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Abstract: Interleukin-10 (IL-10) is a key anti-inflammatory and immunosuppressive cytokine and
therefore represents a potential therapeutic agent especially in inflammatory diseases. However,
despite its proven therapeutic efficacy, its short half-life and proteolytic degradation in vivo combined
with its low storage stability have limited its therapeutic use. Strategies have been developed to
overcome most of these shortcomings, including in particular bioconjugation with stabilizing agents
such as polyethylene glycol (PEG) and poly (vinylpyrolidone) (PVP), but so far these have had
limited success. In this paper, we present an alternative method consisting of bioconjugating
IL-10 to PVP-coated silver nanoparticles (Ag-PVPs) in order to achieve its storage stability by
preventing denaturation and to improve its anti-inflammatory efficacy. Silver nanoparticles capped
with a carboxylated PVP were produced and further covalently conjugated with IL-10 protein by
carbodiimide crosslinker chemistry. The IL-10 conjugated Ag-PVPs exhibited increased stability
and anti-inflammatory effectiveness in vitro. This study therefore provides a novel approach to
bioconjugating PVP-coated silver nanoparticles with therapeutic proteins, which could be useful in
drug delivery and anti-inflammatory therapies.

Keywords: interleukin-10; poly(vinylpyrolidone) (PVP); PVP-coated silver nanoparticles;
bioconjugation; anti-inflammatory effect; storage stability; inflammatory mediators

1. Introduction

Interleukin-10 (IL-10) is a major anti-inflammatory and immunosuppressive cytokine mainly
produced by activated monocytes and macrophages, and different T-cell subsets [1,2]. IL-10
suppresses immune responses and inflammation by down-regulating the synthesis and expression
of pro-inflammatory cytokines by macrophages and T cells including, Interleukin 1 beta (IL-1p3),
Interleukin 6 (IL-6), tumor necrosis factor (TNF) and Interferon gamma (IFN-y), and by inhibiting the
events related to antigen presentation [2,3]. IL-10 thus plays a major role in inflammatory diseases and
autoimmune pathologies, and thereby represents a potential therapeutic agent for their treatment [1,4].
Recombinant IL-10 has, therefore, been targeted to treat inflammatory diseases such as psoriasis
and inflammatory bowel diseases (IBD), however with very limited clinical progress [1,4,5]. Indeed,
the clinical use of proteins, such as IL-10, is restricted by their stability, short half-life, and enzymatic
degradation, thereby necessitating high dosages and frequent administration [6,7]. Furthermore,
the handling and storage of proteins, especially freeze-thaw cycles and storage time, can affect their
stability and contribute to their denaturation, which ultimately give rise to significant variations in
their activity and efficacy [8,9]. Several approaches have been developed to counteract these problems,
including, notably, conjugation with biocompatible and biodegradable polymers, and in particular,
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the conjugation with polyethylene glycol (PEG) [7]. PEGylated recombinant IL-10 has for instance
provided some compelling results as an anti-tumor therapy [3,10].

Metal-based nanoparticles represent promising candidates as drug carriers. In fact, they have been
proven to be excellent drug delivery vehicles, enabling their transport, bioavailability, and subsequent
release to specific tissue sites [11]. Moreover, although hazards can be introduced by using metal
nanoparticles as delivery systems, there are various approaches that can be employed to minimize
this risk. Biocompatible polymers or capping agents such as poly(vinylpyrolidone) (PVP) and PEG
are commonly used to reduce nanoparticle cytotoxicity, to improve their in vivo stability and to avoid
their uptake by the reticular endothelial system [12,13]. PVP was found to exhibit the best stabilizing
and protecting properties for nanoparticles [14,15]. Furthermore, these stabilizing/capping agents can
be used as a site for bioconjugation of the nanoparticle with molecules of interest [12,16]. On the other
hand, silver nanoparticles (Ag), in particular PVP-coated silver nanoparticles (Ag-PVPs), have been
shown to possess potent anti-inflammatory properties [17-19]. Ag-PVPs were shown to reduce the
levels of pro-inflammatory cytokines IL-6, TNF, IL-1x and IL-12p70 in Chlamydia trachomatis-infected
macrophages and to down-regulate the mRNA gene transcript expressions of TLR2 and NOD2 induced
by C. trachomatis [18]. In view of the above considerations, the ultimate goal of this study is to conjugate
IL-10 to Ag-PVPs as an alternative for its therapeutic use. Our hypothesis is that IL-10 conjugated
to Ag-PVPs will improve its stability and storage time by preventing denaturation and enhance its
anti-inflammatory actions. First, we synthesized silver nanoparticles with a carboxylated PVP on the
particle surface, thus enabling the post-conjugation with primary amines available on the IL-10 protein.
Next, we showed the usefulness of IL-10 conjugation to Ag-PVPs in achieving increased IL-10 stability
and improved anti-inflammatory efficacy. The data from this study provides evidence that PVP-coated
silver nanoparticles can be exploited as drug delivery systems in anti-inflammatory therapies.

2. Results

2.1. Activation of PV P with Carboxylic Acid Groups

The PVP was carboxylated by opening and hydrolyzing the pyrrolidone ring by heating the
PVP in a basic solution (NaOH) (Figure 1a), which was confirmed by Fourier transform-infrared
spectroscopy (FT-IR) spectroscopy. The FI-IR spectra of PVP before activation and carboxylation
(carboxylated PVP) are shown in Figure 2. The FT-IR spectrum of the non-activated PVP (Figure 2a;
top graph) shows the characteristic stretching band of PVP located at ~1659 cm ! corresponding to the
pyrrolidone C=0 group. Other important bands include those due to the C-N stretching vibrations
and the -CH,; absorption of PVP at ~1284 cm~1, ~1421 em~1, and ~1458 cm~!, and the absorption
peak at ~1371 cm~! due to the C-H bond in PVP [20,21]. The FTIR absorption spectra of non-activated
PVP also show clear absorption peaks located at ~2950 cm~! and a large, broad peak that is centered at
~3434 cm ™!, that are due to ~OH symmetric stretching and ~CH asymmetric stretching vibration peaks,
respectively. The FT-IR spectrum of carboxylated PVP (Figure 2a; bottom graph) shows a change in
the frequency of the characteristic band at ~1650 cm ™! of the pyrrolidone ring, confirming the ring
opening. Furthermore, the spectrum of carboxylated PVP shows a large broad peak between 3000 and
3500 cm~! that is centered at ~3379 cm~! due to the O-H and C-H-stretching modes corresponding to
the carboxylic acid groups. These observations indeed confirm that the PVP was successfully activated
with the carboxylic acid groups.

Carboxylated PVP-coated silver nanoparticles were synthesized by the polyol method using silver
sulfate and glycerine (Figure 1b). Prior to conjugation, the presence of the carboxylic acid groups
on the synthesized nanoparticle surface was confirmed by FT-IR spectroscopy (Figure 2). Figure 2b
shows the FI-IR peaks of dried carboxylated PVP-coated silver nanoparticles after spectral subtraction
of the absorption of water. The peak observed at ~1648 cm~! corresponds to the carbonyl group
stretching of PVP and entails a coordinative bonding of C-N to Ag between the PVP and silver
nanoparticles, and therefore confirms the PVP capping of the silver nanoparticles. Compared with the
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Zetasizer Nano ZS in neutral water (pH 7) showed a smaller shift or no shift at all. The zeta potential of
Ag-PVPs was 0.058 (+5.15) mV and 0.068 (+6.83) mV for the rmIL-10 conjugated Ag-PVPs (Figure 3b).
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stimulated and treated cells as calculated by the unpaired Student’s t-test. The data are presented as
means and standard deviations of samples run in triplicate and are representative of three separate
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levels observed with rmIL-10 stored one week at 4 °C (Figure 8). Interestingly, rmIL-10 conjugated
Ag-PVPs were more effective at reducing TNF levels than fresh rmIL-10, especially at 1 ng/mL and
10 ng/mL (p < 0.01) (Figure 8), which resulted in very little or no detection of TNF, which suggests
an additive effect provided by the anti-inflammatory activity of Ag-PVPs on the reduction of TNF
(Figure 6). Since the concentrations of Ag-PVPs were not toxic to cells (Figure 4), this eliminates
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conjugation with IL-10. We further demonstrated the improved stability and anti-inflammatory effect
of the bioconjugated IL-10 in mouse macrophages.

Among the polymers used for bioconjugation, PVP has been found to be the most advantageous.
Indeed, PVP has been shown to have the longest circulation time compared with other common
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polymers such as PEG and dextran [25], and to enable restricted localization, longer plasma half-life,
and more potent activity of the conjugated bioactive proteins in tissues without increasing their side
effects [7,25]. Moreover, PVP is an excellent stabilizing and protecting agent for metal nanoparticles,
enabling the control of the size distribution, the formation of specific shapes, and the aggregation
process of the particles [14,15]. However, unlike other polymers such as PEG, PVP is a homopolymer,
composed of a polyvinyl backbone with individual repeating units containing a polar amide group
and non-polar methylene groups both in the backbone and in the ring [15,20]. The N and O atoms of
the PVP polar group have a strong affinity for the silver ions and silver nanoparticles, and thereby
coordinate to form a covered layer on the surface of the nanoparticles during their synthesis [15,20].
Hence, PVP capped silver nanoparticles lack the ability to further conjugate biomolecules to the
nanoparticle surface. Consequently, in this study, the PVP was activated with carboxylic acid (-COOH)
groups prior to the synthesis of nanoparticles.

Several approaches are now available and efficient for introducing useful functional groups
onto PVP. The radical copolymerization of 1-Vinyl-2-pyrrolidinone (VP) with an organic solvent
as a radical initiator (e.g., azobisisobutyronitrile or 4,4’-Azobis-(4-cyanovaleric acid), ACVA) and a
chain transfer agent (e.g., mercaptoacetic acid or mercaptpropionic acid) is one of the most efficient
and effective ways to produce terminal carboxyl-bearing PVP [26-28]. This method has for instance
allowed for further covalent conjugation of bioactive TNF and IL-6 [27,28], but was ineffective in our
study as the synthesized carboxyl-terminated PVP did not allow the formation of silver nanoparticles.
The intramolecular catalysis in the previously opened pyrrolidone ring of PVP was also shown to
be suitable for covalent conjugation of primary and secondary functional amines of proteins with
PVP [29,30]. This approach involves the pyrrolidone ring opening and hydrolysis with strong bases
(e.g., KOH, NaOH) at high temperature to produce a carboxylic acid, followed by protection of the
pyrrolidone nitrogen from ring closure during further conjugation [29,30]. We have therefore adapted
the method from von Specht et al. [30], which in their study, allowed for obtaining a relatively high
amount of ring-opening. Moreover, it has been demonstrated with polystyrene particles that the
particles synthesized with such activated PVP could enable successful covalent bioconjugation to
their surface [31]. However, since the oxygen and nitrogen atoms of the PVP ring are involved in
the adsorption of PVP chains onto the nanoparticle surface [15,20], opening the PVP rings could thus
affect the synthesis of nanoparticles.

Based on previous reports, which revealed in silver nanoparticles with a diameter size below
50 nm that only the nitrogen atom in the PVP ring was involved in the coordinative bonding onto
silver nanoparticles [32], we aimed to synthesize small nanoparticles to limit this potential issue.
Furthermore, small-sized PVP-coated silver nanoparticles were of high interest in this study as it
was reported that their cytotoxicity decreases with their size and small-sized PVP-coated silver
nanoparticles exhibit greater anti-inflammatory effects [18]. Silver nanoparticles were thus synthesized
following the polyol synthesis method, which involves the reduction of silver precursor and dissolution
of a stabilizing/protecting agent by a polyol [33,34]. This method is known to produce highly
monodispersed and small-sized spherical silver nanoparticles [33,34]. With this method, the carboxylic
acid-activated PVP successfully formed a protection layer on silver nanoparticles through the N
atoms in the carboxylated PVP and the carboxylic acid groups remained available on the particle
surface. Ag-PVP nanoparticles further allowed a successful covalent conjugation with rmIL-10 after
the activation of the carboxylic acid groups by EDC/NHS. The rmIL-10 conjugated Ag-PVPs obtained
were spherical in shape with a diameter size averaging 50 (£10) nm. However, it should be noted that
the attachment of a relatively high number of polymer molecules to amine residues within a protein
might increase the binding site disruption or reduce the affinity, which therefore affects its biological
activity [35,36]. Moreover, unlike other cytokines, it has been noted that the covalent bioconjugation
of IL-10 by chemical modification of lysine residues in IL-10 might disrupt the dimeric structure of
IL-10 and potentially generate conjugated monomers with no biological activity [37]. Reportedly,
the PEGylation of IL-10 on amino acid residues of IL-10 substantially reduced its in vitro biological
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activity [36]. However, in our study the best anti-inflammatory effect displayed by rmIL-10 conjugated
Ag-PVPs at 10 ng/mL and its good binding to the capture antibody in ELISA suggest that the above
effects did not occur during the conjugation of rmIL-10 to Ag-PVPs or that the amount of rmIL-10
monomer conjugates were negligible.

Despite the advantages offered by surface modified silver nanoparticles as drug delivery systems,
such as bioavailability, release to specific sites, and modulation of side effects of the drug [38,39],
their potential cytotoxicity is a matter for consideration. Studies have thus reported that capped
silver nanoparticles induced toxic effects mainly related to their size and surface modification,
which influence their aggregation in vitro and in vivo [40,41]. Notwithstanding, PVP capped silver
nanoparticles cause negligible toxic effects as they maintain a good stability that prevents them from
agglomeration [41]. In our study, over 85% of cells remained viable after up to 72 h exposure to
rmlIL-10 conjugated Ag-PVPs at nanoparticle concentrations reaching 5 ug/mL, indicating that these
concentrations are non-toxic to cells. Moreover, the concentrations of silver nanoparticles used in
this study were low enough to circumvent inducing any toxicity to cells (<1 ug/mL). The rmIL-10
conjugated Ag-PVPs strongly inhibited IL-6 and TNF in mouse macrophages stimulated with LPS
in a concentration-dependent manner. Moreover, rmlIL-10 conjugated to Ag-PVPs showed a more
potent anti-inflammatory effect at 10 ng/mL than native rmIL-10. However, at low concentrations
of rmIL-10 (0.1 and 1 ng/ mL), rmIL-10 conjugated Ag-PVPs were less effective than native rmIL-10
at reducing IL-6 levels while they were significantly more efficient at reducing TNF levels than
fresh rmIL-10. This observation could be due to a variety of factors, including the mechanisms by
which IL-10 exerts its inhibitory effects on these cytokines. Studies have thus shown that IL-10 has
significant inhibition of LPS-induced TNF production while its inhibitory effects are less pronounced
for IL-6 [42,43]. Moreover, although the non-conjugated AgPVPs exhibited very low anti-inflammatory
effects at lower concentrations (i.e., <0.5 ug/mL), they led to a significant decrease of TNF secretion,
which could have a beneficial effect on the activity of rmIL-10 conjugated Ag-PVPs at reducing
TNF levels. However, with an average ratio of 1:45 of bioactive rmIL-10 on Ag-PVPs obtained after
conjugation, the concentrations of silver nanoparticles used in our study were lower than those that
have significant anti-inflammatory effects [18], hence limiting the possible additive effect of Ag-PVPs
at low concentrations of IL-10.

On the other hand, in addition to improving the anti-inflammatory effect, rmIL-10 stability was
also enhanced by its conjugation to Ag-PVPs. The stability of proteins in vitro is a major limiting
factor for their therapeutic application. Indeed, unsuitable conditions of storage or transport often
leads to their degradation and/or inactivity, and freeze-thaw cycles decrease their stability [8,9,24].
The bioconjugation of proteins with polymers has been demonstrated to improve their in vitro stability
by protecting them from thermal inactivation, increasing the thermodynamic stability, and preventing
the preservative-induced aggregation in solution [44—46]. In our study, free rmIL-10 also exhibited
decreased activity or no activity following a freeze-thaw cycle or storage at 4 °C (Figures 7 and 8).
Conversely, rmIL-10 conjugated Ag-PVPs did not necessitate special measures with regard to storage
conditions as they were stored at 4 °C and did not show variation in terms of effectiveness. Moreover,
rmlL-10 conjugated Ag-PVPs have maintained their level of activity after up to three weeks at 4 °C
(data not shown).

4. Materials and Methods

4.1. Carboxylation of PVP

PVP was carboxylated by partially hydrolyzing the pyrrolidone ring following a previously
published method that allows an amount of ring opening of 15% [30] (Figure 1a). Briefly, 0.2 g of
PVP (MW = 29 kDa, Sigma Aldrich, St. Louis, MO, USA) was dissolved in 10 mL of 0.1 N NaOH
and heated at 140 °C for 48 h in a beam calorimeter (Parr Instrument Company, Moline, IL, USA).
In order to prevent the closing of the opened pyrrolidone ring, its y-amino butyric was methylated
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by adding 600 uL of 35% formaldehyde solution (Sigma Aldrich, St. Louis, MO, USA) followed by
adjusting the solution to pH 9 and then cooling to 0 °C. Next, 1.5% of sodium tetrahydroborate (Sigma
Aldrich, St. Louis, MO, USA) was added; the solution was stirred for 45 min at room temperature (RT)
and then vacuum-dried at 60 °C overnight. Prior to use, the carboxylation of PVP was assessed by
Fourier transform-infrared spectroscopy (FI-IR) to monitor the ring opening and the presence of the
carboxyl groups. FI-IR spectra were acquired with an FT-IR Nicolet 6700 (ThermoFisher Scientific
Inc., Waltham, MA, USA) equipped with an attenuated total reflectance (ATR) stage, with 64 scans per

sample with a resolution of 4 cm~!.

4.2. Synthesis of Carboxylated PV P-Coated Silver Nanoparticles

Carboxylated PVP-coated silver nanoparticles were synthesized by the polyol method using
glycerin as a reducing agent and solvent as previously reported [47] (Figure 1b). Briefly, carboxylated
PVP (0.2 g) was dissolved in 30 mL of glycerin and heated at 140 °C. After 30 min of heating, 2 mL of
0.015 M silver sulfate (Ag;SOy4, Sigma Aldrich, St. Louis, MO, USA) was added and left to react for 1 h.
Silver nanoparticles were then cooled at RT and the glycerin was removed by repeated (2 or 3 times)
addition of ethanol and centrifugation (10,000 rpm) for 10 min at RT. The supernatant was removed
and carboxylated PVP-coated silver nanoparticles were suspended in sterile distilled water and cooled
at 4 °C in the dark. Prior to use, an aliquot of the nanoparticles was vacuum-dried and the presence of
carboxyl groups on the nanoparticle surface was assessed by FI-IR spectroscopy as described above.

4.3. IL-10 Conjugation and Characterization of Nanoparticles

Recombinant mouse IL-10 (BioLegend, San Diego, CA, USA) was covalently conjugated to
carboxylated PVP-coated silver nanoparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC, Sigma Aldrich) and N-Hydroxysuccinimide (NHS, Sigma Aldrich) conjugation method
(Figure 1b). Briefly described, 50 uL of carboxylated PVP-coated silver nanoparticles (1 mg/mL)
was mixed with 50 uL of a solution of EDC/NHS (30/36 mg/mL) in 2-(N-morpholino) ethanesulfonic
acid (MES) buffer (10 mM, pH 5.5) along with 25 pL of rmIL-10 (0.2 mg/mL) and vortexed for 2 h
at RT. This concentration of rmIL-10 was used to allow saturation of the free carboxyl groups on
the carboxylated PVP-coated silver nanoparticles. Unbound IL-10 was removed by washing with
PBS and 0.05% Tween 20 (PBS/T) followed by centrifugation at 12,000 rpm for 30 min to obtain
rmIL-10 conjugated to carboxylated PVP-coated silver nanoparticles (rmIL-10 conjugated Ag-PVPs).
The conjugated IL-10 was re-suspended in sterile PBS at 1 mg/mL. An aliquot of the conjugated
nanoparticles was diluted to 100 pg/mL in sterile distilled water and characterized using UV-Vis
spectrophotometry and a dynamic light scattering system. UV-Vis analysis was used to monitor the
absorption spectra and surface plasmon bands with a 1 cm path length using a NanoDrop 2000c
spectrophotometer (ThermoFisher Scientific Inc., Waltham, MA, USA). The hydrodynamic size and
zeta potential measurements of rmlIL-10 conjugated Ag-PVPs were assessed using Malvern Zetasizer
Nano ZS (Malvern Instruments Ltd., Westborough, MA, USA).

The size and shape of rmIL-10 conjugated Ag-PVPs were monitored by Transmission electron
microscopy (TEM) analysis. The nanoparticles were mounted on carbon-coated formvar grids
(Electron Microscopy Sciences Formvar/C Film SQ Grid 300 CU, Fisher Scientific, Pittsburgh, PA,
USA), pre-exposed to 1% Alcian blue (Sigma Aldrich), air dried at RT and then observed under a
Zeiss EM10 TEM Microscope (Carl Zeiss, Inc., Meditec, Oberkochen, Germany) operating at 60 kV.
The amount of bioactive rmIL-10 on Ag-PVPs was determined by Enzyme-linked immunosorbent
assay (ELISA; OptEIA™ Mouse IL-10 ELISA Set, BD Biosciences, San Jose, CA, USA) according to the
manufacturer’s instructions.

4.4. Cell Culture

Mouse ]J774 macrophages (J774A.1; ATCC® TIB-67™) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA) and cultured based on a previously described
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protocol [48]. Briefly, cells were cultured at 37 °C in a humidified 5% CO, atmosphere in Dulbecco’s
Modified Eagle Medium (DMEM, GIBCOP®, Life Technologies, Grand Island, NY, USA) supplemented
with 10% heat-inactivated fetal bovine serum (FBS), 2 mM L-glutamine, and 1 pg/mL antibiotic
and antimycotic.

4.5. Cytotoxicity Study

The cytotoxicity of rmIL-10 conjugated Ag-PVPs and non-conjugated Ag-PVPs to mouse J774
macrophages was evaluated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide
(MTT) dye reduction assay using a Cell-Titer 96® Non-Radioactive Cell Proliferation Assay kit
(Promega, Madison, WI, USA) as previously described [18]. Cells (10° cells/well) were seeded
in a 96-well plate in 100 pL of culture media and incubated overnight at 37 °C in a humidified
5% CO; atmosphere. The culture media was replaced by 100 pL of fresh media containing
various concentrations of rmIL-10 conjugated Ag-PVPs (2.5 to 12.5 pg/mL) for 24, 48, and 72 h.
After incubation, the MTT dye solution (15 uL) was added to each well, and further incubated for
2 h. The reaction was stopped by adding 100 pL of solubilization solution/stop mixture to each
well. The absorbance was measured at 570 nm using a microplate reader (Tecan™ Instruments, San
Jose, CA, USA) and the cell viability was determined by comparing the ratio of absorbance of control
cells incubated with the culture medium only ([A]contro1) to that of cells incubated with nanoparticles
([Alest) as follows: percent viability = [Aliest/[Alcontrol X 100.

4.6. Cell Activation and Analysis of IL-10 Activity

Mouse ]J774 macrophages were stimulated with 1 ug/mL of Lipopolysaccharide (LPS from
Escherichia coli, ThermoFisher Scientific) and were treated with different concentrations of either
free rmIL-10, rmIL10-conjugated Ag-PVPs (0.01, 0.1, 1, and 10 ng/mL), or non-conjugated Ag-PVPs
(0.5 to 2.5 pg/mL) and incubated at 37 °C in a humidified 5% CO, atmosphere. Untreated and
LPS-stimulated cells were used as positive controls, and untreated and non-stimulated cells were
used as negative controls. Cell-free supernatants were collected after 72 h of incubation and the levels
of secreted pro-inflammatory cytokines, IL-6, and TNF were measured by cytokine specific ELISAs
using BD OptEIA™ sets for mouse IL-6 or TNF (BD Biosciences, San Jose, CA, USA), according to the
manufacturer’s instructions.

4.7. Statistical Analysis

All experiments were repeated at least three times, and the results are presented as means and
standard deviations. The unpaired Student’s t-test was used to compare differences between samples.
The differences were considered statistically significant if p < 0.01 (*¥).

5. Conclusions

In summary, silver nanoparticles capped with a carboxylated PVP were successfully produced
to achieve covalent bioconjugation with IL-10 protein. The IL-10 conjugated to Ag-PVPs exhibited
enhanced stability and therapeutic efficacy in vitro. To our knowledge, this is the first attempt that
demonstrates a successful conjugation of a bioactive protein to PVP-coated silver nanoparticles as well
as providing evidence that PVP-coated silver nanoparticles could be explored as a drug delivery or
targeting system.
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