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Energy flow in molecules, like the dynamics of other many-dimensional finite systems,
involves quantum transport across a dense network of near-resonant states. For molecules
in their electronic ground state, the network is ordinarily provided by anharmonic vibra-
tional Fermi resonances. Surface crossing between different electronic states provides
another route to chaotic motion and energy redistribution. We show that nonadiabatic
coupling between electronic energy surfaces facilitates vibrational energy flow and,
conversely, anharmonic vibrational couplings facilitate nonadiabatic electronic state
mixing. A generalization of the Logan—Wolynes theory of quantum energy flow in
many-dimensional Fermi resonance systems to the two-surface case gives a phase dia-
gram describing the boundary between localized quantum dynamics and global energy
flow. We explore these predictions and test them using a model inspired by the problem
of electronic excitation energy transfer in the photosynthetic reaction center. Using
an explicit numerical solution of the time-dependent Schrédinger equation for this
ten-dimensional model, we find quite good agreement with the expectations from the
approximate analytical theory.

quantum scrambling | nonadiabatic coupling | vibrational energy flow | photosynthesis | exciton

In macroscopic systems, a variety of elementary processes (collisions, nonlinear resonances,
isomerization, etc.) eventually lead to the sharing of energy among the various parts of the
system and to the scrambling of quantum information. In individual molecules and designed
macroscopic quantum systems, such energy flow can be slow or even incomplete. Many
theories of chemical reaction dynamics rely on making the assumption of rapid energy flow
and phase scrambling. In contrast, useful quantum computers will need to be able to
minimize these effects. It has been established that the transition to facile energy flow in
moderate-sized organic molecules due to anharmonic (e.g., Fermi) resonance occurs at an
energy threshold close to the typical activation energies needed for conformational barrier
crossing (1-5) and thus, energy flow can modify kinetics. At energies above the threshold,
a quantum transport network between vibrational states interacting through anharmonic
Fermi resonance couplings becomes sufficiently well connected to explore much of the state
space, allowing statistical treatment. Using an analogy to Anderson localization (6), Logan
and Wolynes constructed a theory of the quantum energy flow transition for local random
matrix models of the vibrational state space that provides a criterion involving the anhar-
monic couplings and the local density of connected states and predicts the threshold for
free vibrational energy flow (7). Their model has been elaborated in many ways (8-10).
Gruebele and collaborators developed a way to map organic molecules with known vibra-
tional spectra onto this abstract model (11, 12). This mapping has allowed simple prediction
of the energy flow threshold for specific molecules. These estimates appear to be accurate
when compared to experiments (13). A distinct fully quantum mechanical mechanism that
leads to quantum number scrambling was identified by Heller (14) and by Cederbaum and
coworkers (15) long ago: the (near) crossing of Born—-Oppenheimer surfaces corresponding
to different electronic states. Far from being a spectroscopic curiosity, such crossings are an
essential feature of electronic energy transport in condensed phases and in biological systems
(16). Surface crossing also features in nonadiabatic electron transfer reactions that occur
throughout electrochemistry and biology (17, 18). Qubits in quantum computing devices
based on cold atoms in near-harmonic optical traps also can be described in a similar fashion
(19). In this paper, we explore the simultaneous effects of Fermi resonances and surface
crossing mechanics on quantum energy flow and state mixing,.

We first extend the Logan—Wolynes treatment of the many-Fermi resonance problem
on a single potential energy surface to the situation where there are two electronic surfaces.
In the simplest case where the two crossing surfaces are displaced from each other but
have the same shape (e.g., exciton transfer between homodimers), we exploit the analogical
structure of Feenbergs perturbation expansion describing vibrational anharmonic coupling
and the perturbation theory for nonadiabaticity to obtain a simple expression for the joint
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transition criterion where both mechanisms of scrambling play a
role. The transition depends jointly on the strength of the anhar-
monic vibrational couplings, the nonadiabatic coupling strength
between the potential surfaces, and the Frank—Condon factors for
the nonadiabatic surface crossing. These quantities are weighted
by appropriate local densities of states and can be obtained by the
method of Leitner and Wolynes (20). We find that the two mech-
anisms of scrambling mutually reinforce each other in a simple
summation form.

To test the analytic theory, we computationally study a model
inspired by electronic excitation transfer in photosynthesis. We
set up a two-surface model of the bacteriochlorophyll (BChl)
homodimer with a truncated but realistic vibrational frequency
spectrum. We then use the scaling model of the vibrational cou-
plings from Madsen et al. (21) to compute the anharmonic cou-
plings between states and compute the threshold between the
restricted and free quantum energy flow regimes, illustrating the
energy dependence of quantum scrambling.

We further explore the physics by varying the electronic cou-
plings over a wide range around realistic values for the photosyn-
thetic system. By limiting ourselves to the five strongest coupled
modes in each monomer, the simplified model has a low enough
dimensionality so that the time-dependent Schrodinger equation
can be directly solved numerically for many different initial states.
In this way, we develop a computational phase diagram that com-
pares quite well with the analytical theory’s predictions. For real-
istic values of the parameters relevant for the photosynthetic
system, we find that both mechanisms of energy flow contribute
above the surface crossing energy. Clearly, the balance between
the two mechanisms of scrambling will be system dependent.

The organization of the paper is as follows. In Section 1, we
introduce the model Hamiltonian. In Section 2, the Logan—
Wolynes theory for the transition is briefly reviewed and its exten-
sion to the nonadiabatic case is sketched based on the analogous
structure of the vibrational and nonadiabatic contributions to the
self-energy of a state computed in self-consistent perturbation
theory. In Section 3, the numerical results for the phase diagram
of the model are compared with the expectations from analytical
theory. In Section 4, we discuss the general consequences of simul-
taneous anharmonic resonance and nonadiabatic surface cross-
ing-induced quantum scrambling and its relevance to energy
transport in photosynthesis.

1. Model Hamiltonian

In our model Hamiltonian, the two potential energy surfaces are
each described by a vibrational Hamiltonian H,;, that couples
vibrations anharmonically. For modeling the surface crossing, we
choose a constant nonadiabatic coupling V, between the two
potential energy surfaces. We assume that the two potential energy
surfaces share the same set of normal mode vibrational frequencies,
but that the minima of the Oth-order harmonic oscillators on each
surface are displaced with respect to each other.

A =H910)01+AD 1)1+ V,(0)(1[+]1)(0]) + SE[1)(1]
h =R,
~o) _ NV
Hvib,O_ Zz—l ( P +5 Z%)
A =H) +H<1> [1]
3 N 1 1
Hzfib),Oz 21—1 < Pz+ @; (q,—c/a)) )

ZHV 51 aba
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Here, the states s= 0,1 represent different potential energy
surfaces, V is the number of vibrational modes, V; is the nonadia-
batic coupling between potential energy surfaces (which is assumed
constant presently), 6 E is the ground state potential energy differ-
ence between the two potential energy surfaces. H1Ez /7) and H (1;
represent | the vibrational Hamiltonians of each potential energy

surface, H A9 and AV represent their zeroth-order Harmonic
vib,0 vib,0

oscillator parts, while f]a is the anharmonic vibrational coupling
operator. The m = {m,} are integers that describe the order of the
anharmonic vibrational couplings, e.g., mT =2and ;- = 1 would
be a Fermi (cubic) resonance between modes 1 and 2. The dominant
nonlinear coupling is generally cubic, and was first identified by
Fermi in explaining the carbon dioxide infrared spectrum where
there is a 2:1 near-resonance between the doubly degenerate bend-
ing and symmetric stretching modes (22). The cubic term also
provides the nonlinearity in the famous Fermi-Pasta—Ulam—
Tsingou study (23, 24).
We chose the anharmonic scaling model from refs 11,

and 21 for the anharmonic vibrational Hamiltonian H which
includes higher-order resonances as well. By deﬁnmg

m =3, (m! + m), the model assumes that the anharmonic cou-
pling decays exponentially with 7 as

V,, = Vaa" ™, (2]

as follows from smooth molecular potentials of well-bonded sys-
tems (21). The cubic Fermi coupling strength V3 for molecules
typically has values of the order of 0.1 to 10 cm ™, while the factor
a ranges between 0.1 and 0.3 (21, 25), right in the range where
higher-order couplings can facilitate energy transfer (26, 27). In
summary, the overall vibrational Hamiltonian for each electronic
surface is described by the vibrational frequencies @;, anharmonic
coupling strengths V3, and the anharmonic scaling factor
(Fig. 1).

The vibrational eigenstates on the displaced energy surfaces are
denoted as| { @, } ; 7). These basis sets depend on the displacement
of each mode and their frequencies through the parameter

T 3]

h oo

[\
S

1

which measures the strength of the electron-vibrational coupling
that induces the shift in the minimum location from one potential
surface to the other. This coupling is related to the so-called
Huang—Rhys factor for each mode “7” by the relation ar; = \/?l .
The nonadiabatic couplings between specific basis states on the
two different surfaces are denoted as V”” =V, (n| {a 3
between vibrational state 7 on one surface and state #’ on the
displaced surface. For harmonic surfaces, the Franck—-Condon

factors (7| {a;}; 7' ) can be evaluated using associated Laguerre
/

polynomials L,(:l ) (x), see the work of Cahill and Glauber (28)
and S7 Appendix, Section A. We do not include a possible
Duschinsky rotation (29) of the vibrational modes between the
two surfaces in the present calculation.

2. Nonadiabatic Energy Flow Transition Theory

We now formulate and discuss the nonadiabatic generalization of
the Logan—Wolynes self-consistent theory to two potential sur-
faces (7). We outline both the threshold criteria from the one
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Fig. 1. Potential energy surfaces of two electronic states with multiple
vibrational degrees of freedom in each state. Left: Two multidimensional
potential energy surfaces (red and blue) intersect one another, with two
vibrational coordinates g, and g, shown. Right: A cut through the two potential
energy surfaces along coordinate g;. The center of the potential energy surface
2 is displaced by ¢;/ (a}iz) from the center of the potential energy surface 1 in
each coordinate. The zero point energy difference 5£ and the reorganization
energy E, are drawn schematically, and may not lie in the plane of one of the
coordinates g;.

surface theory 7 pp, and the criterion 7y for energy flow coming
from surface crossing events alone. When both Fermi resonant
couplings and surface crossing effects are present, the theory gives
a transition criterion for vibrational energy flow in the nonadia-
batic quantum system for a vibrational state “” in electronic state
“s”at total energy E, which now depends on a sum of the two
couplings appropriately weighted by local densities of coupled
states. We only sketch here the essential ideas by making use of
the previous work (7) to simplify the derivation.

The approach we use to determine the transition to facile
energy flow in a nonadiabatic quantum system follows from the
statistical mean field theory developed by Logan and Wolynes
(7), who were inspired by the procedure of Abou-Chacra,
Anderson, and Thouless (6) for the Anderson problem of sin-
gle-particle quantum transport on a disordered Cayley tree. The
aim of the Logan—Wolynes analysis was to determine whether
eigenstates of a many-oscillator Fermi-resonant Hamiltonians
(having only cubic couplings as in the Fermi model) at a given
energy are localized on a few vibrational basis states or are
extended to connect most of the energetically accessible phase
space, thus determining the transition energy between localized
and ergodic behavior. By self-consistently solving only for the
most probable value of the energy flow rate A (E) rather than by
making self-consistent the full distribution of]self—energies as was
done by Abou-Chacra et al., a dimensionless factor depending
on the anharmonic couplings which we call T, was derived
describing when vibrational states are localized (T < 1) and
when they become extended over many of the original vibrational
states (T 2 1). The FR subscript stands for “Fermi resonance,”
but higher-order terms are included here as well. The theory was
further developed to include higher-order couplings, predicting
a bimodal distribution of dilution factors (i.e., some vibrational
states remain localized while others are delocalized as energy
increases) (20). The bimodal distribution has been found to be
quite accurate by comparison with numerical models based on
experimental data (13, 30, 31). The approach of Logan and
Wolynes has also been used to study many-body localization of
systems of interacting fermions and spins (32-34) and an analo-
gous approach is used to study the ergodic transition of single
quantum dots (35). In this section, we extend the theory to
describe the energy flow transition in single systems with two
potential surfaces. The theory leads to a dimensionless factor 74
that would characterize the energy flow threshold arising from
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nonadiabatic coupling between the surfaces alone, in addition to
the quantity 7 g, which accounts for anharmonic Fermi-resonant
coupling in the Logan—Wolynes single-surface theory.

We begin by summarizing the statistical mean field theory on
a single surface developed by Logan and Wolynes (7), so we can
exploit the similarities between vibrational and electronic mixing.
‘The vibrational Hamiltonian A on each potential energy surface
consists of an unperturbed portion Ay which is diagonal and an
anharmonic coupling V', which can be written in the tight-binding
form in the vibrational Fock space:

H=Hy+V= Y& 1i )il + X, V|| [4]
i i#j

Here, each zeroth-order state |i ) = | {7,}) is described by a set
of quantum numbers indicating the level of excitation in each of
the individual oscillators. This molecular vibrational Hamiltonian
is a specific realization of models termed local random matrix
models (4, 13, 36-39). In local random matrix models, sites which
are closer together in state space are more strongly coupled than
sites which are further away in the state spaces, but otherwise the
specific couplings are characterized by a random variable drawn
from an uncorrelated distribution. The tight-binding description
in the vibrational Fock space suggests the analogy with the
single-particle Anderson problem.

State space site Green functions ij (#)and Gk]- (£) play central
roles in describing how state space is explored:

_ 4oy —iHR
Gy(0=— 5 ™1
1 it(E+in)/h
G/e](E) = rllil’(r)L JO dr " n Gk](t) (5]
= lim (k| (E + in = H)™'j),
n—0+

from which the self-energy S] (E) can be introduced:

G (B = (g (B ~5,®) .
@aa=g“E—H¢H@”Lﬁ=F>%+m].

Here, H,, which gives rise to the zero-order Green functions is the
uncoupled oscillator Hamiltonian. _

The asymptotic value of the survival probability P;; (z = c0),
also known as the “dilution factor” o (13, 40), is related to imag-
inary part of the site self-energy A (E) = —Im[Sj (BE)1:

y 2
(jlf_lt H/hl]>|

=’111_r}(1) ; <1+Aj (£;) /;1)_2

t
P.(t >0) = liml dt’
) t=oot ]

where A is the index for eigenstates and £ is the exact eigenenergy.
Ajis proportional to # for localized states j, and thus vanishes for
an isolated system. When states are extended, A, yields the rate of
energy flow out of state| /) and can be finite at# = 0 for an infinite
system, strictly speaking. Thus, this expression is to be understood
here with the caveat that molecules always have a finite, albeit
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possibly large, global density of states, and will be represented that
way in our computational models in Section 3.

The local random matrix model is implemented as follows. To
simplify the analysis of the self- energy S; S. (E), the states are assumed
to be coupled having the topology of 2 Cayley tree with connec-
tivity K between tiers. One site j is coupled to Kstates in a Cayley
tree at the distribution of the coupling strength P (V). The ener-
gies of K local states| £ ) to which the state| ) is directly connected
are taken to be distributed randomly with the distribution

P(§ =g, — ¢;). Of course, in a given molecule, which is a specific

realization of such a random model, these distributions are specific
fixed sums of frequencies, once the original spectrum of vibrations
is specified.

The self-energy S; of each site on the Cayley tree depends on
the self-energies ofl the states further down the Cayley tree.
Therefore, the distribution of self-energies on a particular site
depends not only on distribution of coupled state energy differ-
ence P (£) and the anharmonic coupling strength distribution
P (V), butalso on the distribution of the self-energies of the states
locally coupled to the original site which then must be solved for
self-consistently. The central object of the self-consistent proba-
bilistic analysis is the Feenberg second-order renormalized pertur-
bation series for the self- energy S; (E) which is a random variable
in the local random matrix descrlptlon (41):

2 _
) =Y Vil (Erin-ei=5.)7"
=E; (E) —iA; (E).

(8]

A nonlinear integral equation for the joint probability of the
self-energy F(E;, A; ) can be obtained from the renormalized per-
turbation seriés a3 was done by Abou-Chacra etal. for the
Anderson problem. In the localized regime, by setting A (E) =0,
the simplified integral equation for F (E A ) can be solved and
the mobility-edge boundary can be locatéd. In the extended
regime, analyzing the full form of the integral equation has proved
quite intractable (6).

Logan and Wolynes simplified the problem of probabilistic
self-consistency by replacing the A, (E) of site | £) with its most
probable value A, and then by requiring only self-consistency

of this most probable value A, instead of the full joint distribu-
tion F(£;,A)) (7, 42-44). The resulting algebraic equations are
much 51mpler than the analysis of the nonlinear integral equations
for F (E ,A2) but yield fruitful results in both the localized and

the extended regimes (1,9, 10, 20, 45, 46). In this approximation,
it is also straightforward to explicitly explore the effect of dephas-
ing by external degrees of freedom (7, 42).

We now extend the theory to describe the energy flow transition
on two surfaces including contributions from surface crossing.
The renormalized perturbation series at the leading (second) order
level is the sum of the contributions from Fermi resonances and
surface crossing transitions:

|V(S -')

S (E) =
; (£) Zl#jE+iﬂ—5/;—5/s(E) 9]
|<11>

Zk E+in— Ep—s — Sk,—:(E)'
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here, the labels s = - 1,1 reflect the two surfaces. The self-energy
has contributions from both the anharmonic couplings on each
surface and the nonadiabatic couplings between the two sur-
faces. The assumption of the Cayley tree topology is a stronger
one for the surface crossing resonance part especially when the
two surfaces are energetically symmetric, as we presently will
assume.

We denote the conditional probability distribution for A ,if
we were to consider only the anharmonic couplings V. , as
fV(A ). Likewise, we will denote the distribution we would find
if we were only to consider nonadiabatic couplings ¢, 2 ~1Yberween
the surfaces as ﬁ(A ). The probablhty dlStl‘lbuthﬂ f (A ) when
accounting for both V. /; ) and t then is the convolutlon of
fV(A ) and f(A ), assummg that the local topologies are
1ndependent of cach other:

f) = J dN'f, (A') £ (A-A"). [10]

For the distribution ﬁl(Aj) (e = Vor #), we denote Asmp L=-11)
as the most probable value on two surfaces. In the symmetric case
considered here, A (m 1)(1 = A(l) = A,

duce A mp A the most probable value for the distribution f (A
In the limit of weak coupling when only a localized elgenstate

We therefore intro-

of energy £ will overlap site j, fi/(A;) and f;(A;) can be obtained
straightforwardly following previous work (7):

1/2 _
Brpa 7 “ma [11]
exp >
2z ZA]-

wherea = Vort,and A, ;yand A, , are given by:

3
JASE (

\/AmpV:\/Amp+nTFR< e])
VA= \/Amp+;1TNA (£5¢7) 12
(75e

T (Eses) =\| SKAVIDD (Eie )

Ty (E§ 8/;) = \/ ?Kt(lt(_l’l)l)DiVA <E§ €j:>

Tep(Es€)) is the transmon parameter measuring whether the
anharmonic coupling V * has a significant probability to con-
nect vibrational Fock states into resonance, K is the number of
anharmonically coupled states, and DFR(E €7 is the local den-
sity of states thus coupled. Ty, (E; € )1s the transition parameter

measuring whether the nonadtabatlc coupling t( P can bring

two states on the two distinct electronic surfaces mto resonance,
K, is the number of nonadiabatically coupled states, and
DNA(E £ ) is the local density of states for nonadiabatic
couplmgs

The distributions f;, (A]-) and ﬁ(Aj) are Lévy distributions, and

we can now exploit the fact that the convolution of two Lévy

pnas.org
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distributions as in Eq. 10 is also a Lévy distribution. The proba-
bility distribution f(A;) also obeys a Lévy distribution:

38,,\ '/ —3A
"p -3/2 mp
fA) = < o > A exp (—2A >
) 1/2
ftk) =F (f(4) =exp g—(l—l) (3/eA,,,P) ) [13]
1/2

12 _ 1/2
Amp - (Amp,V> + (Amp,t>

Solving for A,,,

self-consistently with the following equations:

A,y = (;1+Amp> [TFR(E )+ T (Es .:)]2, [14]

our simple expression for the transition criterion obtained by con-
sidering the breakdown of the stability of localized states is
therefore:

Trp(Ese ) + Tyy(Ese ) [15]

By construction, 7pzand 7, are positive. The theory thus predicts
that the surface crossing assists delocalization of the vibrational
states, and provides a quantitative description for the shift of the
transition boundary between localized and extended regime when
two quantum surfaces are coupled nonadiabatically. In the section
below, we provide numerical results from a family of models
inspired by a specific biophysically interesting system to support
the predictions here.

3. Numerical Simulation for the BChl Dimer
Exciton Transfer

Exciton transfer in BChl assemblies has been studied extensively
both experimentally and computationally (47). Therefore, good
estimates of the values of about 50 of the most relevant vibrational
frequencies and the Huang—Rhys factors involved in excitation
transfer as described in Section 1 are available for this system (48).
To analyze the validity of the transition criterion 7gg +7 4 >1 for
energy flow, we study a model inspired by the BChl dimer. Five
modes in each monomer have been found to have particularly
large Huang Rhys factors, and we include these in our model,
together with the hterature value of the nonadiabatic electronic
coupling V, =363 cm” ' (49), which allows the electronic excitation
to hop from one monomer to the other. The parameters of the
system we use are shown in Table 1.

For this model, we can examine a large number of initial states “7”
that span a range of vibrational excitation energies, and we can esti-
mate both the 7z value for vibrational energy flow and the 74 value
for the nonadiabatic surface crossing. To calculate the parameter
describing intramolecular energy flow on a single surface, Trp, we
proceeded as in Section 2.3.2 of ref. 50, and Section 4.A. of ref. 20.
'The calculation of 74 in terms of frequencies {w}, vibrational quan-
tum numbers {7 7}, electronic vibration coupling strengths {a,}, and
nonadiabatic couplmgs V, is described in S Appendix, Part C.

For all initial states in the vibrational Fock space, we explicitly
integrate the time-dependent Schrédinger equation using a filtered
basis set as was done in ref. 26 to determine whether a state is
localized or delocalized. SI Appendix, section B shows the com-
puted survival probability P(#) for specific example states, from

PNAS 2023 Vol.120 No.9 e2221690120

Table 1. Five vibrational frequencies of the BChl mon-
omer, with Huang-Rhys factors S; and displacement
factors q;

fi 890 727 345 1,117 1,158
S; 0.028 0.0266 0.0161  0.0103  0.0103
a; =1/5; 0.169 0.163 0.127 0.101 0.101
vy 4.1 3.0 1.0 5.8 6.1

a 0.110 0.100 0.069 0.124 0.126

Data are taken from Table 2 in ref. 48. Below are shown the anharmonic constants and
scaling parameters used for each mode, calculated using Eq. 5 in Ref. 13.

which we obtain dilution factors as the long-time average of P(z)
(Eq. 7). These calculations cover a time span 7 = 5 ps, sufficiently
long for P(2) to decay to its baseline in all the cases we have studied.
For the 10-mode dimer model, which has fewer modes than the
full BChl system, we studied higher-than-room temperature “ther-
mal” vibrational energies so that the effect of vibrational anhar-
monicity and 7, is evident. As we will see below, the energy flow
threshold actually appears at an energy comparable to thermal
energy for the natural system, which, owing to the size of its
vibrational Fock space, can currently be treated only using the
extended Logan—Wolynes analysis.

We can then compare the predicted dilution factors with the
anharmonic threshold criterion 7z, =1 for a sample of 80 vibra-
tional states at different energies when V, = 0. As can be seen in
Fig. 24, a sudden drop in the majority of the dilution factors
coincides with the approach of 77 to 1, the facile energy flow
threshold of the local random matrix model. For practical pur-
poses, we define a dilution factor o, that corresponds to the
geometric mean between the maximum value (1) and the mini-
mum value, which is nonzero due to the finite size of our state
space (51). For the distribution of & values in Fig. 24, we obtain
o,=0.04.

We then scanned the value of the nonadiabatic coupling
strength V, over the range from zero up to the estimated value of
363 cm” for the BChl dimer (49). While doing this, we keep the
anharmonic couplings V; and scaling factors a constant, to study
how the dilution factor varies separately with 7pp and 7. In
Fig. 2B, we plot the resulting phase diagram in the plane of 7z
and Ty, for 80 states 1n a vibrational energy window between
5,000 and 40,000 cm ™, allowing the nonadiabatic coupling to
take on five values. The black line represents the boundary
Trp =1- Ty, which is the transition boundary between localized
and extended states obtained from the theory described in
Section 2. As can be seen, the numerically determined transition
regime corresponds well with the simple theoretical prediction of
the threshold. The actual boundary is not sharp: Some localized
states intermingle with extended states above the threshold and
an occasional extended state is found below the threshold. The
sources of this fuzziness include edge states that concentrate the
energy in a single mode (11), the random character of resonances
as expected in the local random matrix theory (36), and localiza-
tion above the threshold that may signal the presence of quantum
“scars” (52—55) that are remnants of classical trajectories or reflect
the symmetry of the Hamiltonian when 6E = 0 (8).

It now becomes possible to compare the effect of nonadiabatic
couplings reflected in 74 on the energy flow threshold relative to
the purely anharmonic vibrational couplings case. For the 10-mode
dimer model, Fig. 34 plots Tzz (E) vs. dimer energy E for the
electronically uncoupled molecules and Tgg (E) + Ty (E)for the
two monomers coupled by V; = 363 cm™". In the 10-mode model,
the threshold occurs at about 15,000 cm™ and shifts down in
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Fig. 2. Phase diagram for the 10-mode dimer model calculation. Each monomer has five modes with frequencies and Huang-Rhys factors given in Table 1. In

this computation, we keep the vibrational couplings the same as in the natural system and vary the nonadiabatic coupling V, with values [0, 50, 100, 200, 363] cm™".

-1

This is a realistic range for exciton transfer, asV, =363 cm™" is the value obtained from first-principles calculation (48). (4) Dilution factor o = (P(t — ) ) and Ty,
for 80 states when there is only anharmonic coupling V; with the scaling factors a shown in Table 1. (B) Scatter plot for the dilution factors in the plane of T,
vs. Tya- We choose the criterion o, = 0.04 to classify states as localized or extended; this value is the square root of the minimum dilution factor that can be
obtained on the single surface without nonadiabatic coupling in our simulation. Here, the red dotted data represent states with dilution factor ¢ > ¢, and black
inverted triangle data represent states with dilution factor ¢ < o.. The solid black line is the theoretical prediction for the combined threshold Tz = 1 - Ty,. The
initial states have similar levels of vibrational excitation in both monomers; setting the excitation energy of one monomer to zero yields a very similar phase
diagram (S Appendix, Part B and Fig. S2). See S/ Appendix, Part C for the procedure we used to estimate Tg; and Ty,.

energy by about 25% when the electronic coupling is turned on,
allowing surface hopping. While our anharmonic Hamiltonian
numerical simulation cannot be used to study molecules with more
degrees of freedom by exact quantum dynamics, the analysis in
Section 2 allows us to calculate the thresholds for much larger
systems that are still more realistic. In Fig. 3B, we show the calcu-
lated Trr (E) and Tpg(E) + Tpy(E) for the 100-mode model of
the BChl dimer system (50 modes from ref. 48 in each monomer).
As expected, the threshold for facile energy flow is now much
lower, around 2,000 cm™, and the downward shift of the threshold
due to the additional nonadiabatic coupling still amounts to 25%
of the energy. The thermal energy at room temperature of the
100-mode system is 3, 632 em™ which lies somewhat above the
threshold of Fig. 3B. The dilution factor 6 vs. the dimer energy E
for the 10-mode dimer model is shown in Fig. 3C. We can see
that the predicted shift of the quantum ergodic transition energy
E,_ (vertical lines) agrees well with the numerical computation.
SI Appendix, Fig. S3 also shows how the dilution factor depends
on Typ +1, for different values of the nonadiabatic coupling.

We also analyzed the model with only nonadiabatic surface
crossings on the many-dimensional surface (V= 0). We compute
the survival probability P(#) = |<z= 0|s|* of initial zero-order
vibrational states |# = 0> using the Huang—Rhys factors shown in
Table 1. The numerical results for the survival probability are
shown in S/ Appendix, Fig. S1. We find that energy flow indeed
can occur between two multidimensional harmonic vibrational
manifolds solely through the nonadiabatic electronic coupling as
envisioned by Heller (14).

Finally, we examined how quickly increased anharmonicity
turns on facile energy flow by varying both the cubic coupling
strength V; and the scaling parameter # that determine how rap-
idly couplings of quartic and higher order decrease with m. As
shown in Fig. 44, the near-edge state (where most vibrations are
not excited) has a larger dilution factor and requires a stronger
anharmonic coupling to mix with other states than does the inte-
rior state (where all modes are excited), although both states have
asimilar energy (11, 56). As shown in Fig. 4B, there is a threshold
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value of @ required for the dilution factor to decrease as observed
previously for a purely vibrational model system (26), indicating
that higher-order couplings are important for the transition to
free energy flow. The predicted dependence of energy flow on
anharmonicity as a parameter could be tested in future simulations
of the present Hamiltonian using ion trap quantum simulators
(57, 58), where the nearly harmonic wells containing the ions
could be detuned to introduce anharmonicity purposely.

4. Discussion

Using analytical theory and exact quantum dynamics, we have
explored the interplay between energy flow through intramolec-
ular Fermi resonances and electronic surface crossing. The simple
theory based on the Logan—Wolynes treatment of local random
matrix models turns out to locate reasonably well the transition
from localized behavior to facile energy flow.

These ideas were explored in the context of a simplified model
inspired by exciton transfer in the BChl dimer. The full implica-
tions of the present analysis for actual photosystems and other
biological processes that involve surface crossing (such as electron
and coupled proton—electron transfer) will require further inves-
tigation, but some qualitative ideas that have emerged are worth
describing already.

The threshold for quantum energy flow is determined by both
nonadiabatic surface crossing and by Fermi resonances in the range
of thermal excitation energies for chromophores such as BChl.
‘The Fermi-resonant contribution is dominant, even though such
nonlinear resonances are not explicitly considered in most current
models; instead, their effect is subsumed through the introduction
of “dephasing” in relaxation theory treatments (59-64) or by
broadening the bath spectrum in path integral treatments
(65-68).

Above the threshold for facile energy flow, most quantum states
in the complex chromophores are delocalized over many modes,
but a few states appear to remain localized over a few vibrational
motions. This coexistence of specifically regular and more chaotic
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Fig. 3. (A) The transition factor Ty, (E) for the single surface, and the transition factor Tz (E) + Ty, (E) for the two surface systems (surface crossing amplitude
Vi, =363cm~ )vs. the dimer vibrational energy E (cm™") for the 10-mode dimer model (five modes in each monomer). The anharmonic constants and scaling factors
a; for each mode “i” used in the computation are listed in Table 1. To estimate T, the geometric mean value of the typical scaling factors: a = 0.10 was used.
By assuming equal vibrational energy in each monomer, we can estimate Tz (E) and Tgg (E) + Ty, (E) vs. the dimer energy E (cm™) (black curve). T () (blue) and
Ter (E) + Ty (E)(red) for the 80 states simulated in Fig. 2 are also shown. (B) Tg () (black) and Tg (E) + Ty, (E) (orange) for the two surface systems (VrF= 3635’"_1) VS,
the dimer vibrational energy E (cm™) for 100-mode BChl dimer (50 modes in each monomer). We assume that the energy is statistically shared between monomers
in making the estimates of T, and Ty,. We estimate anharmonic scaling factor a as described in ref. (13). (C) The dilution factor ¢ vs. the dimer energy E for the
10-mode dimer model. The dilution factor for the case V; = 0 (black, triangle) is shown with the transition energy £, = 15,900 cm~"(T(E) = 1) for the single surface
(black vertical line). The dilution factors for the case V, = 363 cm~(red, square) are shown with the transition energy £, = 12,300 cm™" (Teg () + Ty (E) =1)for
the two surface systems (brown vertical curve).

behavior, while familiar in finite dimensional quantum systems, ultrafast nonlinear optical experiments. In such experiments, one
(52) is generally thought to disappear in the infinite system limit ~ of course must also account for the initial excitation event, as well
(54, 69-71). This phenomenon of coexisting regular and quantum as the energy and coherence transfer process (73). In much of the

chaotic behavior may be part of the origin of the controversy = discussion of these experiments, it is assumed that vibrational and
concerning the amount of quantum entanglement and coherence  electronic excitations are clearly separable, but our argument sug-
in natural photosynthetic systems (72-77) as manifested in  gests that they can be intimately mixed together.
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Fig. 4. Dependence of the dilution factor ¢ on the anharmonic coupling strength V; and the scaling factor a. V, is held constant at 363 cm™". In both cases, the
state close to the edge of state space mixes less even though both states are at similar total energy. (A) Dilution factor for a near-edge state (blue) and an interior
state (orange) as a function of cubic coupling strength V; with a = 0.25 (B) Dilution factor for a near-edge state (blue) and an interior state (orange) as a function
of scaling factor a when there is a threshold between a = 0.2 and 0.3 where the dilution factor begins to decrease rapidly.
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‘The models discussed here have far fewer modes than most real
biological systems which in addition have enormous numbers of
protein vibrational modes and solvent modes, although most of
these will be rather weakly coupled. The dephasing effect of such
modes can be treated by Logan—Wolynes self-consistent analysis
which shows that such dephasing would further smear the tran-
sition (7). In the vicinity of the localization transition, their anal-
ysis suggests that external dephasing also can act to speed quantum
transport as has recently been highlighted (75). While ultimately
increased dephasing will lead to incoherent hopping, the present
model calculations, showing coexistence of localized and extended
states in natural systems, suggest that both of these effects of exter-
nal dephasing may be simultaneously manifested.

In the light-gathering apparatus, typically many more than two
chromophores will be coupled together. It will be interesting to
see how the Fermi resonance mechanism can play a role for those
more extended systems. In addition, the static disorder of the basic
chromophore energies from the protein environment must be
superimposed on the effects in the present model.

While the nonadiabatic couplings are quite large for the exciton
transfer problem, they are smaller for electron transfer between
redox centers embedded in proteins. Nonetheless, the issue of the
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the so-called abnormal regime of Marcus theory. We hope to
address that problem using a generalization of the present treat-
ment for strongly asymmetric wells in the future.
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