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A splinter is a notion of singularity that has seen numerous
recent applications, especially in connection with the direct
summand theorem, the mixed characteristic minimal model
program, Cohen—Macaulayness of absolute integral closures
and cohomology vanishing theorems. Nevertheless, many
basic questions about these singularities remain elusive. One
outstanding problem is whether the splinter property spreads
from a point to an open neighborhood of a noetherian scheme.
Our paper addresses this problem in prime characteristic,
where we show that a locally noetherian scheme that has
finite Frobenius or that is locally essentially of finite type
over a quasi-excellent local ring has an open splinter locus.
In particular, all varieties over fields of positive characteristic
have open splinter loci. Intimate connections are established
between the openness of splinter loci and F-compatible ideals,
which are prime characteristic analogues of log canonical
centers. We prove the surprising fact that for a large class
of noetherian rings with pure (aka universally injective)
Frobenius, the splinter condition is detected by the splitting
of a single generically étale finite extension. We also show that
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for a noetherian N-graded ring over a field, the homogeneous
maximal ideal detects the splinter property.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

A noetherian ring is a splinter if it is a direct summand of every finite cover. A splinter
is a notion of singularity since we now know that regular rings satisfy this property by
the celebrated direct summand theorem [32,6,9]. For any notion of singularity, or more
generally, a property P of noetherian local rings, it is natural to ask if

{z € X: Ox, has P}

is an open subset of a locally noetherian scheme X. Such openness of loci questions were
perhaps first considered systematically by Grothendieck in [24]. Many fundamental local
properties such as R,,, S,, reduced, normal, Gorenstein, complete intersection, Cohen—
Macaulay, among others, are known to have open loci for most locally noetherian schemes
that one encounters in arithmetic or geometry [24,22,74].

In this paper we consider the question of the openness of the splinter locus of a locally
noetherian scheme. As a preliminary observation, the splinter condition for noetherian
local Q-algebras is equivalent to normality, and the normal loci is open for locally noethe-
rian schemes that have open regular loci [24, Cor. (6.13.5)]. In particular, the splinter
locus of any quasi-excellent Q-scheme is open because the normal locus of such a scheme
is open. Our main result illustrates that a similar result holds for some large classes of
locally noetherian schemes over F,.

Theorem 1.0.1. (see Theorem 4.3.7) Let X be a scheme of prime characteristic p > 0
that satisfies any of the following conditions:

(i) X is locally noetherian and F-finite.
(i) X is locally essentially of finite type over a noetherian local ring (A, m) of prime
characteristic p > 0 with geometrically regular formal fibers.

Then {x € X: Ox 5 is a splinter} is open in X.

In particular, the splinter locus of any scheme of finite type over a field, or more
generally, a complete local ring of positive prime characteristic is open.

Showing the openness of the splinter locus has proved to be a challenging problem
in prime and mixed characteristics because splinters are far more mysterious away from
equal characteristic 0. For example, in prime and mixed characteristics, splinters surpris-
ingly coincide with a derived counterpart called a derived splinter [8,10], and excellent
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local splinters are Cohen—Macaulay and pseudo-rational [62,64,10] (in prime charac-
teristic they are also F-rational [62]). Furthermore, prime characteristic splinters are
conjecturally equivalent to F-regular singularities [60,14], which are analogues of Kawa-
mata log terminal singularities that arise in the birational classification of algebraic
varieties over the complex numbers [64,53,26]. This last conjectural equivalence implies
one of the outstanding problems in tight closure theory, namely that weak F-regularity
is preserved under localization. The notion of a splinter globalizes, and in a non-affine
setting in mixed and positive characteristics they have been recently called globally +-
regular schemes [12]. This is in part because of their similarities with globally F-regular
varieties in positive characteristic [66,67].

By working on an affine cover, the openness of loci for a local property reduces to
a question about affine schemes, and Theorem 1.0.1 follows from the following, more
refined, affine result.

Theorem 1.0.2. (see Theorem 4.3.1) Let R be a noetherian F-pure domain of prime
characteristic p > 0 and assume that R satisfies any of the following conditions:

(i) R is F-finite.
(i) R is local (not necessarily excellent).
(iii) (A, m) is a noetherian local ring of prime characteristic p > 0 with geometrically
reqular formal fibers and R is essentially of finite type over A.

Let C be the collection of finite R-subalgebras of R and for an R-algebra S, let

tg/r ‘= im(Hompg(S, R) ovalO1, R).

Then we have the following:

(1) {ts/r: S € C} is a finite set of radical ideals of R.
(2) The splinter locus of Spec(R) is open and its complement is V(tr), where

TR = m IS/R-
SeC

(3) There exists S € C such that R C S is generically étale and if R — S splits, then R
s a splinter.

Here RT denotes the absolute integral closure of R, that is, R is the integral closure
of R in an algebraic closure of its fraction field. F-purity is the universal injectivity of
the Frobenius map on R. It is a mild assumption when discussing questions pertaining to
splinters in prime characteristic because splinters are automatically F-pure. A surprising
aspect of Theorem 1.0.2 is perhaps the fact that for most F-pure noetherian domains that
arise in arithmetic and geometry, the splinter property is determined by the splitting of
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a single generically étale finite extension domain, even though the definition of a splinter
a priori requires the splitting of all finite extension domains. Theorem 1.0.1 is a formal
consequence of Theorem 1.0.2 because the splinter locus is contained in the F-pure locus
of any locally noetherian Fj-scheme, and the F-pure locus is known to be open when X
satisfies the assumptions of Theorem 1.0.1.

The proof of Theorem 1.0.2 is not particularly involved in the noetherian F-finite set-
ting, so we briefly discuss our strategy for the expert. The ideal 15/ of Theorem 1.0.2
is called the trace of S over R, and the content of the Theorem is that these traces
stabilize as S ranges over the finite R-subalgebras of R with appropriate purity as-
sumptions on R. The stabilization of traces follows from the fact that trace ideals satisfy
the property of being uniformly F'-compatible, which is a prime characteristic analogue
of the notion of a center of log canonicity [57,58,70]. For us, the key fact about uniformly
F-compatible ideals is their finiteness under appropriate assumptions. Namely, Schwede
showed that an F-pure noetherian F-finite ring has only finitely many uniformly F-
compatible ideals [57]. In fact, an explicit bound on the Hilbert—Samuel multiplicity of
an F-pure noetherian local ring [41] allows one to obtain explicit bounds for the num-
ber of uniformly F-compatible ideals of a given coheight in the local setting (see also
[70] and Proposition 3.4.1). Thus, the finiteness of uniformly F-compatible ideals for a
noetherian F-finite Frobenius split domain R readily implies the finiteness of the set of
trace ideals of finite extensions R. One then shows that the stable trace ideal has to
define the non-splinter locus.

The drawback of the above approach is that there is typically no control over when
the trace ideals of finite extensions of a noetherian Frobenius split ring R stabilize.
Thus, it feels hopeless to obtain a more explicit description of the ideal tx that defines
the closed non-splinter locus of R via the approach of uniformly F-compatible ideals.
We devote a significant portion of our paper to obtaining a better understanding of
tr. Our strategy involves looking at the plus closure operation. Just as tight closure
detects weak F-regularity, plus closure detects the splinter property in the sense that a
noetherian domain is a splinter precisely when all ideals of the domain are plus closed.
By analyzing closure operations associated with R-algebras [55,36], we show that the
ideal tg that defines the non-splinter locus of R in Theorem 1.0.2 is the big test ideal
of plus closure. Said differently, tr coincides with the ideal that one morally expects to
define the non-splinter locus of a noetherian domain.

Proposition 1.0.3. (see Propositions 3.3.1, 4.1.4 and Corollary 3.3.3) Let R be an ap-
proximately Gorenstein noetherian domain of arbitrary characteristic (i.e. without any
restrictions on characteristic) and let C be the collection of finite R-subalgebras of RT.
Then we have the following:

(1) The ideal tg = (\gec Ts/r €quals the big plus closure test ideal ();(I : IRY N R).
Here the latter intersection ranges over all ideals of R.
(2) If R is complete local and B is an R-algebra, then tg/p = (\;(I : IBNR).



R. Datta, K. Tucker / Journal of Algebra 629 (2023) 307-357 311

The class of approximately Gorenstein rings is fairly broad and includes noethe-
rian normal rings and reduced locally excellent rings. Taking B = R™ in Proposi-
tion 1.0.3(2), we see that when R is a complete local domain, the image of the map
Hompg(R*, R) oel®l R equals (;(I : IR* N R), which in turn equals tg. This observa-
tion recovers a result of Hochster and Zhang that to the best of our knowledge has not
appeared in print. We refer the reader to Subsection 3.3 for further details on test ideals
of algebra closures, where among other things, we partially answer a question raised by
Pérez and R.G. [55] in the affirmative about the equality of big and finitistic test ideals
of closure operations associated with algebras and certain modules.

Proposition 1.0.3(1) and ideal theoretic results from our work on permanence prop-
erties of splinters [19] allow us to obtain some transformation rules for the splinter ideal
tr under Henselizations and completions.

Proposition 1.0.4. (see Proposition 4.1.7 and Corollary 4.3.4) Let (R, m) be a noetherian
normal domain of arbitrary characteristic with geometrically reqular formal fibers. Then
we have the following:

(1) If R" is the Henselization of R with respect to m, then Tpn N R = 1R.
(2) If R is the m-adic completion of R, then 15N R = tg.

If R is additionally F-pure, then in (1) we have TrR" = tpn and in (2) we have tzR =
TR.

In fact, in part (1) of Proposition 1.0.4 one does not need any assumptions on the
formal fibers of R. One should compare Proposition 4.1.7 with the transformation rules
for the big tight closure test ideal under Henselizations and completions. We expect the
equalities TR R" = txn and T RP: = 15 to hold without restrictions on the characteristic
or singularities of normal noetherian local domains, although we are unable to show this
at present.

As an application of the openness of the splinter locus and the ascent of the splinter
property under étale maps [19, Thm. A], we show that the splinter condition for noethe-
rian N-graded rings over fields is detected by the homogenous maximal ideal. This is
an analogue of Smith and Lyubeznik’s result that weak F-regularity is detected by the
homogeneous maximal ideal [61, Cor. 4.6].

Corollary 1.0.5. (See Corollary 4.3.10) Let R = @,-, R, be a noetherian graded ring
such that Ry = k is a field. Let m == P, -,
Then R is a splinter if and only if Ry is a splinter.

R,, be the homogeneous mazimal ideal of R.

We expect the splinter loci to be open for arbitrary excellent schemes in any char-
acteristic. At the same time, one can use a meta construction of Hochster [33] to give
examples of locally excellent (but not excellent) noetherian domains whose splinter loci
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are not open. The surprising aspect of Hochster’s construction is that the local rings of
these locally excellent domains are essentially of finite type over appropriate fields. We
refer the reader to [19, Ex. 4.0.3] for more details.

Structure of the paper: In Section 2 we discuss the splinter property, the notion of ap-
proximately Gorenstein rings and the Frobenius map. In Section 3 we discuss uniformly
F-compatible ideals and their finiteness, traces of algebras and a closely related notion
which we call the ideal trace, and test ideals associated to closure operations arising
from algebras. In Section 4 we first identify and prove properties of a candidate ideal
that detects the non-splinter locus of noetherian domains in arbitrary characteristic un-
der certain stability assumptions. We also discuss properties of a separable version of
this ideal using Singh’s work on the separable plus closure [59]. We finally specialize to
prime characteristic and prove our main results.

Conventions: All rings are commutative with identity. For the most part rings in this
paper will be noetherian. However, we will use the absolute integral closure of a domain,
which is a highly non-noetherian ring. We say an R-algebra S is solid if there exists a
nonzero R-linear map S — R.

2. Preliminaries
2.1. Splinters

Let us introduce the main objects of investigation in this paper.

Definition 2.1.1. A noetherian ring A is a splinter if every finite ring map A — B which
is surjective on Spec admits an A-linear left-inverse.

Hochster’s famous direct summand conjecture, now a theorem [32,25,6,9], is the as-
sertion that noetherian regular rings are splinters. Splinters are always normal, and
conversely, a noetherian normal Q-algebra is always splinter. Thus, splinters are an in-
teresting notion of singularity mainly in prime and mixed characteristics. Many naturally
arising classes of rings are splinters. For example, since a direct summand of a regular
ring is a splinter, it follows that coordinate rings of normal affine toric varieties, Veronese
subrings of polynomial rings over fields and rings of invariants of finite groups acting on
regular rings where the order of the group is prime to the characteristic of the ring are
splinters. Moreover, generic determinantal rings over fields are splinters since they are
normal in characteristic 0 and F-regular in characteristic p [31] and (weakly) F-regular
rings are splinters [31].

A simple spreading out argument shows that the splinter condition can be checked
locally. Furthermore, because a finite direct product of noetherian rings is a splinter
precisely when the individual factors are splinters, questions about splinters often imme-
diately reduce to the domain case. We refer the reader to [32,35,46,8,47,19] for various
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properties of these singularities. The definition of a splinter and its derived variant can
also be made in a non-Noetherian setting, and interesting non-Noetherian rings, such as
valuation rings, are derived splinters [3].

2.2. Approximately Gorenstein rings and purity

Let A be a ring. An A-linear map M — N is pure (also called universally injective)
if for all A-modules P, the induced map

M s P — N®gP

is injective. We say M — N is cyclically pure if for all cyclic A-modules P, M ® 4 P —
N ®4 P is injective, or equivalently, if for all ideals I of A, M/IM — N/IN is injective.

Split maps are pure and pure maps are cyclically pure. Filtered colimits of (cyclically)
pure maps are also (cyclically) pure, and faithfully flat ring maps are pure. Pure ring
maps induce the affine covers for the canonical Grothendieck topology, which is the finest
topology for which all representable presheaves are sheaves [4].

Hochster characterized noetherian rings A with the property that every A-linear map
A — M that is cyclically pure is also pure [34]. His characterization utilizes the following
notion.

Definition 2.2.1. A noetherian local ring (A, m) is approximately Gorenstein if for all n €
Z-, there exists an ideal I such that I C m™ and A/I is Gorenstein. A noetherian ring
is approximately Gorenstein if all its localizations at maximal ideals are approximately
Gorenstein local rings.

The ideals I in Definition 2.2.1 can be chosen to be m-primary [34, Prop. 2.1]. The
class of approximately Gorenstein rings include noetherian normal rings, noetherian local
rings of depth at least 2, reduced locally excellent rings, and more generally, noetherian
rings whose local rings at maximal ideals are formally reduced. All of this is directly
proved, or implied by the results in [34]. The point of introducing the approximately
Gorenstein property is the following result.

Proposition 2.2.2. [3/, Thm. (2.6)] Let A be a noetherian ring. The following are equiv-
alent:

(1) A is approzimately Gorenstein.
(2) Any ring map A — B that is cyclically pure is pure.
(3) If M is an A-module, then any A-linear map A — M that is cyclically pure is pure.

The approximately Gorenstein property implies that a noetherian domain A is a
splinter precisely when A — AT is cyclically pure [19, Lem. 2.3.1]. This observation
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leads to various equivalent interpretations of an ideal that defines the non-splinter locus
of a noetherian domain in Section 4, making this ideal easier to work with. One such
interpretation involves big test ideals of algebra closures (Proposition 3.3.1(4)), for which
we need the following result.

Lemma 2.2.3. Let A be an approzimately Gorenstein ring. Suppose that there exists a
mazximal ideal m of A and an essential extension A/m — M, where M is a finitely
generated A-module. Then there exists an m-primary ideal I of A such that A/I is
Gorenstein and M embeds in A/I.

Proof. The annihilator J of M is m-primary. Since Ay, is approximately Gorenstein, there
exists an m-primary ideal I of A such that I C J and A/I = Ay /I A, is Gorenstein.
Then A/m < M is an essential extension of A/I-modules, and since A/I is a zero-
dimensional Gorenstein ring, it is an injective module over itself. As m is the associated
prime of A/I, we have an inclusion A/m < A/I, which extends to a map f: M — A/I.
Then f is injective because A/m < M is essential. O

2.8. Frobenius

Let R be a ring of prime characteristic p > 0. Then we have the (absolute) Frobenius
map

F:R— R

that maps r +— rP. For e € Z-( we also have the e-th interate F'¢ of the Frobenius.
The target copy of R regarded as an R-module by restriction of scalars along F¢ will
be denoted F{R, and for z € R the same element viewed in F¢R will be denoted Ffzx.
Thus, if 7 € R and Ffx € FCR, r- Fx = FrP x.

We say R is F-finite if the Frobenius map is finite (equivalently, of finite type). We
say R is Frobenius split if F' admits an R-linear left-inverse F,R — R, and R is F-pure
if F'is a pure map. Frobenius splitting and F-purity do not coincide in general even for
nice rings. For example, the first author and Murayama recently constructed examples
of excellent Henselian regular local rings of Krull dimension 1 which are not Frobenius
split [16]. Regular rings of prime characteristic are always F-pure because the Frobenius
map of a regular ring is faithfully flat [43]. When R is noetherian, purity of Frobenius is
the same as cyclic purity [19, Rem. 2.2.2], so we will not introduce a new definition for
when the Frobenius is cyclically pure even though such a definition would make sense in
a non-noetherian context.

If R is a splinter of prime characteristic p > 0, then R is F'-pure because the Frobenius
map can be expressed as a filtered colimit of finite purely inseparable maps which are
all split by the definition of the splinter property.



R. Datta, K. Tucker / Journal of Algebra 629 (2023) 307-357 315

Given a noetherian R of prime characteristic p > 0, an R-module M and a submodule
N of M, the tight closure of N in M, denoted N}, is the set of elements m € M for
which there exists ¢ € R not in any minimal prime such that for all e > 0,

Féc@meim(FfRRr N — FER®p M).

For M = R and N = I an ideal, the tight closure of I in R is usually denoted I* and
consists of elements r € R for which there exists a ¢ not in any minimal prime such
that ¢ € IP") for all e > 0. Here IP"] is the ideal generated by the p°-th powers of
elements of I. Alternatively, FfI[pe] = IF¢R, the expansion of I to F¢R.

3. Uniformly F'-compatible and trace ideals
Throughout this section, R will denote a ring of prime characteristic p > 0.
3.1. Uniformly F-compatible ideals

Following Schwede [58, Def. 3.1], we make the following definition in a non-F-finite
setting.

Definition 3.1.1. An ideal I of R is uniformly F-compatible if for all e € Z~( and all
R-linear maps ¢: F¢R — R, we have p(F£fI) C I.

Said differently, I is uniformly F-compatible if for any ¢ as above, we have an induced
R/I-linear map @: FE¢(R/I) — R/I such that the diagram

F'R —2 5 R

e b

F(R/I) —2— R/I

commutes, where 7: R — R/I is the canonical projection.

Uniformly F-compatible ideals are related to Mehta and Ramanathan’s notion of
compatibly split subschemes of a Frobenius split scheme [52], and indeed were named
so by Schwede because of this connection. In the noetherian local case, uniformly F-
compatible ideals are dual to Smith and Lyubeznik’s F(E)-submodules of E [45], where
E is the injective hull of the residue field of the noetherian local ring (R, m).

We now collect some well-known properties of uniformly F-compatible ideals.

Lemma 3.1.2. Let R be a ring of prime characteristic p > 0 and let ¥ denote the collection
of uniformly F-compatible ideals of R. Then we have the following:

(1) X is closed under arbitrary sums and arbitrary intersections.
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(2) If T € ¥ and p € Assg(R/I), then p € X.

(8) If R is noetherian and I € X, then /T € X.

(4) If R is noetherian, then nil(R) € X.

(5) If R is Frobenius split, then every element of ¥ is a radical ideal.

Proof. (1) follows readily from the definition of uniform F-compatibility. For (2), assume
p is an associated prime of I. Then there exists a ¢ I such that p = (I : a). Suppose
¢: FER — R is an R-linear map. To show that ¢(F¢p) C p it suffices to show that for
any r € p, p(Ffr)a € I. But

p(Fir)a = p(Fia’r) €

because a? r = a?"~'(ar) € I and I is uniformly F-compatible by assumption. Part
(3) follows from (1) and (2) because v/T is the intersection of the minimal primes of
I, which are associated primes of R/I when R is noetherian. Part (4) follows from (3)
because the zero ideal is uniformly F-compatible. Finally, (5) follows from the fact that
it ¢: F.R — R is a Frobenius splitting of R, then the induced map @: Fi.(R/I) — R/I
is a Frobenius splitting of R/I, and any Frobenius split ring is reduced. O

Remark 3.1.3. Fixing an R-linear map ¢: FfR — R, one can also consider the set of
ideals I of R that are ¢-compatible in the sense that @(F£I) C I. Thus, a uniformly
F-compatible ideal is one that is compatible with any map FfR — R, for all e > 0.
Properties (1)-(4) of Lemma 3.1.2 are also satisfied by the set of ideals compatible with
a fixed ¢, while property (5) is satisfied if ¢ is a Frobenius splitting.

Remark 3.1.4. For a fixed R-linear map ¢: F°R — R, one should make a point to
contrast the p-compatible ideals as in Remark 3.1.3 with those ideals I satisfying the
stronger condition that (F¢I) = I. There is no distinction when ¢ is surjective; when
 is not surjective, such ideals are known to satisfy finiteness properties akin to those for
the ideals compatible with Frobenius splittings. Similar remarks apply to the definition
of uniformly compatible ideals in general. See [7,11] for further details.

3.2. Trace and ideal trace

The most important examples of uniformly F-compatible ideals in this paper are
traces of ring maps.

Definition 3.2.1. Let A be a ring (not necessarily of prime characteristic) and B be an
A-algebra. Then the trace of B over A, denoted tp/4, is

tp/4 = im(Hom (B, A) 2% 4).
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Thus, 15,4 # 0 precisely when B admits a nonzero A-linear map B — A, that is, if B
is a solid A-algebra in the terminology of Hochster [36]. Similarly, A is a direct summand
of B precisely when 15,4 = A.

The next example shows that traces are related to the field trace from linear algebra.

Example 3.2.2. Suppose A — B is a finite extension of noetherian normal domains which
is étale in codimension 1 (that is, for all height 1 prime ideals q of B, Ajna — By is
essentially (aka local) étale). If K (resp. L) is the fraction field of A (resp. B), then the
field trace

Tr: L — K

is a nonzero map because L/ K is separable [69, Tag OBIL]. Since A is normal, Tr(B) C A
because the minimal polynomial of any element of B over K has coefficients in A [69, Tag
OBIH]. Thus, restricting Tr to B induces a nonzero A-linear map B — A, which, abusing
notation, we also denote by Tr. Then it is well-known that Hom 4 (B, A) is generated as
a B-module by Tr (one can apply [72, Prop. 4.8] using the fact that the ramification
divisor of a map étale in codimension 1 is trivial). That is, any A-linear map B — A is
of the form Tr(b-_), for some b € B. Consequently, tp,4 coincides with the image of
the trace map Tr: B — A.

Lemma 3.2.3. Let A be a ring and B be an A-algebra.

(1) tgja = > im(yp), where ¢ ranges over all elements of Hom (B, A).

(2) If A has prime characteristic p > 0, then tg,4 is uniformly F'-compatible.

(3) If B is finitely presented as an A-module, then for all prime ideals p of A, tp,/a, =
(tB/A)p-

(4) If A— C is a flat ring map and B is a finitely presented A-module, then 1p/4C =

IB®AC/C'

Proof. (1) The inclusion tg/4 € ) im(p) follows by the definition of trace. Suppose
a € im(y). Choose b € B such that ¢(b) = a. Then a is the image of 1 € B under the
composition

BY B A,

and so, a € tg/4. Thus, im(p) C tp/4 for all ¢ € Homa(B, A), so we get the other
containment.

In the generality stated (i.e. without assuming A is noetherian or B is module finite
over A), (2) is proved in [17, Prop. 8.5(i)]. We reproduce the proof for the reader’s
convenience since the argument is straightforward and the result is crucial for this paper.
We want that if ¢ : FfA — A is an A-linear map, then ¢(Fftp/a) C t1/4. So let
Fgb € Fitgya. Choose an A-linear map
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7’]1,:B—>A

such that 7,(1) = b. Then the composition

BT pep M peq 0 4

is an A-linear map that sends 1 +— ¢(F¢b). Thus, ¢(Fb) € tp/4, and so, (Fftp/a) C
TB/A-
For (3), the hypothesis that B is finitely presented as an A module implies that

Ap ®a Homy (B, A) = Homa, (By, 4y).

Applying A, ® 4 — to Homy (B, A) oval®l, 4 gives

eval @1

I_I()IrlA'J (BF”AP) Ap.

Since localization commutes with taking images of linear maps, we get the desired result.

(4) is a generalization of (3). We have an exact sequence

Hom (B, A) <% A — Aftp 4 — 0.

Applying C ® 4 — to the above sequence and using the fact that Hom commutes with
flat base change when the first argument is finitely presented, we get the exact sequence

Home(B @4 C,C) <224 ¢ — C g aC — 0.

Then 154 ,0/c = im(Home(B®aC, C) oval OF, C) =ker(C — C/1p/aC) = 13/aC. O

We now deduce some non-obvious consequences of the previous results.

Corollary 3.2.4. Let R be a ring of prime characteristic p > 0 and S be an R-algebra.

(1) If R is Frobenius split, then tg/p is a radical ideal.

(2) If (R,m) is a complete local noetherian domain and S is a big Cohen—-Macaulay
R-algebra (for example, S = R*), then Ts/Rr 5 a nonzero uniformly F-compatible
ideal.

Proof. (1) follows by Lemma 3.2.3(2) and Lemma 3.1.2(3).
For (2), by the defining property of a big Cohen-Macaulay R-algebra, it follows that
if d = dim(R), then

Hii(8) # 0.

Consequently, Hompg(S, R) # 0 by [36, Cor. 2.4], or equivalently, tg, g is nonzero. O
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ample 3.2.5. There are other important examples of uniformly F-compatible ideals.

Suppose R is a reduced F-finite noetherian ring. The big or non-finitistic test ideal
1, (R) of R is a uniformly F-compatible ideal, which is also the smallest (with respect
to inclusion) uniformly F-compatible ideal of R that is not contained in any minimal
prime [75,40,58]. Blickle, Schwede and Tucker have shown that when R is additionally
a normal, F-finite and Q-Gorenstein domain, then t,(R) can be realized as the trace
of some finite and generically étale extension S of R [13, Thm. 4.6]. In a similar vein,
Polstra and Schwede have proved that in the Q-Gorenstein setting, one can often
realize any uniformly F-compatible ideal of R as a trace of some finite extension of
R [56]. However, it is not known if t,(R) can be realized as trace of a solid R-algebra
S when R is not Q-Gorenstein. We will show in Corollary 3.3.5 that the finitistic
test ideal is recoverable as a trace of a big Cohen-Macaulay algebra for an arbitrary
complete local domain of prime characteristic.

Suppose C is a collection of ideals of a noetherian ring R of prime characteristic p > 0
that is closed under Frobenius powers, that is, I € C = IP"] € C for all e € Z~,. We
claim that

I:= ﬂ(]:[*)

IeC

is uniformly F-compatible. Here I'* denotes the tight closure of I. Suppose ¢ € 7
and p: FFR — R is an R-linear map. We have to show that ¢(F¢c) € Z, that is,
for I € C and z € I'*, we want p(Fc)z € I. Now z € I* implies 27" € (IP"])*. This
follows by choosing d € R° such that d(zpe)pf = d"" e ] = (I[pel)[pf] for
f>0.Now I € C = IP"] € C. So by the choice of ¢, we have cz?* € ¢(IP"1)* C 1P"],
Then p(Ffc)z = @(FfczP") € p(FeIP]) C I, as desired. If R is an approximately
Gorenstein ring (for example, an excellent reduced ring or a normal ring), then taking
C to be the collection of all ideals of R, the ideal Z is the finitistic test ideal of R
[29, Prop. (8.15)]. Similarly, taking C to be the collection of parameter ideals of R,
the ideal Z is the parameter test ideal of R [63, Def. 4.3]. Thus, both types of test
ideals are uniformly F-compatible for nice rings.

The trace 1,4 detects whether A — B splits. However, splitting is not a good notion
maps A — B without finiteness assumptions on B. The better notion then is that of

purity, and we now introduce a uniformly F-compatible that detects purity of A — B

in

De

most cases of interest.

finition 3.2.6. Let A be a ring and B be an A-algebra. Then the ideal trace of B/A,

denoted T4, is

Tp/a =) :IBNA),
I
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where the intersection ranges over all ideal I of A.
Ideal traces satisfy the following elementary properties.

Lemma 3.2.7. Let A be a ring and B be an A-algebra. Suppose C is the set of ideals of A.

(1) Tgja = A if and only if A — B is cyclically pure.

(2) If A is an approzimately Gorenstein ring, then Tg a = A if and only if A — B is
pure.

(3) We have tg/a C Tpya.

(4) Suppose A has prime characteristic p > 0. Then for a fized ideal I of A,

Ty = (P 17BN A)
e>0

is uniformly F-compatible.
(5) Suppose A has prime characteristic p > 0. Then Tg/4 is uniformly F-compatible.

Proof. (1) follows from the fact that for an ideal I of A, A/I — B/IB is injective if and
only if I = IBN A, or equivalently, that (I : IBN A) = A.

(2) follows from (1) and Proposition 2.2.2 due to Hochster.

(3) Let ¢ € t3/4, and choose ¢ € Homy (B, A) such that ¢(1) = ¢. Then for any ideal
Iof A,

cIBNA)=p(1)(IBNA)=¢(IBNA)Cp(B)CI,

where the second equality and the last containment of sets follow by A-linearity of .
(4) Suppose ¢ € Tt and ¢ : FfA — A is an A-linear map. For f > 0, let z € 11BN A.
Then 2P € IP"1BN A, and so,

p(Fe)z = p(Feea?) € (Fer™ 'y ¢ '),

Thus, ga(ch)(I[pf]BﬁA) C 1) for all f > 0, which shows w(F¢c) € Ty, and hence, the
uniform F-compatibility of T7.
(5) It is clear that

Tpja = ﬂ 11,
rec

and since an arbitrary intersection of uniformly F-compatible ideals is uniformly F-
compatible (Lemma 3.1.2), by (4) we conclude that Tz 4 is uniformly F-compatible. O

Remark 3.2.8. In general, the containment tp,4 C Tg/a is strict even for nice rings
A. For example, the first author and Murayama have recently constructed examples of
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excellent Henselian regular local rings A of Krull dimension 1 and prime characteristic
p > 0 that admit no nonzero A-linear maps F, A — A [16]. For such a ring, 1y, 474 = 0.
However, the Frobenius F' : A — F,A is faithfully flat [43], hence is pure, and hence
is also cyclically pure. Therefore T 4,4 = A. This example is extreme in the sense
that F,A is not a solid A-algebra. Thus one can ask the following question: suppose
B is a solid A-algebra and Tg;4 = A. Then does it follow that tp/4 = A when A is
approximately Gorenstein? The question has an affirmative answer if A — B is finite
or if A is complete, because then A — B is pure, and hence split, by [39, Cor. 5.2]
in the finite case and by a lemma due to Auslander in the complete case (see proof of
Corollary 3.4.4).

3.8. Algebra closures, traces and ideal traces

Let A be a noetherian ring of arbitrary characteristic. Then for any A-algebra B,
Pérez and R.G. define an associated closure operation clp that satisfies many of the
properties of tight closure [55, Def. 2.4]. Namely, for an arbitrary A-module M and a
submodule N of M, an element m € M is in NICVIIB, the clg closure of N in M, if

1@meim(Ba N — B®s M),

where B®4 N — B ®4 M is obtained by tensoring N C M by idp.
For example, if M = A and N = I is an ideal, then

147 = IBN A.

If B = AT, then cly+ is commonly known as the plus closure.
Analogous to tight closure, one defines the big test ideal of clp, denoted ., (A), as

T (4) = [] (N :a NGP),
NCM

where the intersection ranges over all A-modules M and submodules N of M. Similarly,
the finitistic test ideal of clp, denoted 'ti%B (A), is defined as

fg c
(W= (] (NN
M is fin. gen.

Now the intersection runs over all finitely generated R-modules M and submodules N.

Despite the many parallels between tight closure and clp, these latter closure opera-
tions are better behaved. In particular, our next result answers [55, Question 3.7] in the
affirmative for closure operations that arise from A-algebras (see also Remark 3.3.2(2)
for a partial result for closure operations arising from A-modules).
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Proposition 3.3.1. Let A be a noetherian ring and B be an A-algebra. Let M be an A-
module and N be a submodule of M. Then we have the following:

(1) If M" is a submodule of M, then (N N M')S5 C N&&.
(2) Let {M;}; be the collection of finitely generated A-submodules of M. Then {(N N
Ml)]&f }i is a filtered poset of submodules of M under inclusion and

NyP =V n)5E.

K2

(3) tag(A) = 'ti%B (A), that is, the big and finitistic test ideals of clp coincide.

(4) If A is approzimately Gorenstein, then T, (A) = Tpg/a.

(5) If C is the collection of ideals of A primary to mazimal ideals, then Tg/a = (jcc(I :
IBNA).

(6) tpja C Teig(A).

Proof. For ease of notation, for any A-module M and a submodule N of M, we use {n,p
to denote the canonical map B®4 N — B ®4 M obtained by tensoring N C M by idp.
By definition, m € NJC\/IIB if and only if 1 @ m € im(&{n,a)-

(1) We have a commutative diagram

ENnM’, M/

B®a M

l&NﬁM’,N l&M’,M

B®AN$>B®AM

If m’ € (NN M')SE, then 1 ®@ m’ € im(Ennnr ar)- By the commutativity of the above
diagram, it follows that 1 ® m’ € im(&x 7). Thus, (N N M')S% C N§P.
(2) {M;}; is a filtered poset of R-submodules of M under inclusion such that

M = colim; M; and N = colim; N N M;.
The colimits here are unions. By (1), we get

U nag)se < Nye.

K2

Since tensor products commute with filtered colimits, it follows that
gN,]V]: B®a4 N — B®yg M = colim; (gNﬁMi,Mq‘, :B®g (Nﬂ Ml) — B®a Mz)

Consequently, by the exactness of filtered colimits in Mod4 [69, Tag 00DB], it follows
that
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im(&n,ar) = colimy im(Ennaz,,a, )-

Thus, for m € M, in order for 1 ® m to be in im(&n, ar), there must exist an index ¢ such
that m € M, and 1®m € im(Ennm,, ;). Unravelling the definition of clp, this gives (2).

(3) The containment T, (A) C 'tii (A) follows by the definitions of the big and
finitistic test ideals of clg. Let a € ti%B (A), and N C M be a pair of A-modules. Given
m € NJCVIIB, by (2) there exists some finitely generated submodule M’ of M such that

m € (NN M')SE. Since
a((NNM"SE) S NN M/,
it follows that am € NN M’ C N. Thus,
a(Ny”) € N,

and since M and N are arbitrary, we get a € tc1, (A). This shows that ti%B (A) C tay(A).
(4) Recall that

Tpia= () :IBNA) =T :137),
I I

where I ranges over all ideals of A. By (3) it suffices to show that ti%B (A) = Tpya.
We will follow the proof of [29, Prop. (8.15)], where the analogous fact is shown for the
finitistic tight closure test ideal. Let ¢ € Tg/4. By [55, Lem. 3.3], it suffices to show that
if M is a finitely generated A-module, then

ce(0:4057),

that is, ¢ annihilates O%IB. Assume for contradiction that this is not the case. Then there
exists m € O%IB such that cm # 0. Since M is a noetherian A-module, let N be a
submodule of M maximal with respect to the property that em ¢ N. Then m € NICVIIB
and cm ¢ N. Replacing M by M/N, N by 0 and m by its image in M/N, we may
assume there exists m € 0?&15 such that em # 0 and for all submodules 0 C M’ C M,
em € M'. Thus, A(em) C M is an essential extension, and moreover, A(ecm) has to
be a nontrivial simple A-module. This means that there exists a maximal ideal m of A
such that A(cm) ~ A/m. Since A is approximately Gorenstein, M embeds in A/I for an
m-primary ideal I by Lemma 2.2.3. Then

CIB ClB
057 € 057,

Sincec € Tgja = (I : IBNA) = (I : I57), [55, Lem. 2.15] shows that ¢ annihilates Oi’fj,

and so, ¢ also annihilates 0§VIIB. This is a contradiction.



324 R. Datta, K. Tucker / Journal of Algebra 629 (2023) 307-357

(5) Recall C is the collection of ideals of A primary to maximal ideals. It suffices to
show that

(I :IBNA)C Tpya.
IeC

Let J be an arbitrary ideal of A and let ¢ € [);co( : IBN A). Then for any maximal
ideal m of A and n € Z+y,

co(JBNA) Cc((J+m")BNA) CJ+m".

Thus,

c(JBNA)C () [/+m"=

n€Z>0 m

where the inner intersection runs over all maximal ideals of A. It follows that ¢ € Tz /4.

(6) If A is approximately Gorenstein, then (6) follows from (4) and Lemma 3.2.7(3)
because 15,4 C Tp/a. We will show that (6) holds for any noetherian ring A. Let
c € 134 and choose an A-linear map f: B — A such that f(1) = c. Then for any
A-module N, we get an A-linear map

N: B®sg N — N.

ben —— f(b)n
Note that ny is functorial in IV, that is, for any A-linear map ¢: N — M,

B®AN%B®AM

2 o

N i M.

commutes. Applying this commutative diagram when N is a submodule of an A-module
M and ¢ is the inclusion map, we see that if m € NX/IIB, that is, if I@m € im(B®4 N —
B®4 M), then

em = f(Lym = (1 m)

is in the image of N C M, that is, cm € N. Thus, c € (N :4 NICVIIB)7 and since N, M are
arbitrary, we get ¢ € Tq,(4). O
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Remark 3.3.2.

(1) Proposition 3.3.1(6) is also observed when A is local in [55, Thm. 3.12] (see [55,
Rem. 3.13]), where it is additionally shown that equality holds in part (6) if B is
a finite A-algebra or if A is complete and B is an arbitrary A-algebra. We will use
[55, Thm. 3.12] to show that the trace 15,4 and the ideal trace 75,4 are equal for
module finite extensions in most cases of interest (Corollary 3.3.3(1)). This basic
observation will be useful in identifying and proving properties of an ideal that
detects the non-splinter locus of a noetherian domain in Section 4.

(2) One can define a closure operation clp for an A-module B that is not necessarily
an A-algebra [55, Def. 2.4]. The proof of Proposition 3.3.1(3) can be modified to
show that if B is a finitely generated A-module, then the big and finitistic clp-
closure test ideals coincide. Indeed, if B is generated as an A-module by by, ..., b,,
then m € N§I# precisely when b; @ m € im(B ®4 N — B ®4 M) for all i. But
one can always find a large finitely generated A-submodule M’ of M such that
m € M and b, ® m € im(B®4 (NNM') - B®4 M') for all i. However, the
closure operations associated with modules that are not algebras are often not related
to tight closure. For example, there exist even finitely generated Cohen-Macaulay
modules B over a non-regular but weakly F-regular local ring for which clp is non-
trivial [55, Rem. 2.23].

(3) The arguments of Proposition 3.3.1 will not work to show that the big and finitistic
test ideals from tight closure theory are equal because tight closure involves checking
algebra closure type relations for infinitely many B’s. However, see Corollary 3.3.5
for a deep characterization of finitistic tight closure in terms of an algebra closure
due to Hochster.

We can now exhibit relations between the ideals tp/4 and T4 for nice rings. In
particular, we will see that the ideal trace Tp,4 often localizes for finite extensions A —
B, a fact that is not obvious from its definition which involves an infinite intersection of
ideals.

Corollary 3.3.3. Let A be an approximately Gorenstein noetherian ring and B be an
A-algebra.

(1) If B is a finite A-algebra, then tg/a = ta(A) = ‘cfﬁB (A) =Tp/a.

(2) If B is a finite A-algebra, then for all prime ideals p of A, Tp,/a, = (Tpja)p-
(3) If A is complete local, then tg/a = Tay(A) = T8 (A) = Tga-

CIB

(4) If A is a complete local domain, then To+/a = Ta,, (A) = ti%ﬁ (A) = Ta+/a and
Ta+/a # 0.

All the ideals in (1) and (3) are nonzero precisely when B is a solid A-algebra.
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Proof. (1) The equalities 1, (A) = 8 (A) = Tp /4 follow by Proposition 3.3.1. Thus,
B CIB /
it suffices to show that

/a4 =1p/A- (3.3.3.1)

This equality holds when A is local and B is a finite A-algebra by [55, Thm. 3.12], where
it is shown that 15,4 = Tc1;(A). Now note that

(Tpya)p = (ﬂ([ - IB mA)) C(\I:IBNA), =(\IA,:IByNAy) =Tp, /a,.
I p I I

(3.3.3.2)
The first equality is by definition of Tz,4, and the inclusion is a well-known property
of localization. The second equality follows by flatness of localization. Indeed, we have
(I :IBNA), ={A, : (IBnA)A,) by flatness and the fact that 7B N A is finitely
generated, and

A/(IBNA) < B/IB

stays an inclusion upon localizing at p, which implies that (1B N A)A, = IB, N A,.
The final equality follows by definition of Tz, /4, and the fact that all ideals of A, are
expanded from A.

By the veracity of (3.3.3.1) in the local case, we have T ,a, = tp,/a,, and conse-
quently,

(tB/a)y € (Tya)y € TB,/a, = tB,/4, = (TB/A)p-

Here the first inclusion follows because tp/4 € Tp/a by Lemma 3.2.7(3), the second
inclusion follows by (3.3.3.2) and the last equality follows by Lemma 3.2.3(3). Thus, for
all prime ideals p of A, (t1p/4)p = (T'p/a)p, which implies that 15,4 = T/a.

(2) follows from (1) and the fact that (tp/4)p = 1p,/4, by Lemma 3.2.3(3).

(3) The equalities T, (A4) = I?f’B (A) = Tp/a again follow by Proposition 3.3.1, and
[55, Thm. 3.12] shows that Tg/4 = Tc1,(A).

The first part of (4) follows by (3). It remains to show that A™ is a solid A-algebra.
Since A is complete local, by Cohen’s structure theorem, there exists a complete regular
local ring R and a module finite extension R — A. Then AT = R* and the map
R < A — A" is pure because R is a splinter by the direct summand theorem [6,32].
Since R is complete, a well-known result due to Auslander (see for example [17, Lem.
2.3.3]) implies R — AT splits. Since A is a finite extension domain of R, AT must also
be a solid A-algebra by [36, Cor. 2.3]. O

Remark 3.3.4. Corollary 3.3.3(4) was announced a number of years ago by Hochster and
Zhang. To the best of our knowledge, their result is not publicly available and our proof
is independent of theirs.
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Granting another unpublished but widely available result of Hochster in his course
notes [37], we show that the finitistic test ideal from tight closure theory can always be
recovered as a trace ideal for any complete local domain. This result is an analog of [13,
Thm. 4.6].

Corollary 3.3.5. Let (R, m) be a complete local noetherian domain of prime characteristic
p > 0. Then there exists a big Cohen-Macaulay R-algebra B that satisfies all of the
following properties:

(1) B is an RT-algebra.

(2) For all finitely generated R-modules M and submodules N of M, NIC\/IIB = Ny, where
N, denotes the tight closure of N in M.

(3) tg/r = t8(R), where ©2(R) is the finitistic tight closure test ideal of R.

Proof. The existence of a big Cohen-Macaulay R-algebra B that satisfies (1) and (2)
follows by [37, Thm. on pg. 250]. This is a significant strengthening of [36, Thm. (11.1)],
where Hochster shows that given a finitely generated R-module M and a submodule N
of M, there exists a big Cohen—Macaulay R-algebra B depending on M, N such that
NEE = N3,

So choose B satisfying (1) and (2). Then B is a solid R-algebra because R is complete
and B is big Cohen-Macaulay. Now by [55, Thm. 3.12],

TB/R = 'CC]B(R).

But Proposition 3.3.1(3) tells us that

t,(R) =15, (R):= () =N = () N:eNy).
M is fin. gen. M is fin. gen.

The last intersection is precisely the finitistic tight closure test ideal of R [29, Def.
8.22]. O

Remark 3.3.6. Let B be Hochster’s (very large) big Cohen—Macaulay R-algebra from
Corollary 3.3.5. It is not known if clp coincides with tight closure for submodules of
arbitrary R-modules. Indeed, an affirmative answer to this question would imply that
Tp/r is also the non-finitistic or big test ideal 1,(R) of R from tight closure, thereby
showing that the big and finitistic tight closure test ideals coincide. This would then
settle the outstanding problem of whether weak F-regularity is equivalent to strong
F-regularity for complete local domains.

3.4. Finiteness of uniformly F-compatible ideals

Let R be a noetherian ring, and let 3 be a collection of radical ideals of R that is closed
under finite intersections and such that for I € ¥, any minimal prime of [ is also in X.
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The main example for us is where X is the collection of uniformly F-compatible ideals
of R when R is Frobenius split; see Lemma 3.1.2. It follows that ¥ is finite precisely
when ¥ N Spec(R) is finite because every ideal of ¥ (apart from the unit ideal) is a
finite intersection of elements of ¥ N Spec(R). We use this basic observation to recall the
following well-known result which is a key technical ingredient of our paper.

Proposition 3.4.1. Let R be a noetherian Frobenius split ring of prime characteristic
p > 0. Then R has finitely many uniformly F-compatible ideals in each of the following
cases:

(1) R is F-finite.
(2) (R, m) is local.

In fact, if p: FxR — R is a Frobenius splitting, then R has finitely many p-compatible
ideals in both cases.

We will reprove Proposition 3.4.1, in part to highlight the similarity between the proofs
of the global and local cases, and also to give a proof of the global F-finite case that
does not rely on F-adjunction or the language of divisor pairs. But first, we highlight a
bound on the multiplicity of F-pure noetherian local rings that gives a proof of the local
case of Proposition 3.4.1.

Proposition 3.4.2. [/1, Thm. 3.1] Let (R, m, k) be a noetherian local ring of prime char-
acteristic p > 0 that is F-pure. Suppose d is the dimension of R and v = dim, m/m?2.

Then
e(R) < (2)

where e(R) is the Hilbert-Samuel multiplicity of R.

Proof of Proposition 3.4.1. Since R is Frobenius split, all uniformly F-compatible ideals
are radical. Part (1) is precisely [57, Cor. 5.10]. For the reader’s convenience, we translate
Schwede’s proof, avoiding the machinery of F-adjunction and pairs. Fix a Frobenius
splitting

p: F,R— R.

We will show the stronger statement that there are finitely many ¢-compatible ideals in
the sense of Remark 3.1.3. As discussed in the beginning of this subsection, it suffices to
show that there are finitely many ¢-compatible ideals that are prime. If not, there will be
infinitely many distinct ¢-compatible prime ideals {ps}aca such that dim(R/ps) = d,
for some fixed 0 < d < dim(R) (dim(R) < oo because R is F-finite [44, Prop. 1.1]). Let
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~ ) v

acA

We claim that if p is a minimal prime of q, then p is the intersection of the p, such that
p C po. Indeed, let

P1, P2, Pn

be the distinct minimal primes of q. For all i € {1,...,n}, let I; be the intersection of all
the p,, that contain the minimal prime p; (the intersection should be interpreted to be R
if no such p,, exist, but our claim will show this is impossible). Our claim is that I; = p,,
for all i € {1,...,n}. Without loss of generality, assume ¢ = 1. Note that every prime
ideal p, must contain some minimal prime p; because ¢ =p; N---Np, C p,. Thus,

acA

Since p; is prime, there exists ¢ € {1,...,n} such that I; C p;. But p; C I; for all 4, so
by minimality, I, ..., I, € p1. Hence, we must have I; C pq, and by definition of I1, we
have p; C I, proving our claim.

Since q has finitely many minimal primes, by the pigeonhole principle, there exists a
minimal prime of ¢ that is the intersection of infinitely many of the p,’s. Thus, replacing
q by this minimal prime, we may assume that q is prime. Note that for all «, q C p,, since
there are no inclusion relations among the p,. Moreover, q is uniformly p-compatible,
so we get an induced Frobenius splitting

F.(R/q) — R/q

of the domain R/q. For all a, po/q is a nonzero p-compatible ideal of R/q and

((Pas/a) = ﬂpa /a= (3.4.2.1)

Since R/q is an F-finite domain and @ is a nonzero map, there is a smallest nonzero
p-compatible ideal with respect to inclusion, namely the (big or non-finitistic) test ideal
t(R/q,®) [71, Thm. 3.8] (this is where F-finiteness is used seriously for the first time).
In particular,

(0) # t(R/4,%) C pa/a,

for all . This contradicts (3.4.2.1).

We prove (2) following [41, Rem. 3.4]. As above, for a Frobenius splitting ¢ of (R, m),
it suffices to show there are only finitely many ¢-compatible prime ideals p of coheight
d, for any fixed 0 < d < dim(R). So suppose p1,...,p, € Spec(R) are prime ideals of
coheight d. Since p; N --- NP, is uniformly F-compatible,
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R/ ﬂ pi
i=1

is a Frobenius split equidimensional local ring of Krull dimension d. Suppose v (resp. v')
is the embedding dimension of R (resp. R/(\;; pi). Then v' < v. Since R/(;_, p; is
reduced and equidimensional, we get

n < ie(R/Pi) = e(R/i_ﬁlm < @) < (Z)

The first inequality follows because the multiplicity of a local domain is a positive
integer, the equality follows by [50, Thm. 14.7] because R/, p; is reduced and equidi-
mensional, the second inequality follows by Proposition 3.4.2 applied to the F-pure
local ring R/(\;—, p;, and the final inequality follows because v/ < v. Thus, for each
0 < d < dim(R), the number of ¢-compatible prime ideals of coheight d is bounded
above by (2), which only depends on R and d. O

Remark 3.4.3.

(1) In the proof of Proposition 3.4.1 in the F-finite case, we used the highly non-trivial
fact that if R is a noetherian F-finite domain and ¢: F,R — R is a nonzero R-linear
map, then R has a smallest nonzero p-compatible ideal with respect to inclusion.
The existence of this ideal is based on a deep result of Hochster and Huneke in tight
closure theory on the existence of completely stable test elements for noetherian
F-finite rings. For more details, please see [71, Lem. 3.6] and [30, Thm. 5.10].

(2) The finiteness of the set of uniformly F-compatible ideals of a Frobenius split noethe-
rian local ring (R, m) in the excellent case also follows by [20, Cor. 3.2], which is a
characteristic independent result. The advantage of Proposition 3.4.2 is that it al-
lows one to obtain explicit bounds on the number of uniformly F-compatible prime
ideals (and also without any excellence hypothesis). The same explicit bounds were
also obtained in [70, Thm. 4.2] in the excellent local case, albeit via more involved
considerations. It is a different matter that the authors do not know an example
of a non-excellent Frobenius split noetherian local ring. Indeed, the most common
method of constructing non-excellent noetherian local rings in prime characteristic
is in the dimension 1 regular case via arc valuations; see [18]. However, [17, Thm.
7.4.1] shows that any Frobenius split normal noetherian domain of dimension 1 has
to be excellent. Thus, the ‘usual’ method of constructing non-excellent noetherian
local rings in prime characteristic do not give examples that are Frobenius split.
Consequently, it is unclear if Proposition 3.4.1 gives additional cases of finiteness of
F-compatible ideals outside the excellent setting in the local case.

(3) The proofs of the finiteness of the set ¥ of uniformly F-compatible ideals of Frobenius
split noetherian rings that are F-finite or local only used the facts that X is closed
under arbitrary intersections, consists of radical ideals, and is also closed under taking
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minimal primes of ideals. The property of ¥ being closed under sums of ideals is never
used, in contrast with [20, Cor. 3.2] and [70, Thm. 4.1].

Corollary 3.4.4. If (R,m) is a complete local noetherian ring of prime characteristic that
is F-pure, then R has finitely many uniformly F-compatible ideals.

Proof. This follows by Proposition 3.4.1, because purity of a ring map R — S, when R
is complete, is equivalent to splitting by a result due to Auslander; see [21, Lem. 1.2] (or
[17, Lem. 2.3.3] for a more general statement). O

4. The splinter locus
Suppose X is a locally noetherian scheme. We define
Spl(X) == {z € X : Ox, is a splinter}.

Note that for any open subscheme U of X, Spl(U) = Spl(X) NU. If R is a noetherian
ring, we define Spl(R) to be Spl(Spec(R)). Since splinters are integrally closed domains,
it follows that Spl(X) is contained in the normal locus

Nor(X) = {z € X : Ox, is an integrally closed domain}

of X. Thus, if Nor(X) is open (for example, if X is has an open regular locus [24, Cor.
(6.13.5)]), then to show that Spl(X) is open it suffices to assume that X is normal. Since
openness of the splinter locus can be checked on a sufficiently fine affine open cover of
X, one may further assume that X = Spec(A), where A is a noetherian integrally closed
domain (in particular, A is approximately Gorenstein). Thus, we will analyze when the
splinter locus of a noetherian domain is open.

4.1. Traces and splinter loci
Recall that if B is an A-algebra, then the ideal trace of B/A is

Tp/a =) :IBNA),
I

where the intersection ranges over all ideals I of A. Similarly, the trace of B/A is

Tp/a = im(Homx (B, A) oval O, A).

In general, 15,4 C T 4, and equality holds when A is an approximately Gorenstein
noetherian domain and B is a finite extension of A (Corollary 3.3.3(1)). We begin with
the following observation:
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Lemma 4.1.1. Let A be a noetherian domain, C be the collection of finite A-subalgebras
of AT and

Yoi={tga:BeC} and ¥y = {Tp/a: B cC}.

(1) For all B€C, tgja #0 and Tgya # 0.

(2) If B, B’ € C such that B C B’, then tp/ja € tgsa (resp. Tpija € Tpya). Thus, ¥-
(resp. ¥7) is a cofiltered poset of ideals of A under inclusion.

(3) If a minimal element of . (resp. X ) exists, then this is the smallest element of ¥,
(resp. 1) in the sense that it is contained in every other element of X (resp. ).

(4) If ¢ (resp. X1 ) is finite, then it has a smallest element under inclusion.

(5) Ais a splinter <= (\pce TB/a = A<= gec IB/a = A.

We say a partially order set (3, <) is cofiltered if for all z,y € X, there exists z € &
such that z < z,y.

Proof. (1) For all B € C, Hom4(B, A) # 0 because
Frac(A) ® 4 Hom (B, A) = Homgyac(a)(Frac(B), Frac(A)) # 0.

Thus, for all B € C, tg/a # 0. Since Tg/4 contains 1,4 (Lemma 3.2.7(3)), it follows
that for all B € C, Tg/a # 0.

(2) If B C B, then Homy (B', A) <21°%

R factors as

eval @1
—_—

Hom(B’, A) — Hom4 (B, A) A,

where Hom(B’, A) — Hom(B, A) is given by restriction to B. It follows that 1,4 C
Tp/4- The set C is a filtered poset under inclusion because if B, B’ € C, then B[B'] € C.
Thus, 3, is a cofiltered poset under inclusion.

Analogously, if B C B’, then IBN A C IB’'N A. This means that (I : IB'NA) C (I:
IBN A), and so, Tpiysa € Tg/a. Again, because C is a filtered poset, X7 is a cofiltered
poset.

(3) holds generally for any cofiltered poset.

(4) follows from (3) because any finite poset has a minimal element.

(5) If A is a splinter, then 15,4 = A for any finite extension of A by definition of the
splinter property. This shows that if A is a splinter, then gz tp/4 = A.

If Ngee tB/a = A, then (e TB/a = A because 1p/4 € Tpya-

It remains to show that if

() Te/a = A,
BeC

then A is splinter. If 1 € Tz, 4, then for all ideals I of A we have
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I=IBnNA.

Thus A — B is cyclically pure for all B € C. Since AT = colimpec B, it follows that
A — AT is also cyclically pure. Then A is a splinter by [19, Lem. 2.3.1]. O

Remark 4.1.2.

(1) Using the notation of Lemma 4.1.1, if ¥; has a smallest element under inclusion,
then there exists a finite A-subalgebra By of AT such that

TBy/A = ﬂ TB/A-
BecC

This implies that for all finite A-subalgebras B’ of AT containing By,

TBy/A = TB/JA;

that is, the traces of the finite A-subalgebras of AT stabilize. We will see that this
stable trace ideal, when it exists, defines the splinter locus of A.

(2) A similar stabilization result also holds if 37 has a smallest element under inclusion.
If A is additionally approximately Gorenstein, then ¥, = ¥7 by Corollary 3.3.5(1),
that is, we get the same stable ideal as in the previous remark.

Definition 4.1.3. Let A be a noetherian domain and C be the collection of finite A-
subalgebras of AT. We define the trace of A, denoted t4, to be

TA = ﬂ TB/A-

BeC

The ideal trace of A, denoted Ty, is defined to be

TA = ﬂ TB/A~
BeC

Proposition 4.1.4. Let A be a noetherian domain and C be the collection of finite A-
subalgebras of AT. Then we have the following:

(1) Ais a splinter <= 14 = A<= Ty = A.

(2) Ta="Tat)a-

(3) If A is approximately Gorenstein, then 14 = Ta and T4 is the big plus closure test
ideal.

(4) If (A, m) is complete local, then T4 = T+ /4.

Assume that ¥, := {tp,a: B € C} has a smallest element under inclusion. Then:
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(5) There exists By € C such that Ta = Tp,/a-

(6) If A is approzimately Gorenstein, there exists By € C such that Ty = Tyja = TBy/A-

(7) If (A, m) is complete local, there exists By € C such that Ta+/4 = tp,ya = Tpy/a =
TA+/A-

(8) If p € Spec(A), then ta, = (ta)p-

(9) For p € Spec(A), A, is a splinter if and only if va € p. Thus, the splinter locus of
A is the complement in Spec(A) of V(t4a).

(10) There exists a finite A-subalgebra By of AT such that if A — By splits, then A is a

splinter.

Proof. (1) is precisely Lemma 4.1.1(5).
(2) For all B € C, we have B C A™'. Therefore,

Tavja=(\I:TAYNA)C (T :IBNA)=Tga,
I I

where the intersections are indexed by all ideals I of A and the middle containment
follows because IBN A C IAT N A. Thus,

Typ+,4 CTa.

Now suppose ¢ € T4 and let I be an ideal of A. To prove Tx C T4+ ,4 we have to show
that c(TAT N A) C I. Let z € IAT N A and choose a finite A-subalgebra B of AT such
that z € IBN A. Since ¢ € T4, it follows that cz € I, and so, c(IATNA)CI.

(3) If A is approximately Gorenstein, then for all B € C,

13/A =1B/A

by Corollary 3.3.3(1). So 14 = T4 by the definition of these ideals. By (2), we then
get t4 = T4+ 4, and taking B = AT in Proposition 3.3.1(4), it follows that T+, 4 =
Tal,, (A). Since cly+ is precisely plus closure, e, (A) is the big plus closure test ideal.

(4) A noetherian complete local domain is approximately Gorenstein because reduced
excellent rings are approximately Gorenstein. Then t4 = T4 by (3), Ta = T'a+,4 by (2),
and Ty+,4 = ta+,4 by Corollary 3.3.3(4).

(5) follows by the hypothesis that X, has a smallest element.

(6) Since A is approximately Gorenstein, (3) implies

TA =TA.
Now choose By € C that satisfies the conclusion of (5). Then Ty = t4 = tp,/a = T,/4,

where the last equality again follows by the approximately Gorenstein property and
Corollary 3.3.3(1).
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(7) Since complete local domains are approximately Gorenstein, by (2), (3) and (4),
Tat/a =Ta=Ta=Ta+a,

and by (6), there exists By € C such that T4 = Tg /a4 = Tp,/4-
(8) If ¥ has a smallest element tp,/4, then by exactness of localization, for p €
Spec(A), the collection

Yep=1{(tBa)p : B€C}

also has a smallest element under inclusion, namely (tp, JA)p = T Bo),/Ap- Here the last
equality follows by Lemma 3.2.3(3). Thus,

(ta)p = (() tB7a)p = (tosa)e = () (tp/a)e = () T8, /4,-

BeC BeC BeC

It suffices to show that

() t5,/4, = T4, (4.1.4.1)
BeC

Let T be a finite Ay-subalgebra of (A,)" = (A1),. Suppose T = Ag[t1,...,t,]. Since
each t; is integral over Ay, there exists s € A\ p such that for all 4, st; is integral over A.
As s is a unit in T, replacing ¢; by st; does not change T, so we may assume that each
t; is integral over A. Then the A-subalgebra

T = Alty,... t,)

of T has the property that 7" is a finite extension of A contained in A and (T”), =T
Thus,

/A, = UT)p /Ay = (‘CT//A))I“

Said differently, this argument shows that every trace of a finite Ap-subalgebra of (A,)*
is the localization at p of the trace of some finite A-subalgebra of AT. Unravelling the
definition of t4,, this implies (4.1.4.1).

(9) By (1), A, is a splinter if and only if ta, = A,. Now by (7), 4, = (ta),. Thus,
T4, = Ay if and only if (t4), = A, and this last equality holds precisely when t4 ¢ p. It
follows that the splinter locus of A is the complement of the closed set V(t4) of Spec(A).

(10) Choose a finite A-subalgebra By of AT that satisfies (5). If A < By splits, then
TA = T, 4 = A, and so, A is a splinter by (1). O

Remark 4.1.5. The equality T4 = T4+,4 in part (4) and the equality T4+/4 = tp,/4 in
part (6) of Proposition 4.1.4 fail quite dramatically if we do not assume A is complete,
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even for excellent regular local rings. Indeed, by [16] choose an excellent Henselian regular
local ring A of Krull dimension 1 and prime characteristic p > 0 such that A admits
no nonzero A-linear maps F,A — A. Since F,A embeds in AT, this implies that there
are no nonzero A-linear maps AT — A. Thus, 14+ /4 = 0 while T4 = A because regular
rings of prime characteristic are splinters by [32]. Note that in this case t4 equals 15,4
for any finite A-subalgebra B of A™.

Example 4.1.6. Suppose R is a noetherian F-finite normal domain that is Q-Gorenstein.
Then [13] shows that the set X, of Proposition 4.1.4 has a smallest element, namely the
big test ideal 15(R) of R. Thus, tg = 15(R), and so, Proposition 4.1.4(9) shows that the
splinter locus of R coincides with the complement of V(t,(R)), which is the strongly
F-regular locus of R. This is not surprising because Singh showed that in the affine
Q-Gorenstein setting, the splinter condition is the same as being F-regular [60] and it is
known that for F-finite Q-Gorenstein rings, (weak) F-regularity is equivalent to strong
F-regularity [48].

We will now use Proposition 4.1.4 to compare the traces under Henselizations and
completions.

Proposition 4.1.7. Let (A, m) be a noetherian normal domain. We have the following:

(1) If A" is the Henselization of A with respect to m, then Tq4n N A = 14.
(2) If A has geometrically regular formal fibers and A is the m-adic completion, then
3 NA=1y4.

We need the following lemma, which is interesting in its own right.

Lemma 4.1.8. Let A — B be a cyclically pure map of noetherian domains. Then TgNA C
Ty.

Proof of Lemma 4.1.8. By Proposition 4.1.4(2), Ta = Ta+,4 and Tp = Tg+,p. Cyclic
purity implies A — B is injective. So we may assume that A C B and AT C B™.
Let ce TN A =Tpg+,pN A, and pick any ideal I of A. Then

c(TATNA)Ce(IB)YBTNB)NACIBNA=1,

where the first containment follows because TAT™ N A C (IB)B* N B, the second con-
tainment because ¢ € Tg+,p, and the equality because A — B is cyclically pure. Thus,
CGﬂI(IthJrﬁA):TAJr/A:TA. O

We now prove Proposition 4.1.7 utilizing some ideal-theoretic results of [19].

Proof of Proposition 4.1.7. Note that a noetherian integrally closed domain is approxi-
mately Gorenstein.



R. Datta, K. Tucker / Journal of Algebra 629 (2023) 307-357 337

(1) A" is also a noetherian integrally closed domain [69, Tag 06DI]. Thus, by Propo-
sition 4.1.4(3) and (2),

TA:TA+/A and TAr :T(Ah)+/Ah.

Therefore it suffices to show that T{an)+ an N A = Ta+ /4. Since A — A" is faithfully
flat, Lemma 4.1.8 and Proposition 4.1.4(2) give

Tearytjan VA C Tyt ya.

Now suppose ¢ € T'a+ /4. It remains to show that ¢ € T gn)+4n. If C is the collection of
mA”-primary ideals of A", then Proposition 3.3.1(5) shows that

T(Ah)+/Ah = ﬂ (J : J(Ah)+ ﬂAh).
Jec

Therefore it suffices to show that ¢(J(A")* N A") C J, for any mA"-primary ideal J of
AP Note that

A— Al

is a local homomorphism such that the induced map on completions is an isomorphism.
Therefore any mA”"-primary ideal of A" is expanded from an m-primary ideal of A (for
example, see [19, Lem. 3.1.2]). So choose an m-primary ideal I of A such that

J =T1Ah,
By [19, Prop. 3.1.4(2)],
(J(AMTNn A NA=JANTNA=T(AM"NA=TATNnA.

Moreover, J C J(A")T N A" which means that J(A")T N A" is also an mA”-primary
ideal expanded from some m-primary ideal of A. Then it must be the case that

J(AMT N AN = (TAT N A)A",
Since ¢ € T)a+ /4, we have ¢(IAT N A) C I. Consequently,
c(J(AM) TN AP = c(TAT N A)A") = (c(IAT N A))AM C 1AM = J,

as desired.

(2) Since A is a normal domain with geometrically regular formal fibers, A is also a
normal domain [69, Tag 0BFK] and both A, A are approximately Gorenstein. Now the
rest of the proof of (2) follows from the argument given in (1) but with A" replaced by
A, (AM)* replaced by At and [19, Prop. 3.1.4(2)] replaced by [19, Prop. 3.2.2], which
says that for an ideal I of A, IA* N A=IA*NA. O
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4.2. Separable traces and splinter loci

Let R be a noetherian domain with fraction field K. Recall that we say R is N-1 if
the integral closure of R in K is a finite R-algebra.

Excellent domains are N-1, although the N-1 assumption is substantially more general.
For example, any noetherian normal domain is N-1, although noetherian normal domains
are far from being excellent in general. Moreover, in the context of singularity theory,
especially in prime characteristic, most notions of F-singularities such as F-injective,
F-pure, Frobenius split, splinter, F-rational and all avatars of F-regular imply the N-1
property at the level of local rings [17, Lem. 7.1.4].

If R is a domain, then we will use (R*)P to denote the subring of R consisting of
those elements whose minimal polynomials over K are separable. Thus, if K®°P is the
maximal separable extension of K in K = Frac(R™), then (R*)*P is the integral closure
of R in K% or equivalently, (RT)SP = RT N K5P,

We will now specialize to the setting where R is a noetherian domain of prime char-
acteristic p > 0. Then recall that for an ideal I of R, the Frobenius closure of I, denoted
IF] is defined as

IF = {r e R: 7" € I for some e € Zs}.

One can verify that I1F] is an ideal of R that is contained in the tight closure I*.

The following Proposition, proved by Singh [59], is the key result that motivates this
section (see also [68]). We state the Proposition with a more general hypothesis than in
[59], and explain why Singh’s arguments only need this weaker hypothesis.

Proposition 4.2.1. [59] Let R be a noetherian N-1 domain of prime characteristic p > 0
and fraction field K. Let I be an ideal of R.

(1) If v € IWF] then there exists a finite generically étale R-subalgebra S of RT such
that r € 15.
(2) For all ideals I of R, IR*NR=1I(RT)**PNR.

Indication of proof. Singh proves (1) in [59, Thm. 3.1] assuming that R is excellent. In
the proof, he considers roots w1, ..., u, of certain Artin-Schreier polynomials over K and
then takes S to be the integral closure of R in the fraction field L of R[uq,...,u,]. Note
that L is a finite separable extension of K by construction. The only place excellence
appears to be used in the proof of [59] is to conclude that S is a finite R-algebra. We
claim this follows as long as R is N-1. Indeed, if R is the integral closure of R in K,
then S is also the integral closure of R in L. Since R is a normal noetherian domain
(it is module finite over R by the N-1 hypothesis), S is then a finite R-algebra by [69,
Tag 032L]. The point here is that since L/K is a finite separable extension, it admits a
nonzero trace Try x that restricts to give a nonzero R-linear map S — R because R is
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normal. However, any generically finite solid algebra extension of noetherian domains is
actually finite [18, Prop. 3.7]. Consequently, S is a finite R-algebra, and the rest of the
proof of [59, Thm. 3.1] applies without change.

Similarly, (2) is [59, Cor. 3.4], but again where R is assumed to be excellent. As in
[59], for z € IR* N R choose a finite R-subalgebra Ry of R such that z € IRy. If Ry is
the largest separable extension of R is Ry, then z € (IR3)!¥! because Ry < Ry is purely
inseparable and module finite. Let L = Frac(Rg), which is a finite separable extension
of K. Since R is N-1, the argument in the previous paragraph shows that the integral
closure of R in L is a finite R-algebra. But this integral closure is also the integral closure
of Ry in L = Frac(Rz). Thus, Ry is N-1. Now by (1), one can find a finite generically
étale Ro-subalgebra of (R2)™ = RT such that z € IS. Then R < S is a finite generically
étale extension, and we are done. 0O

As a consequence, we obtain the following characterization of splinters in prime charac-
teristic for N-1 domains without any excellence or approximately Gorenstein hypotheses.

Corollary 4.2.2. (cf. [59, Cor. 3.9]) Let R be a noetherian N-1 domain of prime charac-
teristic p > 0. Then R is a splinter if and only if R — S is cyclically pure for every
generically étale finite extension domain S.

Proof. The ‘if’ implication is the non-trivial one. If R — S is cyclically pure for every
generically étale finite extension domain S, then R — (R1)%P is cyclically pure because
(RT)%¢P is a filtered union of generically étale finite R-subalgebras. Now since R is N-1,
by Proposition 4.2.1(2), R — R™ is cyclically pure. Then R is a splinter by [19, Lem.
2.3.1].

Again, Singh proves the same result assuming R is excellent [59, Cor. 3.9] and that R
is a direct summand of every generically étale finite extension domain S. 0O

Motivated by Corollary 4.2.2 we introduce the following definition.

Definition 4.2.3. Let R be a noetherian domain and C*°P be the collection of generically
étale finite R-subalgebras of RT. We define the separable trace of R, denoted 15", to be

sep ., _
Tp = ﬂ tS/R-
Secsep

The separable ideal trace of R, denoted T}”, is

Sep . __
T3P = () Ts/n-
Secsep

Remark 4.2.4.

(1) If Frac(R) has characteristic 0, then 13" = 1z and T = Tk.
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(2) If Frac(R) has characteristic p > 0, we have 1z C 13" and T C T ".

(3) In general, t5" C TR".

(4) Since C*P is a filtered poset under inclusion, the same argument as in Lemma 4.1.1
demonstrates that

EieP = {TS/R: S S Csep}

and

S5 — (T p: S € C*P}

are cofiltered collections of ideals of R under inclusion. In particular, if 3 (resp.
¥5°P) has a minimal element, then it has a smallest element.

We then have the following analogue of Proposition 4.1.4. We state it for noetherian
domains of prime characteristic because for mixed characteristic and equal characteristic
0 domains, the separable trace provides no new information over the usual trace.

Proposition 4.2.5. Let R be a noetherian N-1 domain of prime characteristic p > 0. Let
C®P be the collection of generically étale finite R-subalgebras of RT. Then we have the
following:

(1) R is a splinter <= 13" = R<—=Tx" = R.
(2) TP = T(r+)r/R-
18 approximate orenstein, then 1,7 = and T, 15 the big separable plus
3) If R i } ly G in, th % =Tg" and 13" is the big ble pl
closure test ideal.
(4) If (R, m) is complete local, then U5" = T(g+)wer/R-

Assume 337 = {1g/p: S € C*P} has a smallest element under inclusion. Then:

(5) There exists Sy € C*P such that U5" = tg,/R-

(6) If R is approzimately Gorenstein, there exists By € C*P such that Ty® =Tg, /g =
TSo/R-

(7) If (R, m) is complete local, there exists Sy € C*P such that T(g+)=er/r = Ts,/R =
Tso/r = T(rtyor -

(8) If p € Spec(R), then 1) = (Tg")p.

(9) Forp € Spec(R), Ry is a splinter if and only if T5* € p. Thus, the splinter locus
of R is the complement in Spec(R) of V(t5").

(10) There exists a finite generically étale R-subalgebra Sy of Rt such that if R < S

splits, then R is a splinter.
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Sketch of proof. (1) follows by Corollary 4.2.2.

(2) follows using the proof of Proposition 4.1.4(2) verbatim, but with A (resp. A™")
replaced by R (resp. (RT)5P).

(3) The equality 15" = TR" follows by Corollary 3.3.3(1). Then 13" is the big sepa-
rable plus closure test ideal because it equals T(g+ysr /g using (2), and the latter ideal is
the big separable plus closure test ideal by Proposition 3.3.1(4) applied to B = (RT)%P.

(4) A complete local domain is approximately Gorenstein. Therefore 1, = Tp? =
T(r+yser/r by (2) and (3), and T(g+)ser /g = T(R+)sep/r Dy Corollary 3.3.3(3) applied to
B = (RT)3¢P_ which is a solid R-algebra because R™ is a solid R-algebra.

(5) follows because ¥3°" has a smallest element.

(6) follows by (2), (3), (5) and Corollary 3.3.3(1) because tg,,zr = Ts,/g-

(7) follows by (2), (3), (4) and (6).

(8) follows using the same line of reasoning as in Proposition 4.1.4(8). The key point
is that if 25°P has a smallest element, then the a priori infinite intersection

sep _
Tp = TS/R
Secsep

behaves like a finite intersection, and hence it commutes with localization at p, giving

(%) = m TSy /Ry-
Secser

One can then show Ngceeer Ts, /R, = rsgf by a similar spreading out argument. Indeed,
the R-subalgebra T” of T' constructed in the proof of Proposition 4.1.4(8) will be gener-
ically étale if T' is a generically étale finite Rp-subalgebra of ((R,)™")P = ((R1)P),.
(9) follows from (8) and (1) and because the property of being N-1 localizes [69, Tag
032G].
Finally for (10), any Sy satisfying the conclusion of (5) works by (1). O

We obtain the following non-obvious consequence of the previous results.

Corollary 4.2.6. Let R be a noetherian N-1 domain of prime characteristic p > 0 that is
approzimately Gorenstein. Then

TR = 'E:;%ep.

Proof. By Proposition 4.1.4 parts (2) and (3) and Proposition 4.2.5 parts (2) and (3),
we have

TR = TR+/R and ‘IZSRep = T(R+)sep/R.

Now by Proposition 4.2.1(2),
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T/ =\ : IR NR) = (\(I : I(RT)**® N R) = T(g+yeen /R,
1 I

where the intersections range over all ideals I of R. This completes the proof. O
4.8. Openness of splinter loci in prime characteristic

We will now show that the splinter locus is open for schemes in prime characteristic
that are of most interest in arithmetic and geometry. In particular, we will show that
the splinter locus of any scheme of finite type over an excellent local ring of prime
characteristic is open. In fact, our results will hold more generally for some quasi-excellent
schemes and even some schemes that are not quasiexcellent (see Remarks 4.3.2 and 4.3.8).
Recall that a noetherian ring R is quasi-excellent if the local rings of R have geometrically
regular formal fibers and if the regular locus of any finite type R-algebra is open. Thus
an excellent ring is a quasi-excellent ring that is universally catenary. Our first result is
affine in nature.

Theorem 4.3.1. Let R be a noetherian F-pure domain of prime characteristic p > 0 and
assume that R satisfies any of the following conditions:

(i) R is F-finite.
(i) R is local (not necessarily excellent).
(i) (A, m) is a noetherian local ring of prime characteristic p > 0 with geometrically
reqgular formal fibers and R is essentially of finite type over A.

Let C be the collection of finite R-subalgebras of RY. Then we have the following:

(1) ¥ = {tg/r : S €C} is a finite set of radical ideals of R.
(2) The splinter locus Spl(R) of Spec(R) is open and its complement is V(tg) = V(t").

(3) tr and TR® are radical ideals and 1p = Tx".

(4) There exists a finite generically étale extension domain S of R such that 1p = 15" =

TS/R-

(5) Ti;ere exists a finite generically étale extension domain S of R such that if R — S
splits, then R is a splinter.

(6) If R is complete local, there exists a finite generically étale R-subalgebra S of R
such that tp+/r = TR = ‘Ei‘;p = T(R+)sp/R = TS/R-

Proof. If R satisfies (i), (ii) or (iii), we first claim that R is approximately Gorenstein
and N-1.

By definition, R is approximately Gorenstein if Ry, is approximately Gorenstein for all
maximal ideals m of R. If R is F-pure, so is Ry. Then Ry, is approximately Gorenstein
by [15, Cor. 3.6(ii)], where it is shown more generally that F-injective noetherian rings
are approximately Gorenstein.
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A quasi-excellent domain is Nagata [69, Tag 07QV], hence N-1. Thus, the N-1 property
follows when R is F-finite because F-finite rings are excellent [44, Thm. 2.5]. If (4, m)
has geometrically regular formal fibers, then A is quasi-excellent [49, (33.D), Thm. 3.6]
(or see [42, Prop. 5.5.1]). Therefore if R is essentially of finite type over A, then R is also
quasi-excellent [69, Tag 07QU], hence N-1. Finally, if (R, m) is local and F-pure, then R
is N-1 by [17, Lem. 7.1.4].

(1) An F-finite noetherian F-pure ring is Frobenius split. By Proposition 3.4.1, the
collection of uniformly F-compatible ideals is finite in case (i) and also in case (ii) when
(R, m) is additionally Frobenius split, and by Lemma 3.1.2, every uniformly F-compatible
is radical when R is Frobenius split. Let C be the collection of finite R-subalgebras of R
and C*°P be the subset of C consisting of those R-subalgebras that are also generically
étale. Then

Y= {TS/R: S e C}
and
P = {1gp: § € CF)

are collections of uniformly F-compatible ideals by Lemma 3.2.3. In particular, both %
and Y°°P are finite sets of radical ideals in case (i) and in case (ii) when (R, m) is Frobenius
split. We will now show that %, (and hence 33°7) is also a finite set of radical ideals in
case (iii) and also in case (ii) when we drop the hypothesis that (R, m) is Frobenius split.
Note that in the generality of (ii) and (iii), an F-pure noetherian domain R need not be
Frobenius split (or admit any nonzero R-linear map F,R — R) [16], so it is not at all
obvious that X is finite or that its elements are radical ideals.

If R is essentially of finite type over a local G-ring (A, m), then it suffices to show
that there is a faithfully flat map R — R’ such that R’ is F-finite and Frobenius split.
Indeed, suppose one can find such a cover of R. Then for any 15/ € ¥,

ts/rR = tsepr/R
by Lemma 3.2.3(4) because S is a finite extension of R. Thus,
{‘CS/RR/ ;S e C}

is a set of uniformly F-compatible ideals of the Frobenius split F-finite ring R’ because
all the expansion ideals are traces. Therefore this set is finite and each tg/z R’ is a radical
ideal by the argument in the previous paragraph. Since R — R’ is faithfully flat,

TS/R = ‘ES/RR/ N R.

As contractions of radical ideals are radical, X; must be a finite set of radical ideals as
well.
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We now show the existence R'. Let A be the m-adic completion of A. By our assump-
tion, A — A is a regular map. Since R is essentially of finite type over A, by [69, Tag
07C1] and the fact that property of being regular is preserved under localization,

R—>R®xu A
is also a regular map. Therefore the relative Frobenius
F.R®p (R®a A) = F,(R®4 A)

is faithfully flat by results of Radu [73, Thm. 4] and André [5, Thm. 1]. Since R — F.R
is pure, by base change

R@aA— F,ROz (R24 A)
is pure, hence so is the composition
R@sA— F.Rop (R A) = F.(R®4 A).

This last map is the Frobenius of R ® 4 A. Thus, R ®4 A is an F-pure ring which is
essentially of finite type over a complete local ring of prime characteristic (see also [27,
Sec. 2] for a generalization of this argument). Therefore by the gamma construction,
there exists a faithfully flat local map

A— AT

such that AT is F-finite and R @4 AT = (R®4 A) ®3z AT is F-pure [54, Thm. 3.4(ii)].
Consequently, R ® 4 AT is Frobenius split since it is F-finite. Then we can take R’ =
R®a AT to be the faithfully flat F-finite cover of R that is Frobenius split.

It remains to show that if (R, m) is a local F-pure ring that is not Frobenius split, then
Y. is a finite set of radical ideals. The strategy is similar to the one above for case (iii).
Since R is F-pure, so is its completion R [38, Cor. 6.13] (without any restrictions on the
formal fibers of R). Then R is Frobenius split because F-purity and Frobenius splitting
coincide for complete local rings. We now have that R has finitely many uniformly F-
compatible ideals by Proposition 3.4.1, all of which are radical by Lemma 3.1.2 because
we have a splitting. Then, as above, 3, is a finite set of radical ideals of R because the
expansions of these ideals in R (which is faithfully flat over R) are again trace ideals,
and hence uniformly F-compatible, radical and finite in number.

Since X3P C ¥, we have shown that if R satisfies (i), (ii) or (iii), then X, (hence also
¥3P) is a finite set of radical ideals of R. This proves (1).

(2) By (1), Lemma 4.1.1 and Remark 4.2.4 we conclude that 3, and X3 have
smallest elements under inclusion. We can then apply Proposition 4.1.4(9) and Proposi-
tion 4.2.5(9) to conclude that
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Spec(R) \ V(tr) = Spl(R) = Spec(R) \ V(t").

This proves (2).

There are two ways to prove (3). We have already observed that R is N-1 and ap-
proximately Gorenstein if it satisfies (i), (ii) or (iii). Then we can apply Corollary 4.2.6
to get (3).

Alternatively, both 1z and 13" are radical ideals (they are intersections of ideals in
3.) that define the non-splinter locus of Spec(R) by (2), so they must be equal.

(4) follows by (3) and Proposition 4.2.5(5).

For (5) choose an S that satisfies the conclusion of (4). If R — S splits, we have
T = Tx" = R, that is R is a splinter (Proposition 4.2.5(1)).

(6) The equalities

TRr+/R = TR and T(R+)sep /R = ‘Eigp
follow by Proposition 4.1.4(4) and Proposition 4.2.5(4). We are then done by (4). O

Remark 4.3.2. In Theorem 4.3.1(iii), the formal fibers of (A, m) are assumed to be geo-
metrically regular in order to ensure that if R is an essentially of finite type A-algebra
that is F-pure, then the base change R; := R ®4 A is also F -pure. However, one can
get by with weaker assumptions on the formal fibers of A in order to get F-purity of
R; from that of R, which is all that is needed to construct a faithfully flat F-finite
cover of R that is Frobenius split. One such condition is discussed in the present remark,
and another condition will be discussed in Remark 4.3.3. Define a noetherian algebra R
over a field k of characteristic p > 0 to be geometrically F-pure if for all finite purely
inseparable extensions £ of k, R ®y £ is F-pure.

We now claim that if (4, m) is a noetherian local ring whose formal fibers are Goren-
stein and geometrically F-pure, then for an essentially of finite type A-algebra R, if R is
F-pure then so is R ;. Moreover, if R is a domain then it is N-7. We briefly indicate the
steps needed to prove this result, following the strategy of [15] that shows an analogous
result for ‘Cohen—Macaulay and geometrically F-injective’. The techniques in [15] are
inspired by arguments of Vélez [76].

(1) Tt is known that if (S,m) — (T, n) is a flat local homomorphism of noetherian local
rings whose closed fiber is Gorenstein and F-pure, then F-purity ascends from S to
T. This is proved in [2, Prop. 3.3] when R and S are F-finite, and the general case
appears in [51, Thm. 7.3].

(2) By (1) it suffices to show that if the formal fibers of A are Gorenstein and geomet-
rically F-pure, then R — R 3 has Gorenstein and F-pure fibers.

(3) Let k be a field of characteristic p > 0. If R is a noetherian k-algebra that is
Gorenstein and geometrically F-pure, then we claim that for all finitely generated
field extensions k’ of k, Ry = R®y, k' is Gorenstein and F-pure. By [69, Tag 0C03],
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the Gorenstein property is preserved by base change along finitely generated field
extensions. Thus, Ry is Gorenstein. Since F-purity satisfies faithfully flat descent,
by the proof strategy of [15, Prop. 4.10] and [15, Lem. 4.9], it suffices to show Ry
is F-pure when k' is a finitely generated separable extension and when k' is a finite
purely inseparable extension. If k' is a finitely generated separable extension of k,
then R — Ry is a regular homomorphism, so Ry is F-pure by (1) or the argument
in the proof of Theorem 4.3.1(1). If k&’ is a finite purely inseparable extension of k,
then Ry is F-pure by the definition of geometrically F-pure.

(4) We now claim that if S — T is a homomorphism of noetherian rings whose fibers
are Gorenstein and geometrically F-pure, then for every essentially of finite type
S-algebra R, the fibers of R -+ R®g T are also Gorenstein and F-pure. The proof of
this reduces to (3) by [24, Lem. 7.3.7]. Finally, (2) follows by (4) upon taking S = A
and T = A. Therefore if R is F-pure, so is Rj.

(5) The formal fibers of A are geometrically reduced since they are geometrically F-pure.
By the Zariski-Nagata theorem [24, Thm. 7.6.4], A is a Nagata ring, that is, for all
prime ideals p of A, A/p is a Japanese ring. Then A is universally Japanese by [69,
Tag 0334]. Hence R is universally Japanese by [69, Tag 032S], and so, R is N-1 if it
is a domain.

Remark 4.3.3. The proof of Theorem 4.3.1 shows, more generally, that if R is a noetherian
F-pure domain that admits a faithfully flat cover R — S, where S has finitely many
trace ideals of finite extensions of S, then the splinter locus of R is open in Spec(R). To
illustrate the utility of this observation, suppose (A, m) s R is an essentially of finite
type F-pure homomorphism of noetherian rings in the sense of Hashimoto [27, (2.3)],
where (A, m) is a noetherian F-pure local ring and R is a domain. Being an F-pure
homomorphism means that the relative Frobenius

FR/A: FA®rR— F.R
is a pure ring map. For example, ¢ is F-pure if Fr, 4 is faithfully flat, or equivalently,

if o is geometrically regular by [73,5]. The hypothesis that ¢ is F-pure and A is F-pure
implies that R is also F-pure [27, Prop. 2.4(4)]. Consider the commutative diagram

A A AT
® l«p@ﬁ Lp@AAF

R— R4 A —— R4 A,

where A is F-pure by Remark 4.3.2(1), and AT is chosen to be noetherian local, F-finite

and F-pure (equivalently, Frobenius split) via the I'-construction. Then ¢ ® AT is also
essentially of finite type, and so, R ® 4 AT is noetherian and F-finite because AT is.

Since F-pure homomorphisms are stable under arbitrary base change [27, Prop. 2.4(7)],
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it follows that ¢ ® Al s F -pure. Consequently, R ® 4 Al is a faithfully flat cover of
R that is noetherian, F-finite and F-pure, and so, it has finitely many trace ideals by
Proposition 3.4.1 and Lemma 3.2.3(2). Thus, the splinter locus of Spec(R) is open.

The formation of trace commutes with Henselizations and completions under certain
conditions, giving a refinement of Proposition 4.1.7.

Corollary 4.3.4. Let (R, m) be a noetherian local domain which is F-pure and normal.
(1) If R is Frobenius split, then trR" = txn.
(2) If R has geometrically regular formal fibers, then tpR" = tgn.

(3) If R has geometrically regular formal fibers, then IRE =15

Proof. (1) R" is a normal domain by [69, Tag 06DI]. We claim that R" is also Frobenius
split. Indeed, since R" is a filtered colimit of étale R-algebras, the relative Frobenius

F.R®p R" — F.R"
is an isomorphism because R — R" is weakly étale [69, Tag 092N] and the relative
Frobenius of a weakly étale map is an isomorphism [69, Tag 0OF6W]. Then R" is Frobenius
split because splittings are preserved under base change. By Theorem 4.3.1(1), tg (resp.

Txn) defines the non-splinter locus of Spec(R) (resp. Spec(R")). Moreover, 1z and Tzn
are radical by Theorem 4.3.1(3). Since R — R" is a regular homomorphism,

R/tr — R"/1zR"
is a regular homomorphism as well by finite type base change [69, Tag 07C1]. Then
RM/1pR" is reduced by [69, Tag 07QK] because R/t is reduced. In other words, tr R"
is a radical ideal of R". Therefore to show that tTrR" = tpn, it suffices to check that
trR" defines the non-splinter locus of Spec(R") as well.
By Proposition 4.1.7(1), we have

T RRh C tgn.
Therefore V(tzr) € V(tgR"). On the other hand, if ¢ € V(g R"), then

TR CqN R,

that is, Rqnr is not a splinter. However

Rgnr — (Rh)q
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is faithfully flat (because R — R is), and the splinter property satisfies faithfully flat
descent. Consequently, (R"), cannot be a splinter, and so, ¢ € V(tgn). This establishes
the other inclusion V(1gR") C V(tzr), completing the proof of (1).

(2) Since the relative Frobenius F,R®p R" — F,R" is an isomorphism, R"is also F-
pure when R is F-pure. Moreover, the formal fibers of R" are also geometrically regular
[23, Thm. 5.3(i)] because A — A" is ind-étale and hence absolutely flat. Therefore by
Theorem 4.3.1(2) the non-splinter locus of R (resp. R") is defined by tx (resp. tzn).
One can now use the same argument as in (1) to get (2).

(3) Note that Ris F -pure. This is true for the completion of any F-pure noetherian
local ring by Remark 4.3.2(1), but in our setting this also follows by the regularity
of R —» R and the Radu-André theorem using the argument given in the proof of
Theorem 4.3.1(1). Proposition 4.1.7(2) shows that R C 15 and Theorem 4.3.1(2)
shows that tg (resp. 1) defines the non-splinter locus of R (resp. R). One can then
mimic the argument of (1) to prove (3). We omit the details. O

Remark 4.3.5. The proof of Corollary 4.3.4 shows more generally that if (A,m) is a
noetherian normal domain of arbitrary characteristic that satisfies the hypotheses of
Proposition 4.1.7, and if t4, t4» and t; define the non-splinter locus A, AP and A
respectively, then 14 A" and t4. agree up to radical, as do t AE and t3.

A natural question one can ask is whether tg is nonzero. Indeed, if 1 is the ideal that
defines the non-splinter locus in general, then tg has to be nonzero because a domain
is generically a splinter. The next result implies that showing tg # 0 is equivalent to a
long-standing conjecture in tight closure theory on the existence of test elements.

Proposition 4.3.6. Let R be a noetherian domain of characteristic p > 0 whose local rings
at mazimal ideals have geometrically reqular formal fibers (i.e. R is a G-ring) and whose
regular locus is open. Let 'tig(R) be the finitistic tight closure test ideal of R. Then we
have the following:

(1) t®(R) C 5.

(2) If Tp, p/r # 0, then T¥(R) # 0.

(3) tr # 0 if and only if T5(R) # 0.

(4) If R is F-pure, then tg # 0.

(5) If tp.r/r # 0, that is, if there is a nonzero R-linear map F.R — R, then tr # 0.

Proof. The completions of the local rings of R at maximal ideals are reduced because
the property of being reduced is preserved under completion when the formal fibers are
geometrically regular. Thus, R is approximately Gorenstein.

(1) Since R is approximately Gorenstein, tr = Tg+/g = (1;({ : IR N R) by Propo-
sition 4.1.4(3). For all ideals I of R, we have

IRFNRCI*
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by [31, Cor. (5.23)]. Thus, (I : I*) C (I : IRT N R), and so,

US(R)=(I:I") (I : IR" NR) =: 1.
I I

Here the first equality follows by [29, Prop. (8.15)] because R is approximately Goren-
stein. This proves (1).

(2) Since R is a domain and the regular locus of R is open, one can find a ¢ # 0 such
that R, is regular and ¢ € Ty, g/r. Then the result follows by [1, Thm. 1.2].

(3) If T'8(R) # 0, then 1z # 0 by (1). Conversely, suppose Tp = Tr+/r # 0. Since
F. R embeds in R, this means that

0% Tresrn € Tp.ryr = |I : IF.RNR).
I

Then t(R) # 0 by (2).
(4) follows (2) and (3) because if R is F-pure, then Tr g/r = R.

(5) If tp, r/r # 0, then Tk, g/r # 0 by Lemma 3.2.7 because 1p, r/gr € Tr, r/r- We
are then done by (2) and (3). O

We now deduce our main global result.

Theorem 4.3.7. Let X be a scheme of prime characteristic p > 0. Suppose that X satisfies
any of the following conditions:

(i) X is locally noetherian and F-finite.
(i) X is locally essentially of finite type over a moetherian local ring (A, m) of prime
characteristic p > 0 with geometrically reqular formal fibers.

Then
Spl(X) ={z € X: Ox, is a splinter}
is open in X.

Recall that we say that X is locally essentially of finite type over A if there exists
an affine open cover Spec(B;) of X such that for all 4, B; is an essentially of finite type
A-algebra.

Proof. Let Nor(X) denote the normal locus of X and fp(X) denote the locus of points
x € X such that Ox , is F-pure. We claim that both these loci are open if X satisfies
(i) or (ii). Indeed, in either case X is quasi-excellent and has an open regular locus.
Then Nor(X) is open by [24, Cor. (6.13.5)]. If X is locally noetherian and F-finite, then
fp(X) is open and coincides with the locus of points at which X is Frobenius split. If X
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is locally essentially of finite type over (A, m) as in (ii), then fp(X) is open by [54, Cor.
3.5] (this result is attributed to Hoshi when A is excellent in [28, Thm. 3.2]). Note that
[54, Cor. 3.5] is stated assuming X is quasi-compact, but for openness of loci, one can
always work on an affine cover of X.

If Ox, is a splinter, then it is normal and F-pure (the latter follows because the
Frobenius F': Ox , — Fi.Ox , is an integral extension). Thus,

Spl(X) € Nor(X) N fp(X).

Therefore, replacing X by Nor(X) N fp(X), we may assume X is locally F-pure and
normal. Now there exists an affine open cover {Spec(Ry)}q of X, where each R, is an
F-pure domain that satisfies condition (i) or (iii) of Theorem 4.3.1 depending on whether
X satisfies conditions (i) or (ii) in the statement of this theorem (you can even choose
R, to be normal). Then for all «, Spl(X) N Spec(R,) = Spl(R,) is open in Spec(R,)
by Theorem 4.3.1(2), and hence, also in X. Then Spl(X) = |J,, Spl(R,) is open in X as
well. O

Remark 4.3.8. In Remark 4.3.2 we showed that Theorem 4.3.1(1)-(6) still holds if in
part (iii) of Theorem 4.3.1 we assume that the formal fibers of (A, m) are Gorenstein and
geometrically F-pure. We claim that the same hypotheses on the formal fibers of (A, m)
also work for Theorem 4.3.7. The two things we need to check are:

(1) If A has Gorenstein and geometrically F-pure formal fibers, then for any es-
sentially of finite type A-algebra R, the F-pure locus of R is open: We follow
the proof strategy of [15, Thm. B] which establishes the analogous fact for the
property ‘Cohen—Macaulay and geometrically F-injective’. Since the induced map
Spec(R3;) — Spec(R) is faithfully flat and quasi-compact, by [24, Cor. 2.3.12], it
suffices to show that the inverse image of the F-pure locus of Spec(R) is open
in Spec(Rj). But this inverse image is the F-pure locus of Spec(Rjz;) by Re-
mark 4.3.2(1), (4) and by faithfully flat descent of F-purity. That the F-pure locus
of R is open now follows by [54, Cor. 3.5] because A is excellent.

(2) If A has Gorenstein and geometrically F-pure formal fibers, then the normal locus of
any essentially of finite type A-algebra R is open: by Remark 4.3.2(5), A is universally
Japanese, and so, for all finite A-algebras S such that S is domain, the normal locus
of S is open by [24, Cor. 6.13.3] since S is Japanese. Then the normal locus of R is
open by [24, Prop. 6.13.7 (b) = (a)].

Example 4.3.9. In order to show the openness of splinter loci in prime characteristic,
it suffices to restrict ones attention to the intersection of the F-pure and normal loci.
This intersection is open as long as the F-pure locus and the normal locus are both
open. Furthermore, we have shown that in the local case, a noetherian F-pure domain
always has an open splinter locus (Theorem 4.3.1). Thus one may naturally wonder if
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the splinter loci of an F-pure and normal noetherian domain is always open. We now use
a construction of Hochster [33] to give examples of locally excellent F-pure and normal
domains of prime characteristic p > 0 whose splinter loci are not open. We begin by
choosing an algebraically closed field k of prime characteristic p > 0 and a local domain
(R, m) essentially of finite type over k such that (R, m) is F-pure and normal, R is not
a splinter and R/m = k. The last hypothesis ensures that if K/k is any field extension,
then m(K ®j, R) is a maximal ideal of K ®;, R. For an explicit example, if & is a field of
characteristic not equal to 3, then the local ring at the origin of the Fermat cubic

R = k[xv Y, Z](x,y,z)/(xg + y3 + 23)

is not F-rational [65, Ex. 6.2.5], hence also not a splinter since excellent splinters are
F-rational [62]. By Fedder’s criterion, R is F-pure, for instance, when the characteristic
of k is 7 and R is normal (it is Ry + S2) when the characteristic of k¥ # 3. Coming
back to our example, once we have such an R, Hochster then constructs [33, Prop. 1] a
noetherian domain S using R such that

(a) S has infinitely many maximal ideals;
(b) for any maximal ideal 9t of S,

Son = (Lon @k R)m(LowawR)

for a suitable field extension Lgy/k that depends on I;
(c) every nonzero element of S is contained in only finitely many maximal ideals.

In particular, this implies that S is a locally excellent domain; in fact the local rings
of S are essentially of finite type over appropriate field extensions of k. Furthermore, (a)
and (c) imply that the intersection of all the maximal ideals of S is (0).

We now claim that since k is algebraically closed, for all field extensions K/k, K ®j R
is also F-pure and normal. Indeed, since k does not have any non-trivial finite purely
inseparable extensions,

k— K

is trivially a regular map (i.e. a flat map with geometrically regular fibers). As R is
essentially of finite type over k, the base change map

R— K®R

is also a regular map [49, (33.D), Lem. 4]. We now observe that both F-purity and
normality ascend from the base to the target over regular maps, proving that K ®; R
is both F-pure and normal. The ascent of F-purity over regular maps follows by the
Radu-André theorem because the relative Frobenius of Fig, /g is faithfully flat, hence
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pure, and so the Frobenius on K ®j R can be expressed as the composition of the pure
maps

idg ®x Fr Frxeyr/R

K@, R——— K®, IR F.(K ® R),

where the first map in the composition is pure because it is the base change of the pure
map Fr: R — F.R. The ascent of normality over regular maps follows because the
R, and S,, properties ascend over regular maps; see for instance [69, Tag 0BFK]. The
upshot of this discussion is that for the locally excellent noetherian domain S and for
any maximal ideal 90t of S, Sop = (Lo @k R)m(Loye,r) is both F-pure and normal. Since
F-purity and normality can be checked locally at the maximal ideals, it follows that S
is a locally excellent F-pure and normal domain. However, R was chosen so that it is
not a splinter, and the splinter property satisfies faithfully-flat descent. Therefore for all
maximal ideals 90 of S, Sox is not a splinter because the map R — (Lop @k R)m(Loyorr) =
Son is faithfully flat. Thus the non-splinter locus of S contains all the maximal ideals,
whose intersection is (0). This means that the non-splinter locus of S cannot be closed
as otherwise the splinter locus would be empty, which it is not since S, being a domain,
is a splinter at its generic point.

For noetherian graded rings over fields of prime characteristic, the splinter property
is detected by the homogeneous maximal ideal. This is well-known over fields of charac-
teristic 0 because then splinter is the same as being normal.

Corollary 4.3.10. Let R = EBZO:O R, be a noetherian graded ring such that Ry = k is a
field of characteristic p > 0. Let m :== @, ., R, be the homogeneous mazximal ideal of R.
Then R is a splinter if and only if Ry is a splinter.

Proof. The splinter property localizes. So the backward implication is the non-trivial
one.

We first assume that k is infinite. By Theorem 4.3.7, the splinter locus of R is open.
Let I be the radical ideal of R that defines the non-splinter locus. Note that k™ acts on
R by automorphisms (for ¢ € k* and z € R, ¢- z = ¢"x), and automorphisms clearly
preserve the non-splinter locus of R. This means that I is stable under the action of k>,
and since k is infinite, I must be a homogeneous ideal of R. If R, is a splinter, then
I ¢ m, which means that I = R, that is, R is a splinter.

Suppose k is finite and that R, is a splinter. Finite fields of prime characteristic
are perfect. This means that an algebraic closure k is the filtered union of finite étale
subextensions ¢/k. Let

R@ Z=£®k R.

Then R — Ry is a finite étale map and my :== mR, is the homogeneous maximal ideal of
Ry. It follows that
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Ry = (Re)m,
is essentially étale, and so, (Ry)m, is a splinter by [19, Thm. A]. Now
Ry =k®y R,
is graded noetherian over k& with homogeneous maximal ideal my == mRz. Then
(Rg)my = colimy(Ry)m,

is a splinter because a filtered colimit of splinters is a splinter [3, Prop. 5.2.5(ii)]. Since
k is infinite, it follows by the previous paragraph that Ry is a splinter. By faithfully flat
descent along

R — RE,
we then get that R is a splinter. O

Remark 4.3.11. In the situation of Corollary 4.3.10, even when Ry = k is a finite field, the
radical ideal I that defines the closed non-splinter locus of R is still a homogeneous ideal.
Indeed, if we look at the faithfully flat graded homomorphism R — Ry, then we claim
that I Ry is the radical ideal that defines the non-splinter locus of Rz. If our claim holds,
then since I Rf will be graded because k is infinite (see proof above), it will follow that
I =IR; N R is also graded (contractions of graded ideals along graded homomorphisms
are graded). We will now prove our claim. Expressing k as a filtered union of finite (and
hence étale) subextensions ¢/k, by ascent of the splinter property along essentially étale
maps [19, Thm. A] and faithfully flat descent of the splinter property, it follows that IRy
is the radical ideal that defines the non-splinter locus of R,. Note I R is radical because
R/I — Ry/IRy is étale by base change [69, Tag 00U2] and the property of being reduced
ascends under étale maps [69, Tag 033B]. Then

IRy = colimy, IRy

is a radical ideal of Rz. Let p be a prime ideal of Ry. Let p, be the contraction of p to
Ry. Then

(Rg)p = colimy/x(Re)yp,

If (Ry)p is a splinter, then by faithfully flat descent along (R¢)y, — (Rz)p, (Re)p, is a
splinter as well. Thus, IR, € pg, and consequently, IRy € p as well, as otherwise, by
contracting the inclusion I Rz C p to R,, we would get IR, C p,. Thus,

Spl(Spec(Ry)) C Spec(Rg) \ VI Ry).
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Now suppose p is a prime ideal of Ry such that IRy ¢ p. Then there exists a finite
extension £ of k contained in k such that for all finite subextensions ¢’ /¢ of k /¢,

IRy g per.

For each such ¢, (R )y, is a splinter since IRy defines the non-splinter locus of Ry.
Thus,

(Rg)p = colimy /¢ (Rer)p,,

is a splinter as well because filtered colimits of splinters are splinters [3, Prop. 5.2.5(ii)].
This shows,

Spec(Ry) \ V(IRy) C Spl(Spec(Ry)),
proving that IRy is indeed the radical ideal that defines the non-splinter locus of Rg.
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