme. 
Our paper addresses this problem in prime characteristic, 
where we show that a locally noetherian scheme that has 
finite Frobenius or that is locally essentially of finite type 
over a quasi-excellent local ring has an open splinter locus. 
In particular, all varieties over fields of positive characteristic 
have open splinter loci. Intimate connections are established 
between the openness of splinter loci and F -compatible ideals, 
which are prime characteristic analogues of log canonical 
centers. We prove the surprising fact that for a large class 
of noetherian rings with pure (aka universally injective) 
Frobenius, the splinter condition is detected by the splitting 
of a single generically étale finite extension. We also show that 
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for a noetherian N-graded ring over a field, the homogeneous 
maximal ideal detects the splinter property.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

A noetherian ring is a splinter if it is a direct summand of every finite cover. A splinter 
is a notion of singularity since we now know that regular rings satisfy this property by 
the celebrated direct summand theorem [32,6,9]. For any notion of singularity, or more 
generally, a property P of noetherian local rings, it is natural to ask if

{x ∈ X : OX,x has P}

is an open subset of a locally noetherian scheme X. Such openness of loci questions were 
perhaps first considered systematically by Grothendieck in [24]. Many fundamental local 
properties such as Rn, Sn, reduced, normal, Gorenstein, complete intersection, Cohen–
Macaulay, among others, are known to have open loci for most locally noetherian schemes 
that one encounters in arithmetic or geometry [24,22,74].

In this paper we consider the question of the openness of the splinter locus of a locally 
noetherian scheme. As a preliminary observation, the splinter condition for noetherian 
local Q-algebras is equivalent to normality, and the normal loci is open for locally noethe-
rian schemes that have open regular loci [24, Cor. (6.13.5)]. In particular, the splinter 
locus of any quasi-excellent Q-scheme is open because the normal locus of such a scheme 
is open. Our main result illustrates that a similar result holds for some large classes of 
locally noetherian schemes over Fp.

Theorem 1.0.1. (see Theorem 4.3.7) Let X be a scheme of prime characteristic p > 0
that satisfies any of the following conditions:

(i) X is locally noetherian and F -finite.
(ii) X is locally essentially of finite type over a noetherian local ring (A, m) of prime 

characteristic p > 0 with geometrically regular formal fibers.

Then {x ∈ X : OX,x is a splinter} is open in X.

In particular, the splinter locus of any scheme of finite type over a field, or more 
generally, a complete local ring of positive prime characteristic is open.

Showing the openness of the splinter locus has proved to be a challenging problem 
in prime and mixed characteristics because splinters are far more mysterious away from 
equal characteristic 0. For example, in prime and mixed characteristics, splinters surpris-
ingly coincide with a derived counterpart called a derived splinter [8,10], and excellent 
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local splinters are Cohen–Macaulay and pseudo-rational [62,64,10] (in prime charac-
teristic they are also F -rational [62]). Furthermore, prime characteristic splinters are 
conjecturally equivalent to F -regular singularities [60,14], which are analogues of Kawa-
mata log terminal singularities that arise in the birational classification of algebraic 
varieties over the complex numbers [64,53,26]. This last conjectural equivalence implies 
one of the outstanding problems in tight closure theory, namely that weak F -regularity 
is preserved under localization. The notion of a splinter globalizes, and in a non-affine 
setting in mixed and positive characteristics they have been recently called globally +-
regular schemes [12]. This is in part because of their similarities with globally F -regular 
varieties in positive characteristic [66,67].

By working on an affine cover, the openness of loci for a local property reduces to 
a question about affine schemes, and Theorem 1.0.1 follows from the following, more 
refined, affine result.

Theorem 1.0.2. (see Theorem 4.3.1) Let R be a noetherian F -pure domain of prime 
characteristic p > 0 and assume that R satisfies any of the following conditions:

(i) R is F -finite.
(ii) R is local (not necessarily excellent).

(iii) (A, m) is a noetherian local ring of prime characteristic p > 0 with geometrically 
regular formal fibers and R is essentially of finite type over A.

Let C be the collection of finite R-subalgebras of R+ and for an R-algebra S, let

τS/R := im(HomR(S, R) eval @1−−−−→ R).

Then we have the following:

(1) {τS/R : S ∈ C} is a finite set of radical ideals of R.
(2) The splinter locus of Spec(R) is open and its complement is V(τR), where

τR :=
⋂

S∈C
τS/R.

(3) There exists S ∈ C such that R ⊆ S is generically étale and if R ↪→ S splits, then R
is a splinter.

Here R+ denotes the absolute integral closure of R, that is, R+ is the integral closure 
of R in an algebraic closure of its fraction field. F -purity is the universal injectivity of 
the Frobenius map on R. It is a mild assumption when discussing questions pertaining to 
splinters in prime characteristic because splinters are automatically F -pure. A surprising 
aspect of Theorem 1.0.2 is perhaps the fact that for most F -pure noetherian domains that 
arise in arithmetic and geometry, the splinter property is determined by the splitting of 
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a single generically étale finite extension domain, even though the definition of a splinter 
a priori requires the splitting of all finite extension domains. Theorem 1.0.1 is a formal 
consequence of Theorem 1.0.2 because the splinter locus is contained in the F -pure locus 
of any locally noetherian Fp-scheme, and the F -pure locus is known to be open when X
satisfies the assumptions of Theorem 1.0.1.

The proof of Theorem 1.0.2 is not particularly involved in the noetherian F -finite set-
ting, so we briefly discuss our strategy for the expert. The ideal τS/R of Theorem 1.0.2
is called the trace of S over R, and the content of the Theorem is that these traces 
stabilize as S ranges over the finite R-subalgebras of R+ with appropriate purity as-
sumptions on R. The stabilization of traces follows from the fact that trace ideals satisfy 
the property of being uniformly F -compatible, which is a prime characteristic analogue 
of the notion of a center of log canonicity [57,58,70]. For us, the key fact about uniformly 
F -compatible ideals is their finiteness under appropriate assumptions. Namely, Schwede 
showed that an F -pure noetherian F -finite ring has only finitely many uniformly F -
compatible ideals [57]. In fact, an explicit bound on the Hilbert–Samuel multiplicity of 
an F -pure noetherian local ring [41] allows one to obtain explicit bounds for the num-
ber of uniformly F -compatible ideals of a given coheight in the local setting (see also 
[70] and Proposition 3.4.1). Thus, the finiteness of uniformly F -compatible ideals for a 
noetherian F -finite Frobenius split domain R readily implies the finiteness of the set of 
trace ideals of finite extensions R. One then shows that the stable trace ideal has to 
define the non-splinter locus.

The drawback of the above approach is that there is typically no control over when 
the trace ideals of finite extensions of a noetherian Frobenius split ring R stabilize. 
Thus, it feels hopeless to obtain a more explicit description of the ideal τR that defines 
the closed non-splinter locus of R via the approach of uniformly F -compatible ideals. 
We devote a significant portion of our paper to obtaining a better understanding of 
τR. Our strategy involves looking at the plus closure operation. Just as tight closure 
detects weak F -regularity, plus closure detects the splinter property in the sense that a 
noetherian domain is a splinter precisely when all ideals of the domain are plus closed. 
By analyzing closure operations associated with R-algebras [55,36], we show that the 
ideal τR that defines the non-splinter locus of R in Theorem 1.0.2 is the big test ideal
of plus closure. Said differently, τR coincides with the ideal that one morally expects to 
define the non-splinter locus of a noetherian domain.

Proposition 1.0.3. (see Propositions 3.3.1, 4.1.4 and Corollary 3.3.3) Let R be an ap-
proximately Gorenstein noetherian domain of arbitrary characteristic (i.e. without any 
restrictions on characteristic) and let C be the collection of finite R-subalgebras of R+. 
Then we have the following:

(1) The ideal τR :=
⋂

S∈C τS/R equals the big plus closure test ideal 
⋂

I(I : IR+ ∩ R). 
Here the latter intersection ranges over all ideals of R.

(2) If R is complete local and B is an R-algebra, then τB/R =
⋂

I(I : IB ∩ R).
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The class of approximately Gorenstein rings is fairly broad and includes noethe-
rian normal rings and reduced locally excellent rings. Taking B = R+ in Proposi-
tion 1.0.3(2), we see that when R is a complete local domain, the image of the map 

HomR(R+, R) eval @1−−−−→ R equals 
⋂

I(I : IR+ ∩ R), which in turn equals τR. This observa-
tion recovers a result of Hochster and Zhang that to the best of our knowledge has not 
appeared in print. We refer the reader to Subsection 3.3 for further details on test ideals 
of algebra closures, where among other things, we partially answer a question raised by 
Pérez and R.G. [55] in the affirmative about the equality of big and finitistic test ideals 
of closure operations associated with algebras and certain modules.

Proposition 1.0.3(1) and ideal theoretic results from our work on permanence prop-
erties of splinters [19] allow us to obtain some transformation rules for the splinter ideal 
τR under Henselizations and completions.

Proposition 1.0.4. (see Proposition 4.1.7 and Corollary 4.3.4) Let (R, m) be a noetherian 
normal domain of arbitrary characteristic with geometrically regular formal fibers. Then 
we have the following:

(1) If Rh is the Henselization of R with respect to m, then τRh ∩ R = τR.
(2) If R̂ is the m-adic completion of R, then τR̂ ∩ R = τR.

If R is additionally F -pure, then in (1) we have τRRh = τRh and in (2) we have τRR̂ =
τR̂.

In fact, in part (1) of Proposition 1.0.4 one does not need any assumptions on the 
formal fibers of R. One should compare Proposition 4.1.7 with the transformation rules 
for the big tight closure test ideal under Henselizations and completions. We expect the 
equalities τRRh = τRh and τRR̂ = τR̂ to hold without restrictions on the characteristic 
or singularities of normal noetherian local domains, although we are unable to show this 
at present.

As an application of the openness of the splinter locus and the ascent of the splinter 
property under étale maps [19, Thm. A], we show that the splinter condition for noethe-
rian N-graded rings over fields is detected by the homogenous maximal ideal. This is 
an analogue of Smith and Lyubeznik’s result that weak F -regularity is detected by the 
homogeneous maximal ideal [61, Cor. 4.6].

Corollary 1.0.5. (See Corollary 4.3.10) Let R =
⊕∞

n=0 Rn be a noetherian graded ring 
such that R0 = k is a field. Let m :=

⊕
n>0 Rn be the homogeneous maximal ideal of R. 

Then R is a splinter if and only if Rm is a splinter.

We expect the splinter loci to be open for arbitrary excellent schemes in any char-
acteristic. At the same time, one can use a meta construction of Hochster [33] to give 
examples of locally excellent (but not excellent) noetherian domains whose splinter loci 
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are not open. The surprising aspect of Hochster’s construction is that the local rings of 
these locally excellent domains are essentially of finite type over appropriate fields. We 
refer the reader to [19, Ex. 4.0.3] for more details.

Structure of the paper: In Section 2 we discuss the splinter property, the notion of ap-
proximately Gorenstein rings and the Frobenius map. In Section 3 we discuss uniformly 
F -compatible ideals and their finiteness, traces of algebras and a closely related notion 
which we call the ideal trace, and test ideals associated to closure operations arising 
from algebras. In Section 4 we first identify and prove properties of a candidate ideal 
that detects the non-splinter locus of noetherian domains in arbitrary characteristic un-
der certain stability assumptions. We also discuss properties of a separable version of 
this ideal using Singh’s work on the separable plus closure [59]. We finally specialize to 
prime characteristic and prove our main results.

Conventions: All rings are commutative with identity. For the most part rings in this 
paper will be noetherian. However, we will use the absolute integral closure of a domain, 
which is a highly non-noetherian ring. We say an R-algebra S is solid if there exists a 
nonzero R-linear map S → R.

2. Preliminaries

2.1. Splinters

Let us introduce the main objects of investigation in this paper.

Definition 2.1.1. A noetherian ring A is a splinter if every finite ring map A → B which 
is surjective on Spec admits an A-linear left-inverse.

Hochster’s famous direct summand conjecture, now a theorem [32,25,6,9], is the as-
sertion that noetherian regular rings are splinters. Splinters are always normal, and 
conversely, a noetherian normal Q-algebra is always splinter. Thus, splinters are an in-
teresting notion of singularity mainly in prime and mixed characteristics. Many naturally 
arising classes of rings are splinters. For example, since a direct summand of a regular 
ring is a splinter, it follows that coordinate rings of normal affine toric varieties, Veronese 
subrings of polynomial rings over fields and rings of invariants of finite groups acting on 
regular rings where the order of the group is prime to the characteristic of the ring are 
splinters. Moreover, generic determinantal rings over fields are splinters since they are 
normal in characteristic 0 and F -regular in characteristic p [31] and (weakly) F -regular 
rings are splinters [31].

A simple spreading out argument shows that the splinter condition can be checked 
locally. Furthermore, because a finite direct product of noetherian rings is a splinter 
precisely when the individual factors are splinters, questions about splinters often imme-
diately reduce to the domain case. We refer the reader to [32,35,46,8,47,19] for various 
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properties of these singularities. The definition of a splinter and its derived variant can 
also be made in a non-Noetherian setting, and interesting non-Noetherian rings, such as 
valuation rings, are derived splinters [3].

2.2. Approximately Gorenstein rings and purity

Let A be a ring. An A-linear map M → N is pure (also called universally injective) 
if for all A-modules P , the induced map

M ⊗A P → N ⊗A P

is injective. We say M → N is cyclically pure if for all cyclic A-modules P , M ⊗A P →
N ⊗A P is injective, or equivalently, if for all ideals I of A, M/IM → N/IN is injective.

Split maps are pure and pure maps are cyclically pure. Filtered colimits of (cyclically) 
pure maps are also (cyclically) pure, and faithfully flat ring maps are pure. Pure ring 
maps induce the affine covers for the canonical Grothendieck topology, which is the finest 
topology for which all representable presheaves are sheaves [4].

Hochster characterized noetherian rings A with the property that every A-linear map 
A → M that is cyclically pure is also pure [34]. His characterization utilizes the following 
notion.

Definition 2.2.1. A noetherian local ring (A, m) is approximately Gorenstein if for all n ∈
Z>0, there exists an ideal I such that I ⊆ mn and A/I is Gorenstein. A noetherian ring 
is approximately Gorenstein if all its localizations at maximal ideals are approximately 
Gorenstein local rings.

The ideals I in Definition 2.2.1 can be chosen to be m-primary [34, Prop. 2.1]. The 
class of approximately Gorenstein rings include noetherian normal rings, noetherian local 
rings of depth at least 2, reduced locally excellent rings, and more generally, noetherian 
rings whose local rings at maximal ideals are formally reduced. All of this is directly 
proved, or implied by the results in [34]. The point of introducing the approximately 
Gorenstein property is the following result.

Proposition 2.2.2. [34, Thm. (2.6)] Let A be a noetherian ring. The following are equiv-
alent:

(1) A is approximately Gorenstein.
(2) Any ring map A → B that is cyclically pure is pure.
(3) If M is an A-module, then any A-linear map A → M that is cyclically pure is pure.

The approximately Gorenstein property implies that a noetherian domain A is a 
splinter precisely when A → A+ is cyclically pure [19, Lem. 2.3.1]. This observation 
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leads to various equivalent interpretations of an ideal that defines the non-splinter locus 
of a noetherian domain in Section 4, making this ideal easier to work with. One such 
interpretation involves big test ideals of algebra closures (Proposition 3.3.1(4)), for which 
we need the following result.

Lemma 2.2.3. Let A be an approximately Gorenstein ring. Suppose that there exists a 
maximal ideal m of A and an essential extension A/m ↪→ M , where M is a finitely 
generated A-module. Then there exists an m-primary ideal I of A such that A/I is 
Gorenstein and M embeds in A/I.

Proof. The annihilator J of M is m-primary. Since Am is approximately Gorenstein, there 
exists an m-primary ideal I of A such that I ⊆ J and A/I = Am/IAm is Gorenstein. 
Then A/m ↪→ M is an essential extension of A/I-modules, and since A/I is a zero-
dimensional Gorenstein ring, it is an injective module over itself. As m is the associated 
prime of A/I, we have an inclusion A/m ↪→ A/I, which extends to a map f : M → A/I. 
Then f is injective because A/m ↪→ M is essential. �
2.3. Frobenius

Let R be a ring of prime characteristic p > 0. Then we have the (absolute) Frobenius 
map

F : R → R

that maps r �→ rp. For e ∈ Z>0 we also have the e-th interate F e of the Frobenius. 
The target copy of R regarded as an R-module by restriction of scalars along F e will 
be denoted F e

∗ R, and for x ∈ R the same element viewed in F e
∗ R will be denoted F e

∗ x. 
Thus, if r ∈ R and F e

∗ x ∈ F e
∗ R, r · F e

∗ x = F e
∗ rpe

x.
We say R is F -finite if the Frobenius map is finite (equivalently, of finite type). We 

say R is Frobenius split if F admits an R-linear left-inverse F∗R → R, and R is F -pure 
if F is a pure map. Frobenius splitting and F -purity do not coincide in general even for 
nice rings. For example, the first author and Murayama recently constructed examples 
of excellent Henselian regular local rings of Krull dimension 1 which are not Frobenius 
split [16]. Regular rings of prime characteristic are always F -pure because the Frobenius 
map of a regular ring is faithfully flat [43]. When R is noetherian, purity of Frobenius is 
the same as cyclic purity [19, Rem. 2.2.2], so we will not introduce a new definition for 
when the Frobenius is cyclically pure even though such a definition would make sense in 
a non-noetherian context.

If R is a splinter of prime characteristic p > 0, then R is F -pure because the Frobenius 
map can be expressed as a filtered colimit of finite purely inseparable maps which are 
all split by the definition of the splinter property.
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Given a noetherian R of prime characteristic p > 0, an R-module M and a submodule 
N of M , the tight closure of N in M , denoted N∗

M is the set of elements m ∈ M for 
which there exists c ∈ R not in any minimal prime such that for all e � 0,

F e
∗ c ⊗ m ∈ im(F e

∗ R ⊗R N → F e
∗ R ⊗R M).

For M = R and N = I an ideal, the tight closure of I in R is usually denoted I∗ and 
consists of elements r ∈ R for which there exists a c not in any minimal prime such 
that crpe ∈ I [pe] for all e � 0. Here I [pe] is the ideal generated by the pe-th powers of 
elements of I. Alternatively, F e

∗ I [pe] = IF e
∗ R, the expansion of I to F e

∗ R.

3. Uniformly F -compatible and trace ideals

Throughout this section, R will denote a ring of prime characteristic p > 0.

3.1. Uniformly F -compatible ideals

Following Schwede [58, Def. 3.1], we make the following definition in a non-F -finite 
setting.

Definition 3.1.1. An ideal I of R is uniformly F -compatible if for all e ∈ Z>0 and all 
R-linear maps ϕ : F e

∗ R → R, we have ϕ(F e
∗ I) ⊆ I.

Said differently, I is uniformly F -compatible if for any ϕ as above, we have an induced 
R/I-linear map ϕ : F e

∗ (R/I) → R/I such that the diagram

F e
∗ R R

F e
∗ (R/I) R/I

ϕ

F e
∗ π π

ϕ

commutes, where π : R → R/I is the canonical projection.
Uniformly F -compatible ideals are related to Mehta and Ramanathan’s notion of 

compatibly split subschemes of a Frobenius split scheme [52], and indeed were named 
so by Schwede because of this connection. In the noetherian local case, uniformly F -
compatible ideals are dual to Smith and Lyubeznik’s F(E)-submodules of E [45], where 
E is the injective hull of the residue field of the noetherian local ring (R, m).

We now collect some well-known properties of uniformly F -compatible ideals.

Lemma 3.1.2. Let R be a ring of prime characteristic p > 0 and let Σ denote the collection 
of uniformly F -compatible ideals of R. Then we have the following:

(1) Σ is closed under arbitrary sums and arbitrary intersections.
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(2) If I ∈ Σ and p ∈ AssR(R/I), then p ∈ Σ.
(3) If R is noetherian and I ∈ Σ, then 

√
I ∈ Σ.

(4) If R is noetherian, then nil(R) ∈ Σ.
(5) If R is Frobenius split, then every element of Σ is a radical ideal.

Proof. (1) follows readily from the definition of uniform F -compatibility. For (2), assume 
p is an associated prime of I. Then there exists a /∈ I such that p = (I : a). Suppose 
ϕ : F e

∗ R → R is an R-linear map. To show that ϕ(F e
∗ p) ⊆ p it suffices to show that for 

any r ∈ p, ϕ(F e
∗ r)a ∈ I. But

ϕ(F e
∗ r)a = ϕ(F e

∗ ape

r) ∈ I

because ape

r = ape−1(ar) ∈ I and I is uniformly F -compatible by assumption. Part 
(3) follows from (1) and (2) because 

√
I is the intersection of the minimal primes of 

I, which are associated primes of R/I when R is noetherian. Part (4) follows from (3) 
because the zero ideal is uniformly F -compatible. Finally, (5) follows from the fact that 
if ϕ : F∗R → R is a Frobenius splitting of R, then the induced map ϕ : F∗(R/I) → R/I

is a Frobenius splitting of R/I, and any Frobenius split ring is reduced. �
Remark 3.1.3. Fixing an R-linear map ϕ : F e

∗ R → R, one can also consider the set of 
ideals I of R that are ϕ-compatible in the sense that ϕ(F e

∗ I) ⊆ I. Thus, a uniformly 
F -compatible ideal is one that is compatible with any map F e

∗ R → R, for all e > 0. 
Properties (1)-(4) of Lemma 3.1.2 are also satisfied by the set of ideals compatible with 
a fixed ϕ, while property (5) is satisfied if ϕ is a Frobenius splitting.

Remark 3.1.4. For a fixed R-linear map ϕ : F e
∗ R → R, one should make a point to 

contrast the ϕ-compatible ideals as in Remark 3.1.3 with those ideals I satisfying the 
stronger condition that ϕ(F e

∗ I) = I. There is no distinction when ϕ is surjective; when 
ϕ is not surjective, such ideals are known to satisfy finiteness properties akin to those for 
the ideals compatible with Frobenius splittings. Similar remarks apply to the definition 
of uniformly compatible ideals in general. See [7,11] for further details.

3.2. Trace and ideal trace

The most important examples of uniformly F -compatible ideals in this paper are 
traces of ring maps.

Definition 3.2.1. Let A be a ring (not necessarily of prime characteristic) and B be an 
A-algebra. Then the trace of B over A, denoted τB/A, is

τB/A := im(HomA(B, A) eval @1−−−−→ A).
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Thus, τB/A 
= 0 precisely when B admits a nonzero A-linear map B → A, that is, if B
is a solid A-algebra in the terminology of Hochster [36]. Similarly, A is a direct summand 
of B precisely when τB/A = A.

The next example shows that traces are related to the field trace from linear algebra.

Example 3.2.2. Suppose A ↪→ B is a finite extension of noetherian normal domains which 
is étale in codimension 1 (that is, for all height 1 prime ideals q of B, Aq∩A → Bq is 
essentially (aka local) étale). If K (resp. L) is the fraction field of A (resp. B), then the 
field trace

Tr: L → K

is a nonzero map because L/K is separable [69, Tag 0BIL]. Since A is normal, Tr(B) ⊆ A

because the minimal polynomial of any element of B over K has coefficients in A [69, Tag 
0BIH]. Thus, restricting Tr to B induces a nonzero A-linear map B → A, which, abusing 
notation, we also denote by Tr. Then it is well-known that HomA(B, A) is generated as 
a B-module by Tr (one can apply [72, Prop. 4.8] using the fact that the ramification 
divisor of a map étale in codimension 1 is trivial). That is, any A-linear map B → A is 
of the form Tr(b · _), for some b ∈ B. Consequently, τB/A coincides with the image of 
the trace map Tr: B → A.

Lemma 3.2.3. Let A be a ring and B be an A-algebra.

(1) τB/A =
∑

im(ϕ), where ϕ ranges over all elements of HomA(B, A).
(2) If A has prime characteristic p > 0, then τB/A is uniformly F -compatible.
(3) If B is finitely presented as an A-module, then for all prime ideals p of A, τBp/Ap

=
(τB/A)p.

(4) If A → C is a flat ring map and B is a finitely presented A-module, then τB/AC =
τB⊗AC/C .

Proof. (1) The inclusion τB/A ⊆
∑

im(ϕ) follows by the definition of trace. Suppose 
a ∈ im(ϕ). Choose b ∈ B such that ϕ(b) = a. Then a is the image of 1 ∈ B under the 
composition

B
b·−→ B

ϕ−→ A,

and so, a ∈ τB/A. Thus, im(ϕ) ⊆ τB/A for all ϕ ∈ HomA(B, A), so we get the other 
containment.

In the generality stated (i.e. without assuming A is noetherian or B is module finite 
over A), (2) is proved in [17, Prop. 8.5(i)]. We reproduce the proof for the reader’s 
convenience since the argument is straightforward and the result is crucial for this paper. 
We want that if φ : F e

∗ A → A is an A-linear map, then φ(F e
∗ τB/A) ⊆ τB/A. So let 

F e
∗ b ∈ F e

∗ τB/A. Choose an A-linear map
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ηb : B → A

such that ηb(1) = b. Then the composition

B
F e

−−→ F e
∗ B

F e
∗ ηb−−−→ F e

∗ A
φ−→ A

is an A-linear map that sends 1 �→ φ(F e
∗ b). Thus, φ(F e

∗ b) ∈ τB/A, and so, φ(F e
∗ τB/A) ⊆

τB/A.
For (3), the hypothesis that B is finitely presented as an A module implies that

Ap ⊗A HomA(B, A) = HomAp
(Bp, Ap).

Applying Ap ⊗A − to HomA(B, A) eval @1−−−−→ A gives

HomAp
(Bp, Ap) eval @1−−−−→ Ap.

Since localization commutes with taking images of linear maps, we get the desired result.
(4) is a generalization of (3). We have an exact sequence

HomA(B, A) eval @1−−−−→ A → A/τB/A → 0.

Applying C ⊗A − to the above sequence and using the fact that Hom commutes with 
flat base change when the first argument is finitely presented, we get the exact sequence

HomC(B ⊗A C, C) eval @1−−−−→ C → C/τB/AC → 0.

Then τB⊗AC/C = im(HomC(B⊗AC, C) eval @1−−−−→ C) = ker(C → C/τB/AC) = τB/AC. �
We now deduce some non-obvious consequences of the previous results.

Corollary 3.2.4. Let R be a ring of prime characteristic p > 0 and S be an R-algebra.

(1) If R is Frobenius split, then τS/R is a radical ideal.
(2) If (R, m) is a complete local noetherian domain and S is a big Cohen–Macaulay 

R-algebra (for example, S = R+), then τS/R is a nonzero uniformly F -compatible 
ideal.

Proof. (1) follows by Lemma 3.2.3(2) and Lemma 3.1.2(3).
For (2), by the defining property of a big Cohen–Macaulay R-algebra, it follows that 

if d = dim(R), then

Hd
m(S) 
= 0.

Consequently, HomR(S, R) 
= 0 by [36, Cor. 2.4], or equivalently, τS/R is nonzero. �
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Example 3.2.5. There are other important examples of uniformly F -compatible ideals.

(1) Suppose R is a reduced F -finite noetherian ring. The big or non-finitistic test ideal 
τb(R) of R is a uniformly F -compatible ideal, which is also the smallest (with respect 
to inclusion) uniformly F -compatible ideal of R that is not contained in any minimal 
prime [75,40,58]. Blickle, Schwede and Tucker have shown that when R is additionally 
a normal, F -finite and Q-Gorenstein domain, then τb(R) can be realized as the trace 
of some finite and generically étale extension S of R [13, Thm. 4.6]. In a similar vein, 
Polstra and Schwede have proved that in the Q-Gorenstein setting, one can often 
realize any uniformly F -compatible ideal of R as a trace of some finite extension of 
R [56]. However, it is not known if τb(R) can be realized as trace of a solid R-algebra 
S when R is not Q-Gorenstein. We will show in Corollary 3.3.5 that the finitistic 
test ideal is recoverable as a trace of a big Cohen-Macaulay algebra for an arbitrary 
complete local domain of prime characteristic.

(2) Suppose C is a collection of ideals of a noetherian ring R of prime characteristic p > 0
that is closed under Frobenius powers, that is, I ∈ C ⇒ I [pe] ∈ C for all e ∈ Z>0. We 
claim that

I :=
⋂
I∈C

(I : I∗)

is uniformly F -compatible. Here I∗ denotes the tight closure of I. Suppose c ∈ I
and ϕ : F e

∗ R → R is an R-linear map. We have to show that ϕ(F e
∗ c) ∈ I, that is, 

for I ∈ C and z ∈ I∗, we want ϕ(F e
∗ c)z ∈ I. Now z ∈ I∗ implies zpe ∈ (I [pe])∗. This 

follows by choosing d ∈ R◦ such that d(zpe)pf = dzpe+f ∈ I [pe+f ] = (I [pe])[pf ] for 
f � 0. Now I ∈ C ⇒ I [pe] ∈ C. So by the choice of c, we have czpe ∈ c(I [pe])∗ ⊆ I [pe]. 
Then ϕ(F e

∗ c)z = ϕ(F e
∗ czpe) ∈ ϕ(F e

∗ I [pe]) ⊆ I, as desired. If R is an approximately 
Gorenstein ring (for example, an excellent reduced ring or a normal ring), then taking 
C to be the collection of all ideals of R, the ideal I is the finitistic test ideal of R
[29, Prop. (8.15)]. Similarly, taking C to be the collection of parameter ideals of R, 
the ideal I is the parameter test ideal of R [63, Def. 4.3]. Thus, both types of test 
ideals are uniformly F -compatible for nice rings.

The trace τB/A detects whether A → B splits. However, splitting is not a good notion 
for maps A → B without finiteness assumptions on B. The better notion then is that of 
purity, and we now introduce a uniformly F -compatible that detects purity of A → B

in most cases of interest.

Definition 3.2.6. Let A be a ring and B be an A-algebra. Then the ideal trace of B/A, 
denoted TB/A, is

TB/A :=
⋂

(I : IB ∩ A),

I
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where the intersection ranges over all ideal I of A.

Ideal traces satisfy the following elementary properties.

Lemma 3.2.7. Let A be a ring and B be an A-algebra. Suppose C is the set of ideals of A.

(1) TB/A = A if and only if A → B is cyclically pure.
(2) If A is an approximately Gorenstein ring, then TB/A = A if and only if A → B is 

pure.
(3) We have τB/A ⊆ TB/A.
(4) Suppose A has prime characteristic p > 0. Then for a fixed ideal I of A,

TI :=
⋂
e≥0

(I [pe] : I [pe]B ∩ A)

is uniformly F -compatible.
(5) Suppose A has prime characteristic p > 0. Then TB/A is uniformly F -compatible.

Proof. (1) follows from the fact that for an ideal I of A, A/I → B/IB is injective if and 
only if I = IB ∩ A, or equivalently, that (I : IB ∩ A) = A.

(2) follows from (1) and Proposition 2.2.2 due to Hochster.
(3) Let c ∈ τB/A, and choose ϕ ∈ HomA(B, A) such that ϕ(1) = c. Then for any ideal 

I of A,

c(IB ∩ A) = ϕ(1)(IB ∩ A) = ϕ(IB ∩ A) ⊆ ϕ(IB) ⊆ I,

where the second equality and the last containment of sets follow by A-linearity of ϕ.
(4) Suppose c ∈ TI and ϕ : F e

∗ A → A is an A-linear map. For f ≥ 0, let z ∈ I [pf ]B∩A. 
Then zpe ∈ I [pe+f ]B ∩ A, and so,

ϕ(F e
∗ c)z = ϕ(F e

∗ czpe

) ∈ ϕ(F e
∗ I [pe+f ]) ⊆ I [pf ].

Thus, ϕ(F e
∗ c)(I [pf ]B ∩ A) ⊆ I [pf ] for all f ≥ 0, which shows ϕ(F e

∗ c) ∈ TI , and hence, the 
uniform F -compatibility of TI .

(5) It is clear that

TB/A =
⋂
I∈C

TI ,

and since an arbitrary intersection of uniformly F -compatible ideals is uniformly F -
compatible (Lemma 3.1.2), by (4) we conclude that TB/A is uniformly F -compatible. �
Remark 3.2.8. In general, the containment τB/A ⊆ TB/A is strict even for nice rings 
A. For example, the first author and Murayama have recently constructed examples of 
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excellent Henselian regular local rings A of Krull dimension 1 and prime characteristic 
p > 0 that admit no nonzero A-linear maps F∗A → A [16]. For such a ring, τF∗A/A = 0. 
However, the Frobenius F : A → F∗A is faithfully flat [43], hence is pure, and hence 
is also cyclically pure. Therefore TF∗A/A = A. This example is extreme in the sense 
that F∗A is not a solid A-algebra. Thus one can ask the following question: suppose 
B is a solid A-algebra and TB/A = A. Then does it follow that τB/A = A when A is 
approximately Gorenstein? The question has an affirmative answer if A → B is finite 
or if A is complete, because then A → B is pure, and hence split, by [39, Cor. 5.2]
in the finite case and by a lemma due to Auslander in the complete case (see proof of 
Corollary 3.4.4).

3.3. Algebra closures, traces and ideal traces

Let A be a noetherian ring of arbitrary characteristic. Then for any A-algebra B, 
Pérez and R.G. define an associated closure operation clB that satisfies many of the 
properties of tight closure [55, Def. 2.4]. Namely, for an arbitrary A-module M and a 
submodule N of M , an element m ∈ M is in N clB

M , the clB closure of N in M , if

1 ⊗ m ∈ im(B ⊗A N → B ⊗A M),

where B ⊗A N → B ⊗A M is obtained by tensoring N ⊆ M by idB .
For example, if M = A and N = I is an ideal, then

IclB

A = IB ∩ A.

If B = A+, then clA+ is commonly known as the plus closure.
Analogous to tight closure, one defines the big test ideal of clB , denoted τclB (A), as

τclB
(A) =

⋂
N⊆M

(N :A N clB

M ),

where the intersection ranges over all A-modules M and submodules N of M . Similarly, 
the finitistic test ideal of clB , denoted τfg

clB
(A), is defined as

τ
fg
clB

(A) =
⋂

M is fin. gen.
(N :A N clB

M ).

Now the intersection runs over all finitely generated R-modules M and submodules N .
Despite the many parallels between tight closure and clB , these latter closure opera-

tions are better behaved. In particular, our next result answers [55, Question 3.7] in the 
affirmative for closure operations that arise from A-algebras (see also Remark 3.3.2(2) 
for a partial result for closure operations arising from A-modules).
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Proposition 3.3.1. Let A be a noetherian ring and B be an A-algebra. Let M be an A-
module and N be a submodule of M . Then we have the following:

(1) If M ′ is a submodule of M , then (N ∩ M ′)clB

M ′ ⊆ N clB

M .
(2) Let {Mi}i be the collection of finitely generated A-submodules of M . Then {(N ∩

Mi)clB

Mi
}i is a filtered poset of submodules of M under inclusion and

N clB

M =
⋃

i

(N ∩ Mi)clB

Mi
.

(3) τclB
(A) = τ

fg
clB

(A), that is, the big and finitistic test ideals of clB coincide.
(4) If A is approximately Gorenstein, then τclB (A) = TB/A.
(5) If C is the collection of ideals of A primary to maximal ideals, then TB/A =

⋂
I∈C(I :

IB ∩ A).
(6) τB/A ⊆ τclB

(A).

Proof. For ease of notation, for any A-module M and a submodule N of M , we use ξN,M

to denote the canonical map B ⊗A N → B ⊗A M obtained by tensoring N ⊆ M by idB . 
By definition, m ∈ N clB

M if and only if 1 ⊗ m ∈ im(ξN,M ).
(1) We have a commutative diagram

B ⊗A (N ∩ M ′) B ⊗A M ′

B ⊗A N B ⊗A M

ξN∩M′,M′

ξN∩M′,N ξM′,M

ξN,M

If m′ ∈ (N ∩ M ′)clB

M ′ , then 1 ⊗ m′ ∈ im(ξN∩M ′,M ′). By the commutativity of the above 
diagram, it follows that 1 ⊗ m′ ∈ im(ξN,M ). Thus, (N ∩ M ′)clB

M ′ ⊆ N clB

M .
(2) {Mi}i is a filtered poset of R-submodules of M under inclusion such that

M = colimi Mi and N = colimi N ∩ Mi.

The colimits here are unions. By (1), we get
⋃

i

(N ∩ Mi)clB

Mi
⊆ N clB

M .

Since tensor products commute with filtered colimits, it follows that

ξN,M : B ⊗A N → B ⊗A M = colimi

(
ξN∩Mi,Mi

: B ⊗A (N ∩ Mi) → B ⊗A Mi

)
.

Consequently, by the exactness of filtered colimits in ModA [69, Tag 00DB], it follows 
that
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im(ξN,M ) = colimi im(ξN∩Mi,Mi
).

Thus, for m ∈ M , in order for 1 ⊗ m to be in im(ξN,M ), there must exist an index i such 
that m ∈ Mi and 1 ⊗m ∈ im(ξN∩Mi,Mi

). Unravelling the definition of clB , this gives (2).
(3) The containment τclB

(A) ⊆ τ
fg
clB

(A) follows by the definitions of the big and 

finitistic test ideals of clB . Let a ∈ τ
fg
clB

(A), and N ⊆ M be a pair of A-modules. Given 
m ∈ N clB

M , by (2) there exists some finitely generated submodule M ′ of M such that 
m ∈ (N ∩ M ′)clB

M ′ . Since

a
(
(N ∩ M ′)clB

M ′
)

⊆ N ∩ M ′,

it follows that am ∈ N ∩ M ′ ⊆ N . Thus,

a(N clB

M ) ⊆ N,

and since M and N are arbitrary, we get a ∈ τclB
(A). This shows that τfg

clB (A) ⊆ τclB
(A).

(4) Recall that

TB/A =
⋂
I

(I : IB ∩ A) =
⋂
I

(I : IclB

A ),

where I ranges over all ideals of A. By (3) it suffices to show that τfg
clB

(A) = TB/A. 
We will follow the proof of [29, Prop. (8.15)], where the analogous fact is shown for the 
finitistic tight closure test ideal. Let c ∈ TB/A. By [55, Lem. 3.3], it suffices to show that 
if M is a finitely generated A-module, then

c ∈ (0 :A 0clB

M ),

that is, c annihilates 0clB

M . Assume for contradiction that this is not the case. Then there 
exists m ∈ 0clB

M such that cm 
= 0. Since M is a noetherian A-module, let N be a 
submodule of M maximal with respect to the property that cm /∈ N . Then m ∈ N clB

M

and cm /∈ N . Replacing M by M/N , N by 0 and m by its image in M/N , we may 
assume there exists m ∈ 0clB

M such that cm 
= 0 and for all submodules 0 � M ′ � M , 
cm ∈ M ′. Thus, A(cm) ⊂ M is an essential extension, and moreover, A(cm) has to 
be a nontrivial simple A-module. This means that there exists a maximal ideal m of A
such that A(cm) � A/m. Since A is approximately Gorenstein, M embeds in A/I for an 
m-primary ideal I by Lemma 2.2.3. Then

0clB

M ⊆ 0clB

A/I .

Since c ∈ TB/A = (I : IB ∩A) = (I : IclB

A ), [55, Lem. 2.15] shows that c annihilates 0clB
A/I , 

and so, c also annihilates 0clB

M . This is a contradiction.
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(5) Recall C is the collection of ideals of A primary to maximal ideals. It suffices to 
show that

⋂
I∈C

(I : IB ∩ A) ⊆ TB/A.

Let J be an arbitrary ideal of A and let c ∈
⋂

I∈C(I : IB ∩ A). Then for any maximal 
ideal m of A and n ∈ Z>0,

c(JB ∩ A) ⊆ c((J + mn)B ∩ A) ⊆ J + mn.

Thus,

c(JB ∩ A) ⊆
⋂

n∈Z>0

⋂
m

J + mn = J,

where the inner intersection runs over all maximal ideals of A. It follows that c ∈ TB/A.
(6) If A is approximately Gorenstein, then (6) follows from (4) and Lemma 3.2.7(3) 

because τB/A ⊆ TB/A. We will show that (6) holds for any noetherian ring A. Let 
c ∈ τB/A and choose an A-linear map f : B → A such that f(1) = c. Then for any 
A-module N , we get an A-linear map

ηN : B ⊗A N N.

b ⊗ n f(b)n

Note that ηN is functorial in N , that is, for any A-linear map ϕ : N → M ,

B ⊗A N B ⊗A M

N M.

idB ⊗ϕ

ηN ηM

ϕ

commutes. Applying this commutative diagram when N is a submodule of an A-module 
M and ϕ is the inclusion map, we see that if m ∈ N clB

M , that is, if 1 ⊗m ∈ im(B ⊗A N →
B ⊗A M), then

cm = f(1)m = ηM (1 ⊗ m)

is in the image of N ⊆ M , that is, cm ∈ N . Thus, c ∈ (N :A N clB

M ), and since N, M are 
arbitrary, we get c ∈ τclB

(A). �
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Remark 3.3.2.

(1) Proposition 3.3.1(6) is also observed when A is local in [55, Thm. 3.12] (see [55, 
Rem. 3.13]), where it is additionally shown that equality holds in part (6) if B is 
a finite A-algebra or if A is complete and B is an arbitrary A-algebra. We will use 
[55, Thm. 3.12] to show that the trace τB/A and the ideal trace TB/A are equal for 
module finite extensions in most cases of interest (Corollary 3.3.3(1)). This basic 
observation will be useful in identifying and proving properties of an ideal that 
detects the non-splinter locus of a noetherian domain in Section 4.

(2) One can define a closure operation clB for an A-module B that is not necessarily 
an A-algebra [55, Def. 2.4]. The proof of Proposition 3.3.1(3) can be modified to 
show that if B is a finitely generated A-module, then the big and finitistic clB-
closure test ideals coincide. Indeed, if B is generated as an A-module by b1, . . . , bn, 
then m ∈ N clB

M precisely when bi ⊗ m ∈ im(B ⊗A N → B ⊗A M) for all i. But 
one can always find a large finitely generated A-submodule M ′ of M such that 
m ∈ M ′ and bi ⊗ m ∈ im(B ⊗A (N ∩ M ′) → B ⊗A M ′) for all i. However, the 
closure operations associated with modules that are not algebras are often not related 
to tight closure. For example, there exist even finitely generated Cohen–Macaulay 
modules B over a non-regular but weakly F -regular local ring for which clB is non-
trivial [55, Rem. 2.23].

(3) The arguments of Proposition 3.3.1 will not work to show that the big and finitistic 
test ideals from tight closure theory are equal because tight closure involves checking 
algebra closure type relations for infinitely many B’s. However, see Corollary 3.3.5
for a deep characterization of finitistic tight closure in terms of an algebra closure 
due to Hochster.

We can now exhibit relations between the ideals τB/A and TB/A for nice rings. In 
particular, we will see that the ideal trace TB/A often localizes for finite extensions A ↪→
B, a fact that is not obvious from its definition which involves an infinite intersection of 
ideals.

Corollary 3.3.3. Let A be an approximately Gorenstein noetherian ring and B be an 
A-algebra.

(1) If B is a finite A-algebra, then τB/A = τclB
(A) = τ

fg
clB

(A) = TB/A.
(2) If B is a finite A-algebra, then for all prime ideals p of A, TBp/Ap

= (TB/A)p.
(3) If A is complete local, then τB/A = τclB

(A) = τ
fg
clB

(A) = TB/A.
(4) If A is a complete local domain, then τA+/A = τclA+ (A) = τ

fg
clA+

(A) = TA+/A and 
τA+/A 
= 0.

All the ideals in (1) and (3) are nonzero precisely when B is a solid A-algebra.
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Proof. (1) The equalities τclB
(A) = τ

fg
clB

(A) = TB/A follow by Proposition 3.3.1. Thus, 
it suffices to show that

τB/A = TB/A. (3.3.3.1)

This equality holds when A is local and B is a finite A-algebra by [55, Thm. 3.12], where 
it is shown that τB/A = τclB

(A). Now note that

(TB/A)p =
( ⋂

I

(I : IB ∩ A)
)

p

⊆
⋂
I

(I : IB ∩ A)p =
⋂
I

(IAp : IBp ∩ Ap) = TBp/Ap
.

(3.3.3.2)
The first equality is by definition of TB/A, and the inclusion is a well-known property 
of localization. The second equality follows by flatness of localization. Indeed, we have 
(I : IB ∩ A)p = (IAp : (IB ∩ A)Ap) by flatness and the fact that IB ∩ A is finitely 
generated, and

A/(IB ∩ A) ↪→ B/IB

stays an inclusion upon localizing at p, which implies that (IB ∩ A)Ap = IBp ∩ Ap. 
The final equality follows by definition of TBp/Ap

and the fact that all ideals of Ap are 
expanded from A.

By the veracity of (3.3.3.1) in the local case, we have TBp/Ap
= τBp/Ap

, and conse-
quently,

(τB/A)p ⊆ (TB/A)p ⊆ TBp/Ap
= τBp/Ap

= (τB/A)p.

Here the first inclusion follows because τB/A ⊆ TB/A by Lemma 3.2.7(3), the second 
inclusion follows by (3.3.3.2) and the last equality follows by Lemma 3.2.3(3). Thus, for 
all prime ideals p of A, (τB/A)p = (TB/A)p, which implies that τB/A = TB/A.

(2) follows from (1) and the fact that (τB/A)p = τBp/Ap
by Lemma 3.2.3(3).

(3) The equalities τclB (A) = τ
fg
clB

(A) = TB/A again follow by Proposition 3.3.1, and 
[55, Thm. 3.12] shows that τB/A = τclB

(A).
The first part of (4) follows by (3). It remains to show that A+ is a solid A-algebra. 

Since A is complete local, by Cohen’s structure theorem, there exists a complete regular 
local ring R and a module finite extension R ↪→ A. Then A+ = R+ and the map 
R ↪→ A ↪→ A+ is pure because R is a splinter by the direct summand theorem [6,32]. 
Since R is complete, a well-known result due to Auslander (see for example [17, Lem. 
2.3.3]) implies R → A+ splits. Since A is a finite extension domain of R, A+ must also 
be a solid A-algebra by [36, Cor. 2.3]. �
Remark 3.3.4. Corollary 3.3.3(4) was announced a number of years ago by Hochster and 
Zhang. To the best of our knowledge, their result is not publicly available and our proof 
is independent of theirs.
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Granting another unpublished but widely available result of Hochster in his course 
notes [37], we show that the finitistic test ideal from tight closure theory can always be 
recovered as a trace ideal for any complete local domain. This result is an analog of [13, 
Thm. 4.6].

Corollary 3.3.5. Let (R, m) be a complete local noetherian domain of prime characteristic 
p > 0. Then there exists a big Cohen-Macaulay R-algebra B that satisfies all of the 
following properties:

(1) B is an R+-algebra.
(2) For all finitely generated R-modules M and submodules N of M , N clB

M = N∗
M , where 

N∗
M denotes the tight closure of N in M .

(3) τB/R = τ
fg
∗ (R), where τfg

∗ (R) is the finitistic tight closure test ideal of R.

Proof. The existence of a big Cohen–Macaulay R-algebra B that satisfies (1) and (2) 
follows by [37, Thm. on pg. 250]. This is a significant strengthening of [36, Thm. (11.1)], 
where Hochster shows that given a finitely generated R-module M and a submodule N
of M , there exists a big Cohen–Macaulay R-algebra B depending on M, N such that 
N clB

M = N∗
M .

So choose B satisfying (1) and (2). Then B is a solid R-algebra because R is complete 
and B is big Cohen–Macaulay. Now by [55, Thm. 3.12],

τB/R = τclB
(R).

But Proposition 3.3.1(3) tells us that

τclB
(R) = τ

fg
clB

(R) :=
⋂

M is fin. gen.
(N :R N clB

M ) =
⋂

M is fin. gen.
(N :R N∗

M ).

The last intersection is precisely the finitistic tight closure test ideal of R [29, Def. 
8.22]. �
Remark 3.3.6. Let B be Hochster’s (very large) big Cohen–Macaulay R-algebra from 
Corollary 3.3.5. It is not known if clB coincides with tight closure for submodules of 
arbitrary R-modules. Indeed, an affirmative answer to this question would imply that 
τB/R is also the non-finitistic or big test ideal τb(R) of R from tight closure, thereby 
showing that the big and finitistic tight closure test ideals coincide. This would then 
settle the outstanding problem of whether weak F -regularity is equivalent to strong 
F -regularity for complete local domains.

3.4. Finiteness of uniformly F -compatible ideals

Let R be a noetherian ring, and let Σ be a collection of radical ideals of R that is closed 
under finite intersections and such that for I ∈ Σ, any minimal prime of I is also in Σ. 
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The main example for us is where Σ is the collection of uniformly F -compatible ideals 
of R when R is Frobenius split; see Lemma 3.1.2. It follows that Σ is finite precisely 
when Σ ∩ Spec(R) is finite because every ideal of Σ (apart from the unit ideal) is a 
finite intersection of elements of Σ ∩ Spec(R). We use this basic observation to recall the 
following well-known result which is a key technical ingredient of our paper.

Proposition 3.4.1. Let R be a noetherian Frobenius split ring of prime characteristic 
p > 0. Then R has finitely many uniformly F -compatible ideals in each of the following 
cases:

(1) R is F -finite.
(2) (R, m) is local.

In fact, if ϕ : F∗R → R is a Frobenius splitting, then R has finitely many ϕ-compatible 
ideals in both cases.

We will reprove Proposition 3.4.1, in part to highlight the similarity between the proofs 
of the global and local cases, and also to give a proof of the global F -finite case that 
does not rely on F -adjunction or the language of divisor pairs. But first, we highlight a 
bound on the multiplicity of F -pure noetherian local rings that gives a proof of the local 
case of Proposition 3.4.1.

Proposition 3.4.2. [41, Thm. 3.1] Let (R, m, κ) be a noetherian local ring of prime char-
acteristic p > 0 that is F -pure. Suppose d is the dimension of R and v = dimκ m/m2. 
Then

e(R) ≤
(

v

d

)
,

where e(R) is the Hilbert–Samuel multiplicity of R.

Proof of Proposition 3.4.1. Since R is Frobenius split, all uniformly F -compatible ideals 
are radical. Part (1) is precisely [57, Cor. 5.10]. For the reader’s convenience, we translate 
Schwede’s proof, avoiding the machinery of F -adjunction and pairs. Fix a Frobenius 
splitting

ϕ : F∗R → R.

We will show the stronger statement that there are finitely many ϕ-compatible ideals in 
the sense of Remark 3.1.3. As discussed in the beginning of this subsection, it suffices to 
show that there are finitely many ϕ-compatible ideals that are prime. If not, there will be 
infinitely many distinct ϕ-compatible prime ideals {pα}α∈A such that dim(R/pα) = d, 
for some fixed 0 < d ≤ dim(R) (dim(R) < ∞ because R is F -finite [44, Prop. 1.1]). Let
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q :=
⋂

α∈A

pα.

We claim that if p is a minimal prime of q, then p is the intersection of the pα such that 
p ⊆ pα. Indeed, let

p1, p2, . . . , pn

be the distinct minimal primes of q. For all i ∈ {1, . . . , n}, let Ii be the intersection of all 
the pα that contain the minimal prime pi (the intersection should be interpreted to be R
if no such pα exist, but our claim will show this is impossible). Our claim is that Ii = pi, 
for all i ∈ {1, . . . , n}. Without loss of generality, assume i = 1. Note that every prime 
ideal pα must contain some minimal prime pi because q = p1 ∩ · · · ∩ pn ⊆ pα. Thus,

I1 ∩ · · · ∩ In =
⋂

α∈A

pα = q = p1 ∩ · · · ∩ pn.

Since p1 is prime, there exists i ∈ {1, . . . , n} such that Ii ⊆ p1. But pi ⊆ Ii for all i, so 
by minimality, I2, . . . , In � p1. Hence, we must have I1 ⊆ p1, and by definition of I1, we 
have p1 ⊆ I1, proving our claim.

Since q has finitely many minimal primes, by the pigeonhole principle, there exists a 
minimal prime of q that is the intersection of infinitely many of the pα’s. Thus, replacing 
q by this minimal prime, we may assume that q is prime. Note that for all α, q � pα since 
there are no inclusion relations among the pα. Moreover, q is uniformly ϕ-compatible, 
so we get an induced Frobenius splitting

ϕ : F∗(R/q) → R/q

of the domain R/q. For all α, pα/q is a nonzero ϕ-compatible ideal of R/q and
⋂
α

(pα/q) = (
⋂
α

pα)/q = (0). (3.4.2.1)

Since R/q is an F -finite domain and ϕ is a nonzero map, there is a smallest nonzero
ϕ-compatible ideal with respect to inclusion, namely the (big or non-finitistic) test ideal 
τ(R/q, ϕ) [71, Thm. 3.8] (this is where F -finiteness is used seriously for the first time). 
In particular,

(0) 
= τ(R/q, ϕ) ⊆ pα/q,

for all α. This contradicts (3.4.2.1).
We prove (2) following [41, Rem. 3.4]. As above, for a Frobenius splitting ϕ of (R, m), 

it suffices to show there are only finitely many ϕ-compatible prime ideals p of coheight 
d, for any fixed 0 ≤ d ≤ dim(R). So suppose p1, . . . , pn ∈ Spec(R) are prime ideals of 
coheight d. Since p1 ∩ · · · ∩ pn is uniformly F -compatible,
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R/
n⋂

i=1
pi

is a Frobenius split equidimensional local ring of Krull dimension d. Suppose v (resp. v′) 
is the embedding dimension of R (resp. R/ 

⋂n
i=1 pi). Then v′ ≤ v. Since R/ 

⋂n
i=1 pi is 

reduced and equidimensional, we get

n ≤
n∑

i=1
e(R/pi) = e(R/

n⋂
i=1

pi) ≤
(

v′

d

)
≤

(
v

d

)
.

The first inequality follows because the multiplicity of a local domain is a positive 
integer, the equality follows by [50, Thm. 14.7] because R/ 

⋂n
i=1 pi is reduced and equidi-

mensional, the second inequality follows by Proposition 3.4.2 applied to the F -pure 
local ring R/ 

⋂n
i=1 pi, and the final inequality follows because v′ ≤ v. Thus, for each 

0 ≤ d ≤ dim(R), the number of ϕ-compatible prime ideals of coheight d is bounded 
above by 

(
v
d

)
, which only depends on R and d. �

Remark 3.4.3.

(1) In the proof of Proposition 3.4.1 in the F -finite case, we used the highly non-trivial 
fact that if R is a noetherian F -finite domain and ϕ : F∗R → R is a nonzero R-linear 
map, then R has a smallest nonzero ϕ-compatible ideal with respect to inclusion. 
The existence of this ideal is based on a deep result of Hochster and Huneke in tight 
closure theory on the existence of completely stable test elements for noetherian 
F -finite rings. For more details, please see [71, Lem. 3.6] and [30, Thm. 5.10].

(2) The finiteness of the set of uniformly F -compatible ideals of a Frobenius split noethe-
rian local ring (R, m) in the excellent case also follows by [20, Cor. 3.2], which is a 
characteristic independent result. The advantage of Proposition 3.4.2 is that it al-
lows one to obtain explicit bounds on the number of uniformly F -compatible prime 
ideals (and also without any excellence hypothesis). The same explicit bounds were 
also obtained in [70, Thm. 4.2] in the excellent local case, albeit via more involved 
considerations. It is a different matter that the authors do not know an example 
of a non-excellent Frobenius split noetherian local ring. Indeed, the most common 
method of constructing non-excellent noetherian local rings in prime characteristic 
is in the dimension 1 regular case via arc valuations; see [18]. However, [17, Thm. 
7.4.1] shows that any Frobenius split normal noetherian domain of dimension 1 has 
to be excellent. Thus, the ‘usual’ method of constructing non-excellent noetherian 
local rings in prime characteristic do not give examples that are Frobenius split. 
Consequently, it is unclear if Proposition 3.4.1 gives additional cases of finiteness of 
F -compatible ideals outside the excellent setting in the local case.

(3) The proofs of the finiteness of the set Σ of uniformly F -compatible ideals of Frobenius 
split noetherian rings that are F -finite or local only used the facts that Σ is closed 
under arbitrary intersections, consists of radical ideals, and is also closed under taking 
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minimal primes of ideals. The property of Σ being closed under sums of ideals is never 
used, in contrast with [20, Cor. 3.2] and [70, Thm. 4.1].

Corollary 3.4.4. If (R, m) is a complete local noetherian ring of prime characteristic that 
is F -pure, then R has finitely many uniformly F -compatible ideals.

Proof. This follows by Proposition 3.4.1, because purity of a ring map R → S, when R
is complete, is equivalent to splitting by a result due to Auslander; see [21, Lem. 1.2] (or 
[17, Lem. 2.3.3] for a more general statement). �
4. The splinter locus

Suppose X is a locally noetherian scheme. We define

Spl(X) := {x ∈ X : OX,x is a splinter}.

Note that for any open subscheme U of X, Spl(U) = Spl(X) ∩ U . If R is a noetherian 
ring, we define Spl(R) to be Spl(Spec(R)). Since splinters are integrally closed domains, 
it follows that Spl(X) is contained in the normal locus

Nor(X) := {x ∈ X : OX,x is an integrally closed domain}

of X. Thus, if Nor(X) is open (for example, if X is has an open regular locus [24, Cor. 
(6.13.5)]), then to show that Spl(X) is open it suffices to assume that X is normal. Since 
openness of the splinter locus can be checked on a sufficiently fine affine open cover of 
X, one may further assume that X = Spec(A), where A is a noetherian integrally closed 
domain (in particular, A is approximately Gorenstein). Thus, we will analyze when the 
splinter locus of a noetherian domain is open.

4.1. Traces and splinter loci

Recall that if B is an A-algebra, then the ideal trace of B/A is

TB/A :=
⋂
I

(I : IB ∩ A),

where the intersection ranges over all ideals I of A. Similarly, the trace of B/A is

τB/A := im(HomA(B, A) eval @1−−−−→ A).

In general, τB/A ⊆ TB/A, and equality holds when A is an approximately Gorenstein 
noetherian domain and B is a finite extension of A (Corollary 3.3.3(1)). We begin with 
the following observation:
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Lemma 4.1.1. Let A be a noetherian domain, C be the collection of finite A-subalgebras 
of A+ and

Στ := {τB/A : B ∈ C} and ΣT := {TB/A : B ∈ C}.

(1) For all B ∈ C, τB/A 
= 0 and TB/A 
= 0.
(2) If B, B′ ∈ C such that B ⊆ B′, then τB′/A ⊆ τB/A (resp. TB′/A ⊆ TB/A). Thus, Στ

(resp. ΣT ) is a cofiltered poset of ideals of A under inclusion.
(3) If a minimal element of Στ (resp. ΣT ) exists, then this is the smallest element of Στ

(resp. ΣT ) in the sense that it is contained in every other element of Στ (resp. ΣT ).
(4) If Στ (resp. ΣT ) is finite, then it has a smallest element under inclusion.
(5) A is a splinter ⇐⇒

⋂
B∈C τB/A = A ⇐⇒

⋂
B∈C TB/A = A.

We say a partially order set (Σ, ≤) is cofiltered if for all x, y ∈ Σ, there exists z ∈ Σ
such that z ≤ x, y.

Proof. (1) For all B ∈ C, HomA(B, A) 
= 0 because

Frac(A) ⊗A HomA(B, A) = HomFrac(A)(Frac(B), Frac(A)) 
= 0.

Thus, for all B ∈ C, τB/A 
= 0. Since TB/A contains τB/A (Lemma 3.2.7(3)), it follows 
that for all B ∈ C, TB/A 
= 0.

(2) If B ⊆ B′, then HomA(B′, A) eval @1−−−−→ R factors as

HomA(B′, A) → HomA(B, A) eval @1−−−−→ A,

where Hom(B′, A) → Hom(B, A) is given by restriction to B. It follows that τB′/A ⊆
τB/A. The set C is a filtered poset under inclusion because if B, B′ ∈ C, then B[B′] ∈ C. 
Thus, Στ is a cofiltered poset under inclusion.

Analogously, if B ⊆ B′, then IB ∩ A ⊆ IB′ ∩ A. This means that (I : IB′ ∩ A) ⊆ (I :
IB ∩ A), and so, TB′/A ⊆ TB/A. Again, because C is a filtered poset, ΣT is a cofiltered 
poset.

(3) holds generally for any cofiltered poset.
(4) follows from (3) because any finite poset has a minimal element.
(5) If A is a splinter, then τB/A = A for any finite extension of A by definition of the 

splinter property. This shows that if A is a splinter, then 
⋂

B∈C τB/A = A.
If 

⋂
B∈C τB/A = A, then 

⋂
B∈C TB/A = A because τB/A ⊆ TB/A.

It remains to show that if
⋂

B∈C
TB/A = A,

then A is splinter. If 1 ∈ TB/A, then for all ideals I of A we have
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I = IB ∩ A.

Thus A → B is cyclically pure for all B ∈ C. Since A+ = colimB∈C B, it follows that 
A → A+ is also cyclically pure. Then A is a splinter by [19, Lem. 2.3.1]. �
Remark 4.1.2.

(1) Using the notation of Lemma 4.1.1, if Στ has a smallest element under inclusion, 
then there exists a finite A-subalgebra B0 of A+ such that

τB0/A =
⋂

B∈C
τB/A.

This implies that for all finite A-subalgebras B′ of A+ containing B0,

τB0/A = τB′/A,

that is, the traces of the finite A-subalgebras of A+ stabilize. We will see that this 
stable trace ideal, when it exists, defines the splinter locus of A.

(2) A similar stabilization result also holds if ΣT has a smallest element under inclusion. 
If A is additionally approximately Gorenstein, then Στ = ΣT by Corollary 3.3.5(1), 
that is, we get the same stable ideal as in the previous remark.

Definition 4.1.3. Let A be a noetherian domain and C be the collection of finite A-
subalgebras of A+. We define the trace of A, denoted τA, to be

τA :=
⋂

B∈C
τB/A.

The ideal trace of A, denoted TA, is defined to be

TA :=
⋂

B∈C
TB/A.

Proposition 4.1.4. Let A be a noetherian domain and C be the collection of finite A-
subalgebras of A+. Then we have the following:

(1) A is a splinter ⇐⇒ τA = A ⇐⇒ TA = A.
(2) TA = TA+/A.
(3) If A is approximately Gorenstein, then τA = TA and τA is the big plus closure test 

ideal.
(4) If (A, m) is complete local, then τA = τA+/A.

Assume that Στ := {τB/A : B ∈ C} has a smallest element under inclusion. Then:
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(

(5) There exists B0 ∈ C such that τA = τB0/A.
(6) If A is approximately Gorenstein, there exists B0 ∈ C such that TA = TB0/A = τB0/A.
(7) If (A, m) is complete local, there exists B0 ∈ C such that τA+/A = τB0/A = TB0/A =

TA+/A.
(8) If p ∈ Spec(A), then τAp

= (τA)p.
(9) For p ∈ Spec(A), Ap is a splinter if and only if τA � p. Thus, the splinter locus of 

A is the complement in Spec(A) of V(τA).
10) There exists a finite A-subalgebra B0 of A+ such that if A ↪→ B0 splits, then A is a 

splinter.

Proof. (1) is precisely Lemma 4.1.1(5).
(2) For all B ∈ C, we have B ⊆ A+. Therefore,

TA+/A =
⋂
I

(I : IA+ ∩ A) ⊆
⋂
I

(I : IB ∩ A) = TB/A,

where the intersections are indexed by all ideals I of A and the middle containment 
follows because IB ∩ A ⊆ IA+ ∩ A. Thus,

TA+/A ⊆ TA.

Now suppose c ∈ TA and let I be an ideal of A. To prove TA ⊆ TA+/A we have to show 
that c(IA+ ∩ A) ⊆ I. Let z ∈ IA+ ∩ A and choose a finite A-subalgebra B of A+ such 
that z ∈ IB ∩ A. Since c ∈ TB/A, it follows that cz ∈ I, and so, c(IA+ ∩ A) ⊆ I.

(3) If A is approximately Gorenstein, then for all B ∈ C,

τB/A = TB/A

by Corollary 3.3.3(1). So τA = TA by the definition of these ideals. By (2), we then 
get τA = TA+/A, and taking B = A+ in Proposition 3.3.1(4), it follows that TA+/A =
τclA+ (A). Since clA+ is precisely plus closure, τclA+ (A) is the big plus closure test ideal.

(4) A noetherian complete local domain is approximately Gorenstein because reduced 
excellent rings are approximately Gorenstein. Then τA = TA by (3), TA = TA+/A by (2), 
and TA+/A = τA+/A by Corollary 3.3.3(4).

(5) follows by the hypothesis that Στ has a smallest element.
(6) Since A is approximately Gorenstein, (3) implies

TA = τA.

Now choose B0 ∈ C that satisfies the conclusion of (5). Then TA = τA = τB0/A = TB0/A, 
where the last equality again follows by the approximately Gorenstein property and 
Corollary 3.3.3(1).
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(7) Since complete local domains are approximately Gorenstein, by (2), (3) and (4),

τA+/A = τA = TA = TA+/A,

and by (6), there exists B0 ∈ C such that TA = TB0/A = τB0/A.
(8) If Στ has a smallest element τB0/A, then by exactness of localization, for p ∈

Spec(A), the collection

Στ,p := {(τB/A)p : B ∈ C}

also has a smallest element under inclusion, namely (τB0/A)p = τ(B0)
p

/Ap
. Here the last 

equality follows by Lemma 3.2.3(3). Thus,

(τA)p = (
⋂

B∈C
τB/A)p = (τB0/A)p =

⋂
B∈C

(τB/A)p =
⋂

B∈C
τBp/Ap

.

It suffices to show that
⋂

B∈C
τBp/Ap

= τAp
. (4.1.4.1)

Let T be a finite Ap-subalgebra of (Ap)+ = (A+)p. Suppose T = Ap[t1, . . . , tn]. Since 
each ti is integral over Ap, there exists s ∈ A \ p such that for all i, sti is integral over A. 
As s is a unit in T , replacing ti by sti does not change T , so we may assume that each 
ti is integral over A. Then the A-subalgebra

T ′ := A[t1, . . . , tn]

of T has the property that T ′ is a finite extension of A contained in A+ and (T ′)p = T . 
Thus,

τT/Ap
= τ(T ′)p/Ap

= (τT ′/A)p.

Said differently, this argument shows that every trace of a finite Ap-subalgebra of (Ap)+

is the localization at p of the trace of some finite A-subalgebra of A+. Unravelling the 
definition of τAp

, this implies (4.1.4.1).
(9) By (1), Ap is a splinter if and only if τAp

= Ap. Now by (7), τAp
= (τA)p. Thus, 

τAp
= Ap if and only if (τA)p = Ap, and this last equality holds precisely when τA � p. It 

follows that the splinter locus of A is the complement of the closed set V(τA) of Spec(A).
(10) Choose a finite A-subalgebra B0 of A+ that satisfies (5). If A ↪→ B0 splits, then 

τA = τB0/A = A, and so, A is a splinter by (1). �
Remark 4.1.5. The equality τA = τA+/A in part (4) and the equality τA+/A = τB0/A in 
part (6) of Proposition 4.1.4 fail quite dramatically if we do not assume A is complete, 
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even for excellent regular local rings. Indeed, by [16] choose an excellent Henselian regular 
local ring A of Krull dimension 1 and prime characteristic p > 0 such that A admits 
no nonzero A-linear maps F∗A → A. Since F∗A embeds in A+, this implies that there 
are no nonzero A-linear maps A+ → A. Thus, τA+/A = 0 while τA = A because regular 
rings of prime characteristic are splinters by [32]. Note that in this case τA equals τB/A

for any finite A-subalgebra B of A+.

Example 4.1.6. Suppose R is a noetherian F -finite normal domain that is Q-Gorenstein. 
Then [13] shows that the set Στ of Proposition 4.1.4 has a smallest element, namely the 
big test ideal τb(R) of R. Thus, τR = τb(R), and so, Proposition 4.1.4(9) shows that the 
splinter locus of R coincides with the complement of V(τb(R)), which is the strongly 
F -regular locus of R. This is not surprising because Singh showed that in the affine 
Q-Gorenstein setting, the splinter condition is the same as being F -regular [60] and it is 
known that for F -finite Q-Gorenstein rings, (weak) F -regularity is equivalent to strong 
F -regularity [48].

We will now use Proposition 4.1.4 to compare the traces under Henselizations and 
completions.

Proposition 4.1.7. Let (A, m) be a noetherian normal domain. We have the following:

(1) If Ah is the Henselization of A with respect to m, then τAh ∩ A = τA.
(2) If A has geometrically regular formal fibers and Â is the m-adic completion, then 

τÂ ∩ A = τA.

We need the following lemma, which is interesting in its own right.

Lemma 4.1.8. Let A → B be a cyclically pure map of noetherian domains. Then TB ∩A ⊆
TA.

Proof of Lemma 4.1.8. By Proposition 4.1.4(2), TA = TA+/A and TB = TB+/B . Cyclic 
purity implies A → B is injective. So we may assume that A ⊆ B and A+ ⊆ B+.

Let c ∈ TB ∩ A = TB+/B ∩ A, and pick any ideal I of A. Then

c(IA+ ∩ A) ⊆ c((IB)B+ ∩ B) ∩ A ⊆ IB ∩ A = I,

where the first containment follows because IA+ ∩ A ⊆ (IB)B+ ∩ B, the second con-
tainment because c ∈ TB+/B , and the equality because A → B is cyclically pure. Thus, 
c ∈

⋂
I(I : IA+ ∩ A) = TA+/A = TA. �

We now prove Proposition 4.1.7 utilizing some ideal-theoretic results of [19].

Proof of Proposition 4.1.7. Note that a noetherian integrally closed domain is approxi-
mately Gorenstein.
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(1) Ah is also a noetherian integrally closed domain [69, Tag 06DI]. Thus, by Propo-
sition 4.1.4(3) and (2),

τA = TA+/A and τAh = T(Ah)+/Ah .

Therefore it suffices to show that T(Ah)+/Ah ∩ A = TA+/A. Since A → Ah is faithfully 
flat, Lemma 4.1.8 and Proposition 4.1.4(2) give

T(Ah)+/Ah ∩ A ⊆ TA+/A.

Now suppose c ∈ TA+/A. It remains to show that c ∈ T(Ah)+/Ah . If C is the collection of 
mAh-primary ideals of Ah, then Proposition 3.3.1(5) shows that

T(Ah)+/Ah =
⋂

J∈C
(J : J(Ah)+ ∩ Ah).

Therefore it suffices to show that c(J(Ah)+ ∩ Ah) ⊆ J , for any mAh-primary ideal J of 
Ah. Note that

A → Ah

is a local homomorphism such that the induced map on completions is an isomorphism. 
Therefore any mAh-primary ideal of Ah is expanded from an m-primary ideal of A (for 
example, see [19, Lem. 3.1.2]). So choose an m-primary ideal I of A such that

J = IAh.

By [19, Prop. 3.1.4(2)],

(J(Ah)+ ∩ Ah) ∩ A = J(Ah)+ ∩ A = I(Ah)+ ∩ A = IA+ ∩ A.

Moreover, J ⊆ J(Ah)+ ∩ Ah, which means that J(Ah)+ ∩ Ah is also an mAh-primary 
ideal expanded from some m-primary ideal of A. Then it must be the case that

J(Ah)+ ∩ Ah = (IA+ ∩ A)Ah.

Since c ∈ TA+/A, we have c(IA+ ∩ A) ⊆ I. Consequently,

c(J(Ah)+ ∩ Ah) = c
(
(IA+ ∩ A)Ah

)
= (c(IA+ ∩ A))Ah ⊆ IAh = J,

as desired.
(2) Since A is a normal domain with geometrically regular formal fibers, Â is also a 

normal domain [69, Tag 0BFK] and both A, Â are approximately Gorenstein. Now the 
rest of the proof of (2) follows from the argument given in (1) but with Ah replaced by 
Â, (Ah)+ replaced by Â+, and [19, Prop. 3.1.4(2)] replaced by [19, Prop. 3.2.2], which 
says that for an ideal I of A, IÂ+ ∩ A = IA+ ∩ A. �
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4.2. Separable traces and splinter loci

Let R be a noetherian domain with fraction field K. Recall that we say R is N-1 if 
the integral closure of R in K is a finite R-algebra.

Excellent domains are N-1, although the N-1 assumption is substantially more general. 
For example, any noetherian normal domain is N-1, although noetherian normal domains 
are far from being excellent in general. Moreover, in the context of singularity theory, 
especially in prime characteristic, most notions of F -singularities such as F -injective, 
F -pure, Frobenius split, splinter, F -rational and all avatars of F -regular imply the N-1
property at the level of local rings [17, Lem. 7.1.4].

If R is a domain, then we will use (R+)sep to denote the subring of R+ consisting of 
those elements whose minimal polynomials over K are separable. Thus, if Ksep is the 
maximal separable extension of K in K = Frac(R+), then (R+)sep is the integral closure 
of R in Ksep, or equivalently, (R+)sep = R+ ∩ Ksep.

We will now specialize to the setting where R is a noetherian domain of prime char-
acteristic p > 0. Then recall that for an ideal I of R, the Frobenius closure of I, denoted 
I [F ], is defined as

I [F ] := {r ∈ R : rpe ∈ I [pe] for some e ∈ Z≥0}.

One can verify that I [F ] is an ideal of R that is contained in the tight closure I∗.
The following Proposition, proved by Singh [59], is the key result that motivates this 

section (see also [68]). We state the Proposition with a more general hypothesis than in 
[59], and explain why Singh’s arguments only need this weaker hypothesis.

Proposition 4.2.1. [59] Let R be a noetherian N-1 domain of prime characteristic p > 0
and fraction field K. Let I be an ideal of R.

(1) If r ∈ I [F ], then there exists a finite generically étale R-subalgebra S of R+ such 
that r ∈ IS.

(2) For all ideals I of R, IR+ ∩ R = I(R+)sep ∩ R.

Indication of proof. Singh proves (1) in [59, Thm. 3.1] assuming that R is excellent. In 
the proof, he considers roots u1, . . . , un of certain Artin-Schreier polynomials over K and 
then takes S to be the integral closure of R in the fraction field L of R[u1, . . . , un]. Note 
that L is a finite separable extension of K by construction. The only place excellence 
appears to be used in the proof of [59] is to conclude that S is a finite R-algebra. We 
claim this follows as long as R is N-1. Indeed, if R is the integral closure of R in K, 
then S is also the integral closure of R in L. Since R is a normal noetherian domain 
(it is module finite over R by the N-1 hypothesis), S is then a finite R-algebra by [69, 
Tag 032L]. The point here is that since L/K is a finite separable extension, it admits a 
nonzero trace TrL/K that restricts to give a nonzero R-linear map S → R because R is 
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normal. However, any generically finite solid algebra extension of noetherian domains is 
actually finite [18, Prop. 3.7]. Consequently, S is a finite R-algebra, and the rest of the 
proof of [59, Thm. 3.1] applies without change.

Similarly, (2) is [59, Cor. 3.4], but again where R is assumed to be excellent. As in 
[59], for z ∈ IR+ ∩ R choose a finite R-subalgebra R1 of R+ such that z ∈ IR1. If R2 is 
the largest separable extension of R is R1, then z ∈ (IR2)[F ] because R2 ↪→ R1 is purely 
inseparable and module finite. Let L = Frac(R2), which is a finite separable extension 
of K. Since R is N-1, the argument in the previous paragraph shows that the integral 
closure of R in L is a finite R-algebra. But this integral closure is also the integral closure 
of R2 in L = Frac(R2). Thus, R2 is N-1. Now by (1), one can find a finite generically 
étale R2-subalgebra of (R2)+ = R+ such that z ∈ IS. Then R ↪→ S is a finite generically 
étale extension, and we are done. �

As a consequence, we obtain the following characterization of splinters in prime charac-
teristic for N-1 domains without any excellence or approximately Gorenstein hypotheses.

Corollary 4.2.2. (cf. [59, Cor. 3.9]) Let R be a noetherian N-1 domain of prime charac-
teristic p > 0. Then R is a splinter if and only if R ↪→ S is cyclically pure for every 
generically étale finite extension domain S.

Proof. The ‘if’ implication is the non-trivial one. If R ↪→ S is cyclically pure for every 
generically étale finite extension domain S, then R → (R+)sep is cyclically pure because 
(R+)sep is a filtered union of generically étale finite R-subalgebras. Now since R is N-1, 
by Proposition 4.2.1(2), R → R+ is cyclically pure. Then R is a splinter by [19, Lem. 
2.3.1].

Again, Singh proves the same result assuming R is excellent [59, Cor. 3.9] and that R
is a direct summand of every generically étale finite extension domain S. �

Motivated by Corollary 4.2.2 we introduce the following definition.

Definition 4.2.3. Let R be a noetherian domain and Csep be the collection of generically 
étale finite R-subalgebras of R+. We define the separable trace of R, denoted τsep

R , to be

τ
sep
R :=

⋂
S∈Csep

τS/R.

The separable ideal trace of R, denoted T sep
R , is

T sep
R :=

⋂
S∈Csep

TS/R.

Remark 4.2.4.

(1) If Frac(R) has characteristic 0, then τsep
R = τR and T sep

R = TR.
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(2) If Frac(R) has characteristic p > 0, we have τR ⊆ τ
sep
R and TR ⊆ T sep

R .
(3) In general, τsep

R ⊆ T sep
R .

(4) Since Csep is a filtered poset under inclusion, the same argument as in Lemma 4.1.1
demonstrates that

Σsep
τ := {τS/R : S ∈ Csep}

and

Σsep
T := {TS/R : S ∈ Csep}

are cofiltered collections of ideals of R under inclusion. In particular, if Σsep
τ (resp. 

Σsep
T ) has a minimal element, then it has a smallest element.

We then have the following analogue of Proposition 4.1.4. We state it for noetherian 
domains of prime characteristic because for mixed characteristic and equal characteristic 
0 domains, the separable trace provides no new information over the usual trace.

Proposition 4.2.5. Let R be a noetherian N-1 domain of prime characteristic p > 0. Let 
Csep be the collection of generically étale finite R-subalgebras of R+. Then we have the 
following:

(1) R is a splinter ⇐⇒ τ
sep
R = R ⇐⇒ T sep

R = R.
(2) T sep

R = T(R+)sep/R.
(3) If R is approximately Gorenstein, then τsep

R = T sep
R and τsep

R is the big separable plus 
closure test ideal.

(4) If (R, m) is complete local, then τsep
R = τ(R+)sep/R.

Assume Σsep
τ := {τS/R : S ∈ Csep} has a smallest element under inclusion. Then:

(5) There exists S0 ∈ Csep such that τsep
R = τS0/R.

(6) If R is approximately Gorenstein, there exists B0 ∈ Csep such that T sep
R = TS0/R =

τS0/R.
(7) If (R, m) is complete local, there exists S0 ∈ Csep such that τ(R+)sep/R = τS0/R =

TS0/R = T(R+)sep/R.
(8) If p ∈ Spec(R), then τsep

Rp
= (τsep

R )p.
(9) For p ∈ Spec(R), Rp is a splinter if and only if τsep

R � p. Thus, the splinter locus 
of R is the complement in Spec(R) of V(τsep

R ).
(10) There exists a finite generically étale R-subalgebra S0 of R+ such that if R ↪→ S0

splits, then R is a splinter.
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Sketch of proof. (1) follows by Corollary 4.2.2.
(2) follows using the proof of Proposition 4.1.4(2) verbatim, but with A (resp. A+) 

replaced by R (resp. (R+)sep).
(3) The equality τsep

R = T sep
R follows by Corollary 3.3.3(1). Then τsep

R is the big sepa-
rable plus closure test ideal because it equals T(R+)sep/R using (2), and the latter ideal is 
the big separable plus closure test ideal by Proposition 3.3.1(4) applied to B = (R+)sep.

(4) A complete local domain is approximately Gorenstein. Therefore τsep
R = T sep

R =
T(R+)sep/R by (2) and (3), and T(R+)sep/R = τ(R+)sep/R by Corollary 3.3.3(3) applied to 
B = (R+)sep, which is a solid R-algebra because R+ is a solid R-algebra.

(5) follows because Σsep
τ has a smallest element.

(6) follows by (2), (3), (5) and Corollary 3.3.3(1) because τS0/R = TS0/R.
(7) follows by (2), (3), (4) and (6).
(8) follows using the same line of reasoning as in Proposition 4.1.4(8). The key point 

is that if Σsep
τ has a smallest element, then the a priori infinite intersection

τ
sep
R =

⋂
S∈Csep

τS/R

behaves like a finite intersection, and hence it commutes with localization at p, giving

(τsep
R )p =

⋂
S∈Csep

τSp/Rp
.

One can then show 
⋂

S∈Csep τSp/Rp
= τ

sep
Rp

by a similar spreading out argument. Indeed, 
the R-subalgebra T ′ of T constructed in the proof of Proposition 4.1.4(8) will be gener-
ically étale if T is a generically étale finite Rp-subalgebra of ((Rp)+)sep = ((R+)sep)p.

(9) follows from (8) and (1) and because the property of being N-1 localizes [69, Tag 
032G].

Finally for (10), any S0 satisfying the conclusion of (5) works by (1). �
We obtain the following non-obvious consequence of the previous results.

Corollary 4.2.6. Let R be a noetherian N-1 domain of prime characteristic p > 0 that is 
approximately Gorenstein. Then

τR = τ
sep
R .

Proof. By Proposition 4.1.4 parts (2) and (3) and Proposition 4.2.5 parts (2) and (3), 
we have

τR = TR+/R and τ
sep
R = T(R+)sep/R.

Now by Proposition 4.2.1(2),
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TR+/R =
⋂
I

(I : IR+ ∩ R) =
⋂
I

(I : I(R+)sep ∩ R) = T(R+)sep/R,

where the intersections range over all ideals I of R. This completes the proof. �
4.3. Openness of splinter loci in prime characteristic

We will now show that the splinter locus is open for schemes in prime characteristic 
that are of most interest in arithmetic and geometry. In particular, we will show that 
the splinter locus of any scheme of finite type over an excellent local ring of prime 
characteristic is open. In fact, our results will hold more generally for some quasi-excellent 
schemes and even some schemes that are not quasiexcellent (see Remarks 4.3.2 and 4.3.8). 
Recall that a noetherian ring R is quasi-excellent if the local rings of R have geometrically 
regular formal fibers and if the regular locus of any finite type R-algebra is open. Thus 
an excellent ring is a quasi-excellent ring that is universally catenary. Our first result is 
affine in nature.

Theorem 4.3.1. Let R be a noetherian F -pure domain of prime characteristic p > 0 and 
assume that R satisfies any of the following conditions:

(i) R is F -finite.
(ii) R is local (not necessarily excellent).

(iii) (A, m) is a noetherian local ring of prime characteristic p > 0 with geometrically 
regular formal fibers and R is essentially of finite type over A.

Let C be the collection of finite R-subalgebras of R+. Then we have the following:

(1) Στ := {τS/R : S ∈ C} is a finite set of radical ideals of R.
(2) The splinter locus Spl(R) of Spec(R) is open and its complement is V(τR) = V(τsep

R ).
(3) τR and τsep

R are radical ideals and τR = τ
sep
R .

(4) There exists a finite generically étale extension domain S of R such that τR = τ
sep
R =

τS/R.
(5) There exists a finite generically étale extension domain S of R such that if R ↪→ S

splits, then R is a splinter.
(6) If R is complete local, there exists a finite generically étale R-subalgebra S of R+

such that τR+/R = τR = τ
sep
R = τ(R+)sep/R = τS/R.

Proof. If R satisfies (i), (ii) or (iii), we first claim that R is approximately Gorenstein 
and N-1.

By definition, R is approximately Gorenstein if Rm is approximately Gorenstein for all 
maximal ideals m of R. If R is F -pure, so is Rm. Then Rm is approximately Gorenstein 
by [15, Cor. 3.6(ii)], where it is shown more generally that F -injective noetherian rings 
are approximately Gorenstein.
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A quasi-excellent domain is Nagata [69, Tag 07QV], hence N-1. Thus, the N-1 property 
follows when R is F -finite because F -finite rings are excellent [44, Thm. 2.5]. If (A, m)
has geometrically regular formal fibers, then A is quasi-excellent [49, (33.D), Thm. 3.6]
(or see [42, Prop. 5.5.1]). Therefore if R is essentially of finite type over A, then R is also 
quasi-excellent [69, Tag 07QU], hence N-1. Finally, if (R, m) is local and F -pure, then R
is N-1 by [17, Lem. 7.1.4].

(1) An F -finite noetherian F -pure ring is Frobenius split. By Proposition 3.4.1, the 
collection of uniformly F -compatible ideals is finite in case (i) and also in case (ii) when 
(R, m) is additionally Frobenius split, and by Lemma 3.1.2, every uniformly F -compatible 
is radical when R is Frobenius split. Let C be the collection of finite R-subalgebras of R+

and Csep be the subset of C consisting of those R-subalgebras that are also generically 
étale. Then

Στ := {τS/R : S ∈ C}

and

Σsep
τ := {τS/R : S ∈ Csep}

are collections of uniformly F -compatible ideals by Lemma 3.2.3. In particular, both Σ
and Σsep are finite sets of radical ideals in case (i) and in case (ii) when (R, m) is Frobenius 
split. We will now show that Στ (and hence Σsep

τ ) is also a finite set of radical ideals in 
case (iii) and also in case (ii) when we drop the hypothesis that (R, m) is Frobenius split. 
Note that in the generality of (ii) and (iii), an F -pure noetherian domain R need not be 
Frobenius split (or admit any nonzero R-linear map F∗R → R) [16], so it is not at all 
obvious that Στ is finite or that its elements are radical ideals.

If R is essentially of finite type over a local G-ring (A, m), then it suffices to show 
that there is a faithfully flat map R → R′ such that R′ is F -finite and Frobenius split. 
Indeed, suppose one can find such a cover of R. Then for any τS/R ∈ Στ,

τS/RR′ = τS⊗RR′/R′

by Lemma 3.2.3(4) because S is a finite extension of R. Thus,

{τS/RR′ : S ∈ C}

is a set of uniformly F -compatible ideals of the Frobenius split F -finite ring R′ because 
all the expansion ideals are traces. Therefore this set is finite and each τS/RR′ is a radical 
ideal by the argument in the previous paragraph. Since R → R′ is faithfully flat,

τS/R = τS/RR′ ∩ R.

As contractions of radical ideals are radical, Στ must be a finite set of radical ideals as 
well.
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We now show the existence R′. Let Â be the m-adic completion of A. By our assump-
tion, A → Â is a regular map. Since R is essentially of finite type over A, by [69, Tag 
07C1] and the fact that property of being regular is preserved under localization,

R → R ⊗A Â

is also a regular map. Therefore the relative Frobenius

F∗R ⊗R (R ⊗A Â) → F∗(R ⊗A Â)

is faithfully flat by results of Radu [73, Thm. 4] and André [5, Thm. 1]. Since R → F∗R

is pure, by base change

R ⊗A Â → F∗R ⊗R (R ⊗A Â)

is pure, hence so is the composition

R ⊗A Â → F∗R ⊗R (R ⊗A Â) → F∗(R ⊗A Â).

This last map is the Frobenius of R ⊗A Â. Thus, R ⊗A Â is an F -pure ring which is 
essentially of finite type over a complete local ring of prime characteristic (see also [27, 
Sec. 2] for a generalization of this argument). Therefore by the gamma construction, 
there exists a faithfully flat local map

Â → ÂΓ

such that ÂΓ is F -finite and R ⊗A ÂΓ = (R ⊗A Â) ⊗Â ÂΓ is F -pure [54, Thm. 3.4(ii)]. 
Consequently, R ⊗A ÂΓ is Frobenius split since it is F -finite. Then we can take R′ =
R ⊗A ÂΓ to be the faithfully flat F -finite cover of R that is Frobenius split.

It remains to show that if (R, m) is a local F -pure ring that is not Frobenius split, then 
Στ is a finite set of radical ideals. The strategy is similar to the one above for case (iii). 
Since R is F -pure, so is its completion R̂ [38, Cor. 6.13] (without any restrictions on the 
formal fibers of R). Then R̂ is Frobenius split because F -purity and Frobenius splitting 
coincide for complete local rings. We now have that R̂ has finitely many uniformly F -
compatible ideals by Proposition 3.4.1, all of which are radical by Lemma 3.1.2 because 
we have a splitting. Then, as above, Στ is a finite set of radical ideals of R because the 
expansions of these ideals in R̂ (which is faithfully flat over R) are again trace ideals, 
and hence uniformly F -compatible, radical and finite in number.

Since Σsep
τ ⊆ Στ, we have shown that if R satisfies (i), (ii) or (iii), then Στ (hence also 

Σsep
τ ) is a finite set of radical ideals of R. This proves (1).
(2) By (1), Lemma 4.1.1 and Remark 4.2.4 we conclude that Στ and Σsep

τ have 
smallest elements under inclusion. We can then apply Proposition 4.1.4(9) and Proposi-
tion 4.2.5(9) to conclude that
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Spec(R) \ V(τR) = Spl(R) = Spec(R) \ V(τsep
R ).

This proves (2).
There are two ways to prove (3). We have already observed that R is N-1 and ap-

proximately Gorenstein if it satisfies (i), (ii) or (iii). Then we can apply Corollary 4.2.6
to get (3).

Alternatively, both τR and τsep
R are radical ideals (they are intersections of ideals in 

Στ) that define the non-splinter locus of Spec(R) by (2), so they must be equal.
(4) follows by (3) and Proposition 4.2.5(5).
For (5) choose an S that satisfies the conclusion of (4). If R ↪→ S splits, we have 

τR = τ
sep
R = R, that is R is a splinter (Proposition 4.2.5(1)).

(6) The equalities

τR+/R = τR and τ(R+)sep/R = τ
sep
R

follow by Proposition 4.1.4(4) and Proposition 4.2.5(4). We are then done by (4). �
Remark 4.3.2. In Theorem 4.3.1(iii), the formal fibers of (A, m) are assumed to be geo-
metrically regular in order to ensure that if R is an essentially of finite type A-algebra 
that is F -pure, then the base change RÂ

:= R ⊗A Â is also F -pure. However, one can 
get by with weaker assumptions on the formal fibers of A in order to get F -purity of 
RÂ from that of R, which is all that is needed to construct a faithfully flat F -finite 
cover of R that is Frobenius split. One such condition is discussed in the present remark, 
and another condition will be discussed in Remark 4.3.3. Define a noetherian algebra R
over a field k of characteristic p > 0 to be geometrically F -pure if for all finite purely 
inseparable extensions 
 of k, R ⊗k 
 is F -pure.

We now claim that if (A, m) is a noetherian local ring whose formal fibers are Goren-
stein and geometrically F -pure, then for an essentially of finite type A-algebra R, if R is 
F -pure then so is RÂ. Moreover, if R is a domain then it is N-1. We briefly indicate the 
steps needed to prove this result, following the strategy of [15] that shows an analogous 
result for ‘Cohen–Macaulay and geometrically F -injective’. The techniques in [15] are 
inspired by arguments of Vélez [76].

(1) It is known that if (S, m) → (T, n) is a flat local homomorphism of noetherian local 
rings whose closed fiber is Gorenstein and F -pure, then F -purity ascends from S to 
T . This is proved in [2, Prop. 3.3] when R and S are F -finite, and the general case 
appears in [51, Thm. 7.3].

(2) By (1) it suffices to show that if the formal fibers of A are Gorenstein and geomet-
rically F -pure, then R → RÂ has Gorenstein and F -pure fibers.

(3) Let k be a field of characteristic p > 0. If R is a noetherian k-algebra that is 
Gorenstein and geometrically F -pure, then we claim that for all finitely generated 
field extensions k′ of k, Rk′ = R ⊗k k′ is Gorenstein and F -pure. By [69, Tag 0C03], 
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the Gorenstein property is preserved by base change along finitely generated field 
extensions. Thus, Rk′ is Gorenstein. Since F -purity satisfies faithfully flat descent, 
by the proof strategy of [15, Prop. 4.10] and [15, Lem. 4.9], it suffices to show Rk′

is F -pure when k′ is a finitely generated separable extension and when k′ is a finite 
purely inseparable extension. If k′ is a finitely generated separable extension of k, 
then R → Rk′ is a regular homomorphism, so Rk′ is F -pure by (1) or the argument 
in the proof of Theorem 4.3.1(1). If k′ is a finite purely inseparable extension of k, 
then Rk′ is F -pure by the definition of geometrically F -pure.

(4) We now claim that if S → T is a homomorphism of noetherian rings whose fibers 
are Gorenstein and geometrically F -pure, then for every essentially of finite type 
S-algebra R, the fibers of R → R ⊗S T are also Gorenstein and F -pure. The proof of 
this reduces to (3) by [24, Lem. 7.3.7]. Finally, (2) follows by (4) upon taking S = A

and T = Â. Therefore if R is F -pure, so is RÂ.
(5) The formal fibers of A are geometrically reduced since they are geometrically F -pure. 

By the Zariski-Nagata theorem [24, Thm. 7.6.4], A is a Nagata ring, that is, for all 
prime ideals p of A, A/p is a Japanese ring. Then A is universally Japanese by [69, 
Tag 0334]. Hence R is universally Japanese by [69, Tag 032S], and so, R is N-1 if it 
is a domain.

Remark 4.3.3. The proof of Theorem 4.3.1 shows, more generally, that if R is a noetherian 
F -pure domain that admits a faithfully flat cover R → S, where S has finitely many 
trace ideals of finite extensions of S, then the splinter locus of R is open in Spec(R). To 
illustrate the utility of this observation, suppose (A, m) ϕ−→ R is an essentially of finite 
type F -pure homomorphism of noetherian rings in the sense of Hashimoto [27, (2.3)], 
where (A, m) is a noetherian F -pure local ring and R is a domain. Being an F -pure 
homomorphism means that the relative Frobenius

FR/A : F∗A ⊗R R → F∗R

is a pure ring map. For example, ϕ is F -pure if FR/A is faithfully flat, or equivalently, 
if ϕ is geometrically regular by [73,5]. The hypothesis that ϕ is F -pure and A is F -pure 
implies that R is also F -pure [27, Prop. 2.4(4)]. Consider the commutative diagram

A Â ÂΓ

R R ⊗A Â R ⊗A ÂΓ,

ϕ ϕ⊗Â ϕ⊗ÂΓ

where Â is F -pure by Remark 4.3.2(1), and ÂΓ is chosen to be noetherian local, F -finite 
and F -pure (equivalently, Frobenius split) via the Γ-construction. Then ϕ ⊗ ÂΓ is also 
essentially of finite type, and so, R ⊗A ÂΓ is noetherian and F -finite because ÂΓ is. 
Since F -pure homomorphisms are stable under arbitrary base change [27, Prop. 2.4(7)], 
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it follows that ϕ ⊗ ÂΓ is F -pure. Consequently, R ⊗A ÂΓ is a faithfully flat cover of 
R that is noetherian, F -finite and F -pure, and so, it has finitely many trace ideals by 
Proposition 3.4.1 and Lemma 3.2.3(2). Thus, the splinter locus of Spec(R) is open.

The formation of trace commutes with Henselizations and completions under certain 
conditions, giving a refinement of Proposition 4.1.7.

Corollary 4.3.4. Let (R, m) be a noetherian local domain which is F -pure and normal.

(1) If R is Frobenius split, then τRRh = τRh .
(2) If R has geometrically regular formal fibers, then τRRh = τRh .
(3) If R has geometrically regular formal fibers, then τRR̂ = τR̂.

Proof. (1) Rh is a normal domain by [69, Tag 06DI]. We claim that Rh is also Frobenius 
split. Indeed, since Rh is a filtered colimit of étale R-algebras, the relative Frobenius

F∗R ⊗R Rh → F∗Rh

is an isomorphism because R → Rh is weakly étale [69, Tag 092N] and the relative 
Frobenius of a weakly étale map is an isomorphism [69, Tag 0F6W]. Then Rh is Frobenius 
split because splittings are preserved under base change. By Theorem 4.3.1(1), τR (resp. 
τRh) defines the non-splinter locus of Spec(R) (resp. Spec(Rh)). Moreover, τR and τRh

are radical by Theorem 4.3.1(3). Since R → Rh is a regular homomorphism,

R/τR → Rh/τRRh

is a regular homomorphism as well by finite type base change [69, Tag 07C1]. Then 
Rh/τRRh is reduced by [69, Tag 07QK] because R/τR is reduced. In other words, τRRh

is a radical ideal of Rh. Therefore to show that τRRh = τRh , it suffices to check that 
τRRh defines the non-splinter locus of Spec(Rh) as well.

By Proposition 4.1.7(1), we have

τRRh ⊆ τRh .

Therefore V(τRh) ⊆ V(τRRh). On the other hand, if q ∈ V(τRRh), then

τR ⊆ q ∩ R,

that is, Rq∩R is not a splinter. However

Rq∩R → (Rh)q
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is faithfully flat (because R → Rh is), and the splinter property satisfies faithfully flat 
descent. Consequently, (Rh)q cannot be a splinter, and so, q ∈ V(τRh). This establishes 
the other inclusion V(τRRh) ⊆ V(τRh), completing the proof of (1).

(2) Since the relative Frobenius F∗R ⊗R Rh → F∗Rh is an isomorphism, Rh is also F -
pure when R is F -pure. Moreover, the formal fibers of Rh are also geometrically regular 
[23, Thm. 5.3(i)] because A → Ah is ind-étale and hence absolutely flat. Therefore by 
Theorem 4.3.1(2) the non-splinter locus of R (resp. Rh) is defined by τR (resp. τRh). 
One can now use the same argument as in (1) to get (2).

(3) Note that R̂ is F -pure. This is true for the completion of any F -pure noetherian 
local ring by Remark 4.3.2(1), but in our setting this also follows by the regularity 
of R → R̂ and the Radu-André theorem using the argument given in the proof of 
Theorem 4.3.1(1). Proposition 4.1.7(2) shows that τRR̂ ⊆ τR̂ and Theorem 4.3.1(2) 
shows that τR (resp. τR̂) defines the non-splinter locus of R (resp. R̂). One can then 
mimic the argument of (1) to prove (3). We omit the details. �
Remark 4.3.5. The proof of Corollary 4.3.4 shows more generally that if (A, m) is a 
noetherian normal domain of arbitrary characteristic that satisfies the hypotheses of 
Proposition 4.1.7, and if τA, τAh and τÂ define the non-splinter locus A, Ah and Â

respectively, then τAAh and τAh agree up to radical, as do τAÂ and τÂ.

A natural question one can ask is whether τR is nonzero. Indeed, if τR is the ideal that 
defines the non-splinter locus in general, then τR has to be nonzero because a domain 
is generically a splinter. The next result implies that showing τR 
= 0 is equivalent to a 
long-standing conjecture in tight closure theory on the existence of test elements.

Proposition 4.3.6. Let R be a noetherian domain of characteristic p > 0 whose local rings 
at maximal ideals have geometrically regular formal fibers (i.e. R is a G-ring) and whose 
regular locus is open. Let τfg

∗ (R) be the finitistic tight closure test ideal of R. Then we 
have the following:

(1) τ
fg
∗ (R) ⊆ τR.

(2) If TF∗R/R 
= 0, then τfg
∗ (R) 
= 0.

(3) τR 
= 0 if and only if τfg
∗ (R) 
= 0.

(4) If R is F -pure, then τR 
= 0.
(5) If τF∗R/R 
= 0, that is, if there is a nonzero R-linear map F∗R → R, then τR 
= 0.

Proof. The completions of the local rings of R at maximal ideals are reduced because 
the property of being reduced is preserved under completion when the formal fibers are 
geometrically regular. Thus, R is approximately Gorenstein.

(1) Since R is approximately Gorenstein, τR = TR+/R =
⋂

I(I : IR+ ∩ R) by Propo-
sition 4.1.4(3). For all ideals I of R, we have

IR+ ∩ R ⊆ I∗



R. Datta, K. Tucker / Journal of Algebra 629 (2023) 307–357 349
by [31, Cor. (5.23)]. Thus, (I : I∗) ⊆ (I : IR+ ∩ R), and so,

τfg
∗ (R) =

⋂
I

(I : I∗) ⊆
⋂
I

(I : IR+ ∩ R) =: τR.

Here the first equality follows by [29, Prop. (8.15)] because R is approximately Goren-
stein. This proves (1).

(2) Since R is a domain and the regular locus of R is open, one can find a c 
= 0 such 
that Rc is regular and c ∈ TF∗R/R. Then the result follows by [1, Thm. 1.2].

(3) If τfg
∗ (R) 
= 0, then τR 
= 0 by (1). Conversely, suppose τR = TR+/R 
= 0. Since 

F∗R embeds in R+, this means that

0 
= TR+/R ⊆ TF∗R/R =
⋂
I

(I : IF∗R ∩ R).

Then τfg
∗ (R) 
= 0 by (2).

(4) follows (2) and (3) because if R is F -pure, then TF∗R/R = R.
(5) If τF∗R/R 
= 0, then TF∗R/R 
= 0 by Lemma 3.2.7 because τF∗R/R ⊆ TF∗R/R. We 

are then done by (2) and (3). �
We now deduce our main global result.

Theorem 4.3.7. Let X be a scheme of prime characteristic p > 0. Suppose that X satisfies 
any of the following conditions:

(i) X is locally noetherian and F -finite.
(ii) X is locally essentially of finite type over a noetherian local ring (A, m) of prime 

characteristic p > 0 with geometrically regular formal fibers.

Then

Spl(X) = {x ∈ X : OX,x is a splinter}

is open in X.

Recall that we say that X is locally essentially of finite type over A if there exists 
an affine open cover Spec(Bi) of X such that for all i, Bi is an essentially of finite type 
A-algebra.

Proof. Let Nor(X) denote the normal locus of X and fp(X) denote the locus of points 
x ∈ X such that OX,x is F -pure. We claim that both these loci are open if X satisfies 
(i) or (ii). Indeed, in either case X is quasi-excellent and has an open regular locus. 
Then Nor(X) is open by [24, Cor. (6.13.5)]. If X is locally noetherian and F -finite, then 
fp(X) is open and coincides with the locus of points at which X is Frobenius split. If X
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is locally essentially of finite type over (A, m) as in (ii), then fp(X) is open by [54, Cor. 
3.5] (this result is attributed to Hoshi when A is excellent in [28, Thm. 3.2]). Note that 
[54, Cor. 3.5] is stated assuming X is quasi-compact, but for openness of loci, one can 
always work on an affine cover of X.

If OX,x is a splinter, then it is normal and F -pure (the latter follows because the 
Frobenius F : OX,x → F∗OX,x is an integral extension). Thus,

Spl(X) ⊆ Nor(X) ∩ fp(X).

Therefore, replacing X by Nor(X) ∩ fp(X), we may assume X is locally F -pure and 
normal. Now there exists an affine open cover {Spec(Rα)}α of X, where each Rα is an 
F -pure domain that satisfies condition (i) or (iii) of Theorem 4.3.1 depending on whether 
X satisfies conditions (i) or (ii) in the statement of this theorem (you can even choose 
Rα to be normal). Then for all α, Spl(X) ∩ Spec(Rα) = Spl(Rα) is open in Spec(Rα)
by Theorem 4.3.1(2), and hence, also in X. Then Spl(X) =

⋃
α Spl(Rα) is open in X as 

well. �
Remark 4.3.8. In Remark 4.3.2 we showed that Theorem 4.3.1(1)-(6) still holds if in 
part (iii) of Theorem 4.3.1 we assume that the formal fibers of (A, m) are Gorenstein and 
geometrically F -pure. We claim that the same hypotheses on the formal fibers of (A, m)
also work for Theorem 4.3.7. The two things we need to check are:

(1) If A has Gorenstein and geometrically F -pure formal fibers, then for any es-
sentially of finite type A-algebra R, the F -pure locus of R is open: We follow 
the proof strategy of [15, Thm. B] which establishes the analogous fact for the 
property ‘Cohen–Macaulay and geometrically F -injective’. Since the induced map 
Spec(RÂ) → Spec(R) is faithfully flat and quasi-compact, by [24, Cor. 2.3.12], it 
suffices to show that the inverse image of the F -pure locus of Spec(R) is open 
in Spec(RÂ). But this inverse image is the F -pure locus of Spec(RÂ) by Re-
mark 4.3.2(1), (4) and by faithfully flat descent of F -purity. That the F -pure locus 
of RÂ is open now follows by [54, Cor. 3.5] because Â is excellent.

(2) If A has Gorenstein and geometrically F -pure formal fibers, then the normal locus of 
any essentially of finite type A-algebra R is open: by Remark 4.3.2(5), A is universally 
Japanese, and so, for all finite A-algebras S such that S is domain, the normal locus 
of S is open by [24, Cor. 6.13.3] since S is Japanese. Then the normal locus of R is 
open by [24, Prop. 6.13.7 (b) =⇒ (a)].

Example 4.3.9. In order to show the openness of splinter loci in prime characteristic, 
it suffices to restrict ones attention to the intersection of the F -pure and normal loci. 
This intersection is open as long as the F -pure locus and the normal locus are both 
open. Furthermore, we have shown that in the local case, a noetherian F -pure domain 
always has an open splinter locus (Theorem 4.3.1). Thus one may naturally wonder if 
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the splinter loci of an F -pure and normal noetherian domain is always open. We now use 
a construction of Hochster [33] to give examples of locally excellent F -pure and normal 
domains of prime characteristic p > 0 whose splinter loci are not open. We begin by 
choosing an algebraically closed field k of prime characteristic p > 0 and a local domain 
(R, m) essentially of finite type over k such that (R, m) is F -pure and normal, R is not 
a splinter and R/m = k. The last hypothesis ensures that if K/k is any field extension, 
then m(K ⊗k R) is a maximal ideal of K ⊗k R. For an explicit example, if k is a field of 
characteristic not equal to 3, then the local ring at the origin of the Fermat cubic

R = k[x, y, z](x,y,z)/(x3 + y3 + z3)

is not F -rational [65, Ex. 6.2.5], hence also not a splinter since excellent splinters are 
F -rational [62]. By Fedder’s criterion, R is F -pure, for instance, when the characteristic 
of k is 7 and R is normal (it is R1 + S2) when the characteristic of k 
= 3. Coming 
back to our example, once we have such an R, Hochster then constructs [33, Prop. 1] a 
noetherian domain S using R such that

(a) S has infinitely many maximal ideals;
(b) for any maximal ideal M of S,

SM
∼= (LM ⊗k R)m(LM⊗kR)

for a suitable field extension LM/k that depends on M;
(c) every nonzero element of S is contained in only finitely many maximal ideals.

In particular, this implies that S is a locally excellent domain; in fact the local rings 
of S are essentially of finite type over appropriate field extensions of k. Furthermore, (a) 
and (c) imply that the intersection of all the maximal ideals of S is (0).

We now claim that since k is algebraically closed, for all field extensions K/k, K ⊗k R

is also F -pure and normal. Indeed, since k does not have any non-trivial finite purely 
inseparable extensions,

k ↪→ K

is trivially a regular map (i.e. a flat map with geometrically regular fibers). As R is 
essentially of finite type over k, the base change map

R → K ⊗k R

is also a regular map [49, (33.D), Lem. 4]. We now observe that both F -purity and 
normality ascend from the base to the target over regular maps, proving that K ⊗k R

is both F -pure and normal. The ascent of F -purity over regular maps follows by the 
Radu-André theorem because the relative Frobenius of FK⊗kR/R is faithfully flat, hence 
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pure, and so the Frobenius on K ⊗k R can be expressed as the composition of the pure 
maps

K ⊗k R
idK ⊗kFR−−−−−−→ K ⊗k F∗R

FK⊗kR/R−−−−−−→ F∗(K ⊗k R),

where the first map in the composition is pure because it is the base change of the pure 
map FR : R → F∗R. The ascent of normality over regular maps follows because the 
Rn and Sn properties ascend over regular maps; see for instance [69, Tag 0BFK]. The 
upshot of this discussion is that for the locally excellent noetherian domain S and for 
any maximal ideal M of S, SM

∼= (LM ⊗k R)m(LM⊗kR) is both F -pure and normal. Since 
F -purity and normality can be checked locally at the maximal ideals, it follows that S
is a locally excellent F -pure and normal domain. However, R was chosen so that it is 
not a splinter, and the splinter property satisfies faithfully-flat descent. Therefore for all 
maximal ideals M of S, SM is not a splinter because the map R → (LM⊗kR)m(LM⊗kR) ∼=
SM is faithfully flat. Thus the non-splinter locus of S contains all the maximal ideals, 
whose intersection is (0). This means that the non-splinter locus of S cannot be closed 
as otherwise the splinter locus would be empty, which it is not since S, being a domain, 
is a splinter at its generic point.

For noetherian graded rings over fields of prime characteristic, the splinter property 
is detected by the homogeneous maximal ideal. This is well-known over fields of charac-
teristic 0 because then splinter is the same as being normal.

Corollary 4.3.10. Let R =
⊕∞

n=0 Rn be a noetherian graded ring such that R0 = k is a 
field of characteristic p > 0. Let m :=

⊕
n>0 Rn be the homogeneous maximal ideal of R. 

Then R is a splinter if and only if Rm is a splinter.

Proof. The splinter property localizes. So the backward implication is the non-trivial 
one.

We first assume that k is infinite. By Theorem 4.3.7, the splinter locus of R is open. 
Let I be the radical ideal of R that defines the non-splinter locus. Note that k× acts on 
R by automorphisms (for c ∈ k× and x ∈ Rn, c · x = cnx), and automorphisms clearly 
preserve the non-splinter locus of R. This means that I is stable under the action of k×, 
and since k is infinite, I must be a homogeneous ideal of R. If Rm is a splinter, then 
I � m, which means that I = R, that is, R is a splinter.

Suppose k is finite and that Rm is a splinter. Finite fields of prime characteristic 
are perfect. This means that an algebraic closure k is the filtered union of finite étale 
subextensions 
/k. Let

R	 := 
 ⊗k R.

Then R ↪→ R	 is a finite étale map and m	 := mR	 is the homogeneous maximal ideal of 
R	. It follows that
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Rm ↪→ (R	)m�

is essentially étale, and so, (R	)m�
is a splinter by [19, Thm. A]. Now

Rk := k ⊗k R,

is graded noetherian over k with homogeneous maximal ideal mk := mRk. Then

(Rk)mk
= colim	(R	)m�

is a splinter because a filtered colimit of splinters is a splinter [3, Prop. 5.2.5(ii)]. Since 
k is infinite, it follows by the previous paragraph that Rk is a splinter. By faithfully flat 
descent along

R ↪→ Rk,

we then get that R is a splinter. �
Remark 4.3.11. In the situation of Corollary 4.3.10, even when R0 = k is a finite field, the 
radical ideal I that defines the closed non-splinter locus of R is still a homogeneous ideal. 
Indeed, if we look at the faithfully flat graded homomorphism R ↪→ Rk, then we claim 
that IRk is the radical ideal that defines the non-splinter locus of Rk. If our claim holds, 
then since IRk will be graded because k is infinite (see proof above), it will follow that 
I = IRk ∩ R is also graded (contractions of graded ideals along graded homomorphisms 
are graded). We will now prove our claim. Expressing k as a filtered union of finite (and 
hence étale) subextensions 
/k, by ascent of the splinter property along essentially étale 
maps [19, Thm. A] and faithfully flat descent of the splinter property, it follows that IR	

is the radical ideal that defines the non-splinter locus of R	. Note IR	 is radical because 
R/I ↪→ R	/IR	 is étale by base change [69, Tag 00U2] and the property of being reduced 
ascends under étale maps [69, Tag 033B]. Then

IRk = colim	/k IR	

is a radical ideal of Rk. Let p be a prime ideal of Rk. Let p	 be the contraction of p to 
R	. Then

(Rk)p = colim	/k(R	)p�

If (Rk)p is a splinter, then by faithfully flat descent along (R	)p�
↪→ (Rk)p, (R	)p�

is a 
splinter as well. Thus, IR	 � p	, and consequently, IRk � p as well, as otherwise, by 
contracting the inclusion IRk ⊆ p to R	, we would get IR	 ⊆ p	. Thus,

Spl(Spec(Rk)) ⊆ Spec(Rk) \ V(IRk).
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Now suppose p is a prime ideal of Rk such that IRk � p. Then there exists a finite 
extension 
 of k contained in k such that for all finite subextensions 
′/
 of k/
,

IR	′ � p	′ .

For each such 
′, (R	′)p�′ is a splinter since IR	′ defines the non-splinter locus of R	′ . 
Thus,

(Rk)p = colim	′/	(R	′)p�′ ,

is a splinter as well because filtered colimits of splinters are splinters [3, Prop. 5.2.5(ii)]. 
This shows,

Spec(Rk) \ V(IRk) ⊆ Spl(Spec(Rk)),

proving that IRk is indeed the radical ideal that defines the non-splinter locus of Rk.
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