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Abstract—A real-time three-dimensional (3D) spatial localiza-
tion system to track a UAV (unmanned aerial vehicle) using
a single off-board conventional camera and an onboard circle-
shaped colored Light-Emitting Diode (LED) marker is presented.
The image from the camera is color-segmented and then mor-
phologically closed before being sent to the ellipse detector. The
location of the drone is then estimated with geometric/optical
calculations using the pixel coordinates provided by the real-
time ellipse detector. The location data generated by this system
was validated by a Motion-Capture System (MCS) that was
simultaneously tracking the system in real-time. The average
position error was of 6cm, while the processing speed achieved
15 locations/second, which are comparable with recent research
references. The usage of a low-cost camera makes this method
promising for most mobile UAV tracking applications.

Index Terms—Optical Localization, Unmanned Aerial Vehicle,
Ellipse Detection, Real-Time Image Processing.

I. INTRODUCTION

Real-time localization and tracking of Unmanned Aerial Ve-
hicles (UAVs) is expected in many applications where a precise
location of the UAV is needed for a base station while GPS
or Wi-Fi signals are not available [1]. Such tracking tasks are
usually achieved using various types of sensors including radio
sensors, inertial measurement units (IMUs), and image sensors
[2]-[4]. In these systems, the target UAV should be identified
and isolated from the environment by means of detecting of
active markers such as optical markers, RF signals, or other
identifiers that are unique to the particular UAV [5], [6]. The
primary specification of the tracking task includes localization
accuracy, processing time, and the cost of the localization
system. Technical challenges of UAV localization come from
the complexity of the environment and weather [7], [8].

A typical vision-based UAV localization system is the
one that uses constellations of special markers onboard the
UAV. This enables separating the UAV from the background
using segmentation and filtering methods [9], [10]. Markers
may have a special color or a pre-defined blinking pattern,
which can be identified using color segmentation or temporal
filters during image processing. The markers detected from
the image are then processed with geometric methods using
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prior measured physical dimensions of the constellation to
obtain the spatial localization information of the UAV. An
optical localization system can also be implemented with
the assistance of a combination of other sensors or prior
knowledge of the flight area from the UAV’s perspective
[11]. However, such methods may require data fusion from
complementary sensors, or machine learning to process depth
maps, especially when relying on techniques like Monocular-
Simultaneous Localization and Mapping (SLAM) [5], [12],
which has a high computing overhead that reduces the power
efficiency. Other challenges in current optical localization
systems include the cost of special sensors, high latency from
communication and processing systems, and the complexity
of system implementation.

To address the above-mentioned challenges, a monocular-
vision-based localization system is proposed and tested in
our prior work using a circle-shaped marker [13], [14]. The
marker is blinking at a fixed frequency to allow an event-based
image sensor to identify it using a temporal difference filter in
image processing. The circle-shaped marker on the UAV can
be identified as an ellipse in the image, which is more friendly
for image processing algorithms compared to a constellation.
However, the system in [14] requires an expensive event-based
camera, and its performance suffers from random background
noise due to reflections of the blinking LED marker and long
latency (100ms) of image processing due to the complicated
event-based signal processing. Therefore, a system with higher
noise immunity and a lower latency using a low-cost camera
while keeping the advantage of using the circle-shaped marker
would be more desirable.

This work proposes a low-cost high-speed real-time optical
spatial localization system for UAV utilizing ellipse detection
algorithm. A real-time ellipse detection method is used for
the initial detection of the UAV in combination with pre-
processing image segmentation for improvement of detection
in noisier and less stable environments. A triangulation-based
algorithm is implemented after properly finding the target
UAV, utilizing the known knowledge of the camera’s FOV
(field of view) and the diameter of the markers on the UAV.
The primary advantages of the proposed method include that
the localization task is achieved using a regular read-green-
blue (RGB) camera instead of an expensive event-driven
dynamic vision image sensor. Moreover, compared to our prior
work [14] the processing latency has been improved by 30%
from 100ms to 66.7ms while keeping the same localization ac-
curacy thanks to the proposed color-segmentation filter before
ellipse detection. The average error of the proposed method
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Fig. 1. Flow Diagram showing processing steps for the localization of the UAV in real-time, each step is done on every image retrieved from the video

stream from the camera.

is comparable with other recently published references. These
performance makes the proposed method attractive for low-
cost mobile UAV tracking applications.

II. SYSTEM DESIGN

This section describes the proposed UAV optical localiza-
tion system including the hardware sensors and the image
processing methods.

A. System Overview

The optical localization system contains both hardware
implementation and software algorithms. The hardware system
consists of the camera, the processing unit, the UAV, and
the marker installed onboard the UAV. The sensing system
emphasizes a low-cost regular RGB camera instead of using
an expensive dynamic vision image sensor [14]. In our ex-
periment, a GoPro Hero 7 Black camera is applied for good
color consistency since the system uses color to identify the
circle-shaped marker. The processing unit in our system is a
regular laptop with an Intel 8850H 2.6GHz CPU. The target
in the experiment is a Parrot Bebop 1 UAV which is able to
carry the LED ring. A moderately bright pink LED ring is the
ellipse marker, which is supplied with a 9 V battery.

The localization task begins when the camera starts tak-
ing images of the UAV, and sending those images to the
processing computer. The algorithm on the computer process
the incoming images from the camera, which is expected
to obtain the 3D location of the UAV in real-time. The
signal processing flow chart is shown in Fig. 1. The first
step is color segmentation, in which the image is converted
into a hue-saturation-value (HSV) format. Then, a pre-defined
HSV threshold is applied to identify the pixels with pink
color from the image, which correspond to the leds of the
ellipsoid marker. After this, the edges of the selected pixels
are extracted using the Canny Edge Detection algorithm. Next,
a morphological closing operation with erosion and dilation
filters is applied to the edges to fill in any holes or gaps that
are in the segmented contour. Finally, the ellipse detection
algorithm is applied to the processed image to match the
contour. The locations of the edge pixels of the detected ellipse
are forwarded to the optical localization algorithm.

B. Real-Time Ellipse Detection

Elliptical shape detection is an active research area in

image processing and have been applied in UAV localization
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Fig. 2. Geometry for localization algorithm (left), Measurement setup of the
target ring (right), retrieved from [13].

applications [15]. Ellipse detection can be accomplished by a
variety of methods such as arc-adjacency matrix implemen-
tations matching with connected pairs of arcs, Mask R-CNN
(Regional Convolutional Network) implementation matching
elliptical regions, or arc pairing through elliptical primitives
[16]-[18]. In this work, we choose an ellipse detection algo-
rithm optimized for low-computing-overhead and low-latency
by comparing the amount of overlap of every connected-
contour with a predicted ellipse for that size of the bounding
box [15]. The ellipse detection algorithm loops through each
contour/edge in every incoming image. Pre-defined thresholds
are applied to reject contours whose dimensions/properties are
unreasonable, e.g., if the size or the aspect ratio of the ellipse
is too samll.

Pixel overlap is compared to a fitted ellipse drawn by the
fitEllipse function from the open computer-vision (OpenCV)
toolbox, and then used as a metric for accepting/rejecting
contours as a possible ellipse. When a contour has a low
amount of overlapping pixels with the fitted ellipse, the
contour is rejected. The ellipse-fitting is accomplished via a
least-squares approximation method proposed by Fitzgibbon
[19]. This method fits an ellipse to any contour that is left
on the image after color-segmentation/filtering. One of the
advantages of this proposed system is that the prior steps
of color segmentation limit the number of potential contours
that are sent to the ellipse detection algorithm, which greatly
reduces the computing cost.

C. Optical Localization

Once an ellipse is detected, the parameters of the ellipse
are sent to the optical localization algorithm for computing
the spatial location of the target UAV. The triangulation-based
algorithm has been proposed and tested in real-time before
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Fig. 3. Experimental results of the localization system (A)-(C) 2D plots of traces for the X,Y,Z axis, recorded by proposed Ellipse Detection system and the
benchmark Optitrack Motion-Capture system (unit in meters). (D) 3D traces tracked by the proposed Ellipse Detection system and the benchmark Optitrack
Motion-Capture system (unit in meters). (E) The relative error with respect to the coordinates. (F) The relative error over distance.

[13], [14]. As shown in Fig. 2, making use of the ellipse,

the center of the target UAV in the image, (Xo, Yo), can be
calculated as:

Xo = (XL +XRr)/2

Yo =L +Yr)/2

(1
2

Then the tangent value of azimuth angle ¢ and elevation angle
0 (shown in Fig. 2) are obtained as:

tan¢=2-Xo-w 3)
®/2
tan9=2-Yo-% 4)

Finally, the radial distance p, which is the distance between
the centroid of the target ring and the lens of the camera is
Xo

obtained as
2 1
2 |Xo—XR|) '(1+tan2¢)

D

2

=5

The spherical coordinates are then converted to the Cartesian
coordinates for displaying location data and further usage.

(&)

III. EXPERIMENTAL SETUP AND RESULTS

The experimental setup is shown in Fig. 4. In the UAV
flight testing, the proposed single-camera ellipse-detection-
based optical tracking system is tested simultaneously with an
OptiTrack Motion Capture System (MCS). The 3D location
results obtained by both systems are compared. The data from
the MCS are utilized as the benchmark result. The MCS makes
use of eight cameras for tracking, and provides a sampling
rate of 100Hz. The MCS is active over a volume of 5x3x3
meters. The camera for elliptical tracking was placed at the
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Fig. 4. Experimental setup. (a) The UAV localization system including the
RGB camera, the processing computer, the UAV, and the MOCAP system
for comparison. (b) UAV identified in screen view using ellipse detection
algorithm in image processing.

edge of the MCS area. A constellation of markers was added
also to the camera, on top of it, for verification of its position
with respect to the target UAV. Recording location data for
each device (camera and UAV) was started after the UAV lift-
off. During the experiment, the UAV was human-controlled
making use of a flight control joystick.

In Fig. 3(A-C) the traces of the (x,y,z) Cartesian coordinates
are plotted in order to compare the MCS ground truth data
versus the ellipse-detection technique. In Fig. 3D the proposed
tracking algorithm’s 3D traces are plotted over the MCS 3D
traces. The 3D traces from real-time testing are consistent with
the traces from the MCS. The proposed system retrieves the
UAV’s 3D location relative to the position of the camera in
real-time every 66.7ms. The data was recorded at a rate of



TABLE I
COMPARISONS OF RECENTLY PUBLISHED UAV LOCALIZATION METHODS USING MONOCULAR CAMERAS AND TRACKING MARKERS.
RA-L 2018 RA-L 2019 IROS 2021 IROS 2021 This Work
Ultraviolet-Sensitive
Sensor Type 2xIMU + RGB Camera Camera with UV Filter RGB Camera Event Camera RGB Camera
Five RGB LEDs & Blinking UV LEDs & Ellipse on

Marker

cross-constellation Hexagonal Constellation

Blinking Circular Marker Pink LED ring

white background

Particle Filter

& Pose Estimation Geometric Calculation

Processing Algorithm

Ellipse Detection &
State-Based Tracking

Temporal Filter &
Optical Localization

Ellipse Detection &
Optical Localization

Error 2-20cm 15m * 20% - 3m

Not Localizing Depth 2-6cm(Range 6m) 2-20cm

Processing Time 50ms (20Hz) 100ms (10Hz)

32.2 ms avg. 100ms 66.7ms (15 Hz)

15Hz and then interpolated to 100Hz for verification to plot
against the MCS location data. There is jitter noise in the
traces, which can be reduced with the addition of a Low-Pass
filter.

Fig. 3E presents the position error over time for each one
of the axis. The error peaks during a higher velocity turn
in the trial, and remains fairly steady throughout the rest of
the trial. The scatter plot in Fig. 3F shows the relative error
over distance for the trial. The relative error is calculated by
dividing the absolute error by the measured MCS-based value.
The distance between the UAV and the camera (p) in this
trial ranges between 1 and 3.5 meters, which is limited by the
3x3x5m space where the MCS can track objects. The error
over distance for this trial does not correlate with distance, as
the detection range is larger than the size of the testing area.

IV. DISCUSSION

The advantages of the proposed method include an easy
implementation that uses a single regular camera and real-
time ellipse detection, thanks to the color-segmentation pre-
processing filter. A comparison of the proposed method with
other recently published methods is summarized in Table I.
Compared to other similar technologies, the proposed ellipse
tracking method achieves localization with a regular RGB
camera with no additional sensors. The primary limitations
of the proposed system include the finite resolution of the
image sensor and the system processing time, mostly due to
pre-processing/segmentation of the image. This method can be
improved upon in the future by using optical filters combined
with UV/IR markers instead of using resource-heavy color
segmentation in the image.

V. CONCLUSION

This letter presented a novel method of tracking the 3D loca-
tion of a UAV utilizing an off-the-shelf camera pointing toward
a UAV equipped with elliptical markers. The algorithm is im-
plemented with color-segmentation, real-time ellipse detection,
and a triangulation-based method for localization estimation.
Since the proposed system uses a simple regular camera, it has
the potential to be applied to low-power mobile applications
for tracking the UAV in a low-cost implementation. The
proposed work reduces the cost by using the single camera,
thus, also reduces the system complexity. The system achieved
acceptable accuracy and latency for real-time UAV tracking
applications.
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