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Abstract—This paper presents a dynamic predictive sampling
(DPS) based analog-to-digital converter (ADC) that provides a
non-uniform sampling of input analog continuous-time signals.
The processing unit generates a dynamic prediction of the input
signal using two prior-quantized samplings to compute digital
values of an upper threshold and a lower threshold. The digital
threshold values are converted to analog thresholds to form a
tracking window. A dynamic comparator compares the input
analog signal with the tracking window to determine if the pre-
diction is successful. A counter records timestamps between the
unsuccessful predictions, which are the selected sampling points
for quantization. No quantization is performed for successfully
predicted sampling points so that the data throughput and power
can be saved. The proposed circuits were designed as a 10-
bit ADC using 0.18 micro CMOS process sampling at 1 kHz.
The results show that the proposed system can achieve a data
compression factor of 6.17 and a power saving factor of 31%
compared to a Nyquist rate SAR ADC for ECG monitoring.

Index Terms—Analog to Digital Converter, Dynamic Predictive
Sampling, Low Power Circuits

I. INTRODUCTION

OW-power sensing hardware and algorithms for data

acquisition systems are critical for wearable and minia-
turized devices and have been actively studied. The primary
goal is to convert the input analog signal into digital data while
extracting the critical information from the input signal and
avoiding unnecessary data generated from the conventional
Nyquist sampling. As shown in Fig. [T| (A), the conventional
Nyquist sampling uses a fixed sampling clock and converts
each sampling point into digital values. Such a method gen-
erates too much data for the following digital signal pro-
cessing circuits and systems, which introduces high power
consumption for both signal processing and communication. In
particular, since many signals in Internet-of-Things (IoT) and
biomedical applications are sparse in the time domain, only the
active portion or the spikes in the signal are of interest. Thus,
Nyquist sampling consumes too much power in sampling and
quantization while generating unnecessary data.

To address this issue, nonuniform sampling methods are
proposed. The most popular solution is the event-based level-
crossing sampling [1]] that samples using amplitude thresholds
instead of a constant clock [2]-[7] as shown in Fig. E] (B). In
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Fig. 1. Comparing different sampling methods: (A) Nyquist sampling, (B)
Level-crossing sampling, and (C) Dynamic predictive sampling (DPS). The
proposed DPS selects the least number of sampling points compared to other
sampling methods.

this method, if the input analog signal’s amplitude variation
is below a certain threshold, no sampling and quantization
are performed. This is an efficient way to save power and
sampling data when the input signal is sparse in the time
domain. However, it suffers from insertion/deletion errors of
the pulse sequences [8] and is susceptible to high-amplitude
low-frequency baseline wandering and low-amplitude high-
frequency noise, which also lead many unnecessary samplings
and generate nonessential data. Furthermore, it is not good at
identifying turning points (fiducial points) of the input signal,
such as the onset, peak, and endpoint of a peak, since it is
only sensitive to the slope but not the slope variation. Slope-
tracking sampling methods [9], [10] remove sampling points
if the slope variation between segments of sampling points is
under a certain threshold. However, it may discard important
sampling points in the reconstructed signal [9].

In this paper, we report a novel sampling method based on
dynamic prediction, which selects only the important sampling
points for quantization. As shown in Fig. [I] (C), the proposed
method applies two tracking threshold voltages that update
their value based on the prediction of prior samplings. The
system performs quantization only when the input signal is
crossing the thresholds. This method can achieve data and
power reduction as well as feature extraction during the
sampling process. The sampling algorithm can be integrated
into the analog-to-digital conversion process in a fully digital
fashion without calculating the slopes.

II. DYNAMIC PREDICTIVE SAMPLING

The dynamic predictive sampling method uses two prior
sampling points to decide if the next sampling point is
selected for quantization. The proposed system records the
timing values and digital amplitude values of only the selected
sampling points. This is performed in real-time during the
sensing process to alleviate unnecessary quantization to save
data and power. The following subsections describe the basic
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Fig. 2. DPS selects sampling points and calculates predictions.
method of dynamic predictive samplings and hardware system

implementation.
A. Prediction and Thresholds

As shown in Fig. [2| when the prediction process begins,
the system performs analog-to-digital conversions for the first
two sampling points. Then the digital prediction of the next
sampling point is generated using linear extrapolation of the
two prior sampling points. Specifically, the digital prediction
value is calculated using twice the digital value of the last
sampling point minus the digital value of the second last
sampling point, as shown in ()

PD:2XL1D—L2D (1)
Here Pp is the predicted digital value; L1p is the digital value
of the last sampling point; L2p is the digital value of the
second last sampling point. Since in binary data format, mul-
tiplying by two can be achieved using a left shift of the bits,
(T) does not involve an actual multiplication operation. The
predicted digital value is then applied to generate the upper
and lower threshold digital values by adding and subtracting
a pre-defined digital Delta value using (2):
UTp=Pp+ Ap

2
LTp = Pp — AD

Here UTp is the digital value of the upper threshold, LT
is the digital value of the lower threshold, and A p, is the digital
Delta value.

B. Sampling Decision

The upper and lower threshold values are then converted
into analog values using a digital-to-analog converter (DAC).
The analog values of the thresholds are compared with the
actual analog input in the next sampling. Analog comparisons
are made between the analog input signal, the upper threshold
value, and the lower threshold value using a comparator
operating in sequential or two compactors in parallel. The
comparison results decide if the analog input signal is between
the upper threshold value and the lower threshold value shown

in (. LT < Inputs < UTx 3)
Here LT is the analog value of the lower threshold, Input 4
is the analog value of the input signal, and UT4 is the analog
value of the upper threshold. LTy and UTy4 are generated by
the DAC based on digital values LTp and UTp, respectively.

The comparison result of (3 decides whether the prediction
is successful. If the input analog value is between the two
thresholds, i.e., is valid, the prediction is correct and no
quantization is performed for the input analog signal. In the
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Fig. 3. (a) Block diagram of the Dynamic Predictive Sampling ADC. (b)
Chip microphoto.

next prediction, L1p is then replaced by the current Pp
while L2p is replaced by the current L1p. Then the new
Pp is calculated using (I). In such a case, the system doesn’t
record the data and no data are sent to the output. On the
other hand, if the input analog value is not between the two
thresholds, i.e., is not valid, the prediction is incorrect.
This means the input analog waveform is higher than the upper
threshold or lower than the lower threshold. Then quantization
is performed using Successive Approximation Register (SAR)
logic for the next two sampling points to generate new digital
values for prediction. In such a case, the two digital values are
temporarily stored and applied as L1p and L2p. Then the next
predicted digital value is calculated using (I). L1p is sent as
an output of the system. A clocked timer starts counting the
timestamp between the timing of the current sample value and
the next time when a prediction is incorrect. The timestamp
is also a digital output of the system.

C. Hardware Implementation

A block diagram of the proposed dynamic predictive sam-
pling system is shown in Fig. [3] (A), which consists of a
comparator, a DAC, and a Predictive Sampling Digital Logic.
The analog input signal is compared with the analog value
generated from the DAC. The comparison result is sent to
the digital logic for prediction and threshold calculation. The
predictive sampling digital logic generates the digital data of
the upper and lower threshold voltages using the predicted
digital value and the Delta values. The digital data of the upper
and lower thresholds are then sent to the DAC to compare with
the analog input signal. The system can use one comparator
to first compare the input with the upper threshold, and then
compare the input with the lower threshold. It can also use
two comparators to compare the input with both the upper and
lower threshold simultaneously. The cost would be additional
comparator circuit and power consumption. If the prediction
is not successful, a full SAR logic is performed to obtain the
digital value of the analog input. In such a case, the digital
value of the analog input is sent as the Data output while a
timer starts counting the clock cycles to obtain the Time-stamp
output, which measures the timing difference between two
unsuccessful predictions for signal reconstruction. The DAC
in the system should meet the requirement of a DAC in a
regular SAR ADC in terms of sampling rate and nonlinearity.
To better evaluate the power savings of the proposed DPS
method, an integrated ADC circuit is designed and fabricated
using a 0.18um CMOS Process. The circuit is designed using
a 1.8 V power supply and the sampling rate is set at 1 kHz
targeting monitoring ECG signals. The internal clock is 16
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Fig. 4. Selected sampling points in low-pass-filtered square waveform with
different Delta values.

kHz for the DPS and SAR logic. The overall chip is 1.5mm

by 1.5mm including the pad frame. The microphoto of the
integrated circuit is shown in Fig. [3] (b).

III. PERFORMANCE EVALUATION

The primary goal of the dynamic predictive sampling
method is to identify the key sampling points in the waveform
to perform quantization. By doing so, the digital data through-
put from the sensor can be reduced to alleviate processing
or communication power for the following circuits in the
system. In addition, the selected key sampling points also
represent important features of the original waveform, which
are more friendly for signal processing. Power saving is
another important feature of the system especially when the
input signal is sparse. In summary, the performance of the
dynamic predictive sampling includes (1) data saving, (2) error
introduced by reducing the number of sampling points, and (3)
power saving from the analog to digital conversion steps.

Fig. [ illustrates the simulation results of the selected
sampling points using DPS with an input signal as a low-
pass filtered square waveform. Such a waveform has linear
portions in both the time domain and the amplitude domain,
while it also contains small ripples and overshoots during
the transition. As shown in Fig. {i] the DPS method selects
a small number of sampling points when the input signal
is linear in both amplitude and time domain, which saves a
lot of data compared to Nyquist sampling and level-crossing
sampling when the input signal is linear. More importantly,
with a smaller Delta value, DPS automatically selects more
sampling points in the fine structure of the waveform, which
preserves the key information. Both Nyquist sampling and
level-crossing sampling do not have such a feature. Comparing
Fig. E| (a) and (b), DPS can control the trade-off between
errors and data savings by using different Delta levels, which
provides more flexibility for a data acquisition system. The
overall performance of DPS depends on specific input signals
in terms of time domain sparsity, amplitude, and the selection
of the Delta value. The following subsections analyze the
performance trade-offs with specific signals.

A. Data Savings

The performance of data saving can be evaluated by the
compression factor, which is defined as the ratio of the total
data amount generated by Nyquist rate sampling to the data
amount from the proposed DPS method [9]]. The compression
factor depends on the amplitude of the signal, the signal
sparsity, and the Delta value. If the Delta value is too large, the
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Fig. 5. Measured ECG waveform by the chip with different Delta values.
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Fig. 6. Compression Factor and SNR at different Delta values for sinusoidal
signal (a) (b) and Compression Factor and RMS error of ECG signal (c) and
(d) with different amplitudes.

reconstructed signal may be distorted. In practical application,
we can use an example signal to test the system to adjust
parameters such as the Delta value of the proposed ADC
until it meets desired performance. To evaluate data-saving
performance on biomedical signals, ECG data from the MIT-
BIH Arrhythmia database is applied as the input signal. In such
an application, all fiducial points must be recorded for ECG
arrhythmia classification. The measured time domain response
of the ECG signal using the fabricated chip is shown in Fig. [3]
using different Delta values, where the sampling rate is 1 kHz,
which is enough for recording the ECG signal since most of
the ECG spectrum is under 100 Hz. The DPS can achieve a
compression factor of 6.17 while the reconstructed waveform
is acceptable for arrhythmia classification. An example sim-
ulation using the MIT-BIH arrhythmia database (record 233)
shows that the premature ventricular contraction beat (PVC)
classification accuracy can achieve 97.16%, 94.01%, 90.71%,
and 75.48% with Fig. 5’s Delta of 25 mV, 50 mV, 100 mV,
and 200 mV, respectively.

The reconstructed signal from the Dynamic Predictive Sam-
pling method may introduce extra error since it contains fewer
sampling points than Nyquist sampling. The timestamp data
provides a timing difference between adjacent key sampling
points. The amplitude value and the timestamp value of all
the key sampling points can be plotted in the time domain
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as a series of scattering points of the recorded data in the
time domain. The most simple way of reconstruction is to
connect adjacent points using segments, which is the piecewise
linear method. Advanced methods could be applied to make
the reconstruction signal more smooth. Reconstruction of the
analog signal can be achieved using linear or polynomial
interpolation. In this study, we assume the reconstruction is
done by the first-order piece-wise-linear method by simply
connecting the selected sampling points using straight lines.
Both ECG signals and sinusoidal signals are studied as inputs
to evaluate the performance of the proposed DPS method. Fig.
|§| (a) and (b) show data saving and signal-to-noise ratio (SNR)
as a function of Delta values at different signal amplitudes
for the sinusoidal signal, while Fig. |§| (c) and (d) illustrate
performance for the ECG signal in terms of data saving and
RMS error. Since the DPS system requires extra timestamp
output, we assume the data output of each sample is 10-bits
and the timestamp between two samplings is also 10-bits. The
ADC resolution (10-bit) is chosen for evaluating the system’s
performance. From simulation results, a 10-bit timestamp with
a 1-kHz sampling rate is a very safe estimation for recording
ECG signals. Thus, each sampling from DPS needs 20-bits
while each sampling from Nyquist rate ADC needs only 10-
bits. Thanks to the signal sparsity, the proposed DPS method
can achieve a high compression factor while keeping the RMS
error acceptable.

B. Power Savings

The DPS ADC achieves power saving when the input signal
is sparse. The power cost of the DPS ADC depends on both the
input signal sparsity and the Delta value. Fig.|7| (a) shows the
simulated power breakdown of the DPS ADC at different Delta
levels. The analog power comes from the comparator and the
DAC. The digital power comes from the predictive sampling
digital logic including the SAR logic, the timer, the calculator
of prediction and threshold, and the digital decision-making
circuits. While the digital power remains constant, the analog
power can be saved with a larger Delta value. This is because
with a larger Delta value, more predictions are successful. So
that the analog power can be greatly saved due to the reduced
frequency of performing quantization, which draws power
from the comparator. Compared to a conventional SAR ADC,
the DPS ADC pays extra effort in selecting sampling points
by adding two more comparisons (comparing the input signal

TABLE I
NONUNIFORM SAMPLING ADC PERFORMANCE COMPARISON

This TBCAS JSSC TCASI
Work 2013 [4] | 2013 [5] | 2020 [9]
Dynamic Level Level Slope
Method Prediction | Crossing | Crossing | Sampling
N(‘:e.d No No No Yes
Division
Turning
Point Yes No No Yes
Detection
Sampling Fixed Fixed
Value Real Level Level Real
Technology 180nm 180nm 130nm 180nm
Sampling
Rate 1 kHz Async Async 1 kHz
Power 368 nW 313 nW 6.5 uW 1700 nW
Resolution 10-bit 6-bit 8-bit 12-bit
Core 0.39 x 0.22 x 0.65 x 0.5 x
Area (mm) 0.44 0.20 0.55 0.27
Compression 6.17 N/A N/A 6.1
Factor

with the upper and lower thresholds) and extra calculation of
the prediction in the control logic. Power saving is achieved
when the prediction is successful so that no further quantiza-
tion and comparison are required. Therefore, when the Delta
value is very small, the DPS ADC may consume more power
than a conventional SAR ADC due to the extra comparison
and digital operation as shown in Fig. [7] (b). Although a DPS
ADC has a larger digital power compared to a SAR ADC, it
could be reduced by using advanced fabrication technologies.
Since a conventional SAR ADC performs quantization at each
sampling, its analog power from the comparator makes its
total power higher than a DPS ADC when the input signal is
sparse. A power-saving factor can be calculated by comparing
the DPS ADC over a conventional SAR ADC at the same
sampling rate and input signal.

IV. DISCUSSION

The proposed DPS ADC provides a unique method to
separate the sampling and quantization processes to reduce the
number of quantization in data acquisition systems. A com-
parison between the dynamic predictive sampling method, the
level-crossing sampling method, and the slope-based signal-
dependent sampling method is summarized in Table [ The
level-crossing sampling ADCs [4], [5]] can only record limited
signal amplitude values while DPS reports accurate digital
values for each selected sampling point. DPS is more efficient
and accurate in terms of localizing turning points in the
analog input waveform. More importantly, when considering
the reconstruction of the input signal, the DPS method avoids
the shifting error due to the insertion and deletion of pulses
from the level-crossing sampling system. Furthermore, the
level-crossing sampling system often requires the comparator
to run in an “always-on” mode, while the DPS system can
use a dynamic comparator and turn off the comparator to save
power thanks to synchronous operation. Theoretical analysis
of nonuniform sampling systems could be found in [11].

Both DPS and slope-based signal-dependent sampling [9]]
achieves data saving for sparse signal and both are able to
record accurate value of turning points. The difference is



that in [9]], the slope-based signal-dependent method discards
sampling points if the slope variation between segments of
sampling points is under a certain threshold. However, the
slope calculation is processed in the analog domain including
calculating divisions. Such a design may suffer from noise
in the analog circuits. Moreover, if the slopes of consecu-
tive segments between sampling points have variations small
enough but accumulative to one direction, the system may
unnecessarily discard important sampling points, which would
introduce distortion in the reconstructed signal. Therefore,
additional efforts have to be made to limit the maximum
number of consecutive samples that can be dropped, which
increases the computing complexity. The main difference
between the dynamic predictive sampling method and [9] is
that the DPS method performs prediction in the digital domain
that avoids analog divisions and slope calculation. DPS method
also avoids the problem of unnecessary drops of samplings
in [9] since DPS doesn’t compare slope values. Moreover,
the DPS system achieves a low computing overhead since
multiplying by 2 can be realized easily using shift registers.
The DPS system can be implemented by simply modifying
the digital logic in a conventional SAR ADC. However, DPS
method may consume more digital power than [9] since most
of the calculations in DPS method are done digitally.

Conventionally, the Figure-of-Merit (FOM) for SAR ADCs
[12]-[14] does not consider other circuits in the system. The
conventional FOM focuses on power consumption, sampling
rate, area, and resolution of the ADC. However, the power cost
and area from an ADC are usually a small portion of the whole
system. Also, a high sampling rate and resolution may lead to
a large amount of data that overloads the following processing,
storage, and communication systems. In the proposed system,
only critical turning points are recorded to reduce the output
data amount. Moreover, the turning points identified during
analog-to-digital conversion contain important features of the
input signal, which further reduces the signal processing
workload. Therefore, the advantages of the proposed system
are not evaluated using the conventional FOM of ADC.

V. CONCLUSION

This paper presents a dynamic predictive sampling method
that selects key sampling points in the analog waveform for
quantization. The proposed method utilize the sparsity of the
input signal to achieve data saving and power saving. An
integrated circuits was designed to simulate and analyze power
consumption using 0.18 ym CMOS process. The results show
that the proposed system achieves a compression factor of
6.17 and a power saving factor of 30% for ECG signal. The
performance was compared to the conventional SAR ADC,
the level-crossing sampling ADC, and the slope-based signal-
depended sampling ADC. Compared to the level-crossing
sampling ADC, the proposed system has the advantage of
recording accurate digital value of key sampling points. It
avoids complicated slope calculation circuitry in the slope-
based signal-depended sampling ADC. The proposed system
can be implemented by modifying digital logic of a conven-
tional SAR ADC while greatly reduces data throughput and
power consumption in data acquisition and processing system.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

Y. Zhao and Y. Lian, “Event-driven circuits and systems: A promising
low power technique for intelligent sensors in aiot era,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp.
3122-3128, 2022.

B. Schell and Y. Tsividis, “A Continuous-Time ADC/DSP/DAC System
With No Clock and With Activity-Dependent Power Dissipation,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2472-2481, 2008.
W. Tang, A. Osman, D. Kim, B. Goldstein, C. Huang, B. Martini, V. A.
Pieribone, and E. Culurciello, “Continuous time level crossing sampling
adc for bio-potential recording systems,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 60, no. 6, pp. 1407-1418, 2013.
Y. Li, D. Zhao, and W. A. Serdijn, “A Sub-Microwatt Asynchronous
Level-Crossing ADC for Biomedical Applications,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 149-157, 2013.
C. Weltin-Wu and Y. Tsividis, “An Event-driven Clockless Level-
Crossing ADC With Signal-Dependent Adaptive Resolution,” /EEE
Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2180-2190, 2013.
Y. Hou, K. Yousef, M. Atef, G. Wang, and Y. Lian, “A 1-to-1-kHz, 4.2-
to-544-nW, Multi-Level Comparator Based Level-Crossing ADC for IoT
Applications,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 10, pp. 1390-1394, 2018.

S. Sirimasakul and A. Thanachayanont, “A logarithmic level-crossing
adc,” in 2017 14th International Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunications and Information Tech-
nology (ECTI-CON), 2017, pp. 576-579.

Q. Hu, C. Yi, J. Kliewer, and W. Tang, “Asynchronous communication
for wireless sensors using ultra wideband impulse radio,” in 2015
IEEE 58th International Midwest Symposium on Circuits and Systems
(MWSCAS), 2015, pp. 1-4.

E. H. Hafshejani, M. Elmi, N. TaheriNejad, A. Fotowat-Ahmady, and
S. Mirabbasi, “A low-power signal-dependent sampling technique: Anal-
ysis, implementation, and applications,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 12, pp. 4334-4347, 2020.
E. Hadizadeh Hafshejani, N. TaheriNejad, R. Rabbani, Z. Azizi, S. Mo-
hin, A. Fotowat-Ahmady, and S. Mirabbasi, “Self-Aware Data Pro-
cessing for Power Saving in Resource-Constrained IoT Cyber-Physical
Systems,” IEEE Sensors Journal, vol. 22, no. 4, pp. 3648-3659, 2022.
H. Naaman, S. Mulleti, and Y. C. Eldar, “Fri-tem: Time encoding
sampling of finite-rate-of-innovation signals,” IEEE Transactions on
Signal Processing, vol. 70, pp. 2267-2279, 2022.

D. Zhang and A. Alvandpour, “A 3-nw 9.1-enob sar adc at 0.7 v and
1 ks/s,” in 2012 Proceedings of the ESSCIRC (ESSCIRC), 2012, pp.
369-372.

Y. K. Yang, X. Liu, J. Zhou, J. H. Cheong, M. Je, and W. L. Goh, “A
0.5v 16nw 8.08-enob sar adc for ultra-low power sensor applications,”
in 2013 IEEE MTT-S International Microwave Workshop Series on RF
and Wireless Technologies for Biomedical and Healthcare Applications
(IMWS-BIO), 2013, pp. 1-3.

K. Yadav, P. Patra, and A. Dutta, “A 43-nw 10-bit 1-ks/s sar adc in
180nm cmos for biomedical applications,” in 2015 IEEE Asia Pacific
Conference on Postgraduate Research in Microelectronics and Electron-
ics (PrimeAsia), 2015, pp. 21-25.



	Introduction
	Dynamic Predictive Sampling
	Prediction and Thresholds
	Sampling Decision
	Hardware Implementation

	Performance Evaluation
	Data Savings
	Power Savings

	Discussion
	Conclusion
	References

