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ABSTRACT
Background: Specific leaf area (SLA) is a core trait within the leaf economic spectrum that
describes differences in plant performance and productivity. Research on the sources of
variation in the leaf economic spectrum and SLA has primarily focused on climate. Much less is
known about SLA variation across unusual edaphic environments, such as on ultramafic soils.
Aims: To determine the role of ultramafic soils as a driver of SLA variation.
Methods: We measured SLA for dominant species on paired ultramafic and non-ultramafic
soils in five biogeographically distinct regions around the globe and compared mean SLA
values to globally reported values.
Results: SLA was lower on ultramafic than on non-ultramafic soils in all regions, except Puerto
Rico, and both climate and soil were important drivers of SLA. For three of the five regions, SLA
values on ultramafic soils were lower than the global average.
Conclusions: Soils can be a major driver of SLA along with climate. Low SLA on ultramafic soil
points to selection for stress resistance strategies. Furthermore, in some bioregions, SLA values
on ultramafic soils were among the lowest on the planet and thus represent globally rare
phenotypes that should be conserved within these unique edaphic habitats.
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Introduction

The study of plant form and function across cli-
mates was central to the development of ecology.
The focus on climate as a primary driver of plant
diversity and distribution dates back to at least
Theophrastus. Early plant geographers noted that
plants in the wet tropics had exceptionally large
leaves and early plant ecologists emphasised how
leaf morphology and physiology vary with climate
(e.g. Schimper 1903). The emphasis on climate led
to the use of plant functional traits to explain pat-
terns of plant diversity and distribution across lati-
tudes (e.g. Woodward 1987). In particular, the leaf
economic spectrum describes a trade-off between
fast and slow rates of resource acquisition and car-
bon investment. A rapid return on investment
(resource-acquisitive strategy) is associated with
higher nutrient concentrations and photosynthetic

rate per unit mass, and thinner leaves with lower
construction costs, while a slower return on invest-
ment (resource-conservative strategy) is associated
with the opposite suite of traits (Wright et al. 2004).
Specific leaf area (SLA) is a central trait within the
leaf economic spectrum and species with low SLA
tend to be slow-growing and resource-conservative,
whereas species with high SLA are fast-growing and
resource-acquisitive (Poorter et al. 2009). Variation
in the leaf economic spectrum and SLA has largely
been attributed to climate. In hot, dry, environ-
ments with high light intensity, SLA tends to be
lower (Wright et al. 2005), signifying selection for
resource-conservative and stress-resistance strate-
gies. While the influence of climate on plant func-
tional trait variation has been well studied, soils
have the potential to be an important determinant
of plant diversity and function (Gong and Gao 2019;
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Hulshof and Spasojevic 2020), but the effects of soils
on plant traits have been less studied.

By mediating water and nutrient availability, and
other key environmental factors (e.g. microbial
functioning, heavy metal concentrations), soils
may be a key driver of functional variation among
species. For example, the low water-holding capa-
city of soils derived from ultramafic rock (also
known as serpentine soils) can create a water-
limited environment, even when precipitation is
plentiful (Kruckeberg 1985). Moreover, across
phosphorus gradients associated with substrate age
(Laliberté et al. 2013), low SLA values have been
found in extremely phosphorus-impoverished soils,
supporting the idea that edaphically extreme envir-
onments select for resource-conservative and stress-
resistant traits (the stress resistance syndrome;
Grime 1977; Chapin et al. 1993). Additionally,
nitrogen-impoverished soils, such as the white
sandy soils found throughout the tropics, result in
a unique plant functional composition charac-
terised by resource-conservative strategies (Fine
and Baraloto 2016; Samojedny et al. 2022). Finally,
soil micronutrient availability is another possible
driver of plant trait variation. Both low and high
micronutrient availability, such as soils derived
from dolomites (magnesium-rich) and metallifer-
ous soils (copper-rich), select for species with low
SLA (Molina-Venegas et al. 2016). Considering that
approximately half of the world’s soils are deficient
in micronutrients (Sillanpää 1982), the relationship
between SLA and soil fertility has the potential to be
significant at regional and global scales.

Ultramafic (serpentine) soils (and the other unu-
sual soils described above) exemplify the notion that
soils are an important determinant of plant traits.
Ultramafic soils are characterised by having high
concentrations of trace and heavy metals (e.g. Fe,
Mg, Ni and Cr) and low concentrations of essential
plant nutrients (e.g. N, P, K, S, Ca and Mo)
(Kruckeberg 1985; Alexander et al. 2007). Because
these extreme elemental conditions reduce plant
growth rates, ultramafic soils tend to have low
organic matter accumulation and cation exchange
capacity (Rajakaruna and Boyd 2008). Plants across
serpentine habitats tend to possess a set of similar
characteristics, known as the ‘serpentine syndrome’,
characterised by xeromorphic foliage, prostrate
growth form and dwarfism (Whittaker 1954; Jenny
1980). Ultramafic soils are found in isolated patches
worldwide, but with particular abundance in
California, Cuba, the Balkan Peninsula,
Mediterranean Europe,     Indonesia and New

Caledonia (Roberts and Proctor 1992; Garnica-
Díaz et al. 2022). This global distribution of ultra-
mafic soils creates a model system for understand-
ing the influence of soils on plant traits.
Determining leaf trait variation in edaphically
extreme environments like ultramafic soils can
therefore help us better understand the extent to
which soils modulate patterns of variation in func-
tional traits.

Here, we compare specific leaf area (SLA) of
plants growing on ultramafic (U) and non-
ultramafic (NU) soils in five distinct biogeographi-
cal regions. Our objective was to quantify the effect
of ultramafic soils on SLA. We expected lower SLA
values to occur on ultramafic compared to non-
ultramafic soils, reflecting strong selection for
resource-conservative strategies regardless of regio-
nal climate, which in this study encompasses
Mediterranean, tropical and subtropical zones. In
addition, because ultramafic soils are considered
extreme environments, we expected SLA values for
plants growing on ultramafic soil to be on the low
end of globally reported SLA values, reflecting
extreme resource-conservative strategies and high
investment in leaf tissue (Wright et al. 2004; Díaz
et al. 2016).

Materials and methods

Data sources and trait collection

We identified sampling sites in five climatically
diverse regions: Puerto Rico (tropical wet), Costa
Rica (tropical dry), South Africa (subtropical),
California and Lesbos (both with Mediterranean cli-
mate) (Figure 1a). Ultramafic soils typically occur as
islands of low fertility within a comparatively higher-
fertility soil matrix. In each region, ultramafic sites
were selected on serpentine outcrops and non-
ultramafic sites were selected on the surrounding
higher-fertility, dominant soil type. In each location,
we measured specific leaf area (SLA), calculated as
the fresh leaf area (mm2) divided by dry mass (mg),
for the most abundant species on nearby ultramafic
(U) and non-ultramafic (NU) soil sites following
standardised protocols (Pérez-Harguindeguy et al.
2013). Petioles were included when measuring leaf
mass and surface area. We collected fully expanded
leaves from 5 to 10 individuals of common species on
and off ultramafic soil. While woodiness varied
between regions, it was largely consistent within
each region across the two soil types. In Puerto Rico
and Costa Rica, 100% of the species collected were
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Figure 1. Sampling locations (filled blue circles) where SLA data were obtained (a). Red horizontal lines demarcate the tropics
(23.4° North and South). The map was generated using the map function of the R purrr package (Henry and Wickham 2020).
Comparative ridgeline density plots of specific leaf area (SLA) for each region and the global Botanical Information and Ecology
Network (BIEN) trait database (b). Grey shapes represent non-ultramafic soil values (NU), yellow represent ultramafic soil values (U)
and blue areas indicate the global SLA values obtained from BIEN (n = 44967 species, https://bien.Nceas.ucsb.edu/bien/). Vertical
lines represent mean SLA values for plants on each soil type. Asterisks denote a significant difference in means within regions.

woody, while in California and Lesbos, all the species
collected were herbaceous. The majority of species
collected in South Africa were woody (70.8% of ultra-
mafic and 58.3% of non-ultramafic species; see
Siebert et al. 2002 for more information about this
region). The taxonomic similarity between U and
NU collections varied in each region. South Africa,
Puerto Rico and Costa Rica had little species overlap
on and off ultramafic soil (<2%), while California had
moderate overlap (~35%) of species between U and
NU soils (Table 1). In Lesbos, the same 18 widely
distributed species were sampled on both U and NU
soil. The number of species sampled for each site

ranged from 18 in Lesbos to 145 in California
(Table 2).

To compare the distribution of ultramafic SLA
values to a global distribution, we extracted all SLA
values reported in the BIEN database using the
BIEN package in R (Maitner et al. 2017). To deter-
mine the impact of climate on SLA, we extracted
mean annual temperature and mean annual preci-
pitation for the years 1970–2000 from the
WorldClim 2 database (Fick and Hijmans 2017) at
the 1 km2 scale for each of our sampling sites. We
then calculated the mean value across all sites for
each region and soil combination. While mean

https://bien.Nceas.ucsb.edu/bien/
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Table 1. Summary information about the climate (in parentheses) and species composition of each site. Percent species/families
shared (taxonomic similarity) between soil types is calculated by dividing the number of species/families sampled on both
ultramafic (U) or non-ultramafic (NU) soils by the total number of species/families sampled across both soil types in a region. Site
coordinates and full species lists are available in Table S1.

Region
(climate)

Mean annual
Soils temperature (ºC)

Mean annual
precipitation (mm)

Growth form
sampled

Species shared between
U and NU (%)

Families shared between
U and NU (%)

California                    U                            13.9
(Mediterranean) NU                         13.9

Costa Rica                  U                            24.4
(Tropical dry)         NU                         25.8

Lesbos                        U                            15.1
(Mediterranean) NU                         15.6

Puerto Rico                U                            23.8
(Tropical wet)        NU                         23.9

South Africa               U                            19.3
(Subtropical)          NU                         18.9

952 Herbaceous 35 80.6
952 Herbaceous

1588 Woody 1.8 28.3
1662 Woody

637 Herbaceous 100.0 100.0
621 Herbaceous

1792 Woody 1.6 31.3
1902 Woody

699 Woody (70.8%) 0.0 34.6
716 Woody (58.3%)

Table 2. Specific leaf area (SLA; mm2 mg−1) for leaves collected on ultramafic (U) and non-ultramafic (NU) soils in five regions:
California (CA), South Africa (SA), Lesbos, Greece (L), Puerto Rico (PR) and Costa Rica (CR). Global patterns of SLA across all soils
from the BIEN database are also included. Data description includes the number of species sampled (N), average SLA value (Mean),
standard deviation (SD), median, first quartile (Q1; 25th percentile), third quartile (Q3; 75th percentile) and minimum (Min) and
maximum (Max) values. Main P-values for each region represent results from independent contrasts of SLA between U and NU
soils within each region. The P-values for the BIEN row represent Wilcoxon rank-sum tests (following correction for multiple tests) of
SLA on ultramafic soils in each region with the BIEN global average. Significant P-values are given in boldface.

Region Soils
California  U

NU
Costa Rica  U

NU
Lesbos  U

NU
Puerto Rico  U

NU
South Africa  U

NU
BIEN All

N Mean
145              20.15
138              22.81

39                5.32
87              17.41
17              24.58
18              30.44
41                7.33
20                9.24
24              10.50
23              22.96

44967 18.82

SD Q1 Median
7.36 14.71 18.6
7.72 16.68 22.42
3.07                3.51                  4.87
7.33 12.19 15.57
7.91 18.09 27.27
6.32 25.20 32.27
2.38                5.35                  7.07
3.75                6.64                  8.36
7.19                3.21 10.52
9.02 16.35 22.50
9.04 12.01 18.17

Q3 Min Max
25.24                5.91              39.10
28.33                8.16              39.91

6.25                2.03              20.30
22.72                2.67              38.72
29.78              10.06              36.40
35.44              18.40              39.20

8.44                3.48              14.40
11.75                1.43              15.83
15.82                1.87              29.43
29.33                9.81              39.35
25.17                1.00              39.99

P-value
0.002

<0.001

0.032

0.248

<0.001

CA: 0.058
CR: <0.001

L: 0.014
PR: <0.001
SA: <0.001

climate values varied among regions, they were
largely consistent within each region across the
two soil types (Table 1) because these were often
located in close (<10 km) proximity.

Statistical analyses

We averaged SLA values at the species level for each
region by each of the two soil types. However, to
ensure the quality of data, we first excluded a few
inflated values, likely due to calculation or measure-
ment errors. SLA mean values >40 mm2 mg−1 were
considered outliers as 40 mm2 mg−1 is near the
upper limit of globally observed SLA values for
terrestrial vascular plants (Poorter et al. 2009).
This resulted in the removal of 18 of 570 values
(3.2%). We used the remaining 552 mean species
values for all downstream analyses, which were per-
formed in R v.4.1.1 (R Core Team 2021).

To determine whether SLA differs on ultramafic
(U) compared to neighbouring non-ultramafic
(NU) soil and to assess whether this effect differed
among the five regions, we used a two-way analysis
of variance on rank-transformed data (aov func-
tion in the base stats package in R). Rank-
transformation of SLA was performed to improve
normality and homogeneity of variance, as this is a
robust approach when model assumptions are not
met on untransformed data (Conover and Iman
1981). Soil type, region and their interaction were
included as model predictors, treating rank-
transformed SLA as the response variable. Given a
significant interaction between soil type and
region, we used pre-planned independent con-
trasts to determine whether SLA was significantly
different among soil types within each region for a
total of five independent contrasts (glht function in
the R package multcomp; Hothorn et al. 2008).
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To visually compare the distribution of SLA values
on each soil type for each region, and to compare
all regions to the BIEN trait database, we created a
ridgeline plot using the geom_density_ridges
function in the R ggridges package (Wickham
2016; Wilke 2021). To statistically assess the
mean SLA value for ultramafic soils in each region
to the BIEN global mean value, we performed
individual Wilcoxon rank-sum tests for each
region and controlled the family-wise error rate
(n = 5) by adjusting the reported P-values using
the Holm–Bonferroni method via the p.adjust
function (base stats package in R).

To determine whether SLA was affected by both
soil and climate, and to test whether the effect of soil
differed depending on climate, we used linear regres-
sion on the mean values for each region and soil
combination (n = 10; lm function in the base stats
package in R). Climate (average annual precipitation
or annual temperature), soil type and their interac-
tion were included as model predictors, while SLA
was treated as the response variable. Note that we
performed two separate models, one for each climate
variable. For both models, the assumption of normal-
ity was met (Shapiro-Wilks normality test of resi-
duals, P > 0.54), and visual inspection of Q–Q and
Scale Location plots revealed minimal skewing of
residuals. For each model, we also assessed the rela-
tive importance of climate and soil on SLA by calcu-
lating the percent variance in SLA explained by each

model predictor (calc.relimp function in the
R package relaimpo; Grömping 2006).

Results

Consistent with our overall predictions, we found that,
on average, taxa on ultramafic soils had lower SLA
than taxa on non-ultramafic soils (Table 3). There was
a significant effect of region on SLA (Table 3). Due to
the significant interaction between soil and region
(Table 3), we performed pre-planned contrasts. We
found that in all regions, except Puerto Rico, mean
SLA for plants on ultramafic soils was significantly
lower than that of non-ultramafic soils (Figure 1b;
Table 2). South Africa had the greatest difference in
mean SLA values for plants on and off ultramafic (a
difference of 12.46 mm2 mg−1) followed by Costa Rica
(a difference of 12.09 mm2 mg−1). The comparison
between the distribution of global SLA values derived
from BIEN (mean 18.82 mm2 mg−1) and our values
showed that for three of five regions the mean SLA of
taxa on ultramafic soil was significantly lower than the
global average (South Africa, Puerto Rico and Costa
Rica; Wilcoxon rank-sum tests P < 0.001; Table 2). In
contrast, ultramafic soils in California and Lesbos had
higher SLA than the global average, although only
Lesbos was significantly higher after correcting for
multiple test comparisons (Lesbos P = 0.014,
California P = 0.058; Wilcoxon rank-sum test).

Table 3. Results of analysis of variance for the effects of soil (ultra-
mafic and non-ultramafic), region (five regions) and their interaction
on rank-transformed values of specific leaf area. Sum of squares,
degrees of freedom (in parenthesis as a superindex), F-values and P-
values are given. Significant P-values are indicated in boldface.

Factor
Soil
Region
Soil × Region
Residuals

Sum of squares (df)

1086984(1)
5160418(4)
807916(4)

7225372(542)

F-value
81.538
96.775
15.151

P-value
<0.001
<0.001
<0.001

Table 4. Results of linear regression for the effects of climate (mean annual precipitation and mean annual
temperature for model I and II, respectively), soil type (ultramafic and non-ultramafic) and their interaction on
specific leaf area. Sum of squares, degrees of freedom (in parenthesis as a superindex), F-values, P-values and
percentage of variance explained (% Var.) are given. Significant P-values are indicated in boldface.

Model 1:

Model 2:

Factor
Mean annual precipitation
Soil
Precipitation × Soil
Residuals
Mean annual temperature
Soil
Temperature × Soil
Residuals

Sum Squares (df)

369.35(1)
138.63(1)

0.32(4)
157.72(6)
377.06(1)
137.02(1)
11.12(4)

139.22(6)

F-value
14.051

5.274
0.012

16.250
5.905
0.479

P-value % Var
0.010 55.6
0.061 20.1
0.915                          0.0

0.007 56.9
0.051 20.0
0.515                          1.7
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Figure 2. Relationship between mean specific leaf area (SLA) and climate across five regions for ultramafic (U) and non-ultramafic
(NU) soils. Vertical lines represent one standard error around the mean. Sloped lines and shaded areas represent the predicted
slope and 95% confidence interval from linear regression. See Table 4 for statistical results.

We further found that both climate, and soil to
a lower extent, impacted mean SLA across the five
regions (Table 4, Figure 2). It must be noted that
with only 10 data points this test may be somewhat
underpowered and in models excluding the non-
significant interaction term, the effect of soil was
significant (results not presented). Overall, we
found that SLA was lower in regions with higher
annual temperatures and higher annual precipita-
tion, and lower on ultramafic soils (Figure 2).
The percent variance in SLA explained by climate
was more than twice that explained by soil
(Table 4), although the effect of climate may be
impacted in part by differences in growth form
between regions (see discussion below).

Discussion

While many factors are known to influence patterns
of functional trait variation that underlie the leaf
economic spectrum (Reich et al. 2003; Anacker
et al. 2011), most studies focus on climate as the
primary driver (e.g. Wright et al. 2005; Moles et al.
2007; Wieczynski et al. 2019). Our study illustrates
the importance of soil as a potential determinant of
functional trait variation, with SLA being signifi-
cantly lower on ultramafic than on neighbouring
non-ultramafic soils for all study regions except
Puerto Rico. Thus, ultramafic-adapted plants within
these regions tend to exhibit more conservative
resource-use and growth strategies than plants on
non-ultramafic soil, despite nearly identical climatic
conditions across these neighbouring substrates. This
finding is in line with the stress resistance syndrome
and the serpentine syndrome (von Wettberg EJ et al.
2014). Furthermore, because the species sampled in

Lesbos were identical across both soil types, it
appears that serpentine soils not only drive func-
tional trait performance at the community level but
at the intraspecies level too (Adamidis et al. 2014a).

In three regions (South Africa, Puerto Rico and
Costa Rica), we found that mean SLA values on
ultramafic soil fell well below the globally reported
average. Furthermore, these ultramafic sites har-
boured taxa with some of the lowest SLA values on
the planet. This suggests that these plant commu-
nities contain functionally rare taxa, possibly reflect-
ing extreme edaphic limitations (Hulshof et al. 2020).
In contrast, ultramafics in California were not differ-
ent from the global mean, and in Lesbos, they were
significantly higher. The high SLA values in
California and Lesbos may be because only herbac-
eous species were sampled in these regions. The
sampling sites in Lesbos and California were domi-
nated by herbaceous vegetation (Adamidis et al.
2014a, 2014b), which generally has higher SLA values
than woody species (Garnier et al. 1997) owing to
their faster life history strategies (i.e. shorter life spans
and faster relative growth rates).

In Puerto Rico, and contrary to our expectations,
there was no difference between mean SLA on or off
ultramafic soils. Although forest composition and
structure differ between ultramafic and non-
ultramafic soils in this region (Ewel and Whitmore
1973), our study did not detect differences in SLA.
One caveat here could be that sampling in this
region occurred across a wider range of topogra-
phies and habitat types (Garnica-Díaz 2020), which
may have reduced our power to detect mean differ-
ences between the two soil types. A more detailed
sampling across topography (e.g. Chadwick and
Asner 2020) may better capture patterns of trait
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variation between ultramafic and non-ultramafic
soils than reported here. Alternatively, it could be
that climatic factors in Puerto Rico, which is warm
and humid, may reduce the effect of soil on SLA
(whereas Costa Rica has a similarly warm but drier
climate and the two soil types there differed in SLA).
Again, more detailed sampling across topographies
and their associated climatic gradients within
Puerto Rico may shed light on this possibility.

The relationship between climate and SLA values
across regions departed from our expectations. As
mean annual temperature and precipitation
increased, SLA tended to decrease. This contrasts
with previous studies, where plants in wetter
regions, particularly tropical ones, tended to have
higher SLA (e.g. Wright et al. 2005; Dwyer et al.
2014). However, there are notable exceptions.
Across     globallydistributed     climbing plants,
Gallagher and Leishman (2012) found that low
SLA species were associated with higher mean
annual temperature and precipitation. In the tro-
pics, across growth form, leaf area is high in lowland
forests but decreases with elevation, whereas scler-
ophylly becomes widespread despite high precipita-
tion (Grubb 1974). This may partially explain low
SLA values on ultramafic soils in Puerto Rico and
Costa Rica, which occurred in montane areas. In
addition, rocky and porous soils, like ultramafic
soils, have low water-holding capacity and can cre-
ate edaphic deserts even in high-rainfall regions
(Axelrod 1972). Nutrient leaching of soils in high-
rainfall regions may also exacerbate this effect. It is
also possible that differences in growth form
sampled between regions are driving the relation-
ship between climate and SLA. Tropical sites were
dominated by woody species (Costa Rica and
Puerto Rico) and woody species tend to have
lower SLA (Garnier et al. 1997), as opposed to our
sites with cooler and drier climates, which were
dominated by herbs (e.g. California and Lesbos).
Thus, climate may be having an indirect effect on
SLA due to its effect on species’ growth form.

Overall, we found that both soil and climate pre-
dict SLA globally, which is broadly consistent with
other studies. At the global scale, annual precipita-
tion was previously found to be a strong predictor of
SLA (Dwyer et al. 2014). Nonetheless, soil pH and
soil C:N strongly predicted latitudinal variation in
SLA (Gong and Gao 2019) and soil nutrients
explained more variance in leaf traits than climate
at a global scale (Ordoñez et al. 2009). At a local
scale, soil chemistry may account for variation in
SLA (e.g. Fortunel et al. 2014; Mori et al. 2021).

Furthermore, the shared suite of leaf economic
strategies in other unusual or edaphically extreme
environments suggests the soil-mediated conver-
gence of conservative plant strategies appears to be
a global phenomenon, regardless of climate. For
example, on gypsum soils characterised by low soil
water and nutrient availability, plants from climati-
cally distinct regions exhibit xerophytic traits such
as deep roots and small, succulent leaves (Escudero
et al. 2015).

The results shown here, along with those of other
studies cited above, indicate that both climate and
soil should be considered for understanding geogra-
phical variation in functional traits. For example,
functional trait values were more different across
ultramafic and non-ultramafic substrates in more
productive (wetter) areas across a latitudinal gradi-
ent in California (Fernandez-Going et al. 2013).
However, the opposite was found across elevations
in tropical Borneo, with forest structure and diver-
sity being more similar in more productive low-
lands (Aiba et al. 2015). Finally, increasing
climatic seasonality on granite outcrops resulted in
more acquisitive plant traits (Ottaviani and
Marcantonio 2020), suggesting that both soil and
climate may determine whether selection occurs for
resource-conservative strategies. Given the world-
wide shifts in climatic regime and its effects on
variation in functional trait composition, we expect
substantial changes in ecosystem processes such as
carbon storage (De Deyn et al. 2008; Hofhansl et al.
2020). Thus, a better comprehension of the degree
to which both soil and climate determine trait var-
iation could help identify the consequences of cli-
mate and land-use change across biomes and soil
types.

Since ultramafic plant communities are charac-
terised by more conservative trait strategies than the
non-ultramafic plant communities surrounding
them, it is important to consider ultramafic and
other edaphically extreme environments as reposi-
tories of functionally rare phenotypic and genotypic
variants at a global scale. Conservationists have
underlined the importance of preserving function-
ally rare species and communities because of their
susceptibility to extinction and their unique ecosys-
tem services (Violle et al. 2017). On nutrient-poor
soils like ultramafic soils, low SLA provides species
with a competitive advantage because high leaf
longevity enhances nutrient residence times in
plants (Aerts and Chapin I I I  2000). However,
increased competitive ability comes at the expense
of reduced growth rates. Anthropogenic
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eutrophication disrupts this competitive advantage
and invasion subsequently alters the traits of these
rare communities as native species become outcom-
peted (Flinn et al. 2017; Samojedny et al. 2022).
Thus, our results underscore the conservation
importance of unique edaphic environments like
those occurring on ultramafic soils.
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