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Abstract—This paper presents a new method for identifying individual cattle for the purpose of tracking and efficiently
measuring their daily water intake using a vision-based machine-learning system. In addition to the current solution of
using Radio Frequency ldentification (RFID), the proposed system uses TensorFlow Object Detection to detect labels on
the RFID tag. The proposed system can be integrated into the current water intake monitoring system and alleviate the
errors introduced by the unreliable RFID readers. The system allows users to train an object recognition model that can
recognize and differentiate the labels on the ear tags of individual farm animals, so the drinking events can be recorded by the
water intake monitoring system. The models are trained using custom data sets of manually annotated tag images with pre-
trained model architectures from TensorFlow 2 Model Zoo. The system is tested using images from event-triggered
weather-proof cameras deployed in the grazing site. Experimental results of the system showed an accuracy of around
90% In comparison to other present methods, this newly proposed system provides scalability and flexibility making it an

attractive vision based solution for machine learning systems in agriculture.

Index Terms—Tensor Flow, Computer Vision, Machine Learning, Water Management, Object Detection, Agriculture.

I. INTRODUCTION

Water is the most important resource and nutrient for ruminants in
animal agriculture [1], which consumes 30% of the overall water in
food production [2]. In order to improve the efficiency of water usage,
especially in drought areas, technologies in water management have
been introduced to track the water usage of individual cattle. Such
technology can help track water consumption by each cow in the
grazing area, and therefore be able to monitor the drinking pattern and
behavior which is linked to growth and health issues. As shown in Fig.
1, a water intake monitoring system applies microchips implanted into
the animals’ skin and uses Radio Frequency Identification (RFID) or
Electric Identification (EID) technologies to identify individual cattle.
However, such systems are not quite reliable due to the detection
range and weather conditions. Therefore, other technologies can also
be added to improve the reliability and accuracy of the system. For
example, a smart water intake monitoring system in [3] is equipped
with a motion sensor and a weather-sealed camera. When a cow
is presented at the drinking station, the motion sensor triggers the
camera, which takes a few pictures to confirm the drinking event.
In order to improve the detection capabilities of the system even
further, this paper presents a method for visual identification of cows
via their ear tags using object recognition

In order to process images using vision-based identification
systems, several methods have been proposed with deep-learning tech-
nologies. For example, [4] presented an automatic cattle identification
system using multi-channel local binary pattern (LBP) on muzzle
images, which identifies individual cattle using the unique biometric
pattern presented on their muzzle. Another example of vision-based
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Fig. 1: Water Intake Monitoring System [3].
identification uses a local binary pattern descriptor to perform face
recognition of cattle [5]. These systems show advancements in
the utility of image recognition and computer vision for animal
identification in agriculture. However, there are several challenges in
the vision-based identification system. First, the image quality varies
based on the environment and the device limitations, which may
require high-resolution cameras. Second, for each new cattle, the
model needs to be retrained since each animal has unique biometric
features, which limits the scalability of the system. Therefore, a new
vision-based method is expected to provide a robust classification of
images while reducing the efforts in training models for new subjects.
In this work, we propose a novel vision-based recognition method
that focuses on the RFID tag numbers instead of the muzzle or face
of the animal. This is because when the cow is drinking water, the
RFID tag numbers are usually much easier to be identified. Another
advantage of this method is that a group of RFID tag numbers can
be trained in prior and then assigned to individual cattle. Therefore
a new cattle can use the same tag as a prior cattle, which increases
the scalability of the system and saves time for retraining the model.
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Moreover, field testing demonstrates that the accuracy of identifying
tag numbers in the image is better than the face or muzzle of the cows
under different environmental conditions. Images of ear tags do not
need to have a very high resolution for the model to be able to detect
them. Our system is designed based on Google TensorFlow Obiject
Detection Application Programming Interface [6]. The system can
be implemented in combination with the water intake monitoring
system through the addition of a embedded computing system to
handle tag detection. There are many systems that can fulfill this
task, such as google Coral Edge TPU, the NVIDIA Jetson series, and
Raspberry Pi devices. We speculate the overall cost of this system
to be between $130.00-$150.00 for implementing the system onto a
Raspberry Pi and anything images using an Adafruit weatherproof
camera. In combination of the rest of the system including sensors,
controllers, and automatic drinking systems, the overall cost of this
method for potential customers would be around $2000.00. In the
remaining of this paper: Section |l describes the system design and
training process; Section Il presents experimental results; Section
IV concludes this paper and proposes future works.

II. SYSTEM DESIGN AND TRAINING

The proposed system operates with the following procedures. First,
the image dataset is collected and then expanded using PyTorch image
augmentation, which enhances the dataset by generating cropped and
color-converted copies of each image. Next, the RFID ear tags in the
image dataset are manually annotated using LabellMG [7]. These
annotations are then saved in PASCAL VOC format as xml files
alongside their corresponding images. Afterward, a pre-trained model
from the “TensorFlow 2 Detection Model Zoo" [8] is selected for
initializing the custom mode. After that, the model is trained for a
set amount of iterations and finally evaluated. Once the model has
been trained, the checkpoint with the highest detection accuracy and
recall is selected and used for tag detection. All of these steps are
based on the dataset generation and training code provided in the
TensorFlow Object Detection GitHub repository [9].
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Fig. 2: Data collection and processing procedures of the proposed
system.

The performance of the proposed system is evaluated using
four custom models trained with two pre-trained models from the
“TensorFlow 2 model zoo" [8] which are trained with hundred of
thousands of images and 90 image classes models. The custom
models contain five classes representing five tags used for training
and analysis of the system. Two datasets were used to compare the
training and overall accuracy of Tensor Flow API for this particular
application. The models are trained by each model-zoo model and
dataset once. The data collection and operating procedures of the
proposed system are summarized in Fig. 2. The following context
in this section describes details of each step.

A. Dataset Image Collection

The images used for the training were taken using a Logitech
C922 Pro HD Stream Webcam. They were all collected horizontally
with an aspect ratio of 640 x 480 and a horizontal and vertical

resolution of 96 dpi. Two different datasets were used for testing
this method: a small dataset, containing only images taken from the
webcam, and a large dataset that also held images from the image
augmentation step. 30 images of five different tags were taken this
way to test the method proposed in the paper, making the final size of
the small dataset 150 images. The tags were “8526", “8527", “8528",
“8529", and “8530". The images were upscaled to 640 x 640 during
training. More images, as well as images of new tags, are being taken
to expand the dataset even further for future experimentation. For
the implementation demonstration, the tags “910" and “949" were
used. Note that the tags are recognized as an image instead of the
combination of individual numbers.

The large dataset was generated using Pytorch image augmentation,
this resulted in cropped copies of the smaller dataset images with
different hues, saturation, brightness, and contrasts. Initially, 4 images
were generated per 1 image in the small dataset, however, not all of
these images were in a usable condition as due to the cropping some
did not contain the tags within them. Overall, the expanded dataset
set contained a total of 414 images. Since the annotated tag objects
in these images were much more contrasting and varied than the
ones in the small dataset, as well as the far longer training time for
the large dataset models, we also believed that it would be beneficial
to model’s overall performance to increase the relative size of the
testing to that of the training, as larger testing files allow for better
assessment of machine learning model accuracy.

B. Image Annotation

The tags within the dataset images were annotated manually using
LabellIMG [7]. These annotations are saved xml files in PASCAL
VOC format and are named identical to their respective image files,
which allows LabellMG to automatically tag the annotations to the
right image. While manual annotating would reduce the speed at
which a dataset is tagged, it allows for users to have more oversight
over their training data. An example of an annotated image from the
small dataset is provided in Fig. 3. 80% of the generated datasets are
used for training, and 20% of data are used for testing the models.
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Fig. 3: Annotated image of tag “8526" in LabellMG, small dataset.

C. Model Training

To train the custom tag identification models of this method, we
first select a pre-trained TensorFlow Object Detection model with
Feature Pyramid Network (FPN) architecture from the “TensorFlow
2 Detection Model Zoo" [8], whose models were trained with COCO
2017 image dataset which included hundreds of thousands of images
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Table 1: Used Model Attributes.

Model Name Speed (ms) COCO mAP Outputs
SSD MobileNet V1 FPN 48 29.1 Boxes
SSD MobileNet V2 FPNLite 39 28.2 Boxes

with annotations for 90 different object classes. The models that were
selected for this method were “SSD MobileNet V1 FPN 640x640"
and “SSD MobileNet V2 FPNLite 640x640", both of which were
chosen for their relatively high accuracy and low training speed.
These models are used twice in our experiment: once for the smaller
dataset, and once for the larger dataset each. All of the training
and testing steps of this method were performed on TensorFlow
2.8.0, its compatible CUDA ToolKit version 11.2 and cuDNN 8.1,
and NVIDIA RTX 3060 ti GPGPU. More detailed descriptions of
these models’ speed and accuracy are summarized in Table 1. After
selecting the model, a verification script ensures all of the packages
related to TensorFlow are properly installed and that there are no
compatibility issues, then the selected pre-trained model is cloned
onto the training machine. Next, the labels and IDs of the custom
object classes as well as the TFrecords (TensorFlow Records) of the
“train" and “test" files are created. Finally, the training Pipeline file is
configured and the custom model training begins with a given number
of iterations. For every 1000 training cycles, the model generates a
checkpoint. For the purpose of this paper, all four custom models
were trained for 20,000 iterations.

Y —_—
Start Stop
MNo ) )
Input Frame Add Bounding box and

save ID

R E—

Classify as 1D with
highest confidence
0 v

—

Confidence
Detect Tag

Level = 0.8

=

Fig. 4: Overall System Flowchart.

D. Model Evaluation

The model is evaluated when it has been trained for the given
amount of training cycles. The files resulting from the evaluation not
only include the mean average precision (mAP) of the Precision and
average recall (AR) of the very last checkpoint generated, but also
the loss and learning rate of the entire model throughout the training.
After the evaluation is complete, the resulting files are uploaded to
TensorBoard [10] to generate the graphs of the model performance.
Due to the fact that TensorBoard only generates the evaluation data
of the very last checkpoint, to evaluate the entire model’s precision
and recall, the evaluation scripts need to be manually run every 1000
training iterations. This reduces the speed of the evaluation stages.

Once a custom model has been trained for the given number of
iterations, it can be used for tag detection. To build the detection model,
the pipeline configuration file is loaded in and the model checkpoint
with the highest evaluated mAP detection precision and recall is
restored, this is usually the latest checkpoint. After the checkpoint
is restored, the system can perform tag detection using the custom
model within a given accuracy threshold, The output of which is
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Fig. 5: Learning Rate and Total Loss of FPNLite and FPN models.
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for FPN and FPNLite Models.
the given image with the detected object placed in a bounding box
that indicates both the identified class and the confidence rate. This
could be either detection in single-frame images or live detection
of tags in videos. The threshold that was generally used in this
experimentation was 0.8. The entirety of the detection process is
shown in the flowchart in Fig. 4.

Il. EXPERIMENTAL RESULTS

The small dataset contained 120 images for training and 30 images
for testing. The large dataset contained 344 images for training and
109 images for testing. The overall performance during training and
evaluation of both pre-trained models and datasets is displayed in
Fig. 5 and Fig. 6. These graphs show that there are no differences
in learning rate between the large and small dataset models and the
learning rate drops significantly faster for the FPN model than the
FPNLite model. The total loss of the larger dataset models stayed
higher than the smaller dataset throughout the training. While the
total losses of the FPN models were far higher than those of FPNLite
when training started, they both stabilized at below 0.2. A similar
trend is observed in the precision and recall of the two different
models trained with the separate datasets. While in the earlier stages
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Fig. 7: Example detection results using FPNLite model (a) and FPN models (b) and (c).

Table 2: Comparison of recent cattle object detection systems

This Work [4] [5]
Method Target Ear Tag Muzzle Face
Architecture FPN LBP LBP
Accuracy 90.00% 100% 95.3%
Retraining NO YES YES
Camera Regular High Precision High Precision

of the training the precision and recall of the FPNLite model were
higher than those of FPN, at 20000 cycles, the FPN model both had
higher recall and precision by 5%.

While both models have achieved a high accuracy in detecting the
tags as shown in Fig. 7, the models trained on using the ModelNet FPN
model had a higher detection confidence. The confidence threshold for
these images was around 80%. While the dataset that was used for this
training was small with few numbers of training iterations. This study
showed the overall effectiveness of TensorFlow Object Detection in
identifying similarly shaped objects with slightly different patterns.

Table 2 compares this work and other works for the similar
application in [4] and [5] in terms of overall accuracy. Methods in
[4] and [5] focused on identifying the cows through their biometric
features such as their muzzle pattern and face structure. Both of them
require high precision cameras for multi-channel LBP histograms,
which increases computing overhead. Moreover, when new cows
move into the farm, the models need to be retrained. In our system,
the use of FPN via TensorFlow lowers the computing overhead and
provides flexible options to adapt new cows since the tags can be
trained without cow biometric features.

IV. CONCLUSION

A novel vision-based identification recognition system was devel-
oped for livestock water intake monitoring. The system is based on
TensorFlow models to identify ear Tag numbers. Two models were
compared in both larger and smaller datasets and achieved levels
of accuracy around 90%. The proposed system provides scalability
and reliability compared to existing methods, which is an attractive
solution for vision-based machine learning systems in agricultural
applications. In future work, the system should be implemented by
combining other sensing technologies such as RFID and weight
scales which can enhance detection accuracy and perform reliable
water-intake monitoring of cattle.
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