
AQUATOPE: QoS-and-Uncertainty-Aware Resource Management
for Multi-stage Serverless Workflows

Zhuangzhuang Zhou
Cornell University

Ithaca, New York, USA
zz586@cornell.edu

Yanqi Zhang
Cornell University

Ithaca, New York, USA
yz2297@cornell.edu

Christina Delimitrou
MIT

Cambridge, Massachusetts, USA
delimitrou@csail.mit.edu

ABSTRACT

Multi-stage serverless applications, i.e., workflows with many com-
putation and I/O stages, are becoming increasingly representative
of FaaS platforms. Despite their advantages in terms of fine-grained
scalability and modular development, these applications are subject
to suboptimal performance, resource inefficiency, and high costs to
a larger degree than previous simple serverless functions.

We present Aquatope, a QoS-and-uncertainty-aware resource
scheduler for end-to-end serverless workflows that takes into ac-
count the inherent uncertainty present in FaaS platforms, and im-
proves performance predictability and resource efficiency. Aquatope
uses a set of scalable and validated Bayesian models to create pre-
warmed containers ahead of function invocations, and to allocate
appropriate resources at function granularity to meet a complex
workflow’s end-to-end QoS, while minimizing resource cost. Across
a diverse set of analytics and interactivemulti-stage serverless work-
loads, Aquatope significantly outperforms prior systems, reducing
QoS violations by 5×, and cost by 34% on average and up to 52%
compared to other QoS-meeting methods.

CCS CONCEPTS

·Computer systems organization→Cloud computing; ·Com-

puting methodologies→ Planning and scheduling.

KEYWORDS

Cloud computing, datacenter, quality of service, serverless comput-
ing, function-as-a-service, resource management, resource alloca-
tion, resource efficiency, machine learning for systems

ACM Reference Format:

Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2023. AQUAT-
OPE: QoS-and-Uncertainty-Aware Resource Management for Multi-stage
Serverless Workflows. In Proceedings of the 28th ACM International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, Volume 1 (ASPLOS ’23), March 25ś29, 2023, Vancouver, BC, Canada.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3567955.3567960

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9915-9/23/03. . . $15.00
https://doi.org/10.1145/3567955.3567960

1 INTRODUCTION

Serverless computing is becoming increasingly popular, due to
its ease of programming and maintenance, fast elasticity, and fine-
grained billing. Serverless simplifies management for users, since its
interface removes the need for users to explicitly configure virtual
machines (VMs) or containers. Serverless also avoids overprovision-
ing, as users only pay for the resources they use during execution.
For applications with high data-level parallelism and intermittent
activity, serverless can achieve much higher performance for the
same or lower cost.

Despite these benefits, serverless introduces several challenges,
especially when a service has to meet quality of service (QoS) re-
quirements in terms of execution time or tail latency. A lot of prior
work has focused on reducing the cold start overheads in server-
less, i.e., overheads associated with instantiating new containers
or VMs, and installing necessary dependencies [29, 31, 57, 62, 63].
While impactful, cold starts are not the sole reason behind degraded
performance in serverless. Another crucial issue the system has to
tackle is appropriate function-level resource management. With-
out a proper resource configuration, the function can suffer from
performance degradation and increased execution cost [65]. More
importantly, these two problems are closely correlated with each
other, as cold and warm starts lead to different function perfor-
mance, and require significantly different resources. For the system
to minimize cost, while satisfying QoS, we need to tackle both
challenges jointly.

Furthermore, serverless providers are increasingly providing
workflow programming model interfaces, where each serverless ap-
plication consists of multiple loosely-coupled functions in pursuit
of fine-grained scalability and modular development and deploy-
ment [6, 7, 65]. The challenges above are amplified for multi-stage
serverless workflows, where cascading cold starts across dependent
stages [26] and varied resource needs for each stage [65] make cold
start elimination and resource management even more challenging.
Finally, serverless is prone to high system-level noise due to the
interference from colocated workloads in FaaS deployments, which
further hinder performance predictability [57].

We present Aquatope, a QoS-and-uncertainty-aware scheduler
for multi-stage serverless workloads that jointly tackles the two
main challenges contributing to degraded performance and inef-
ficiency in Function-as-a-Service (FaaS): cold starts and function-
level resource allocation. Aquatope consists of two major compo-
nents, a dynamic pre-warmed container pool and a container resource
manager. The dynamic pre-warmed container pool uses a hybrid
Bayesian neural network to adjust the number of pre-warmed con-
tainers. The container resource manager leverages Bayesian Opti-
mization to search for a near-optimal resource configuration for

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou

each execution stage in a workflow. Aquatope uses a Bayesian ap-
proach to account for the noise and uncertainty that are prevalent
in FaaS platforms due to stochasticity inherent to function execu-
tion, load fluctuation, and interference from colocated applications.
Aquatope is a centralized controller, operates online, transparently
to the user, and introduces marginal overheads.

We implement Aquatope on OpenWhisk [3] and evaluate it
across a wide set of analytics and interactive multi-stage serverless
applications, including ML pipelines, video processing frameworks,
and social networks. In all cases, Aquatope outperforms prior em-
pirical and ML-driven approaches in performance and efficiency,
reducing QoS violations by 5× compared to prior work, and exe-
cution cost by 34% on average and up to 52% compared to other
QoS-meeting methods.

2 BACKGROUND AND MOTIVATION

2.1 Problem Statement

Many real-world serverless applications are implemented as multi-

stage serverless workflow in which incoming user requests invoke
sets of serverless functions that coordinate with each other to ex-
ecute a serverless workflow. Existing platforms provide various
composition mechanisms to control a workflow and transfer in-
termediate state across functions [4, 6, 7]. By splitting a complex
application into dependent but loosely-coupled functions, the appli-
cation benefits from fine-grained scalability, parallel execution, and
modular development [65]. At the same time, decoupling a server-
less application into multiple stages also introduces challenges
in resource management, including additional function instantia-
tion overheads, data transfer overheads, and varied resource needs
across execution stages.Without an appropriate framework in place,
multi-stage serverless workflows can experience QoS violations
and resource inefficiency.

Aquatope specifically targets such serverless workflows that
must meet pre-defined QoS constraints. Aquatope tackles two cor-
related aspects of serverless resource management: ensuring that
function instantiation overheads are minimal so that tasks do not
suffer from cold starts, and optimizing the resource configuration of
each stage to minimize cost while satisfying QoS. While Aquatope
is geared towards multi-stage serverless workloads, it can also be
applied to simpler applications with a single stage.

2.2 Challenges

Resource management for multi-stage serverless workflows faces
the following challenges.

Cold starts: Cold starts are one of the most studied overheads
associated with serverless [31, 54, 56, 63, 65]. A cold start invocation
occurs when a serverless application is triggered, but its function
instances are not yet loaded in memory. For the FaaS platform,
a cold start involves launching a new container (and/or a new
VM), setting up its runtime environment, and fetching and loading
necessary libraries and dependencies. This process can take a long
time relative to the short-lived function execution [31, 63].

Diverse resource requirements: Serverless functions vary in
functionality and are implemented with different libraries and run-
times. Their resource requirements also vary a lot [56, 65], and

without proper resource management, both performance and cost
can suffer. Existing FaaS platforms, including AWS Lambda [5],
Google Cloud Functions [10], and IBM Cloud Functions [12] re-
quire users to specify a memory limit for serverless functions, and
allocate CPU resources proportional to the amount of provisioned
memory, which can lead to CPU or memory overprovisioning.

Correlation of cold start and resource allocation: Cold starts
not only affect the function startup latency but also exacerbate
runtime performance degradation, as they can prevent a function
invocation from reusing its execution context [9], which caches
global variables (e.g., SDK clients, database connections, MLmodels,
etc.). In this case, the function is forced to execute the user-provided
initialization code to download data dependencies and initialize
runtime packages, etc. [31]. This leads to different runtime perfor-
mance and resource requirements for warm and cold starts, with
cold start function invocations requiring more resources to meet
the same performance target than warm start invocations. Without
eliminating cold starts, the resource manager is forced to strike
a balance between the performance behaviors of cold and warm
starts, leading to degraded performance and excess resources.

Multi-stage serverless workflow overheads: Serverless applica-
tion developers tend to decouple complex applications (e.g., ML in-
ference, interactive web service) into workflows of loosely-coupled
functions. Despite the advantages of fine-grained scalability and
modular development, the performance of such applications can
suffer for multiple reasons. First, the startup overhead is amplified
by cascading cold starts across dependent functions [26, 65]. Second,
resource requirements can vary a lot across the execution stages
of the same workflow. Without proper resource management for
each execution stage, the application would either fail to satisfy its
QoS and/or suffer from increased cost. Additionally, different func-
tion composition methods (e.g., asynchronous invocation, function
callback, function chaining, fan-in/fan-out, etc.) introduce more
performance unpredictability, which makes finding a near-optimal
resource configuration for the whole application more challenging.

Uncertainty in FaaS: Noise and uncertainty are inherent to FaaS
platforms. Serverless is well-suited for applications with fluctuating
workloads due to their fine-grained scalability and pay-as-you-go
pricing model [5]. A large fraction of serverless applications have
significant variability in invocation patterns, making it difficult to
provision appropriate resources for them in advance [31, 57]. In ad-
dition, due to their short execution time and fine granularity, cloud
providers tend to colocate serverless functions to higher degrees
than traditional cloud services. As a result, functions can suffer from
interference from colocated workloads and lead to unpredictable
performance [63, 65], which causes biased observations and im-
pairs the performance of sampling-based resource management
approaches [46, 49, 53].

2.3 Related Work

Mitigating cold starts: Cold start overheads have been studied
extensively, including pre-crafting virtual network interfaces [47],
restoring a function from a well-formed checkpoint image to skip
initialization [29], and prefetching a function’s working set of

AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless Workflows ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

memory pages [62]. Most FaaS providers keep container instances
loaded in memory for a fixed amount of time after a function ter-
minates [63]. AWS Lambda offers a provisioned concurrency [15]
configuration to pre-load a fixed number of containers to accelerate
function startup. FaaSCache [31] uses a caching-inspired container
eviction policy to terminate containers when the server is saturated,
but does not pre-warm containers. Shahrad et al. [57] proposed a
histogram-based policy to adjust a container’s keep-alive time. Sim-
ilarly, IceBreaker [54] uses a Fourier-transformation-based model
to predict future invocation patterns, and pre-warms function con-
tainers accordingly. These techniques can mitigate cold starts, but
are often not robust to fluctuating workloads, and are designed
for single-stage serverless applications, which are not prone to
cascading cold starts across dependent functions. Aquatope is com-
plementary to these proposals but focuses on reducing cold starts
for realistic, multi-stage serverless applications.

Resource scheduling for FaaS:Many FaaS resource schedulers fo-
cus on the storage side of serverless. Pocket [43] uses user-provided
workload hints to rightsize storage resources. Pu et al. [50] build
application-specific performance models to select the storage con-
figuration that achieves the desired cost-performance trade-off.
There are a few systems that address the compute side of serverless
management. Saha et al. [55] and Suresh et al. [61] use autoscal-
ing to adjust a container’s memory to satisfy a function’s latency
requirements. These systems are again designed for single-stage
applications, and do not handle the diverse needs of different exe-
cution stages.

QoS-aware cloud management: There has been extensive work
on resource managers that meet QoS for latency-critical cloud appli-
cations [27, 28, 34, 36, 64, 68]. PARTIES [25] showed that resources
of interactive services are fungible, which simplifies resource parti-
tioning when colocating multiple latency-critical jobs. CLITE [49],
RAMBO [46], and SATORI [53] showed that Bayesian Optimiza-
tion (BO) can identify resource configurations that meet QoS for
latency-critical jobs, maximize throughput for batch workloads,
and preserve fairness among colocated jobs. While these systems
improve performance and resource efficiency, they are designed
for long-running applications, and cannot be directly applied to
multi-stage serverless applications built with transient function
containers. Moreover, these approaches do not consider the noise
and uncertainty present in FaaS infrastructures, which can greatly
hinder traditional BO techniques.

3 AQUATOPE DESIGN OVERVIEW

Aquatope is a QoS-and-uncertainty-aware resource scheduler for
end-to-end, multi-stage serverless workflows. The design objective
of Aquatope is to meet the user-defined QoS of a multi-stage server-
less application, while using the minimum amount of resources.
To this end, Aquatope jointly tackles two correlated challenges in
serverless: (1) it maintains a dynamic pre-warmed container pool to
minimize cold starts and ensure most of the function invocations
are handled by warm containers, and (2) it employs a container

resource manager that allocates appropriate resources to each func-
tion, based on its warm-start performance behavior.

Container
Resource Manager

Container Pool
Scheduler

Pre-warmed
Container Pool

Multi-Stage Serverless
Application

Perf. Metrics

Adjust Size

Invocation
Log

Prediction
Model

Optimization
Engine

Resource
Allocation

Monitor

Distributed
Database

Candidate Configs

Sample

Deploy

Figure 1: System overview of Aquatope.

Both components are implemented with Bayesian approaches
to overcome the uncertainties present in FaaS platforms, includ-
ing workload fluctuations, performance unpredictability, and in-
terference from colocated applications. The dynamic pre-warmed
container pool uses a hybrid Bayesian neural network [66], which
provides accurate and high-confidence predictions of function in-
vocation rates, allowing Aquatope to adjust the number of pre-
warmed containers ahead of function invocations. The container
resource manager then builds surrogate models to approximate
the relationship between resource configurations and end-to-end
performance and cost. The engine uses customized Bayesian op-
timization to efficiently explore the resource allocation space to
find a configuration that meets the end-to-end QoS with minimal
overprovisioning. It arrives at a suitable configuration by balancing
exploration and exploitation, while adapting to noise in the cloud.

By integrating these two components, Aquatope jointly tackles
both challenges, and allows multi-stage serverless applications to
operate in a performant and efficient manner. The following two
sections describe each of Aquatope’s components in detail.

4 ELIMINATING COLD STARTS

Aquatope maintains a pool of pre-warmed containers to handle
incoming function invocations. Aquatope sizes the pre-warmed
container pool at runtime such that there are just enough warm
containers to handle incoming function invocations. Aquatope also
determines when to terminate a function’s container to reclaim
unused resources.

Since multi-stage serverless applications are built with diverse
runtimes and topologies, the optimal number of pre-warmed con-
tainers is application-specific. Aquatope uses a set of machine learn-
ing (ML) models to infer the total number of required containers
for each active serverless application over the next time interval,
and adjusts the number of different types of containers accord-
ingly. While several models can be applied towards this purpose,
Aquatope uses a hybrid Bayesian neural network to infer future
invocation rates, which achieves high accuracy, fast inference, and
agility to load fluctuations.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou

LSTM …LSTM LSTM LSTM LSTM LSTM…

𝐿

𝑍𝑥ଵ 𝑥ଵ 𝑥௧ 𝑥௧ 𝑥௧ାଵ 𝑥௧ା௞ିଵ
𝑥ො௧ାଵ 𝑥ො௧ାଵ 𝑥ො௧ା௞Encoder Decoder

𝑌
Concat

Prediction
Network

Figure 2: Aquatope’s hybrid Bayesian model for the dynamic

pre-warmed function container pool, consisting of a LSTM

encoder-decoder and a prediction network.

4.1 Time Series Prediction

The problem of predicting function invocation patterns can be for-
malized as follows: given a number of different types of active
function containers for a serverless workflow in the past 𝑡 time
windows {𝑥1, 𝑥2, ..., 𝑥𝑡 }, we need to predict the invocation pattern
for the next time window {𝑥𝑡+1}. The time window size is con-
figurable, and is set to 1 minute by default, which is the typical
timescale for container keep-alive times in FaaS platforms [3, 57].
External features, which are the time of day, time of week, and
function trigger types (HTTP, object storage, event hub, etc.), also
need to be integrated into the prediction model to improve accuracy.
Aquatope also accounts for the dependencies between functions
in a multi-stage workflow, by predicting the invocation pattern of
downstream containers in 𝑥𝑡+1, when it sees their upstream con-
tainers invoked in {𝑥1, 𝑥2, ..., 𝑥𝑡 }. This captures both probabilistic
and deterministic dependencies between execution stages, by pre-
dicting the expected and exact number of containers respectively.
Since load fluctuates and invocation patterns may change, it is also
important to incorporate uncertainty estimation to improve the
robustness of the model, and to ensure that the scheduler makes
reliable decisions and can recover from anomalies.

4.2 Hybrid Bayesian Neural Network Model

Classic timeseries prediction models (e.g., exponential smoothing,
ARIMA models, Theta method) usually require manual tuning to
configure the model and uncertainty parameters [42]. Moreover, it
is difficult to incorporate external features into these models, which
can be impactful to accuracy. Long Short Term Memory (LSTM)
models [41] have also gained popularity in timeseries prediction.
LSTM can capture long-term sequential dependencies in the data
and outperform traditional methods [44]. However, conventional
LSTM models cannot easily embed non-temporal external features
or incorporate noise and uncertainty into their predictions, which
is important for handling fluctuating workloads.

To overcome these problems and achieve generalizable and scal-
able prediction, we build a hybrid Bayesian neural network model.
The novelty of our Bayesian model is twofold. First, it can utilize ex-
ternal features, such as time of day, to forecast function invocations.
Second, it takes system noise into account when making predic-
tions, allowing it to provide reliable uncertainty estimation, which

is critical for fluctuating workloads. As shown in Fig. 2, the model
consists of two parts: (i) the Long Short-Term Memory (LSTM)
encoder-decoder, which serves as a feature-detection blackbox that
extracts a latent variable from the input timeseries; and (ii) the
prediction network, which infers the invocation pattern in the next
time window using the latent variable and external features. We use
Monte Carlo (MC) dropout [32] to approximate Bayesian inference
and quantify the prediction uncertainty.
LSTM encoder-decoder: Before training the prediction model, we
first construct and train the LSTM encoder-decoder to extract latent
features from a serverless trace, which contains information of the
historical invocation patterns. The LSTM encoder-decoder consists
of two LSTMs modules. The encoder processes the input workload
sequence (𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑡 }), and generates the latent variable
(𝑍), which summarizes its information. The decoder uses the ex-
tracted latent variable to produce the output workload sequence for
the upcoming 𝑘 windows {𝑥𝑡+1, 𝑥𝑡+2, ..., 𝑥𝑡+𝑘 }. The LSTM encoder-
decoder is constructed using stacked LSTM cells with two layers.
The encoder and decoder have 64 and 16 features in the hidden
states respectively; the network’s configuration is discussed below.
Prediction network: After training the LSTM encoder-decoder,
we use the LSTM encoder as an automatic feature-extraction black-
box. The last hidden state of the encoder is the latent variable 𝑍 .
Then, we train a prediction network to forecast the number of active
containers (𝑌) in the next time window, using 𝑍 as features. To fur-
ther increase the prediction accuracy, we concatenate the external
feature vector (𝐿) with 𝑍 , then feed it into the prediction network.
We build the prediction network using a multi-layer perceptron,
which consists of tanh activation functions and three fully con-
nected layers. The model parameters of the LSTM and prediction
network are selected based on the validation accuracy.
Bayesian inference: Incorporating noise and uncertainty into
the model is essential for accurate timeseries forecasting under
fluctuating load. To enable this, we leverage approximate Bayesian
inference. Due to its simplicity, generality and scalability, we use
MC dropout [32] to approximate Bayesian neural networks and
achieve epistemic uncertainty estimates, rather than training a de-
terministic model. We apply variational dropout to the encoder [33],
and regular dropout to the prediction network. By applying sto-
chastic dropouts to each hidden layer of the encoder and prediction
network, we can obtain the predictive mean and variance through𝑇
forward passes using different samples of model weights ({𝑊𝑡 }

𝑇
𝑡=1).

4.3 Prediction-Based Container Pool Manager

Aquatope adjusts the number of pre-warmed containers for the
next time window based on model predictions, by creating warm
containers in advance to accommodate incoming invocations, and
shutting down idle containers in time to save resources. The ad-
justment interval of the container pool is 1 minute, which is long
enough to hide the container instantiation overhead, and is the
typical time-scale for container keep-alive times in production FaaS
platforms [57]. The latency of the prediction model is below 10ms,
which is negligible compared to the adjustment interval of the
container pool.

AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless Workflows ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

5 OPTIMIZING PER-FUNCTION RESOURCES

Cold starts are not the sole reason for performance degradation in
FaaS platforms. It is also critical to ensure that the resources allo-
cated to each function are appropriate. The pre-warmed container
pool manager ensures that the majority of function invocations
are handled by warm containers, which simplifies function-level
resource allocation, narrowing it down to only considering the
warm-start performance behavior of serverless workflows.

Aquatope needs to consider the diverse resource requirements
of each function across execution stages. Manually deriving an an-
alytical performance model for a variety of applications is difficult.
On the other hand, exhaustively searching the entire configuration
space is time consuming and expensive, since the total number of
available configurations grows exponentially with the number of
stages in a workflow. Moreover, each configuration needs to be
profiled multiple times to get around the noise in FaaS platforms.

Rather than relying on manually-derived analytical models or
exhaustive profiling, Aquatope uses Bayesian Optimization (BO), a
data-driven approach, to learn the mapping from resource configu-
rations to performance and cost. BO has been effective in black-box
resource optimization for long-running cloudworkloads [19, 49, 53],
where application behaviors are not known to the cloud provider in
advance. However, previous BO-based resource managers did not
take noise and uncertainty into account, leading to increased search
time and cost, and degraded performance. Aquatope’s container
resource manager leverages an improved Bayesian Optimization
(BO) approach that considers noise and uncertainty and is robust to
biased observations and data outliers, resulting in fast convergence
and lower search overheads. Aquatope also exploits the scalability
of serverless workloads to accelerate exploration by enabling batch
sampling, rather than using individual samples as in previous work.

We first describe the BO algorithm workflow, and then discuss
the challenges that prevent conventional BO from being robust to
noise in FaaS platforms. Finally, we discuss Aquatope’s customized
BO that overcomes these challenges.

5.1 Bayesian Optimization Workflow

Problem formulation: Formally, for a multi-stage serverless ap-
plication, we want to find the resources (𝑐) that minimize execution
cost (𝑓), while satisfying the end-to-end QoS (𝜆); the formula is
shown in Eq. 1. The resource configuration includes the CPU, mem-
ory, and concurrency settings for all functions in the application,
consistent with the interface of major FaaS providers [5, 8, 10]. The
execution cost is linear to the CPU and memory time, consistent
with cost models in production serverless platforms [5, 8, 10]. The
optimization objective is:

min
𝑐

𝑓 (𝑐) subjects to ℓ (𝑐) ≤ 𝜆 (1)

𝑓 (𝑐) and ℓ (𝑐) are black-box functions, whose values (cost and
execution time respectively) can be observed by sampling resource
configuration 𝑐 . Collecting more samples increases the probability
of finding a good configuration, at the cost of increased exploration
overheads. However, the search process is under both time and
budget constraints, as shown in Eq. 2, in which 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 denotes
the budget towards sampling resource configurations {𝑐1, 𝑐2, ..., 𝑐𝑘 },
and 𝑇𝑡𝑖𝑚𝑒 indicates the time constraint for the exploration process.

Ex
ec

ut
io

n
Co

st

Resource Configuration

EI

Objective Function
Observations
Surrogate Model

95% Confidence Interval
Acquisition Function
Next Sample

Figure 3: Iterative process in Bayesian Optimization (BO).

𝐾∑︁

𝑘=1

𝑓 (𝑐𝑘) ≤ 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 and
𝐾∑︁

𝑘=1

ℓ (𝑐𝑘) ≤ 𝑇𝑡𝑖𝑚𝑒 (2)

Bayesian optimization: BO relies on two key components. First,
BO relies on a model that captures the relationship between input
and objective function to drive the optimization process, a model
commonly referred to as surrogate model in BO literature [58].
Second, BO leverages acquisition functions that determine the next
data point to be sampled based on the predictions of the surrogate
model. As shown in Fig. 3, the algorithm proceeds iteratively and in
each epoch, the surrogate model is updated with the data (resource
configuration and corresponding performance metrics) sampled in
the previous epoch, and the acquisition function leverages the up-
dated surrogate model to determine the next data point (candidate
resource configuration) to be sampled in the current epoch.

5.2 Challenges for Conventional BO

Conventional BO-based resource managers can suffer from in-
creased search time and cost, and degraded performance due to the
following challenges:

• Cloud noise: Previous BO-based resource managers assume
a noiseless setting [49][53][58]. However, the cloud is a noisy
environment. For example, resource interference and workload
fluctuation, can exacerbate performance unpredictability, and
result in biased observations of workload performance. Server-
less applications can also suffer from interference, leading to
misleading observations (outliers) in BO’s sampling process. In
this case, the naive BO workflow would suffer from model mis-
specifications caused by outliers, and the GP models would fail
to characterize the performance of the workflow.

• QoS constraint: Adding black-box inequality constraints like
QoS constraints to BO is challenging [58]. Prior BO-based re-
source managers [49, 53] rely on manually crafted objective func-
tions with a penalty term that is triggered upon QoS violation,
to guide the sampling process. However, manually crafted ob-
jective functions lack the flexibility to capture the behavior of
complex serverless workflows and can lead to slow convergence
and performance degradation.

• Batch sampling: Conventional BO samples and evaluates one
configuration at a time [58], limiting the speed of convergence.
For serverless applications, if we take advantage of the scalability
of serverless by sampling multiple configurations at a time, the

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou

exploration can be greatly accelerated, improving the resource
savings.

5.3 Customized Bayesian Optimization

We propose a customized BO which addresses the challenges above.
The algorithmic novelty of this customized BO is threefold

• First, different from previous approaches that ignore or underes-
timate cloud noises, Aquatope takes noise and uncertainty into
account by design, when searching for a near-optimal resource
configuration. To capture various forms of cloud noise, Aquatope
divides noises into two categories: one is inherent noise, which
can be approximated well by a normal distribution; the other
is irregular noise which does not follow a normal distribution.
The latter includes noise caused by resource contention or net-
working instability. We refer to the first type of noise as Gaussian
noise and to the second as non-Gaussian noise. Aquatope uses
noise-aware surrogate models and acquisition functions to ac-
count for Gaussian noise, and builds diagnostic models to prune
the non-Gaussian data outliers.

• Second, Aquatope effectively incorporates end-to-end QoS con-
straints into BO. Unlike conventional BO that relies on amanually
crafted objective function with a reactive penalty term that is trig-
gered when a QoS violation occurs, Aquatope takes a proactive
approach by building a surrogate model that predicts end-to-
end performance, and uses the predictions of the model to filter
candidate configurations that may violate QoS.

• Finally, instead of sampling one configuration at a time, Aquatope
employs batch sampling with customized acquisition functions,
substantially reducing the exploration time, without sacrificing
the quality of the selected resource allocation configuration.

Customized surrogate models: Aquatope uses Gaussian process
(GP) [51] as the surrogate model. GP is a suitable surrogate model
for resource exploration for several reasons. GP is non-parametric
and does not make any assumptions over the target black-box
function and is thus flexible enough to capture the relationship
between resources and performance. GP is also computationally
tractable and can be evaluated and updated cheaply and often [24].
Finally, GP can provide a measure of uncertainty for the predictions
of unsampled data points and naturally captures Gaussian noise.
Specifically, Aquatope uses fixed-noise GP models with Matérn(5/2)
as the covariance kernel [51] to model the Gaussian noise.

More importantly, instead of combining the cost and perfor-
mance targets with a manually crafted objective function [49, 53]
and building a single GP model for it, Aquatope builds independent
GP models for the cost target 𝑓 and the QoS constraint ℓ . The intu-
ition for separating the two is to allow the GP models to converge
faster and more accurately. The cost GP model captures the cost
reduction for an unsampled resource configuration, and the per-
formance GP model narrows down the search space, by discerning
the regions more likely to be feasible (i.e., satisfy QoS).
Customized acquisition function: Aquatope uses customized
acquisition functions to select the next batch of candidate configu-
rations, maximizing expectation of improvement (cost reduction)
over the current best observation. The classic expected improve-
ment (EI) acquisition function [60] provides a reasonable balance
between exploration and exploitation at a low computation cost.

Start with
bootstrapping configs

Anomalies
detection

Customized
acquisition function

Update surrogate
models

Database
Candidate
Configs

Container Resource
Manager

Invoke Serverless
Functions

Worker Server

Perf.
Metrics

Figure 4: Workflow of Aquatope’s container resource man-

ager.

However, EI selects one candidate in each iteration and assumes
noiseless observations. Instead, we leverage recent advances in
BO to use constrained noisy expected improvement (NEI) with
quasi-Monte Carlo integration (QMC) [45]. NEI takes Gaussian
observation noise into consideration and does not assume the best
observation is known, which would require noiseless observations.

We use the method in [37] to multiply NEI of reducing cost
with the probability of satisfying QoS, which is derived from the
performance GP model, to obtain the constrained NEI. The con-
strained NEI helps Aquatope to focus on the feasible configuration
space, where QoS can be met. QMC provides an approximation
of constrained NEI and its gradient, which do not have analytic
expressions, and enables batch optimization by iteratively maxi-
mizing NEI integrated over pending unobserved samples. We use
a batch size of 3, which speeds up the search without sacrificing
quality.
Anomaly detection: We refer to data outliers from non-Gaussian
noise as anomalies. Aquatope builds diagnostic models to prune
anomalies in the sampling process. For each sampled configuration,
we create a diagnostic GP model using data points other than the
one under evaluation. The diagnostic GP model computes the pre-
dictive mean and confidence interval to identify a possible anomaly.
If the observed value of that configuration falls outside the 95% pre-
dictive confidence interval, it is labeled as an anomaly. We evaluate
all observed configurations and add potential anomalies to the list.
Batch evaluation: After obtaining a batch of candidate configura-
tions, Aquatope sends requests to the pre-warmed container pool to
launch the serverless workflow, to ensure warm starts. Then it pro-
files all candidate configurations in parallel and evaluates their per-
formance. We use both QoS-preserving and QoS-violating sample
observations to update the surrogate models, because QoS-violating
configurations help the GP models to identify which regions are
more likely to meet QoS without actually sampling them.
Putting it all together: The complete workflow of the customized
BO engine is shown in Fig. 4. The BO engine starts with a few
randomly sampled configurations to warm up the surrogate models.
Then the BO engine proceeds iteratively. In each iteration, the BO
engine uses the customized acquisition functions to select a batch of
candidate configurations to sample that are likely to preserve QoS.

AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless Workflows ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

Worker Server

Dynamic Pre-warmed
Container Pool

Invoker

Container
Resource Manager

Container Pool
Scheduler

CouchDB

ControllerAPI Gateway

Message
Channel

Figure 5: Architecture of Aquatope’s implementation.

When the sampling finishes and performance metrics are retrieved,
the observed performance metrics are first sent to the anomalies
detection engine to filter misleading observations, which are then
used to update both the performance and cost surrogate models.
Incremental retraining: The anomaly detection mechanism also
allows Aquatope to detect changes in the performance behavior
of serverless workflows, when the observed performance metrics
deviate from the model predictions. These deviations can be caused
by changes in the input workload, function updates, etc. In this
scenario, Aquatope performs incremental retraining, and updates
the model by collecting new samples using a sliding window, and
gradually adapts to changes in the application behavior.

6 SYSTEM IMPLEMENTATION

Aquatope is built over Apache OpenWhisk [3]; a widely-used open-
source FaaS platform that powers IBM’s Cloud Functions [12]. Fig. 5
shows Aquatope’s implementation.
OpenWhisk architecture: The API gateway of OpenWhisk is im-
plemented with NGINX [17]. The backend of OpenWhisk consists
of controllers and invokers that scale horizontally, with one invoker
deployed per worker server. Function invocations are forwarded to
a controller, which chooses an invoker to execute the invocation by
considering invoker capacity and execution history. The invocation
is sent to the invoker through a message channel implemented
with Kafka [2]. Function implementations, invocation histories,
execution results, and statistics are stored in CouchDB [1].
Resource scheduling: By default, OpenWhisk allocates a relative
share of CPU proportional to the amount of memory provisioned for
each function container. To implement Aquatope, we modified the
resource scheduling mechanism of OpenWhisk to decouple CPU
and memory resource allocations, and support CPU-limit-based
resource scheduling.
Dynamic pre-warmed container pool: Similar to AWS Lambda’s
provisioned concurrency [15], OpenWhisk’s invoker maintains a
pool of pre-warmed containers (stem cell) for heavily-used func-
tions. By default, the configuration of the pre-warmed container
pool is static and pre-defined, and all worker servers share the same
configuration. We modify the controller and invoker to support
dynamic adjustment of the pre-warmed container pool, making
it worker-server specific, and configured via the controller for all
managed invokers (or via the invoker directly). The load balancer
in the controller is aware of the pre-warmed containers and routes

API

Gateway

Object

Detection

Vehicle

Recognition

Human

Recognition

MinIO

Frontend

Function

Database

Image

Processing

Figure 6: ML pipeline architecture.

API

Gateway

Video

Processing
Decode

Scene

Change

Face

Recognition

Draw

Box
WatermarkEncode

MinIO

Frontend

Function

Database

Figure 7: Video processing framework architecture.

function invocation requests to the supporting invokers accord-
ingly.
Container pool scheduler: Aquatope runs an independent ser-
vice to control the pre-warmed containers. It fetches metadata for
the serverless applications requiring pre-warmed resources, and
their invocation histories from CouchDB. For each application, the
scheduler trains the prediction model, and uses it to adjust the
dynamic pre-warmed container pool. The hybrid Bayesian NN is
implemented with PyTorch [18]. The scheduler makes decisions in
each time interval and sends the updated container pool configura-
tions to the invokers.
Container resource manager: Aquatope aims to find a near-
optimal configuration for a serverless application. When a new ap-
plication is registered, Aquatope obtains its metadata and QoS from
CouchDB, and starts the optimization process. The GP models are
implemented using GPyTorch [38] and the optimization workflow
is implemented in BoTorch [23]. The engine samples the candidate
resource configurations on the worker servers. The execution re-
sults and performance metrics are fetched from CouchDB. After
selecting a near-optimal configuration, the engine sends messages
to the controller to update the configuration of the application.

7 METHODOLOGY

7.1 Applications

Generic function workflows:We first implement several generic
function workflows using the Apache OpenWhisk Composer [4],
to combine multiple synthetic serverless functions into multi-stage
workflows. We create a function generator to synthesize config-
urable resource-intensive functions that emulate varying CPU and
memory workloads. We generate two workflows which are often
present in multi-stage workflows: Chain and Fan-out/Fan-in. In
Chain, a sequence of functions executes in a specific order. The

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou

Post
StorageAPI

Gateway

User
Timeline

Memcached
MongoDB

Home
Timeline Redis

Social
Graph

Media
Filter

Compose
Post

Media

Memcached MongoDB

Text
Filter

Text User
Mention

Frontend

Function

Caching

Database

Unique
ID

User

Memcached
MongoDB

Memcached
MongoDB

Memcached
MongoDB

Figure 8: Serverless social network architecture [35].

output of one function is fed to its downstream function. In Fan-
in/Fan-out, the workflow executes multiple functions in parallel,
and only returns when the last child completes after some aggrega-
tion.

ML pipeline:We implement an ML pipeline which serves as the
backend of a parking lot security system, trying to recognize hu-
mans and vehicles. Fig. 6 shows the architecture of the ML pipeline.
The image recorded by the parking lot security camera is uploaded
to the object store and triggers the ML pipeline. The pipeline per-
forms object detection [39] and the labeled images are uploaded to
the object store, with vehicle and human recognition being invoked
in parallel.

Video processing framework:We implement a serverless video
processing framework similar to Sprocket [20]. The input video
URLs are fetched and decoded into fixed-length frames. Then dif-
ferent function pipelines are invoked and the video chunks are
processed in parallel. Fig. 7 shows the framework’s architecture.
We use MinIO [16] as the ephemeral storage for the video frames
for each stage.

Social network:Weuse a serverless implementation of the broadcast-
style Social Network in DeathStarBench [35]. Fig. 8 shows the archi-
tecture of the serverless implementation of the service. Users can
create posts embedded with text, media, links, and tags, which are
then broadcast to all their followers. The texts and images uploaded
by users go through the text-filter and image-filter functions. Con-
tents violating the service’s ethical guidelines are rejected. Users
can also read posts on their timelines. The backend usesMemcached
and Redis for caching, and MongoDB for persistent storage. We
use the socfb-Reed98 Facebook network dataset [52] as the social
graph, with 962 users and 18.8K follow relationships.

7.2 Workload Generation

We use the Locust [14] load generator to emulate real user traffic.
We generate custom-shaped loads based on scaled-down invoca-
tion pattern traces from the Azure Function Dataset [57]. Since the

Azure dataset does not contain traces of Azure Durable Functions
(the workflow engine for composing function logic) [7], we use the
function invocation traces to emulate workflow invocation patterns.
Within each one-minute interval provided in the trace, we use a
Poisson process to generate workflow invocation traffic with an
exponential distribution of inter-arrival times. We scale the invoca-
tion rate proportionally so that the maximum CPU utilization in the
cluster does not exceed 70%, which is in accordance with the CPU
utilization in the Google and Alibaba production clusters [59], and
the Azure Function cluster [67]. This workload generation method
is consistent with the methodology in [57]. The load generators
and functions are never physically co-located on a server.

7.3 Server Cluster

We deploy Aquatope to a dedicated local cluster with five, 2-socket,
40-core servers using Intel x86 Xeon E5s with 128GB RAM each,
and two 2-socket, 88-core servers using Intel Gold 6152 processors
with 188GB RAM each. Each server is connected to a 40Gbps ToR
switch over 10Gbe NICs. All machines run Ubuntu 18.04.3 LTS. We
use one of the 40-core servers to host the controller, API gateway,
CouchDB and other system components, including Aquatope. Each
of the remaining servers hosts an invoker and maintains a dynamic
pre-warmed container pool to run the functions using Docker.

7.4 Comparison Baselines

We compare Aquatope with multiple strategies that mitigate cold
starts and optimize resource allocations. In terms of reducing cold
starts, we compare against (1) the fixed keep-alive policy used by
most FaaS providers [5, 8]; (2) Apache OpenWhisk’s reactive-stem-
cell policy [11], which enables autoscaling for pre-warmed contain-
ers; (3) FaaSCache’s container eviction and dynamic auto-scaling
policy [31]; (4) histogram-based container keep-alive policy in [57],
which uses historical function inter-arrival time to dynamically
adjust the keep-alive time; (5) Icebreaker [54], which uses Fourier
Transformation to predict and pre-warm function containers based
on historical invocation patterns.

For resource management, we compare Aquatope with (a) au-
toscaling techniques [55, 61], that dynamically adjust a container’s
CPU and memory to match the function’s latency requirements;
(b) a random-search-based tuning system [40]; and (c) CLITE [49],
which uses a BO-driven approach to search for a near-optimal re-
source configuration that minimizes the cost while satisfying QoS.
We modify CLITE’s score function to make it applicable to multi-
stage serverless applications. Details are provided in Section 8.2.

8 EVALUATION

We first evaluate Aquatope’s two key components (dynamic pre-
warmed container pool and container resource manager) separately,
and then perform an end-to-end evaluation that includes both com-
ponents.

8.1 Dynamic Pre-warmed Container Pool

Prediction model accuracy:We first evaluate the accuracy of the
hybrid Bayesian NN used to predict the number of pre-warmed
containers in Aquatope, by measuring its average accuracy across
different serverless workflows and invocation patterns. We also

AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless Workflows ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

Table 1: Prediction accuracy measured in SMAPE.

Prediction Prediction Models

Error Fixed Keep-Alive ARIMA LSTM Aquatope

SMAPE 24.5% 18.6% 9.5% 5.7%

Ke
ep

Au
to

-
sc

al
e

Hi
st

Fa
aS

Ca
ch

e
Ice

-
Br

ea
ke

r
Aq

ua
-

to
pe

0

10

20

30

40

50

Co
ld

 S
ta

rt
(%

)

(a) Function cold starts.

Ke
ep

Au
to

-
sc

al
e

Hi
st

Fa
aS

Ca
ch

e
Ice

-
Br

ea
ke

r
Aq

ua
-

to
pe

0

20

40

60

80

100

Pr
ov

isi
on

ed
 M

em
or

y
(%

)

(b) Provisioned memory time.

Figure 9: Aquatope’s dynamic pre-warmed container pool

outperforms other empirical and data-driven approaches.

compare Aquatope’s model with three alternatives: (1) fixed Keep-
Alive: A naïve model that uses the number of invoked containers in
the last time window as the prediction for the next. (2) ARIMA [42]:
Auto-Regressive Integrated Moving Average, a classic timeseries
prediction model used in Microsoft Azure’s łServerless in the Wildž
system [57], and (3) LSTM [41]: a vanilla LSTM model with similar
configuration as our hybridmodel, but without considering external
features, such as time of day/week and function types, or taking
uncertainty into account. We use the same training dataset for all
systems and evaluate performance on a separate test dataset.

Table 1 shows the Symmetric Mean Absolute Percentage Error
(SMAPE) of the four models across all workflows in terms of pre-
warmed vs. required containers, a widely used metric in time series
prediction [69]. Aquatope’s hybrid model significantly outperforms
all other alternatives, with a 40% reduction in prediction error
compared to the second best model, the vanilla LSTM. Our proposed
Bayesian NN outperforms fixed Keep-Alive and ARIMA because
these simple analytical models do not fully capture the dynamic
invocation pattern, and it outperforms the vanilla LSTM because it
uses information-rich external features as input, and also takes into
account cloud noise and uncertainty when making predictions.

Eliminating cold starts:We now evaluate the cold start elimina-
tion approach in Aquatope compared to previous work. The results
are shown in Fig. 9a.

The fixed Keep-Alive policy keeps containers alive for another
10 minutes after executing the last invocation, and the resulting
the cold start rate is 51%. The autoscaling policy [11, 13] adjusts
the number of pre-warmed containers based on utilization, and
achieves cold start rate of 44%. However, autoscaling relies on
reactive feedback control, and cannot adjust the containers fast
enough, when load fluctuates rapidly. FaaSCache [31] performs
similarly to autoscaling. This is expected since FaaSCache’s con-
tainer eviction policy is only triggered when server resources are
exhausted, and is not designed for typical cloud deployments, where
resources are plentiful, as is the case in the Azure function traces

0 1 2 3 4
Coefficent of Variation

0
10
20
30
40
50

Co
ld

 S
ta

rt
(%

)

IceBreaker Aquatope

Figure 10: Aquatope outperforms IceBreaker, the best-

performing previous work for cold start elimination, for

input workloads with different coefficients of variation (CV).

A CV greater than 1 suggests a large variation in the inter-

arrival time of workflow invocations. Aquatope achieves

higher benefits for highly fluctuating loads because it ac-

counts for noise and uncertainty.

100 125 150 175 200 225 250 275 300
Time (min)

20

40

60

80

100

M
em

or
y

Si
ze

 (G
B)

Actual
Aquatope
AquaLite

Figure 11: Aquatope’s dynamic pre-warmed container pool

adapts to fluctuating workload better than the AquaLite that

does not account for uncertainty.

we use [57]. Therefore, FaaSCache falls back to a conservative dy-
namic auto-scaling policy. The histogram-based method in [57] and
IceBreaker [54] use the function invocation inter-arrival time dis-
tribution to predict future invocations, and dynamically pre-warm
and keep-alive containers. They outperform autoscaling and further
eliminate 13%ś17% of cold starts. However, neither the histogram
model nor IceBreaker’s Fourier-transformation-based model can
capture complex timeseries patterns nor do they exploit external
features, including time of day/week, to improve accuracy.

Aquatope uses the hybrid Bayesian model to account for both
timeseries information and external features, and eliminates 24%
more cold starts than IceBreaker, resulting in a cold start rate of
less than 4%.

Reducing over-provisioned memory: Although pre-warming
containers reduces cold starts, holding containers in memory for
too long wastes resources. Fig. 9b shows the relative aggregate pro-
visioned memory time for each approach. We use the same resource
configuration for serverless containers across all approaches for a
fair comparison.

Autoscaling increases the pre-warmed containers in large steps
to satisfy performance, but reduces them in much smaller steps
when container utilization is low. However, the temporal bursts
common in serverless invocations can lead to over-provisioning
of pre-warmed containers, which can take a long time to reclaim

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou

20 40 60 80 100
Search Cost (% Budget)

120

140

160

Ex
ec

ut
io

n
Co

st
 (%

 O
ra

cle
) Chain

20 40 60 80 100
Search Cost (% Budget)

100

120

140

160

180

Ex
ec

ut
io

n
Co

st
 (%

 O
ra

cle
) Fan out/in

20 40 60 80 100
Search Cost (% Budget)

125

150

175

200

Ex
ec

ut
io

n
Co

st
 (%

 O
ra

cle
) ML Pipeline

20 40 60 80 100
Search Cost (% Budget)

100

125

150

175

200

225

Ex
ec

ut
io

n
Co

st
 (%

 O
ra

cle
) Video Processing

20 40 60 80 100
Search Cost (% Budget)

150

200

250

Ex
ec

ut
io

n
Co

st
 (%

 O
ra

cle
) Social Network

Random Autoscale CLITE Aquatope

Figure 12: Iteratively searching for a near-optimal configuration across two synthetic and the three end-to-end workflows.

resources. As a result, the provisioned memory time of autoscaling
is 5% higher than for Keep-Alive. IceBreaker reduces memory time
by 25% compared to Keep-Alive by terminating pre-warmed contain-
ers right after invocations complete. Aquatope’s hybrid prediction
model allows it to make fine-grained and timely adjustments to
the container pool, and reduces memory time by 23% compared to
IceBreaker.

Handling fluctuating load:Aquatope’s dynamic pre-warmed con-
tainer pool is designed to be noise-aware, making it robust to fluctu-
ating workloads. For the Azure dataset we use, we look at the ben-
efits of Aquatope compared to the best-performing previous work,
IceBreaker [54], for loads with different coefficients of variation
(CV) (standard deviation divided by the mean), as shown in Fig. 10.
CV greater than 1 indicates significant variability in inter-arrival
time [57]. For traces with CVs close to 0, Aquatope yields marginal
improvement over IceBreaker. For traces with CV=1 to 4, Aquatope
reduces 13%ś41% more cold starts than IceBreaker, demonstrating
the effectiveness of Aquatope’s noise-aware approach. In the Azure
dataset, more than 40% of invocation traces have CVs greater than 2,
which highlights the high variability present in FaaS environments.

To further demonstrate the benefits of incorporating noise and
uncertainty into the Bayesian prediction model, we also compare
Aquatope with a simplified implementation without the uncer-
tainty estimation of Sec. 4.2, referred to as AquaLite. The results
are shown in Fig. 11, which shows the aggregate container memory
provisioned by AquaLite and Aquatope over time, under a fluctuat-
ing load. Thanks to the uncertainty estimation, Aquatope is robust
to fluctuating workloads and adjusts the pre-warmed container
pool more accurately than AquaLite, reducing 3% more cold starts
and saving 8% more provisioned memory.

Overhead: Aquatope’s container pool scheduler makes adjustment
to pre-warmed containers asynchronously, off the critical path, and
does not impact the latency of function invocations. Training the
hybrid model with a week’s trace from Azure Function Dataset [57]
takes 50s, which can easily accommodate retraining if needed. The
latency of the prediction is below 10ms, which is marginal compared
to the adjustment interval of the container pool.

8.2 Container Resource Manager

Resource efficiency of Aquatope: We first evaluate the resource
efficiency of Aquatope’s container resource manager, by comparing

100

150

200

Ex
ec

ut
io

n
Co

st

(%
 O

ra
cle

CP
U

Ti
m

e)

Random Autoscale CLITE Aquatope

Chain Fan-out/in ML
Pipeline

Video
Processing

Social
Network

100

150

200
Ex

ec
ut

io
n

Co
st

(%

 O
ra

cle
M

em
or

y
Ti

m
e)

Figure 13: Aquatope’s resource manager finds a near-optimal

resource configuration across multi-stage serverless applica-

tions.

it with other resource mangers, including Random [40], Autoscal-
ing [21, 22] and CLITE [49], in which Random is the baseline pol-
icy that randomly selects sample configurations, Autoscaling is a
widely adopted resource manager than adjusts resource allocation
based on usage, and CLITE is the state-of-the-art BO-driven cloud
resource manager that uses a manually crafted objective function
to capture the goal of meeting QoS for latency-critical jobs, while
maximizing performance for background jobs. We adopt CLITE to
the FaaS setting by rewriting its objective function to minimize cost
while satisfying QoS. In our experiments, a QoS violation is defined
as failing to meet the end-to-end latency requirement of a serverless
workflow. The QoS constraint is chosen to be the latency before
saturation is reached, consistent with previous work [25, 68]. We
have also conducted experiments with more or less conservative
QoS settings and arrived at similar conclusions.

Fig. 13 shows the mean aggregated CPU and memory time of
different serverless workflows, under different resource managers.
Experiments are repeated 30 times, to account for system noise.
For random search, we take the best of all 30 trials for evaluation,
because each trial does not always find a QoS-satisfying configura-
tion, consistent with how random search is used in prior work [19],
and all the other resource managers successfully meet QoS. Under

AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless Workflows ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

1 3 5
Number of Stages (N)

100

125

150

Ex
ec

ut
io

n
Co

st
(%

 O
ra

cle
)

CLITE Aquatope

(a) Function chain.

0 0.5 1
Coefficent of Variation

100

120

140

160

Ex
ec

ut
io

n
Co

st
(%

 O
ra

cle
)

(b) Varied execution time.

Figure 14: Aquatope’s resource manager outperforms

CLITE [49], the previous best-performing BO-driven ap-

proach, for (a) a function chain with varied number of stages,

and (b) a single function workflow with varying degrees of

execution time variability.

the same time budget for resource exploration, Aquatope outper-
forms all other approaches across examined applications, and signif-
icantly reduces CPU and memory time. On average, Aquatope finds
a near-optimal configuration with cost within 5% of the optimal
configuration obtained by ORACLE, which exhaustively searches
the entire allocation space. As shown in Fig. 13, Aquatope is not
only capable of managing resources for simple applications (e.g.,
Chain), but can also find near-optimal configurations for complex
applications (e.g., Social Network), whose functions vary widely
in resource needs. Aquatope outperforms the second best resource
managers, using 25%ś62% less CPUs and 18%ś51% less memory.

Specifically, Random selects a number of configurations to ex-
plore randomly for all stages and never learns from previous trials.
In contrast, Aquatope uses a Gaussian process to model the per-
formance of an application based on sampled configurations, and
uses prior knowledge to explore the space. Autoscaling leads to in-
creased cost for two reasons. First, it does not take into account the
correlation between execution time and cost of serverless workflow.
Adding resources can accelerate the computation but also raises
the cost per unit of execution time. Second, it adds resources to all
containers belonging to a serverless workflow, rather than only to
those that need more resources, leading to overprovisioning. CLITE
also results in sub-optimal cost because its manually crafted objec-
tive function does not capture the behavior of complex serverless
workflows, and often gets trapped in local optima.

Fast and accurate convergence:With the customized surrogate
models and acquisition functions, Aquatope is able to converge
faster and more accurately than other BO-based resource managers,
like CLITE, by proactively identifying configurations that may vi-
olate QoS and avoiding sampling them. In addition, Aquatope’s
batch exploration also yields a substantial reduction in exploration
time. As a result, compared to CLITE, Aquatope only spends 31%
wall-clock time on average, and can find a configuration with 36%
lower cost. Aquatope also converges more accurately, yielding bet-
ter resource configurations. Fig. 12 shows the resulting cost of all
evaluated resource managers for all serverless workflows at differ-
ent budget levels, and Aquatope constantly converges to the most
efficient resource configurations.

End-to-end QoS constraint: Aquatope handles end-to-end QoS
constraints for complex workflows better than CLITE, which is the
best-performing and most closely related previous work. CLITE

0 1 2 3 4
Noise Level

120

140

160

Ex
ec

ut
io

n
Co

st
(%

 O
ra

cle
)

CLITE AquaLite Aquatope

Figure 15: Aquatope’s robustness to cloud noise.

10 20 30 40 50 60
Number of Samples

40

60

80

100

Pe
rfo

rm
an

ce
(%

 O
ra

cle
)

Figure 16: Aquatope adapts to changes in the performance

model of the serverless workflow.

is designed for colocated monolithic applications or multi-tier ap-
plications with defined per-tier QoS targets. However, defining
per-tier QoS is a major challenge in real deployments, and most
production services do not have per-tier targets. They instead define
QoS only based on end-to-end latency. CLITE’s hand-crafted objec-
tive function cannot capture the end-to-end performance behavior
of complex workflows consisting of multiple functions, whereas
Aquatope’s independent performance model treats the workflow
as a whole, and converges faster and more accurately. As shown
in Fig. 14a, when increasing the number of chained functions in
a synthetic workflow, Aquatope outperforms CLITE in terms of
execution cost by 7%ś39%. This indicates that Aquatope is bet-
ter at handling serverless workflows with complex topologies and
end-to-end QoS constraints.

Resilience to cloud noise: A major challenge when applying
Bayesian Optimization to FaaS is the noise in cloud environments,
due to e.g., resource contention. If noise is not handled appropri-
ately, resource managers can violate QoS and/or waste resources.
While baseline BO can account for some noise, that is not suffi-
cient to capture the variability of FaaS infrastructures. Aquatope’s
resource manager uses customized noise-aware BO to find near-
optimal resource configurations under noisy observations. We use
a synthetic single function workflow with different degrees of exe-
cution time variability to evaluate the performance for Aquatope
in a noisy environment. Fig. 14b shows that Aquatope outperforms
CLITE in execution cost by 7%ś45% as the inherent noise of the
function increases.

As shown in Fig. 15, we further evaluate the robustness of
Aquatope to irregular system noise by introducing intermittent
background jobs [30, 48] on the same worker servers, causing noise
and data outliers in the sampling process of the ML pipeline. The
noise level represents the frequency and intensity of the background

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou

100

120

140

160

180

CP
U

Ti
m

e
(O

ra
cle

 %
)

100

120

140

160

180

M
em

or
y

Ti
m

e
(O

ra
cle

 %
)

Resource Manager Only
Prewarm + Resource Manager

Figure 17: The performance impact of not having the pre-

warmed container pool.

jobs. As the noise level increases, the number of data outliers in-
creases and the resource manager is more likely to suffer from
biased observations. Fig. 15 illustrates that Aquatope is still able
to achieve a near-optimal configuration in the presence of noise
and outliers, while CLITE experiences 37ś64% increase in cost.
We also compare Aquatope with AquaLite, a simplified version
of Aquatope without the noise-aware components, and find that
AquaLite experiences a 10ś33% higher cost compared to Aquatope.
This demonstrates the effectiveness of Aquatope by incorporating
uncertainty into the performance model and proactively pruning
data outliers.

Automatic retraining: Aquatope can detect and adapt to changes
in performance behavior, which can be caused, for example, by
changes in the function inputs or function updates. As shown in
Fig. 16, Aquatope detects the change in performance behavior when
the format and size of the inputs for the video processing pipeline
change (marked by red lines), and updates themodel dynamically by
collecting new samples using a sliding window approach. Aquatope
adapts to changes quickly with around 20 new samples within 2
minutes, and is always able to find a new near-optimal resource
configuration.

Overhead: Aquatope’s container resource manager is not in the
critical path of function invocations. Functions continue to exe-
cute using their previous resource allocation configuration until
Aquatope updates them. The computational overhead of Aquatope
is negligible. The time to find the next batch of candidate configura-
tions is less than 100ms, which can be masked by the time needed
to evaluate the current samples.

8.3 End-to-End Performance

We first demonstrate that cold starts and resource usage are corre-
lated, and therefore, cold start elimination and resource manage-
ment need to be tackled jointly. Then we perform an end-to-end
evaluation of Aquatope, including both the pre-warmed container
pool and resource manager.

We demonstrate the aforementioned correlation, by showing
that the resource manager cannot achieve the desired performance
without reducing the resource allocation search space to correspond
only to warm start containers. Fig. 17 shows the resulting average
CPU and memory time of a fully fledged Aquatope with both the
pre-warmed container pool and resource manager, and a simplified
Aquatope with only the resource manager in place, compared to
the offline oracle. Compared to the fully fledged Aquatope, the

0
20
40
60
80

100

Qo
S

Vi
ol

at
io

n
(%

)

0

25

50

75

100

CP
U

Ti
m

e
(%

)

0

25

50

75

100

M
em

or
y

Ti
m

e
(%

)

Autoscale IceBreaker+CLITE Aquatope

Figure 18: End-to-end performance analysis for Aquatope

compared to autoscaling policies and a combination of the

best prior work.

simplified version experiences a 64% increase in CPU time and 28%
increase in memory time. This is due to the diverse behavior of cold
and warm starts leading to different resource requirements, and
the simplified version of Aquatope being forced to strike a balance
between them, leading to degraded performance. This indicates the
necessity of jointly tackling cold starts and resource management
in FaaS.

We then perform an end-to-end analysis of the full-fledged
Aquatope. Specifically, we compare Aquatope to a framework us-
ing the autoscaling-based FaaS resource manager [11, 13, 61] that
scales both pre-warmed containers and allocated resources, and a
framework combining the container pre-warming mechanism in
IceBreaker [57] with the BO-based resource manager in CLITE [49]
(IceBreaker+CLITE), which are the best-performing alternatives
based on Section 8.1-8.2. In our experiments, the average CPU uti-
lization is 43% and the average memory utilization is 29%, which is
consistent with the resource utilization of production clusters [59,
67]. Fig. 18 shows the total CPU and memory time of all evaluated
frameworks. IceBreaker+CLITE outperforms autoscaling by reduc-
ing 13% of QoS violations, 19% of CPU time, and 25% of memory
time. In contrast, Aquatope:

(1) Outperforms other approaches, eliminating another 27%ś
39% of the QoS violations, and bringing the total to below
3%.

(2) Significantly reduces CPU and memory usage, reducing CPU
time by 37%ś55%, and memory time by 41%ś64%.

Aquatope achieves these benefits by jointly tackling cold start elim-
ination and resource management, and using Bayesian models that
adjust to the behavior of a given application, while remaining gen-
eral and robust to cloud noise.

9 CONCLUSION

We have presented Aquatope, a QoS-and-uncertainty-aware re-
source manager for multi-stage serverless workflows. Aquatope
jointly tackles the challenges of cold starts and resource manage-
ment; the former through the use of a hybrid Bayesian neural
network and the latter using customized Bayesian Optimization.
Across a diverse set of real-world serverless applications, Aquatope
meets QoS, while significantly reducing the amount of required
resources.

AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless Workflows ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

ACKNOWLEDGMENTS

We sincerely thank the anonymous shepherd for providing valuable
feedback while shepherding our paper. We also sincerely thank Yu
Gan, Mingyu Liang, Nikita Lazarev, and the anonymous reviewers
for their feedback on earlier versions of this manuscript. This work
was in part supported by an NSF CAREER Award CCF-1846046, NSF
grant NeTS CSR-1704742, a Sloan Research Fellowship, a Microsoft
Research Fellowship, an Intel Faculty Rising Star Award, an Intel
Research Award, and a John and Norma Balen Sesquisentennial
Faculty Fellowship.

REFERENCES
[1] Apache CouchDB. https://couchdb.apache.org.
[2] Apache Kafka. https://kafka.apache.org.
[3] Apache OpenWhisk. https://openwhisk.apache.org.
[4] Apache OpenWhisk Composer. https://cloud.ibm.com/docs/openwhisk?topic=

openwhisk-pkg_composer.
[5] AWS Lambda. https://aws.amazon.com/lambda.
[6] AWS Step Functions. https://aws.amazon.com/step-functions.
[7] Azure Durable Functions. https://docs.microsoft.com/en-us/azure/azure-

functions/durable/durable-functions-overview.
[8] Azure Functions. https://azure.microsoft.com/en-us/services/functions.
[9] Best practices for working with AWS Lambda functions. https://docs.aws.amazon.

com/lambda/latest/dg/best-practices.html.
[10] Google Cloud Functions. https://cloud.google.com/functions.
[11] How prewarmed containers are provisioned with a reactive configuration. https:

//github.com/apache/openwhisk/blob/master/docs/actions.md.
[12] IBM Cloud Function. https://cloud.ibm.com/functions.
[13] Lambda function scaling. https://docs.aws.amazon.com/lambda/latest/dg/

invocation-scaling.html.
[14] Locust. https://locust.io.
[15] Managing concurrency for a Lambda function. https://docs.aws.amazon.com/

lambda/latest/dg/configuration-concurrency.html.
[16] MinIO. https://min.io.
[17] Nginx. https://www.nginx.com.
[18] PyTorch. https://pytorch.org.
[19] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,

Minlan Yu, and Ming Zhang. Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, NSDI’17, page 469ś482, USA,
2017. USENIX Association.

[20] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. Sprocket: A
serverless video processing framework. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’18, page 263ś274, New York, NY, USA, 2018. Association
for Computing Machinery.

[21] Autoscale. https://cwiki.apache.org/cloudstack/autoscaling.html.
[22] Aws autoscaling. http://aws.amazon.com/autoscaling/.
[23] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin

Letham, Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for
Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural Information
Processing Systems 33, 2020.

[24] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian opti-
mization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[25] Shuang Chen, Christina Delimitrou, and José F. Martínez. Parties: Qos-aware
resource partitioning for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 107ś120, New York, NY,
USA, 2019. Association for Computing Machinery.

[26] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Xanadu: Mitigating
cascading cold starts in serverless function chain deployments. In Middleware
’20, pages 356ś370. ACM, 2020.

[27] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Houston, TX, USA, 2013.

[28] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and
QoS-Aware Cluster Management. In Proceedings of the Nineteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Salt Lake City, UT, USA, 2014.

[29] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 467ś481, New York, NY, USA, 2020.
Association for Computing Machinery.

[30] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. Clearing the clouds: A study of emerging scale-out
workloads on modern hardware. Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2012.

[31] Alexander Fuerst and Prateek Sharma. Faascache: Keeping serverless computing
alive with greedy-dual caching. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2021, page 386ś400, New York, NY, USA, 2021. Association for
Computing Machinery.

[32] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
sentingmodel uncertainty in deep learning. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16,
page 1050ś1059. JMLR.org, 2016.

[33] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, page 1027ś1035,
2016.

[34] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage:
Practical and Scalable ML-Driven Performance Debugging in Microservices. In
Proceedings of the Twenty Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), April 2021.

[35] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud & edge systems. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, page 3ś18, New
York, NY, USA, 2019. Association for Computing Machinery.

[36] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun Cheng,
and Christina Delimitrou. Seer: Leveraging Big Data to Navigate the Complex-
ity of Performance Debugging in Cloud Microservices. In Proceedings of the
Twenty Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), April 2019.

[37] Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and John P.
Cunningham. Bayesian optimizationwith inequality constraints. In Proceedings of
the 31st International Conference on International Conference on Machine Learning
- Volume 32, ICML’14, page IIś937śIIś945. JMLR.org, 2014.

[38] Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and An-
drew Gordon Wilson. Gpytorch: Blackbox matrix-matrix gaussian process infer-
ence with gpu acceleration. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 7587ś7597, Red Hook,
NY, USA, 2018. Curran Associates Inc.

[39] Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin, Xingjian Shi,
Chenguang Wang, Junyuan Xie, Sheng Zha, Aston Zhang, Hang Zhang, Zhi
Zhang, Zhongyue Zhang, Shuai Zheng, and Yi Zhu. Gluoncv and gluonnlp: Deep
learning in computer vision and natural language processing. Journal of Machine
Learning Research, 21(23):1ś7, 2020.

[40] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Cetin, and Shivnath Babu. Starfish: A self-tuning system for big data
analytics. pages 261ś272, 01 2011.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735ś1780, November 1997.

[42] Rob Hyndman and Yeasmin Khandakar. Automatic time series forecasting: The
forecast package for r. Journal of Statistical Software, 26, 07 2008.

[43] Ana Klimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics.
In Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, page 427ś444, USA, 2018. USENIX Association.

[44] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-series extreme
event forecasting with neural networks at uber. In International conference on
machine learning, volume 34, pages 1ś5, 2017.

[45] Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Con-
strained bayesian optimization with noisy experiments. Bayesian Analysis,
14(2):495ś519, 2019.

[46] Qian Li, Bin Li, Pietro Mercati, Ramesh Illikkal, Charlie Tai, Michael Kishinevsky,
and Christos Kozyrakis. Rambo: Resource allocation for microservices using
bayesian optimization. IEEE Computer Architecture Letters, 20(1):46ś49, 2021.

[47] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. Agile cold starts for scalable serverless. In Proceedings
of the 11th USENIX Conference on Hot Topics in Cloud Computing, HotCloud’19,
page 21, USA, 2019. USENIX Association.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou

[48] Tapti Palit, Yongming Shen, and Michael Ferdman. Demystifying cloud bench-
marking. In 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 122ś132, April 2016.

[49] Tirthak Patel and Devesh Tiwari. Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pages 193ś206, 2020.

[50] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), pages 193ś206, Boston,
MA, February 2019. USENIX Association.

[51] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). The MIT Press,
2005.

[52] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-
active graph analytics and visualization. In AAAI, 2015.

[53] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Satori: Efficient and
fair resource partitioning by sacrificing short-term benefits for long-term
gains[*]. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 292ś305, 2021.

[54] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker: Warming server-
less functions better with heterogeneity. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2022, page 753ś767, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[55] Aakanksha Saha and Sonika Jindal. Emars: Efficient management and allocation
of resources in serverless. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pages 827ś830, 2018.

[56] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural
implications of function-as-a-service computing. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium onMicroarchitecture, MICRO ’52, page
1063ś1075, New York, NY, USA, 2019. Association for Computing Machinery.

[57] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205ś218. USENIX Association, July 2020.

[58] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Fre-
itas. Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148ś175, 2016.

[59] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A dissem-
inated, distributed os for hardware resource disaggregation. In Proceedings of

the 13th USENIX Conference on Operating Systems Design and Implementation,
OSDI’18, page 69ś87, USA, 2018. USENIX Association.

[60] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimiza-
tion of machine learning algorithms. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’12, page
2951ś2959, Red Hook, NY, USA, 2012. Curran Associates Inc.

[61] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veeren-
dra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. Ensure: Efficient
scheduling and autonomous resource management in serverless environments. In
2020 IEEE International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS), pages 1ś10, 2020.

[62] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2021, page 559ś572,
New York, NY, USA, 2021. Association for Computing Machinery.

[63] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. Peeking behind the curtains of serverless platforms. In Proceedings of the
2018 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC
’18, page 133ś145, USA, 2018. USENIX Association.

[64] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: precise
online qos management for increased utilization in warehouse scale computers.
In Proceedings of ISCA. 2013.

[65] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. Characterizing serverless platforms
with serverlessbench. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’20. Association for Computing Machinery, 2020.

[66] Guoqiang Peter Zhang. Neural networks for classification: a survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
30(4):451ś462, 2000.

[67] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, SOSP ’21, page 724ś739, New York, NY,
USA, 2021. Association for Computing Machinery.

[68] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Edward Suh, and Christina
Delimitrou. Sinan: ML-Based and QoS-Aware Resource Management for Cloud
Microservices. In Proceedings of the Twenty Sixth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
April 2021.

[69] Lingxue Zhu and Nikolay Laptev. Deep and confident prediction for time series at
uber. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW),
pages 103ś110, Los Alamitos, CA, USA, Nov 2017. IEEE Computer Society.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Problem Statement
	2.2 Challenges
	2.3 Related Work

	3 Aquatope Design Overview
	4 Eliminating Cold Starts
	4.1 Time Series Prediction
	4.2 Hybrid Bayesian Neural Network Model
	4.3 Prediction-Based Container Pool Manager

	5 Optimizing Per-Function Resources
	5.1 Bayesian Optimization Workflow
	5.2 Challenges for Conventional BO
	5.3 Customized Bayesian Optimization

	6 System Implementation
	7 Methodology
	7.1 Applications
	7.2 Workload Generation
	7.3 Server Cluster
	7.4 Comparison Baselines

	8 Evaluation
	8.1 Dynamic Pre-warmed Container Pool
	8.2 Container Resource Manager
	8.3 End-to-End Performance

	9 Conclusion
	Acknowledgments
	References

