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Energy flow in molecules, like the dynamics of other many-dimensional finite systems, 
involves quantum transport across a dense network of near-resonant states. For molecules 
in their electronic ground state, the network is ordinarily provided by anharmonic vibra-
tional Fermi resonances. Surface crossing between different electronic states provides 
another route to chaotic motion and energy redistribution. We show that nonadiabatic 
coupling between electronic energy surfaces facilitates vibrational energy flow and, 
conversely, anharmonic vibrational couplings facilitate nonadiabatic electronic state 
mixing. A generalization of the Logan–Wolynes theory of quantum energy flow in 
many-dimensional Fermi resonance systems to the two-surface case gives a phase dia-
gram describing the boundary between localized quantum dynamics and global energy 
flow. We explore these predictions and test them using a model inspired by the problem 
of electronic excitation energy transfer in the photosynthetic reaction center. Using 
an explicit numerical solution of the time-dependent Schrödinger equation for this 
ten-dimensional model, we find quite good agreement with the expectations from the 
approximate analytical theory.

quantum scrambling | nonadiabatic coupling | vibrational energy flow | photosynthesis | exciton

In macroscopic systems, a variety of elementary processes (collisions, nonlinear resonances, 
isomerization, etc.) eventually lead to the sharing of energy among the various parts of the 
system and to the scrambling of quantum information. In individual molecules and designed 
macroscopic quantum systems, such energy flow can be slow or even incomplete. Many 
theories of chemical reaction dynamics rely on making the assumption of rapid energy flow 
and phase scrambling. In contrast, useful quantum computers will need to be able to 
minimize these effects. It has been established that the transition to facile energy flow in 
moderate-sized organic molecules due to anharmonic (e.g., Fermi) resonance occurs at an 
energy threshold close to the typical activation energies needed for conformational barrier 
crossing (1–5) and thus, energy flow can modify kinetics. At energies above the threshold, 
a quantum transport network between vibrational states interacting through anharmonic 
Fermi resonance couplings becomes sufficiently well connected to explore much of the state 
space, allowing statistical treatment. Using an analogy to Anderson localization (6), Logan 
and Wolynes constructed a theory of the quantum energy flow transition for local random 
matrix models of the vibrational state space that provides a criterion involving the anhar-
monic couplings and the local density of connected states and predicts the threshold for 
free vibrational energy flow (7). Their model has been elaborated in many ways (8–10). 
Gruebele and collaborators developed a way to map organic molecules with known vibra-
tional spectra onto this abstract model (11, 12). This mapping has allowed simple prediction 
of the energy flow threshold for specific molecules. These estimates appear to be accurate 
when compared to experiments (13). A distinct fully quantum mechanical mechanism that 
leads to quantum number scrambling was identified by Heller (14) and by Cederbaum and 
coworkers (15) long ago: the (near) crossing of Born–Oppenheimer surfaces corresponding 
to different electronic states. Far from being a spectroscopic curiosity, such crossings are an 
essential feature of electronic energy transport in condensed phases and in biological systems 
(16). Surface crossing also features in nonadiabatic electron transfer reactions that occur 
throughout electrochemistry and biology (17, 18). Qubits in quantum computing devices 
based on cold atoms in near-harmonic optical traps also can be described in a similar fashion 
(19). In this paper, we explore the simultaneous effects of Fermi resonances and surface 
crossing mechanics on quantum energy flow and state mixing.

We first extend the Logan–Wolynes treatment of the many-Fermi resonance problem 
on a single potential energy surface to the situation where there are two electronic surfaces. 
In the simplest case where the two crossing surfaces are displaced from each other but 
have the same shape (e.g., exciton transfer between homodimers), we exploit the analogical 
structure of Feenberg’s perturbation expansion describing vibrational anharmonic coupling 
and the perturbation theory for nonadiabaticity to obtain a simple expression for the joint 
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transition criterion where both mechanisms of scrambling play a 
role. The transition depends jointly on the strength of the anhar-
monic vibrational couplings, the nonadiabatic coupling strength 
between the potential surfaces, and the Frank–Condon factors for 
the nonadiabatic surface crossing. These quantities are weighted 
by appropriate local densities of states and can be obtained by the 
method of Leitner and Wolynes (20). We find that the two mech-
anisms of scrambling mutually reinforce each other in a simple 
summation form.

To test the analytic theory, we computationally study a model 
inspired by electronic excitation transfer in photosynthesis. We 
set up a two-surface model of the bacteriochlorophyll (BChl) 
homodimer with a truncated but realistic vibrational frequency 
spectrum. We then use the scaling model of the vibrational cou-
plings from Madsen et al. (21) to compute the anharmonic cou-
plings between states and compute the threshold between the 
restricted and free quantum energy flow regimes, illustrating the 
energy dependence of quantum scrambling.

We further explore the physics by varying the electronic cou-
plings over a wide range around realistic values for the photosyn-
thetic system. By limiting ourselves to the five strongest coupled 
modes in each monomer, the simplified model has a low enough 
dimensionality so that the time-dependent Schrödinger equation 
can be directly solved numerically for many different initial states. 
In this way, we develop a computational phase diagram that com-
pares quite well with the analytical theory’s predictions. For real-
istic values of the parameters relevant for the photosynthetic 
system, we find that both mechanisms of energy flow contribute 
above the surface crossing energy. Clearly, the balance between 
the two mechanisms of scrambling will be system dependent.

The organization of the paper is as follows. In Section 1, we 
introduce the model Hamiltonian. In Section 2, the Logan–
Wolynes theory for the transition is briefly reviewed and its exten-
sion to the nonadiabatic case is sketched based on the analogous 
structure of the vibrational and nonadiabatic contributions to the 
self-energy of a state computed in self-consistent perturbation 
theory. In Section 3, the numerical results for the phase diagram 
of the model are compared with the expectations from analytical 
theory. In Section 4, we discuss the general consequences of simul-
taneous anharmonic resonance and nonadiabatic surface cross-
ing-induced quantum scrambling and its relevance to energy 
transport in photosynthesis.

1.  Model Hamiltonian

In our model Hamiltonian, the two potential energy surfaces are 
each described by a vibrational Hamiltonian Hvib that couples 
vibrations anharmonically. For modeling the surface crossing, we 
choose a constant nonadiabatic coupling Vt between the two 
potential energy surfaces. We assume that the two potential energy 
surfaces share the same set of normal mode vibrational frequencies, 
but that the minima of the 0th-order harmonic oscillators on each 
surface are displaced with respect to each other.

	 [1]

.

Here, the states s = 0,1 represent different potential energy 
surfaces, N  is the number of vibrational modes, Vt is the nonadia-
batic coupling between potential energy surfaces (which is assumed 
constant presently), �E  is the ground state potential energy differ-
ence between the two potential energy surfaces. Ĥ (0)

vib
 and Ĥ (1)

vib
 

represent the vibrational Hamiltonians of each potential energy 
surface, Ĥ (0)

vib,0
 and Ĥ (1)

vib,0
 represent their zeroth-order Harmonic 

oscillator parts, while Ĥa is the anharmonic vibrational coupling 
operator. The m = {mα} are integers that describe the order of the 
anharmonic vibrational couplings, e.g., m+

1
 = 2 and m−

2
 = 1 would 

be a Fermi (cubic) resonance between modes 1 and 2. The dominant 
nonlinear coupling is generally cubic, and was first identified by 
Fermi in explaining the carbon dioxide infrared spectrum where 
there is a 2:1 near-resonance between the doubly degenerate bend-
ing and symmetric stretching modes (22). The cubic term also 
provides the nonlinearity in the famous Fermi–Pasta–Ulam–
Tsingou study (23, 24).

We chose the anharmonic scaling model from refs. 11, 
and 21 for the anharmonic vibrational Hamiltonian Ĥa , which 
includes higher-order resonances as well. By defining 
m = Σ�

(

m
+
� +m

−
�

)

 , the model assumes that the anharmonic cou-
pling decays exponentially with m as

	 [2]

as follows from smooth molecular potentials of well-bonded sys-
tems (21). The cubic Fermi coupling strength V3 for molecules 
typically has values of the order of 0.1 to 10 cm–1, while the factor 
a ranges between 0.1 and 0.3 (21, 25), right in the range where 
higher-order couplings can facilitate energy transfer (26, 27). In 
summary, the overall vibrational Hamiltonian for each electronic 
surface is described by the vibrational frequencies �i , anharmonic 
coupling strengths V3 , and the anharmonic scaling factor a 
(Fig. 1).

The vibrational eigenstates on the displaced energy surfaces are 
denoted as � {�i } ; n⟩ . These basis sets depend on the displacement 
of each mode and their frequencies through the parameter

	 [3]

which measures the strength of the electron-vibrational coupling 
that induces the shift in the minimum location from one potential 
surface to the other. This coupling is related to the so-called 
Huang–Rhys factor for each mode “i” by the relation �i =

√

Si  . 
The nonadiabatic couplings between specific basis states on the 
two different surfaces are denoted as V n,n�

t
= Vt ⟨n �{�i}; n

�
⟩
 

between vibrational state n on one surface and state n′ on the 
displaced surface. For harmonic surfaces, the Franck–Condon 
factors ⟨n �{�i}; n

�
⟩ can be evaluated using associated Laguerre 

polynomials L(n
�)

n (x) , see the work of Cahill and Glauber (28) 
and SI Appendix, Section A. We do not include a possible 
Duschinsky rotation (29) of the vibrational modes between the 
two surfaces in the present calculation.

2.  Nonadiabatic Energy Flow Transition Theory

We now formulate and discuss the nonadiabatic generalization of 
the Logan–Wolynes self-consistent theory to two potential sur-
faces (7). We outline both the threshold criteria from the one 

Ĥ = Ĥ (0)

vib
�0⟩⟨0�+Ĥ (1)

vib
�1⟩⟨1�+Vt (�0⟩⟨1�+ �1⟩⟨(0�)+ �E �1⟩⟨1�

Ĥ (0)

vib
= Ĥ (0)

vib,0
+ Ĥ (0)

a

Ĥ (0)
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=

�N

i = 1
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1

2
p2i +

1

2
�2
i q
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�
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= Ĥ (1)

vib,0
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Ĥ (1)

vib,0
=

�N

i = 1

�

1

2
p2i +

1

2
�2
i

�

qi− ci∕�
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�
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�
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√
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surface theory TFR, and the criterion TNA for energy flow coming 
from surface crossing events alone. When both Fermi resonant 
couplings and surface crossing effects are present, the theory gives 
a transition criterion for vibrational energy flow in the nonadia-
batic quantum system for a vibrational state “j” in electronic state 
“s” at total energy E, which now depends on a sum of the two 
couplings appropriately weighted by local densities of coupled 
states. We only sketch here the essential ideas by making use of 
the previous work (7) to simplify the derivation.

The approach we use to determine the transition to facile 
energy flow in a nonadiabatic quantum system follows from the 
statistical mean field theory developed by Logan and Wolynes 
(7), who were inspired by the procedure of Abou-Chacra, 
Anderson, and Thouless (6) for the Anderson problem of sin-
gle-particle quantum transport on a disordered Cayley tree. The 
aim of the Logan–Wolynes analysis was to determine whether 
eigenstates of a many-oscillator Fermi-resonant Hamiltonians 
(having only cubic couplings as in the Fermi model) at a given 
energy are localized on a few vibrational basis states or are 
extended to connect most of the energetically accessible phase 
space, thus determining the transition energy between localized 
and ergodic behavior. By self-consistently solving only for the 
most probable value of the energy flow rate Δj(E ) rather than by 
making self-consistent the full distribution of self-energies as was 
done by Abou-Chacra et al., a dimensionless factor depending 
on the anharmonic couplings which we call TFR was derived 
describing when vibrational states are localized ( TFR < 1) and 
when they become extended over many of the original vibrational 
states ( TFR ≥ 1). The FR subscript stands for “Fermi resonance,” 
but higher-order terms are included here as well. The theory was 
further developed to include higher-order couplings, predicting 
a bimodal distribution of dilution factors (i.e., some vibrational 
states remain localized while others are delocalized as energy 
increases) (20). The bimodal distribution has been found to be 
quite accurate by comparison with numerical models based on 
experimental data (13, 30, 31). The approach of Logan and 
Wolynes has also been used to study many-body localization of 
systems of interacting fermions and spins (32–34) and an analo-
gous approach is used to study the ergodic transition of single 
quantum dots (35). In this section, we extend the theory to 
describe the energy flow transition in single systems with two 
potential surfaces. The theory leads to a dimensionless factor TNA 
that would characterize the energy flow threshold arising from 

nonadiabatic coupling between the surfaces alone, in addition to 
the quantity TFR , which accounts for anharmonic Fermi-resonant 
coupling in the Logan–Wolynes single-surface theory.

We begin by summarizing the statistical mean field theory on 
a single surface developed by Logan and Wolynes (7), so we can 
exploit the similarities between vibrational and electronic mixing. 
The vibrational Hamiltonian H  on each potential energy surface 
consists of an unperturbed portion H0 which is diagonal and an 
anharmonic coupling V  , which can be written in the tight-binding 
form in the vibrational Fock space:

	 [4]

Here, each zeroth-order state �i ⟩ = �{n�}⟩ is described by a set 
of quantum numbers indicating the level of excitation in each of 
the individual oscillators. This molecular vibrational Hamiltonian 
is a specific realization of models termed local random matrix 
models (4, 13, 36–39). In local random matrix models, sites which 
are closer together in state space are more strongly coupled than 
sites which are further away in the state spaces, but otherwise the 
specific couplings are characterized by a random variable drawn 
from an uncorrelated distribution. The tight-binding description 
in the vibrational Fock space suggests the analogy with the 
single-particle Anderson problem.

State space site Green functions Gkj (t ) and Gkj (E ) play central 
roles in describing how state space is explored:

	 [5]

from which the self-energy Sj (E ) can be introduced: 

	 [6]

Here, H0 which gives rise to the zero-order Green functions is the 
uncoupled oscillator Hamiltonian.

The asymptotic value of the survival probability Pjj (t =∞) , 
also known as the “dilution factor” σ (13, 40), is related to imag-
inary part of the site self-energy Δj (E ) = −Im[Sj (E ) ] : 

	 [7]

where � is the index for eigenstates and E� is the exact eigenenergy. 
Δj is proportional to � for localized states j , and thus vanishes for 
an isolated system. When states are extended, Δj yields the rate of 
energy flow out of state � j⟩ and can be finite at � = 0 for an infinite 
system, strictly speaking. Thus, this expression is to be understood 
here with the caveat that molecules always have a finite, albeit 

H =H0+V =
�

i

�i �i ⟩⟨i�+
�

i≠j

Vij�i⟩⟨j�

Gkj(t)= −
i

ℏ
⟨k�e−itH∕ℏ

�j⟩

Gkj(E )= lim
𝜂→0+ ∫

∞

0

dt eit (E+i𝜂)∕ℏGkj(t )

= lim
𝜂→0+

⟨k� (E + i𝜂 − H )−1 j⟩,

Gjj (E ) =
�

gjj (E )
−1 −Sj (E )

�−1

gjj (E ) = ⟨j
�

�

�

�

E −H0+ i�
�−1 �

�

�

j⟩=
�

E −�j + i�
�−1

.

Pjj (t →∞) = lim
t→∞

1

t ∫

t

0

dt �
�

�

�

⟨ j�e−it
�H∕ℏ

�j⟩
�

�

�

2

= lim
𝜂→0

�

𝜆

�

1+Δj

�

E𝜆
�

∕𝜂
�−2 ,

Fig.  1. Potential energy surfaces of two electronic states with multiple 
vibrational degrees of freedom in each state. Left: Two multidimensional 
potential energy surfaces (red and blue) intersect one another, with two 
vibrational coordinates q1 and q2 shown. Right: A cut through the two potential 
energy surfaces along coordinate q

i
 . The center of the potential energy surface 

2 is displaced by c
i
∕
(

�
i

2

)

 from the center of the potential energy surface 1 in 
each coordinate. The zero point energy difference δE and the reorganization 
energy Er are drawn schematically, and may not lie in the plane of one of the 
coordinates qi.
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possibly large, global density of states, and will be represented that 
way in our computational models in Section 3.

The local random matrix model is implemented as follows. To 
simplify the analysis of the self-energy Sj (E ) , the states are assumed 
to be coupled having the topology of a Cayley tree with connec-
tivity K  between tiers. One site j is coupled to K states in a Cayley 
tree at the distribution of the coupling strength P (V ) . The ener-
gies of K  local states �k ⟩ to which the state � j ⟩ is directly connected 
are taken to be distributed randomly with the distribution 
P(� = �k − �j) . Of course, in a given molecule, which is a specific 
realization of such a random model, these distributions are specific 
fixed sums of frequencies, once the original spectrum of vibrations 
is specified.

The self-energy Sj of each site on the Cayley tree depends on 
the self-energies of the states further down the Cayley tree. 
Therefore, the distribution of self-energies on a particular site 
depends not only on distribution of coupled state energy differ-
ence P (�) and the anharmonic coupling strength distribution 
P (V ) , but also on the distribution of the self-energies of the states 
locally coupled to the original site which then must be solved for 
self-consistently. The central object of the self-consistent proba-
bilistic analysis is the Feenberg second-order renormalized pertur-
bation series for the self-energy Sj (E ) which is a random variable 
in the local random matrix description (41):

	 [8]

A nonlinear integral equation for the joint probability of the 
self-energy F (Ej ,Δj) can be obtained from the renormalized per-
turbation series as was done by Abou-Chacra et al. for the 
Anderson problem. In the localized regime, by setting Δj (E ) = 0 , 
the simplified integral equation for F (Ej ,Δj) can be solved and 
the mobility-edge boundary can be located. In the extended 
regime, analyzing the full form of the integral equation has proved 
quite intractable (6).

Logan and Wolynes simplified the problem of probabilistic 
self-consistency by replacing the Δk (E ) of site �k⟩ with its most 
probable value Δmp , and then by requiring only self-consistency 
of this most probable value Δmp instead of the full joint distribu-
tion F (Ej ,Δj) (7, 42–44). The resulting algebraic equations are 
much simpler than the analysis of the nonlinear integral equations 
for F (Ej ,Δj) but yield fruitful results in both the localized and 
the extended regimes (1, 9, 10, 20, 45, 46). In this approximation, 
it is also straightforward to explicitly explore the effect of dephas-
ing by external degrees of freedom (7, 42).

We now extend the theory to describe the energy flow transition 
on two surfaces including contributions from surface crossing. 
The renormalized perturbation series at the leading (second) order 
level is the sum of the contributions from Fermi resonances and 
surface crossing transitions:

	
[9]

here, the labels s = −1,1 reflect the two surfaces. The self-energy 
has contributions from both the anharmonic couplings on each 
surface and the nonadiabatic couplings between the two sur-
faces. The assumption of the Cayley tree topology is a stronger 
one for the surface crossing resonance part especially when the 
two surfaces are energetically symmetric, as we presently will 
assume.

We denote the conditional probability distribution for Δj , if 
we were to consider only the anharmonic couplings V (s,s)

jk
 , as 

fV (Δj) . Likewise, we will denote the distribution we would find 
if we were only to consider nonadiabatic couplings t (−1,1)

jk
 between 

the surfaces as ft (Δj) . The probability distribution f (Δj) when 
accounting for both V (s,s)

jk
 and t (−1,1)

jk
 then is the convolution of 

fV (Δj) and ft (Δj) , assuming that the local topologies are 
independent of each other:

	 [10]

For the distribution f�(Δj) ( � = V or t), we denote Δs
mp, � (s = −1,1) 

as the most probable value on two surfaces. In the symmetric case 
considered here, Δ(−1)

mp, � = Δ
(1)
mp, � = Δmp, � . We therefore intro-

duce Δmp as the most probable value for the distribution f (Δj).
In the limit of weak coupling when only a localized eigenstate 

of energy E  will overlap site j , fV (Δj) and ft (Δj) can be obtained 
straightforwardly following previous work (7):

	 [11]

where � = V or t, and Δmp,V  and Δmp,t are given by:

	 [12]

TFR(E ; �js) is the transition parameter measuring whether the 
anharmonic coupling V (s,s)

jl
 has a significant probability to con-

nect vibrational Fock states into resonance, K  is the number of 
anharmonically coupled states, and DFR

L
(E ; �js) is the local den-

sity of states thus coupled. TNA(E ; �js) is the transition parameter 
measuring whether the nonadiabatic coupling t (−1,1)

jk
 can bring 

two states on the two distinct electronic surfaces into resonance, 
Kt is the number of nonadiabatically coupled states, and 
D

NA

L
(E ; �js) is the local density of states for nonadiabatic 

couplings.
The distributions fV (Δj) and ft (Δj) are Lévy distributions, and 

we can now exploit the fact that the convolution of two Lévy 

Sj (E ) =
∑

k≠j

|

|

|

Vjk
|

|

|

2 (

E + i�−�k−Sk (E )
)−1

=Ej (E ) − iΔj (E ) .
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∑

l≠j

|

|

|
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|

|

|

2
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+
∑

k

|

|
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|

|

|

2
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(
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)
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(
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)
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(
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�
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distributions as in Eq. 10 is also a Lévy distribution. The proba-
bility distribution f (Δj) also obeys a Lévy distribution:

	 [13]

Solving for Δmp self-consistently with the following equations:

	 [14]

our simple expression for the transition criterion obtained by con-
sidering the breakdown of the stability of localized states is 
therefore:

	 [15]

By construction, TFR and TNA are positive. The theory thus predicts 
that the surface crossing assists delocalization of the vibrational 
states, and provides a quantitative description for the shift of the 
transition boundary between localized and extended regime when 
two quantum surfaces are coupled nonadiabatically. In the section 
below, we provide numerical results from a family of models 
inspired by a specific biophysically interesting system to support 
the predictions here.

3.  Numerical Simulation for the BChl Dimer 
Exciton Transfer

Exciton transfer in BChl assemblies has been studied extensively 
both experimentally and computationally (47). Therefore, good 
estimates of the values of about 50 of the most relevant vibrational 
frequencies and the Huang–Rhys factors involved in excitation 
transfer as described in Section 1 are available for this system (48). 
To analyze the validity of the transition criterion TFR +TNA >1 for 
energy flow, we study a model inspired by the BChl dimer. Five 
modes in each monomer have been found to have particularly 
large Huang Rhys factors, and we include these in our model, 
together with the literature value of the nonadiabatic electronic 
coupling Vt = 363 cm−1 (49), which allows the electronic excitation 
to hop from one monomer to the other. The parameters of the 
system we use are shown in Table 1.

For this model, we can examine a large number of initial states “i” 
that span a range of vibrational excitation energies, and we can esti-
mate both the TFR value for vibrational energy flow and the TNA value 
for the nonadiabatic surface crossing. To calculate the parameter 
describing intramolecular energy flow on a single surface, TFR , we 
proceeded as in Section 2.3.2 of ref. 50, and Section 4.A. of ref. 20. 
The calculation of TNA in terms of frequencies {�i}, vibrational quan-
tum numbers {nj}, electronic vibration coupling strengths {�i}, and 
nonadiabatic couplings Vt is described in SI Appendix, Part C.

For all initial states in the vibrational Fock space, we explicitly 
integrate the time-dependent Schrödinger equation using a filtered 
basis set as was done in ref. 26 to determine whether a state is 
localized or delocalized. SI Appendix, section B shows the com-
puted survival probability P(t) for specific example states, from 

which we obtain dilution factors as the long-time average of P(t) 
(Eq. 7). These calculations cover a time span � = 5 ps, sufficiently 
long for P(t) to decay to its baseline in all the cases we have studied. 
For the 10-mode dimer model, which has fewer modes than the 
full BChl system, we studied higher-than-room temperature “ther-
mal” vibrational energies so that the effect of vibrational anhar-
monicity and TFR is evident. As we will see below, the energy flow 
threshold actually appears at an energy comparable to thermal 
energy for the natural system, which, owing to the size of its 
vibrational Fock space, can currently be treated only using the 
extended Logan–Wolynes analysis.

We can then compare the predicted dilution factors with the 
anharmonic threshold criterion TFR =1 for a sample of 80 vibra-
tional states at different energies when Vt = 0 . As can be seen in 
Fig. 2A, a sudden drop in the majority of the dilution factors 
coincides with the approach of TFR to 1, the facile energy flow 
threshold of the local random matrix model. For practical pur-
poses, we define a dilution factor �c that corresponds to the 
geometric mean between the maximum value (1) and the mini-
mum value, which is nonzero due to the finite size of our state 
space (51). For the distribution of σ values in Fig. 2A, we obtain 
�c = 0.04.

We then scanned the value of the nonadiabatic coupling 
strength Vt over the range from zero up to the estimated value of 
363 cm−1 for the BChl dimer (49). While doing this, we keep the 
anharmonic couplings V3 and scaling factors a constant, to study 
how the dilution factor varies separately with TFR and TNA . In 
Fig. 2B, we plot the resulting phase diagram in the plane of TFR 
and TNA for 80 states in a vibrational energy window between 
5,000 and 40,000 cm−1, allowing the nonadiabatic coupling to 
take on five values. The black line represents the boundary 
TFR =1− TNA , which is the transition boundary between localized 
and extended states obtained from the theory described in 
Section 2. As can be seen, the numerically determined transition 
regime corresponds well with the simple theoretical prediction of 
the threshold. The actual boundary is not sharp: Some localized 
states intermingle with extended states above the threshold and 
an occasional extended state is found below the threshold. The 
sources of this fuzziness include edge states that concentrate the 
energy in a single mode (11), the random character of resonances 
as expected in the local random matrix theory (36), and localiza-
tion above the threshold that may signal the presence of quantum 
“scars” (52–55) that are remnants of classical trajectories or reflect 
the symmetry of the Hamiltonian when �E = 0 (8).

It now becomes possible to compare the effect of nonadiabatic 
couplings reflected in TNA on the energy flow threshold relative to 
the purely anharmonic vibrational couplings case. For the 10-mode 
dimer model, Fig. 3A plots TFR (E ) vs. dimer energy E  for the 
electronically uncoupled molecules and TFR (E ) + TNA (E ) for the 
two monomers coupled by Vt = 363 cm−1. In the 10-mode model, 
the threshold occurs at about 15,000 cm−1 and shifts down in 

f (Δ) =

(

3Δmp

2π

)1∕2

Δ−3∕2exp

(

−3Δmp

2Δ

)

f (k) = 
(

f (Δ)
)

= exp

(

−(1− i)
(

3kΔmp

)1∕2
)

Δ
1∕2
mp =

(

Δmp,V

)1∕2

+
(

Δmp,t

)1∕2

.

Δmp =
(

�+Δmp

) [

TFR(E ; �js)+TNA(E ; �js)
]2

,

TFR(E ; �js) + TNA(E ; �js) = 1.

Table 1. Five vibrational frequencies of the BChl mon-
omer, with Huang–Rhys factors Si and displacement 
factors αi

f
i

890 727 345 1,117 1,158

S
i

0.028 0.0266 0.0161 0.0103 0.0103

�
i
=
√

S
i

0.169 0.163 0.127 0.101 0.101

V3 4.1 3.0 1.0 5.8 6.1

a 0.110 0.100 0.069 0.124 0.126
Data are taken from Table 2 in ref. 48. Below are shown the anharmonic constants and 
scaling parameters used for each mode, calculated using Eq. 5 in Ref. 13.
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energy by about 25% when the electronic coupling is turned on, 
allowing surface hopping. While our anharmonic Hamiltonian 
numerical simulation cannot be used to study molecules with more 
degrees of freedom by exact quantum dynamics, the analysis in 
Section 2 allows us to calculate the thresholds for much larger 
systems that are still more realistic. In Fig. 3B, we show the calcu-
lated TFR (E ) and TFR(E ) + TNA(E )  for the 100-mode model of 
the BChl dimer system (50 modes from ref. 48 in each monomer). 
As expected, the threshold for facile energy flow is now much 
lower, around 2,000 cm−1, and the downward shift of the threshold 
due to the additional nonadiabatic coupling still amounts to 25% 
of the energy. The thermal energy at room temperature of the 
100-mode system is 3, 632 cm−1 , which lies somewhat above the 
threshold of Fig. 3B. The dilution factor σ vs. the dimer energy E  
for the 10-mode dimer model is shown in Fig. 3C. We can see 
that the predicted shift of the quantum ergodic transition energy 
Ec (vertical lines) agrees well with the numerical computation. 
SI Appendix, Fig. S3 also shows how the dilution factor depends 
on TFR +TNA for different values of the nonadiabatic coupling.

We also analyzed the model with only nonadiabatic surface 
crossings on the many-dimensional surface (V3

 = 0). We compute 
the survival probability P(t) = |<t = 0|t>|2 of initial zero-order 
vibrational states |t = 0> using the Huang–Rhys factors shown in 
Table 1. The numerical results for the survival probability are 
shown in SI Appendix, Fig. S1. We find that energy flow indeed 
can occur between two multidimensional harmonic vibrational 
manifolds solely through the nonadiabatic electronic coupling as 
envisioned by Heller (14).

Finally, we examined how quickly increased anharmonicity 
turns on facile energy flow by varying both the cubic coupling 
strength V3 and the scaling parameter a that determine how rap-
idly couplings of quartic and higher order decrease with m . As 
shown in Fig. 4A, the near-edge state (where most vibrations are 
not excited) has a larger dilution factor and requires a stronger 
anharmonic coupling to mix with other states than does the inte-
rior state (where all modes are excited), although both states have 
a similar energy (11, 56). As shown in Fig. 4B, there is a threshold 

value of a required for the dilution factor to decrease as observed 
previously for a purely vibrational model system (26), indicating 
that higher-order couplings are important for the transition to 
free energy flow. The predicted dependence of energy flow on 
anharmonicity as a parameter could be tested in future simulations 
of the present Hamiltonian using ion trap quantum simulators 
(57, 58), where the nearly harmonic wells containing the ions 
could be detuned to introduce anharmonicity purposely.

4.  Discussion

Using analytical theory and exact quantum dynamics, we have 
explored the interplay between energy flow through intramolec-
ular Fermi resonances and electronic surface crossing. The simple 
theory based on the Logan–Wolynes treatment of local random 
matrix models turns out to locate reasonably well the transition 
from localized behavior to facile energy flow.

These ideas were explored in the context of a simplified model 
inspired by exciton transfer in the BChl dimer. The full implica-
tions of the present analysis for actual photosystems and other 
biological processes that involve surface crossing (such as electron 
and coupled proton–electron transfer) will require further inves-
tigation, but some qualitative ideas that have emerged are worth 
describing already.

The threshold for quantum energy flow is determined by both 
nonadiabatic surface crossing and by Fermi resonances in the range 
of thermal excitation energies for chromophores such as BChl. 
The Fermi-resonant contribution is dominant, even though such 
nonlinear resonances are not explicitly considered in most current 
models; instead, their effect is subsumed through the introduction 
of “dephasing” in relaxation theory treatments (59–64) or by 
broadening the bath spectrum in path integral treatments 
(65–68).

Above the threshold for facile energy flow, most quantum states 
in the complex chromophores are delocalized over many modes, 
but a few states appear to remain localized over a few vibrational 
motions. This coexistence of specifically regular and more chaotic 

Fig. 2. Phase diagram for the 10-mode dimer model calculation. Each monomer has five modes with frequencies and Huang–Rhys factors given in Table 1. In 
this computation, we keep the vibrational couplings the same as in the natural system and vary the nonadiabatic coupling V

t
 with values [0, 50, 100, 200, 363] cm

−1 . 
This is a realistic range for exciton transfer, as V

t
 =363 cm−1 is the value obtained from first-principles calculation (48). (A) Dilution factor � = ⟨P(t → ∞) ⟩ and T

FR
 

for 80 states when there is only anharmonic coupling V3 with the scaling factors a shown in Table 1. (B) Scatter plot for the dilution factors in the plane of T
FR

 
vs. T

NA
 . We choose the criterion �

c
= 0.04 to classify states as localized or extended; this value is the square root of the minimum dilution factor that can be 

obtained on the single surface without nonadiabatic coupling in our simulation. Here, the red dotted data represent states with dilution factor 𝜎 > 𝜎
c
 , and black 

inverted triangle data represent states with dilution factor 𝜎 < 𝜎
c
 . The solid black line is the theoretical prediction for the combined threshold T

FR
 = 1 – T

NA
. The 

initial states have similar levels of vibrational excitation in both monomers; setting the excitation energy of one monomer to zero yields a very similar phase 
diagram (SI Appendix, Part B and Fig. S2). See SI Appendix, Part C for the procedure we used to estimate T

FR
 and T

NA
.
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behavior, while familiar in finite dimensional quantum systems, 
(52) is generally thought to disappear in the infinite system limit 
(54, 69–71). This phenomenon of coexisting regular and quantum 
chaotic behavior may be part of the origin of the controversy 
concerning the amount of quantum entanglement and coherence 
in natural photosynthetic systems (72–77) as manifested in 

ultrafast nonlinear optical experiments. In such experiments, one 
of course must also account for the initial excitation event, as well 
as the energy and coherence transfer process (73). In much of the 
discussion of these experiments, it is assumed that vibrational and 
electronic excitations are clearly separable, but our argument sug-
gests that they can be intimately mixed together.

Fig. 3. (A) The transition factor T
FR
(E) for the single surface, and the transition factor T

FR
(E) + T

NA
(E) for the two surface systems (surface crossing amplitude 

V
t
= 363 cm

−1 ) vs. the dimer vibrational energy E (cm−1) for the 10-mode dimer model (five modes in each monomer). The anharmonic constants and scaling factors 
a
i
 for each mode “ i ” used in the computation are listed in Table 1. To estimate T

FR
 , the geometric mean value of the typical scaling factors: a = 0.10 was used. 

By assuming equal vibrational energy in each monomer, we can estimate T
FR
(E) and T

FR
(E) + T

NA
(E) vs. the dimer energy E (cm−1) (black curve). T

FR
(E) (blue) and 

T
FR
(E) + T

NA
(E) (red) for the 80 states simulated in Fig. 2 are also shown. (B) T

FR
(E) (black) and T

FR
(E) + T

NA
(E) (orange) for the two surface systems ( Vt = 363cm

−1 ) vs. 
the dimer vibrational energy E (cm−1) for 100-mode BChl dimer (50 modes in each monomer). We assume that the energy is statistically shared between monomers 
in making the estimates of T

FR
 and T

NA
 . We estimate anharmonic scaling factor a as described in ref. (13). (C) The dilution factor � vs. the dimer energy E for the 

10-mode dimer model. The dilution factor for the case V
t
= 0 (black, triangle) is shown with the transition energy E

c
= 15,900 cm

−1 ( T
FR
(E) = 1 ) for the single surface 

(black vertical line). The dilution factors for the case V
t
= 363 cm

−1 (red, square) are shown with the transition energy E
c
= 12,300 cm

−1
(

T
FR

(E) + T
NA

(E) = 1

)

 for 
the two surface systems (brown vertical curve).

Fig. 4. Dependence of the dilution factor � on the anharmonic coupling strength V3 and the scaling factor a. V
t
 is held constant at 363 cm−1. In both cases, the 

state close to the edge of state space mixes less even though both states are at similar total energy. (A) Dilution factor for a near-edge state (blue) and an interior 
state (orange) as a function of cubic coupling strength V3 with a = 0.25 (B) Dilution factor for a near-edge state (blue) and an interior state (orange) as a function 
of scaling factor a when there is a threshold between a = 0.2 and 0.3 where the dilution factor begins to decrease rapidly.D
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The models discussed here have far fewer modes than most real 
biological systems which in addition have enormous numbers of 
protein vibrational modes and solvent modes, although most of 
these will be rather weakly coupled. The dephasing effect of such 
modes can be treated by Logan–Wolynes self-consistent analysis 
which shows that such dephasing would further smear the tran-
sition (7). In the vicinity of the localization transition, their anal-
ysis suggests that external dephasing also can act to speed quantum 
transport as has recently been highlighted (75). While ultimately 
increased dephasing will lead to incoherent hopping, the present 
model calculations, showing coexistence of localized and extended 
states in natural systems, suggest that both of these effects of exter-
nal dephasing may be simultaneously manifested.

In the light-gathering apparatus, typically many more than two 
chromophores will be coupled together. It will be interesting to 
see how the Fermi resonance mechanism can play a role for those 
more extended systems. In addition, the static disorder of the basic 
chromophore energies from the protein environment must be 
superimposed on the effects in the present model.

While the nonadiabatic couplings are quite large for the exciton 
transfer problem, they are smaller for electron transfer between 
redox centers embedded in proteins. Nonetheless, the issue of the 

interplay of reaction kinetics, resonances, and internal quantum 
energy flow can be important (60). It may be especially relevant 
for strongly exothermic reactions which are usually assigned to 
the so-called abnormal regime of Marcus theory. We hope to 
address that problem using a generalization of the present treat-
ment for strongly asymmetric wells in the future.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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