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Abstract: Machine learning is an expanding field with an ever-increasing role in everyday life, with its
utility in the industrial, agricultural, and medical sectors being undeniable. Recently, this utility has
come in the form of machine learning implementation on embedded system devices. While there have
been steady advances in the performance, memory, and power consumption of embedded devices,
most machine learning algorithms still have a very high power consumption and computational
demand, making the implementation of embedded machine learning somewhat difficult. However,
different devices can be implemented for different applications based on their overall processing
power and performance. This paper presents an overview of several different implementations
of machine learning on embedded systems divided by their specific device, application, specific
machine learning algorithm, and sensors. We will mainly focus on NVIDIA Jetson and Raspberry
Pi devices with a few different less utilized embedded computers, as well as which of these devices
were more commonly used for specific applications in different fields. We will also briefly analyze
the specific ML models most commonly implemented on the devices and the specific sensors that
were used to gather input from the field. All of the papers included in this review were selected
using Google Scholar and published papers in the IEEExplore database. The selection criterion for
these papers was the usage of embedded computing systems in either a theoretical study or practical
implementation of machine learning models. The papers needed to have provided either one or,
preferably, all of the following results in their studies—the overall accuracy of the models on the
system, the overall power consumption of the embedded machine learning system, and the inference
time of their models on the embedded system. Embedded machine learning is experiencing an
explosion in both scale and scope, both due to advances in system performance and machine learning
models, as well as greater affordability and accessibility of both. Improvements are noted in quality,
power usage, and effectiveness.

Keywords: computer vision; embedded systems; Google Coral; machine learning; Nvidia Jetson;
RGB camera; Raspberry Pi; sensors

1. Introduction

Machine learning has become a ubiquitous feature in everyday life. From self-driving
vehicles, facial recognition systems, and real-time interpretation of different languages,
to security surveillance, smart home applications, and health monitoring, artificial in-
telligence has changed almost every society on earth [1–4]. Due to the extremely high
computational requirements of machine learning models, until recently, the majority of
these breakthroughs were implemented on high-power stationary computing systems.
However, continuous advancements in embedded system design have made the imple-
mentation of machine learning models on embedded computing systems for a wide variety
of mobile and low-power applications viable. One example of such an application would
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be [5], a 2020 paper by Ouyang et al., titled “Deep CNN-Based Real-Time Traffic Light De-
tector for Self-Driving Vehicles”, which proposes a method for recognizing traffic lights for
autonomous vehicles. This ever-expanding research field of machine learning implementa-
tion in limited environments of embedded systems has been titled “Embedded Machine
Learning” [6]. There are many considerations when choosing an embedded system for a
specific machine learning application, such as power limitations, specific sensor outputs,
model architecture, and monetary cost. In this review paper, we focus on the system
models and assess which systems are better suited for which specific applications and
sensing schemes.

As stated, machine learning algorithms are trained and used for many different
applications, such as hand gesture recognition [7] and speech source identification [8].
They usually have a very high performance and memory requirement for both training
and inference. Effective implementation would require the tuning and modification of the
machine learning model architecture as well as the selection of the appropriate system
depending on the priorities of the application. All machine learning applications aim to
consume as little power and computation and be as fast and accurate as possible, however,
improvement in one of these areas almost always comes at a relative cost to the other ones.
Since embedded systems can vary drastically in power consumption, processing power,
memory, storage, and pricing, it is prudent to select the appropriate system for each specific
application. As an example, a system for pedestrian detection for autonomous vehicles [9]
would prioritize performance speed and accuracy much more so than a system designed
for recognizing marine life [10], even if it comes at a much higher monetary cost.

Training a machine learning model for any task requires a dataset, which can consist
of megabytes to terabytes of images, video files, audio files, graphs, etc., and their corre-
sponding annotation files. The specific files of a dataset used for training depend on the
intended application of the machine learning model, an image classification model, for
example, would use a dataset of image files and label annotations associated with each
image. The sensing schemes used for collecting these files, both for the initial training and
testing datasets, as well as for the inference of the trained machine learning algorithm on an
embedded system, are varied. Another subject of analysis in this research was the correla-
tion between the type of sensor scheme used in each system to the overall implementation
of the system.

Most of the papers reviewed in this work utilized some form of computer vision, mainly
in areas such as obstacle detection for autonomous vehicles (such as speed bumps) [11] or
safety and security measures (such as violent assault identification) [12]. However, several
also presented embedded machine learning methods for medical applications (such as
patient heart monitoring) [13] or automating more aspects of city management (such as
managing the direction and flow of vehicular traffic) [14].

Essentially, in this review, we emphasized specific applications, embedded hardware
platforms, and sensors, then compared them based on the nature of those networks and
applications, while any other embedded machine learning review papers have a greater
focus on the performance of specific lines of hardware [15], or the network architecture
implemented on the hardware [16]. The paper is structured in the following format: 1. Ab-
stract; 2. Introduction; 3. Hardware System Considerations; 4. Specific Hardware Systems
Covered In The Review; 5. Sensing Systems; 6. Network Applications; 7. Comprehensive
Comparisons; 8. Conclusions. This layout is also displayed in Figure 1. If the readers are
interested in machine learning algorithms, models, and databases, please refer to other
review and benchmark papers such as the ones used as sources in this work [15–17]. Works
such as [18–21] and [15,17] provide a comprehensive performance analysis and benchmark
of the embedded systems used in their specified applications, while works such as [22,23]
conduct a more in-depth study on improvement methods for both system hardware and
model architecture for their specific applications.
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3.1. General Considerations

When choosing an embedded computing device for specific applications, many dif-
ferent parameters need to be kept in mind. The parameters include, but are not limited
to, system processing speed, affected by the integrated CPU and GPU of a system, system
memory affected by the RAM, system storage space, system bus and drivers, the overall
power consumption of a system, and its cost of purchase. Generally, systems with higher
performance and memory are capable of performing more complex machine learning
tasks at a greater speed but have high power consumption rates and monetary prices. On
the other hand, cheaper and less power-intensive systems have lower performances and
memory, making them perform their dedicated task far slower.

3.2. Processor Units

Processing units are the integrated electrical circuits responsible for performing the
fundamental algorithmic and arithmetic logic processes for running a computer device.
There are different categories of processors, with the most common ones in embedded
computer systems being CPUs and GPUs. Central Processing Units, or CPUs, are the
processors present in most electrical devices and are responsible for the execution of
programs and applications, they are usually composed of multiple cores and have their
performance measured in gigahertz. Graphical Processing Units, or GPUs, are dedicated
processors used for graphical rendering, allowing devices to allocate graphically intensive
tasks, such as real-time object recognition, to them. All of the embedded computer devices
presented in this review contain both a CPU and GPU unit, with the CPUs being various
ARM Cortex multicore processors [24–34]. The GPUs for each system were more varied in
both clock speed and power consumption. More detailed descriptions are given within
each systems subsection.

3.3. Memory Units

System memory generally refers to a computing system’s Random Access Memory
or RAM, which is responsible for storing application data for quick access. The larger a
system’s RAM, the quicker the system can run simultaneous applications, making RAM
proportional to the overall performance of a system. Embedded computing devices are
packaged with their own memory component, with most embedded systems in this review
having between 1 GB, 2 GB, and 4 GB of RAM [30,31], while the most recent NVIDIA kits
have between 8 GB and 16 GB [24,28]. Memory Bandwidth is another important parameter
of system memory, indicating the rate at which data can be accessed and edited, with the
bandwidth of the system included in this review ranging from 128-bit to 256-bit.

3.4. Storage Units

Computer storage refers to the component of a computing device responsible for
retaining longtime application and computation data. While access and alteration to
storage data by the CPU are much slower than its access to RAM data, it consumes far less
power and processing capability. Storage systems come in many varieties such as flash
drives, hard drives, solid state drives, SD cards, and embedded MultiMediaCard memory
or eMMC. Hard drives have been the most common form of storage up until recently, with
their advantage over other alternatives being their overall size and their downside being
their relatively slow data access speed. Solid state drives or SSDs have provided far faster
data access at the cost of storage size, however, in recent years, SSDs have made leaps
in storage capacity and are now comparable in overall storage size to hard drives. Flash
drives are quick and easy to connect or disconnect from different computing devices while
having very small storage space, they are very similar to SSDs in terms of performance.
Secure digital cards or SD cards are also similar to flash storage but have both much smaller
sizes and storage capacities. eMMCs are architecturally similar to flash storage and are
generally used in small laptops and embedded computing systems. Most development kit
embedded computing systems contain eMMCs, this being very much the case in NVIDIA
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Jetson, Coral Edge, and ASUS Tinker board devices, and others, such as ODROID-XU4
boards, do not have their own integrated storage devices but instead have flash storage
interface. Raspberry Pi boards have interfaces for both SD cards and Flash drives.

3.5. Operating Systems

Operating systems are responsible for managing and running all of the applications
on a computing device, allowing applications to make requests for services through a
defined application program interface (API). This makes the creation and usage of various
applications much simpler, as all low-level functions, such as allocating disk space for an
app, can be delegated to the OS. Operating systems rely on a library of device drivers to their
services to specific hardware environments, so while every application makes a common
call to a storage device, it is the OS that receives that call and uses the corresponding
driver to translate the call into commands needed for the underlying hardware. Hardware
capabilities are divided into three sections: providing UI through a CLI or GUI, launching
and managing application execution, and identifying and exposing system hardware
resources to the applications. Most personal computing devices utilize general-purpose
operating systems, such as Windows, Mac OS, and Linux, and while there are specific
embedded operating systems, mainly used in ATMs, Airplanes, and ioT devices, most
embedded computing systems either utilize operating systems based on or very similar
to general-purpose computer operating systems. For example, Nvidia Jetson boards have
Linux for Tegra included in their development software kits [35].

3.6. Bus and Drivers

Computer buses are communication systems responsible for transferring data between
the various components of a computing system. While most home computer systems have
32-bit to 64-bit buses, embedded devices have far smaller bit rates between 4-bit and 8-bit.
Drivers refer to the systems responsible for communicating the software of a computer
device to its hardware component. They generally run at a high privilege level in the OS
run time environment, and in many cases are directly linked to the OS kernel, which is a
portion of an OS such as Windows, Linux, or Mac OS, which remains memory-resident and
handles execution for all other code. Drivers are what defines the messages from the OS to a
specific device that facilitate the devices’ fulfillment of the OS’s request. The device drivers
used in each embedded computing system are related to the operating systems of each
device. For example, Raspberry Pi devices mainly use Raspberry Pi’s own operating system
which is based on Debian, while Nvidia Jetson boards mainly rely on JetPack, Nvidia’s
proprietary Software Development Kit (SDK) for their Jetson board series, which includes
the Linux for Tegra (L4T) operating system. This means the driver kernels for both of these
embedded system product lines are similar to that of a Linux computer [36].

Firmware refers to software formats that are directly embedded in specific devices,
giving users low-level control over them. Essentially, firmware is responsible for giving
simple devices their operation and system communication instructions. They are unique to
other software in that they do not rely on APIs, OSs, or device drivers for operation. They
are the first part of device programming to start sending instructions when the device is
powered on, and in some more simple devices such as keyboards, they never pause their
operations. They are mostly installed on a ROM for software protection and proximity
to the physical component of their specific device. They can only work with a basic or
low-level binary language known as machine language [37]. All of this applies to the
components within an embedded system, meaning each device within the system has its
own unique firmware with varying levels of complexity based on the function of the device.

4. Specific Systems

4.1. Nividia Jetson

Jetson is the name of a series of machine learning embedded systems by NVIDIA
used for autonomous devices and various embedded applications. While Jetson Developer
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kits vary in capability and performance, they are generally very reliable for implementing
machine learning tasks—this is especially true for more graphically intensive applications.
The downside to this is that NVIDIA Jetson boards also tend to be more costly than market
alternatives. Most of the sources shown in this review either only made use of Jetson
boards or used their combination with other devices. These specific developer kits were
the NVIDIA Jetson Nano, NVIDIA Jetson TX1, NVIDIA Jetson TX2, NVIDIA Jetson AGX
Xavier, and NVIDIA Jetson Xavier NX.

NVIDIA Jetson Nano is one of the smaller Jetson kits specialized for machine learning
tasks like image classification, object detection, segmentation, and speech processing.
It has a 128-core Maxwell GPU, a Quad-core ARM Cortex A57 1.4Remote Sensing of
EnvironmentHz CPU, 4 GB 64-bit LPDDR4 25.6 GB/s Memory, 2x MIPI CSI-2 DPHY lanes
camera, Ethernet, HDMI, and USB connection ports. Unlike most other NVIDIA kits, Nano
does not have an integrated storage unit and has to rely on SD cards for that purpose. It
has a power consumption of 5–10 Watts and with a price range of USD 300–USD 500, it is
the more affordable option out of all of the NVIDIA development kits [24].

The Jetson TX1 and TX2 series are a discontinued line of embedded system develop-
ment kits with flexible capabilities that include great performance for machine learning
tasks. As the discontinuation of this line of kits is especially recent for the TX2 series,
research publications that utilize the TX2 board are not uncommon, with the TX1 being
much rarer. The TX1 has a 256-core Maxwell GPU, a Quad-core ARM® Cortex®-A57 CPU,
a 4 GB LPDDR4 memory, a 16 GB eMMC 5.1 Flash Storage, a 5 MP Fixed Focus MIPI CSI
Camera, Ethernet, HDMI, and USB type A and Micro AB connection ports. The TX2 has
NVIDIA Pascal™ Architecture GPU, 2 64-bit CPUs, Quad-Core Cortex®-A57 Complexes,
an 8 GB L128 bit DDR4 memory, a 32 GB eMMC 5.1 Flash Storage, a 16 GB eMMC 5.1 Flash
Storage, a 5 MP Fixed Focus MIPI CSI Camera, and Ethernet, HDMI, and USB type A and
Micro AB connection ports. The power consumption of the TX1 is around 15 Watts and
that of the TX2 is about 25 Watts [25,26].

The Jetson AGX Xavier is one of the most powerful developer kits produced by
NVIDIA. It is mainly used for creating and deploying end-to-end AI robotics applications
for manufacturing, delivery, retail, and agriculture, but it could also be applied for less
intensive machine learning applications. It has a 512-core Volta GPU with Tensor Cores, an
8-core ARM v8.2 64-bit CPU, a 32 GB 256-Bit LPDDR4x memory, a 32 GB eMMC 5.1 Flash
storage, as well as two USB C ports, and an HDMI and camera connector. It has a price of
about USD 4000 and has a power consumption of 30 Watts, making it much more costly in
both price and electricity than the other Jetson kits [27].

The Jetson Xavier NX kits is another series of NVIDIA developer kits designed as
the successor to the TX series. It is power-efficient and compact, making it suitable for
machine learning application development. It has an NVIDIA Volta architecture GPU with
384 NVIDIA CUDA® cores and 48 Tensor cores, a six-core NVIDIA Carmel ARM®v8.2
64-bit CPU, an 8 GB 128-bit LPDDR4x memory, two MIPI CSI-2 DPHY lanes cameras, and
Ethernet, HDMI, and USB type A and Micro AB connection ports. It has an integrated
storage component of its own, instead of relying on a micro SD storage interface. It has a
power consumption of 10 Watts and a price range of around USD 2000. Its well-rounded
quality makes it a very good, if somewhat expensive, the choice for machine learning
implementation on embedded systems [28].

4.2. Google Coral

Google Coral Dev Board is a single-board computer by Coral that can be used to
perform fast machine learning (ML) inferencing in a small form factor; it is mainly used
for prototyping custom embedded systems, but it can also be used for embedded machine
learning on its own. It has an Edge TPU coprocessor that is capable of performing 4 trillion
operations per second, as well as being compatible with TensorFlow Lite. It has a quad
Cortex-A53 CPU, integrated GC7000 Lite Graphics, 1 GB/2 GB/4 GB LPDDR4 memory,
8 GB eMMC storage as well as a MicroSD slot, Type C, A, and microB USB, Gigabit Ethernet,
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and HMDI 2.0 ports. The overall board has a low power cost of 6–10 Watts and at USD 130,
the price for the board is relatively low [29].

4.3. Raspberry Pi

Raspberry Pi is a series of extremely popular embedded computers developed by the
Raspberry Pi Foundation in the United Kingdom. The uses for these systems are extremely
wide, including machine learning. Like the Jetson series, Raspberry Pi products are very
commonly used in embedded machine-learning implementation projects. For this review,
the three systems of Raspberry Pi that were commonly utilized were the Raspberry Pi 3
Model B, the Raspberry Pi 3 Model B+, and the Raspberry Pi 4 Model B.

The Raspberry Pi 3 Model B is the first iteration of the third-generation Raspberry
Pi computers. It has a Quad Core 1.2 GHz Broadcom BCM2837 64bit CPU, a 400 MHz
VideoCore IV video processor, a 1 GB LPDDR2 memory, a microSD port for storage, a
100 Base Ethernet, 4 USB 2.0, and full-size HDMI ports. It has an extremely low power
consumption of 1.5 Watts and a monetary cost of about USD 40 [30].

The Raspberry Pi 3 Model B+ is the final iteration of the third-generation Raspberry
Pi Computers. It has a Quad Core 1.4 GHz Broadcom BCM2837B0, Cortex-A53 (ARMv8)
64-bit SoC CPU, a 400 MHz VideoCore IV video processor, a 1 GB LPDDR2 memory, a
microSD port for storage, a 1000 Base Ethernet, 4 USB 2.0, and full-size HDMI ports. Its
main advantage to model 3b is its processor’s higher clock speed and its PoE (power over
Ethernet) support. At 2 Watts, its power consumption is still low but higher than that of
the model 3b series. It also has a very close monetary cost ranging around USD 40.

The Raspberry Pi 4 Model B is the first iteration of the fourth-generation Raspberry
Pi Computer. It has a Quad Core 1.5 GHz Broadcom BCM2837B0, Cortex-A72 (ARMv8)
64-bit SoC CPU, a 400 MHz VideoCore IV video processor, a choice between 1 GB, 2 GB,
4 GB, and 8 GB LPDDR2 memory, a microSD port for storage, a Gigabit Ethernet, 4 USB
2.0, and full size HDMI ports. Its main advantage to model 3b is its processor’s higher
clock speed and its PoE (power over Ethernet) support. Its newer processor and option
for memory make it a superior choice compared to the previous iteration of Raspberry pi.
It has a relatively low power consumption of 4 Watts and a monetary cost of about USD
40–USD 80 depending on the memory size [31].

4.4. ODROID XU4

The ODROID XU4 is an energy-efficient single-board embedded computing system by
Hardkernel Co. located in Rm704 Anyang K Center 1591-9 Gwanyang-dong Dongan-gu,
Anyang-si, Gyeonggi-do, South Korea. It is compatible with open-source software and can
use different versions of Linux, such as Ubuntu, as its operating system. It has Exynos5422
Cortex™-A15 2 Ghz and Cortex™-A7 Octa core CPUs, a Mali-T628 MP6 GPU, a 2 GB
LPDDR3 memory, 2 GB eMMC5.0 LPDDR3 Flash Storage as well as a microSD slot, 2 USB
3.0 and 1 USB 2.0, Gigabit Ethernet, and HMDI 1.4 ports. It has an operating power of 5
Watts and its cost is generally around USD 100 [32].

4.5. Banana Pi

Banana Pi is an open-source hardware platform by Shenzhen SINOVOIP Co. located
in 7/F, Comprehensive Building of Zhongxing Industry City, Chuangye Road, Nanshan
District, Shenzhen, China. Like other embedded systems, it has a wide range of applications,
amongst them, embedded machine learning implementation. It has an H3 Quad-core
Cortex-A7 H.265/HEVC 4K, a Mali400MP2 GPU, 1 GB DDR3 Memory, an 8 GB eMMC
Onboard Storage, two USB 2.0 ports, an HDMI port, and an Ethernet interface. Its overall
power consumption is about 5 Watts and it has a price range of USD 50–USD 75 [33].

4.6. ASUS Tinker Board

The ASUS Tinker Board S is a powerful SBC board with a wide range of functions such
as computer vision, gesture recognition, image stabilization, and processing, as well as
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computational photography. It has a Rockchip Quad-Core RK3288 CPU, an ARM® Mali™-
T764 GPU, a 2 GB Dual-Channel DDR3 Memory and 16 GB eMMC Onboard Storage 4
USB 2.0, and an Ethernet port, and RTL GB LAN connectivity. It has a maximum power
consumption of 5 Watts and is a relatively low-price system for all of its capabilities ranging
in price from USD 100–USD 150 [34].

The ASUS Tinker Edge R is specifically developed for AI applications, containing an
integrated Machine Learning (ML) accelerator that speeds up processing efficiency, lowers
power demands, and makes it easier to build connected devices and intelligent applications.
It has an Arm® big.LITTLE™ A72+A53 Hexa-core CPU, an ARM® Mali™-T860 MP4 GPU,
a 4 GB Dual-CH LPDDR4 memory on its system, and a 2 GB LPDDR3 on the Rockchip
NPU, a 16 GB eMMC Flash Storage as well as a microSD slot, 3 USB 3.2 type A and 1 USB
3.2 Type C, Gigabit Ethernet, and HMDI ports. It can maintain a maximum power supply
of 65 Watts and is a relatively lo- price system for all of its capabilities ranging in price from
USD 200–USD 270 [38].

All of the inforamtion related to hardware specification has been summarised in
Table 1.

Table 1. Hardware specifications.

Hardware Processor RAM Storage Power Maker

ASUS Tinker
Board S

Rockchip
Quad-Core

RK3288 Processor

2 GB
Dual-Channel

DDR3 Memory

16 GB eMMC
Onboard Storage

5 W Asus

Banana Pi
BPI-M2+

H3 Quad-core
Cortex-A7

H.265/HEVC 4K

1 GB DDR3
Memory

8 GB eMMC
Onboard Storage

5 W
Shenzhen

SINOVOIP Co.

Coral TPU Dev
Board

NXP i.MX 8M
Quad-core
Cortex-A53

1 GB LPDDR4
Memory

8 GB eMMC
Onboard Storage

(6–10) W Coral

ODROID-XU4
Board

Exynos5422
Cortex-A15 2 Ghz,
Cortex™-A7 Octa

core

2 GB LPDDR3
Memory

Flash Storage
Interface

15 W Hardkernel Co.

ASUS Tinker Edge
R

Cortex-A72,
Cortex-A53,
Mali-T860

4 GB LPDDR4
Memory

16 GB eMMC
Onboard Storage

65 W ASUS

NVIDIA Jetson
Nano

ARM Cortex-A57
MPCore

4 GB 64-bit
LPDDR4

16 GB eMMC 5.1
Onboard Storage

(5–10) W NVIDIA

NVIDIA Jetson
TX1

4 Core ARM
Cortex-A57

MPCore

4 GB 64-bit
LPDDR4

16 GB eMMC 5.1
Onboard Storage

15 W NVIDIA

NVIDIA Jetson
TX2

6 Core ARM
Cortex-A57

MPCore

8 GB 64-bit
LPDDR4

16 GB eMMC 5.1
Onboard Storage

25 W NVIDIA

NVIDIA Jetson
AGX Xavier

8 Core ARM v8.2
64-bit MPCore

16 GB 256-Bit
LPDDR4x

32 GB eMMC 5.1
Onboard Storage

(10–30) W NVIDIA

NVIDIA Jetson
Xavier NX

6 Core NVIDIA
Carmel ARM v8.2

64-bit MPCore

8 GB 128-bit
LPDDR4x

microSD storage
interface

10 W NVIDIA

Raspberry Pi 3
Model B

1.2 GHz Broadcom
BCM2837 (64 Bit)

1 GB LPDDR2
microSD storage

interface
(1.3–1.4) W

Raspberry Pi
Foundation

Raspberry Pi 3
Model B+

1.2 GHz
Quad-Core ARM

Cortex-A53 (64 Bit)
1 GB LPDDR2

microSD storage
interface

(1.9–2.1) W
Raspberry Pi
Foundation

Raspberry Pi 4
Model B

1.2 GHz
Quad-Core ARM

Cortex-A72 (64 Bit)

(1/2/4) GB
LPDDR2

microSD storage
interface

(3.8–4) W
Raspberry Pi
Foundation
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5. Sensors

Electrical sensors are components responsible for gathering input from a given physical
environment. The specific input that a sensor responds to varies from sensor to sensor
could be temperature, ultrasound waves, light waves, pressure [39,40], or motion. Sensors
do this by acting as switches in a circuit, controlling the flow of electric charges through
their overall systems. Sensors can be split into two separate overarching categories, active
sensors, and passive sensors. Active sensors emit their own radiation such as ultrasound
waves and laser, from an internal power source, which is then reflected from the objects in
the environment, the sensor then detects these reflections as inputs. radars are an example
of active sensors. Passive sensors simply detect the radiation or signature emitted from
their targets, such as body heat [41].

The most important characteristics of sensor performance are transfer function, sensi-
tivity, span, uncertainty, hysteresis, noise, resolution, and bandwidth. The transfer function
shows the functional relationship between the physical input signal and the electrical
output signal. The sensitivity is defined in terms of the relationship between the input
physical signal and the output electrical signal. The span is the range of input physical
signals that may be converted to electrical signals by the sensor. Uncertainty is generally
defined as the largest expected error between actual and ideal output signals. Hysteresis is
the width of the expected error in terms of the measured quantity for sensors that do not
return to the same output value when the input stimulus is cycled up or down. Output
noise is generated by all sensors in addition to the output signal, and since there is an
inverse relationship between the bandwidth and measurement time, it can be said that the
noise decreases with the square root of the measurement time. The resolution is defined as
the minimum detectable signal fluctuation. The bandwidth is the frequency range between
the upper and lower cutoff frequencies, which respectively correspond to the reciprocal of
the response and decay times [42].

Once sensors acquire input and convert it into electrical current, they can communicate
their data to the rest of an overarching system through a variety of means, the main
methods being to transfer data over a wired interface, or transfer data wirelessly [43,44].
Since the embedded systems studied in this research all made use of wired communication
for their sensing systems, we focus only on analog communication. Standard wired
interfaces between sensors and computing devices use serial ports, which transfer data
between the data terminal equipment (DTE) and data circuit-terminating equipment (DCE).
For successful data communication, the DTE and DCE must agree on a communication
standard, the transmission speed, the number of bits per character, and whether stop and
parity framing bits are used. Most modern-day computing devices and embedded systems
use USB standards for their communication, connection, and power peripherals, which
includes any additional sensor systems. USBs have had many port-type iterations since
their inception; USB 1.x (up to 12 Mbps speed), USB 2.0 (up to 480 Mbps speed), USB 3.0 (up
to 5 Gbps speed), and USB4 (super speed, up to 40 Gbps), most devices have ports for the
USB 2.0 and USB 3.0 port types, with the USB4 being mostly suited for mobile smartphone
devices. One of the main advantages of USB devices, including sensor systems, is that
they can have multiple functionalities through a single connection port, for example, a USB
camera can record both video and audio. These devices are referred to as composite devices
and each of their functionalities is assigned to a specific address. USB devices can draw
5V and a maximum of 500mA from a USB host, allowing both data interface for sensor
systems as well as powering the sensor component [45].

5.1. Sensor-to-Computation Pipeline

Once sensor systems receive input, they convert the input into digital data and transfer
it to a display or a larger system. The format of the gathered data depends on the specific
input a sensor collects, cameras would collect videos or images and microphones would
collect audio. The environmental data collected by sensors are then stored within internal



Sensors 2023, 23, 2131 10 of 55

or external storage components connected to the overall system. These data are then used
for whatever purpose the overall system that employed the sensor has been designed for.

As the focus of these research projects is over-viewing the capability of different em-
bedded systems for running machine learning models, all of the sensor data are transferred
to a previously trained machine learning algorithm or used to train a new algorithm based
on existing architecture. In cases of trained model deployment, depending on the exact
application of the model as well as its architecture, the stored data collected by the sensor
systems is transferred to the model to perform predictions. For example, image identifica-
tion and object recognition models will compare images files to the dataset images they
have been trained with to either identify the specific objects of interest or the entire image,
while forest biomass estimation models would compare the results gathered from lidar
sensors to their trained dataset to estimate the concentration of vegetation in certain areas
of forests [46].

5.2. Specific Sensors

Much like the different embedded computing systems that were used for machine
learning implementation, many different sensors were used in each of our review sources
depending on the application of the research. Not all sources made active use of a sensor
within their work, and mainly explored the theoretical implementation of their machine-
learning models using sensor systems. Amongst those that did implement their systems
in some capacity, many implemented some form of object detection, image recognition,
image segmentation, and other forms of computer vision, making extensive use of different
integrated and separate image and video cameras. These cameras included infrared, RGB,
Depth, Thermal, and 360-degree cameras. Other sensors used included microphones,
electrocardiograms, radar, motion sensors, LIDAR, and multi-sensors.

5.2.1. RGB Cameras

RGB color cameras or visible imaging sensors are sensor systems that collect and
store visible light waves as electrical signals that are then reorganized as rendered colored
images. The images and videos they capture replicate human vision, capturing lightwave
with (400–700) nm wavelength through light-sensitive electrical diodes, then saving them
as pixels. Modern-day cameras can capture high-definition images [47]. The main use
of these sensors is for object detection and image classification algorithms. Among the
sources in this review, the main application in which an RGB camera was implemented
included autonomous vehicles for pedestrian and sign detection, security cameras for
intruder detection, facial recognition, and employee safety monitoring, and drones for
search and rescue, domestic animal monitoring [48,49], agricultural crops, and wildlife
observation [50].

5.2.2. Infrared Cameras

Infrared cameras or thermal imaging sensors are sensor systems that collect and
store the heat signature that is emitted from objects as electronic images that show the
apparent surface temperature of the captured object. They contain sensor arrays, consisting
of thousands of detector pixels arranged in a grid on which infrared energy is focused.
The pixels then generate an electrical signal that is used to create a color map image
corresponding to the heat signature detected on an object ranging from violet to red, yellow,
and finally white, with deep violet corresponding to the lowest detected heat signature and
bright white corresponding to the highest detected heat signature [51]. In a similar sense to
RGB cameras, the main use of these sensors is for object detection and image classification
algorithms, albeit for more specialized tasks. Applications proposed by the sources in
this review included autonomous vehicles for pedestrian detection, hand gesture, sign
language, and facial expression recognition, thermal monitoring of electrical equipment,
and profile recognition in smart cities.
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5.2.3. Depth Cameras

Depth or range cameras are specific forms of sensor systems used to measure the exact
three-dimensional depth of a given environment. They work by illuminating the scene
with infrared light and measuring the time-of-flight. There are two operation principles for
these sensors, pulsed light, and continuous wave amplitude modulation. In a sense, depth
camera operation is very similar to Lidar, with it relying on infrared radiation reflection
instead of laser [52]. The main application depth cameras used in among the sources of this
paper were for quad-copter drone formation control, ripe coffee beans identification, and
personal fall detection.

5.2.4. 360 Degree Cameras

360-degree cameras are sensor systems used to record images or video from all direc-
tions in 3D space using two over-180-degree cameras facing the front and rear of the device,
the borders of the two images or videos are then stitched together to create a seamless single
360 image or video file. Users and automated applications can then select a specific section
of the captured 360-image or footage for the intended use. Other than the over 180-field
of view for each camera lens, 360 cameras work in an identical fashion to RGB cameras
capturing visible spectrum light and storing it as digital data in pixel format [53,54]. While
360 cameras have various applications, from recreational ones such as vlogging and nature
photography to navigational ones such as Google Maps, the sources used in this paper
mainly relied on them for biometric recognition and marine life research.

5.2.5. Radar

RADAR, short for Radio Detecting And Ranging, is a radio transmission-based sensor
system designed for detecting objects. They operate using short-pulse electromagnetic
waves, these pulses are then reflected from objects in the path of the RADAR sensor and
are then reflected back at it. Essentially, “When these pulses intercept precipitation, part of
the energy is scattered back to the RADAR” [55]. RADAR systems can rely on 14 different
frequency bands depending on the application. RADAR systems have a wide variety of
applications, from meteorology to military surveillance and astronomical studies. Among
the sources used for this review, RADAR systems were scarcely used, and within these
cases, the main usage was for electric hybrid car deep learning-based car following systems
as well as multi-target classification for security monitoring.

5.2.6. LiDar

Lidar (light detection and ranging) sensors are sensor systems that emit millions
of laser waveforms and then collect their reflection to precisely measure the shape and
distance of physical objects in a 3D environment. Essentially, they are laser-based radar
systems. This process is repeated millions of times per second to create a precise real-
time three-dimensional map of an area called a point cloud, which can then be used for
navigation systems [56]. While the technology itself is decades old, with improvements in
Lidar performance in terms of range detection, accuracy, power consumption, as well as
physical features such as dimension and weight, its popularity has been rising in recent
years, especially in the fields of robotics, navigation, remote sensing, and advanced driving
assistance [57]. Lidars’ main usage among our sources was for locating people in danger
in search and rescue operations, such as one following an earthquake, and optimizing
trajectory tracking for small multi-rotor aerial drones.

5.2.7. Microphones

Microphones are sound sensors that act as transducers, converting sound waves into
electrical current audio signals carrying the sound data. When sound waves interact with
the microphone diaphragm, the vibrations created are converted into a coinciding audio
signal via electromagnetic or electrostatic principles that will be outputted [58]. This audio
signal can then be stored as digital data and replayed or used in other applications such as
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training sound recognition machine learning models. The sources presented in this review
mainly used microphones for real-time speech source localization.

5.2.8. Body Motion Sensors

Body motion sensors, also known as motion capture sensors, are a series of sensor
systems that are used to keep track of a person or a physical movement or physical posture.
They generally work by making use of other sensing systems, including photosensors,
angle sensors, IR sensors, optical sensors, accelerometers, inertial sensors [59], and mag-
netic bearing sensors [60]. Mocap sensors have been widely known for their use in the
entertainment industry, but with recent advances, they have become more affordable and
accurate for common consumer use. The application for which motion capture was used
among the sources in this review is complex posture detection.

5.2.9. Electrocardiograms

Electrocardiograms are heart monitoring sensors used for quick analysis of a patient’s
heart [61–63]. Heart contractions generate natural electrical impulses that are measurable
by nonintrusive devices, such as lead wires placed on a patient’s skin. The measured pulses
are then converted into an electric signal that can be used to measure irregularities in the
patient’s heart rate [64]. Naturally, electrocardiograms are mainly used in medical facilities
or by caregivers and nurses to monitor heart health [65,66], however, the sources used for
this review have also utilized them for identifying epileptic seizures.

5.2.10. Electroencephalograms

Electroencephalograms are brain monitoring sensors used for analyzing a patient’s
brain activity. The brain’s processes are the result of electrical current traveling through
its neurons at varying levels depending on the current state of a patient, what they are
doing, or how they are feeling. Electroencephalograms record these currents across the
various brain regions using painless electrodes placed around a patient’s scalp. These
fluctuations recordings are then saved as either a paper or digital graph [67]. Much like
electrocardiograms, electroencephalograms are mainly used in medical facilities or by
caregivers and nurses to monitor heart health, however, sources used for this review have
also utilized them for anesthesia patient monitoring.

6. Applications

Embedded machine learning applications are all either of a remote nature or require
more mobile systems to be implemented. The applications which are covered in this review
are divided into the following categories: autonomous driving, security, personal health
and safety, unmanned aerial vehicle navigation, and agriculture.

6.1. Autonomous Driving

Autonomous driving refers to the ever-expanding field of assisted and self-driving
vehicles. It involves the implementation of a machine learning algorithm designed to detect
obstacles, street signs, pedestrians, and other vehicles. Almost all self-driving vehicle
AI models are computer vision models such as object and depth detection and distance
measurement, with some exceptions that rely on Lidar or Radar for obstacle detection. Due
to the nature of the application, the highest priority for models developed on embedded
systems for self-driving vehicles is performance speed. Driving requires extremely short
reaction time and that makes the speed at which a model can identify objects and allow the
other car systems to make driving decisions very important.

6.2. Security and Safety

Security applications of machine learning can be related to many different sections
such as intruder detection or personnel safety in hazardous worksites [68]. Once again,
most of these models are trained for computer vision purposes in order to identify different
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individuals and ensure authorized access to secure locations and information. They do this
through facial recognition and biometric identification using embedded system-operated
camera systems, to name a few avenues. Ensuring personnel safety in hazardous work
environments also involves constant monitoring by camera systems, to see if any of the
employers are showing visible signs of illness or injury. Accuracy and computational speed
are both of very high import in these applications.

6.3. Healthcare

Monitoring the health of hospital and nursing home patients is one of the fields in
which machine learning has been found to be increasingly useful. The AI models trained
for these purposes are varied depending on the exact nature of the task they are created to
accomplish [69,70]. Applications involving the monitoring of the status of specific organs
of patients can rely on various different medical equipment as well as visual and thermal
cameras, such as monitoring a patient’s heart rate or brain activity, which are achieved with
electrocardiograms and electroencephalograms. Fast performance of the machine learning
models is of even greater importance in these scenarios as they can quite literally be about
"life and death". Other health monitoring applications can refer to posture recognition and
monitoring systems that rely on motion sensors and cameras to identify the posture of a
given patient and inform their caretakers in case of any danger.

6.4. Drones

Aerial drones, or unmanned aerial vehicles, have a long history of military use, but
have become increasingly utilized in everyday life over the past decade, be it for package
delivery, remote video recording, wildlife research, or simply for recreational purposes.
Many of these drones are of the quadcopter variety [71]. While most drones require remote
piloting, there has been an increasing element of automation to their navigation [72,73],
odometry, landing, and trajectory systems. AI models trained for these purposes use
pathways, object images, and balance data models. While performance speed is an impor-
tant factor for these models, accuracy takes far greater precedence as even the slightest
misclassification can result in damage to or the destruction of the drone.

6.5. Agriculture

Different agricultural sectors have also started making use of machine learning. Object
detection and facial recognition models are customized for recognizing individual animals
during feeding and drinking to measure their overall consumption as well as monitor
animal behavior and health. Object detection machine learning models are also used in
farming crops for identifying weeds within the field, damaged crops, and crops ready
for harvest, as well as any damage to the field and its fences. In both instances, the
detection accuracy and energy consumption of the models are far more important than the
performance speed.

7. Application Based System Comparison

As previously discussed, most review work on embedded machine learning has been
focused on the implementation of modified ML architecture on specific embedded devices,
whereas in this work, our focus is on identifying the advantages certain systems provide for
specific applications and sensing schemes. For this purpose, we have divided our sources
into the following categories with a summary of each presented in the Tables 2–12 after
the conclusion section. The systems are then compared by their performance and cost, the
former being assessed differently depending on the task for which the machine learning
model is trained. The method used for analyzing the performance is different from source
to source and heavily dependent on the specific application and sensory system. Each
sourced paper used a different method for analyzing model accuracy and inference speed.
Alongside the power consumption, the mean of all the final results is used to assess the
overall performance of each embedded system and presented in Figures 2–9.
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Table 2. Computer Vision in Agriculture.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[76] ASUS Tinker Board S
Crop identification via

aerial drone
Logitech C925e

wWebcam
89.44%

8 Watts for both sensor
and system

0.7 s

[77]
Google Edge TPU,

NVIDIA Jetson TX2

Vineyard Landmark
extraction for robot

navigation in steep slope
vineyard environment

through vine trunk
identification

Raspberry Pi infrared
camera, Mako G-125C

infrablue camera
52.98%

15 Watts for both sensor
and system

54.20 ms

[78]

Raspberry Pi 3 B+, with
and without a neural
compute stick, (Intel
Movidius) NVIDIA

Jetson Nano

Protect crops from
ungulate attacks

Camera module
(Raspberry Pi)

62.41%

10 Watts for both sensor
and system (Jetson)

3.4 Watts for both sensor
and system (RaPi)

67.57 ms (Jetson) 1.25 s
(RaPi)

[79] NVIDIA Jetson Nano
Detection of ripe coffee

beans
Intel realsense depth

camera D435
97.23%

14 Watts for both sensor
and system

17.49 ms

[80] NVIDIA Jetson TX2
Crop recognition for

robotic weeding
Canon PowerShot SX150

IS camera
95.9%

12.5 Watts for both
sensor and system

8.9 ms

[81] NVIDIA Jetson TX2
Accurate weed detection
for micro aerial vehicles

Multispectral camera 79.9%
15 Watts for both sensor

and system
0.56 s

[82] Raspberry Pi 4
Weed identification for

herbicide

Raspberry Pi camera
module version 2.0 with

an 8-megapixel Sony
IMX219 sensor

96%
6.88 Watts for both
sensor and system

0.167 s

[83] NVIDIA Jetson TX2
Loose fruit detection for

oil palm
Camera 94%

10 Watts for both sensor
and system

Not Stated

[84] NVIDIA Jetson TX2 Intelligent pest detection
High-resolution optical

drone camera
89.72% 7.5 Watts 114.89 ms
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Table 3. Computer Vision in Face Recognition.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[86] Banana Pi
Emotion and Personality

Recognition

Thermal Camera
(Vanadium Oxide

Microbolometer with
Chalcogenide Lens and a

Field of View 36O.)

87.87%
4 Watts for both sensor

and system
3.851 s

[89]

Nvidia Jetson Nano,
Nvidia Jetson TX2,

Nvidia Jetson Xavier NX,
Nvidia Jetson Xavier

AGX

Facial recognition
inference comparison

between edge and cloud
devices

None 99.63%
5 Watts (Nano) 7.5 Watts
(TX2) 10 Watts (Xavier

NX & AGX)

0.37 s (Nano) 0.4 s (TX2)
0.18 s (Xavier NX) 0.28 s

(AGX)

[2] NVIDIA Jetson Nano

Analyze face structure
from video feed and

detect drowsiness from
facial features

Webcam camera 83.31%
15 Watts for both sensor

and system
2 s

[90] NVIDIA Jetson Nano
Face mask detection

system
TGCAM-2000STAR

camera
99.02%

17 Watts for both sensor
and system

30.18 ms

[87] Raspberry Pi 3 model B Facial biometric scan Pi camera 97.1%
2.8 Watts for both sensor

and system
2.283 min

[91] Raspberry Pi 4
High-accuracy facial

recognition
Webcam 75.26%

14 Watts for both sensor
and system

74.15 ms

[92] Raspberry Pi 4
Facial recognition and

facial expression
recognition

Logitech c270 camera 98%
14 Watts for both sensor

and system
71.14 ms

[93]
NVIDIA Jetson Nano,
NVIDIA Jetson TX2

Facial ID for security Camera 94%
5 Watts (Nano) 7.5 Watts

(TX2)
0.1 s (Nano) 33.33 ms

(TX2)

[94] NVIDIA Jetson TX2
Lightweight facial

recognition for
embedded systems

Camera 58.7% 1.4 Watts 29 ms
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Table 4. Computer Vision in Depth Estimation.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[88] NVIDIA Jetson TX1

Monocular depth
estimation (MDE)

(estimating depth from a
single image or video

frame)

Camera 78.3% 5 Watts 32.26 ms

[95]
ODROID XU4 NVIDIA

Jetson TX2

Collision checking for
small aerial vehicles

navigation

FLIR thermal imaging
camera

35.3%
1.5 Watts (ODROID)

7.5 Watts (TX2)
30 ms (ODROID)

[75] ODROID XU4

Computationally
inexpensive

misclassification
minimization for aerial

vehicles

D435i Depth Camera 45.8%
1.5 Watts 4.9 Watts for

System and Sensor
36.46 ms

[96]
NVIDIA Jetson Xavier

NX
Depth estimation Monocular camera 87.8% 10 Watts 0.03 s

[97] NVIDIA Jetson TX2
Personal fall detection

system
Image depth camera,

RGB camera
98% 7.5 Watts 66.67 ms
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Table 5. Computer Vision in Autonomous vehicles.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[98]
ODROID XU4 NVIDIA

Jetson Xavier

Nighttime pedestrian
detection systems for

cars

FLIR A325sc thermal
camera

75.7%
1.5 Watts (ODROID) 10

Watts (Xavier)
103 ms (ODROID) 43.3

ms (Xavier)

[5]
NVIDIA Jetson TX1,
NVIDIA Jetson TX2

Lightweight real-time
traffic light detection for

autonomous vehicles

AVT camera (only used
for data collection)

99.3%
5 Watts (TX1) 7.5 Watts

(TX2)
83.3 ms (TX1) 71.4 ms

(TX2)

[1] NVIDIA Jetson TX2
Road marking detection
for autonomous vehicles

Camera 96.9% 7.5 Watts 47 ms

[100] NVIDIA Jetson TX2
Lightweight road object

detection for
autonomous vehicles

Camera 80.39% 7.5 Watts 31 ms

[101] NVIDIA Jetson Xavier

Lightweight Multitask
object detection and

semantic segmentation
for autonomous vehicles

N/A 98.31% 10 Watts 17.36 ms

[102]
NVIDIA Jetson Xavier

NX

Path Planning for
self-driving vehicles and

robotic systems
Camera 93% 10 Watts 48.57 ms

[103] NVIDIA Jetson Nano
Thermal object detection

for assisted driving
LWIR prototype thermal

camera
86.6% 5 Watts 333.33 ms

[104]
NVIDIA Jetson Xavier

NX
Road obstacle detection

for vehicles
20 Hz stereo camera 98.1% 10 Watts 28.23 ms

[99] NVIDIA Jetson TX1
Traffic sign identification

for smart vehicles
USB webcam 96% 5 Watts 670 ms

[105]
NVIDIA Jetson AGX

Xavier

Object detection and
recognition and energy

management for
autonomous vehicles

N/A (can theoretically
use onboard camera or

radar)
99.63% 10 Watts 260 ms
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Table 5. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[106] Raspberry Pi 3 Model B+

Scalable and
computationally cheap

networks for
autonomous driving

Raspberry Pi camera 97.75% 2.1 Watts 3 ms

[11] Raspberry Pi 3 Model B+
Speed bump detection

for autonomous vehicles
Raspberry Pi camera 97.89% 2.1 Watts 104 ms

[107] NVIDIA Jetson Nano
Algorithm review for

self-driving car
navigation

Mini camera IMX-219 80.5% 5 Watts Not Stated

[9] NVIDIA Jetson TX1
Real-time pedestrian

detection for
autonomous vehicles

Zed Stereo camera 88.44% 5 Watts 33.3 ms

[108] NVIDIA Jetson TX2
Real-time vehicle

detection on embedded
systems

N/A 85.6% 7.5 Watts 59.52 ms

[109]
NVIDIA Jetson AGX

Xavier

Uncertainty-based
real-time object detection
for autonomous vehicles

Camera 68.7% 10 Watts 14.35 ms
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Table 6. Computer Vision in Medical and Special Aide Applications.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[112] NVIDIA Jetson TX2
Visual aid system for the
blind via real-time object

detection
Webcam 99.82% 7.5 Watts Not Stated

[114] NVIDIA Jetson TX2
Localize veins from color

skin images.

2-CCD multi-spectral
prism camera (JAI

AD-080-CL)
78.27% 7.5 Watts 530 ms

[115]
Raspberry Pi 4, NVIDIA

Jetson Xavier
COVID Identification

through chest CT scans
CT Scanner 98.8%

4 Watts (Pi 4) 10 Watts
(Xavier)

23.3 s (Pi 4) 2.9 s (Xavier)

[116] NVIDIA Jetson Nano
Posture recognition
system for medical

surveillance
RGB camera 83% 5 Watts 476 ms

[117] NVIDIA Jetson TX2 Diabetes diagnosis
Jetson TX2 onboard

camera
91.8% 7.5 Watts 48 ms

[118] Raspberry Pi 3 Model B+
Reading assistance for

blind people
Raspberry Pi camera

module V2
100% 2.1 Watts 1 s

[110] Raspberry Pi 3 Model B+
Early skin cancer

detection
IR camera 98% 2.1 Watts 62 ms

[119] Raspberry Pi
Cervical cancer

prevention
PiCamera 90% Not Stated 5.2 s

[120] Raspberry Pi 4 Model B
Dog health monitoring

through posture analysis
Smart camera network 100% 4 Watts 69.24 s

[111] NVIDIA Jetson Nano Diabetic ulcer detection Thermal Camera 97.9% 5 Watts Unspecified

[121]
NVIDIA Jetson Xavier

NX
Colonoscopy Colonoscopy camera 100% 10 Watts Unspecified

[122] NVIDIA Jetson Nano
Travel assistance for the

visually impaired
Optical RGB camera 94.87% 5 Watts 22.22 ms

[123] Raspberry Pi 3 Model B+
Activity recognition for
medical monitoring and

rehab
Wearable Sensor 96.63% 2.1 Watts 167.773 ms
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Table 7. Computer Vision in Safety and Security Applications.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[124] Raspberry Pi
Sign language

recognition
Thermal camera 99.52% Not Stated 30 ms

[125]
NVIDIA Jetson Xavier

NX

Proposal of a fast and
accurate method of

power line edge
intelligent inspection

UAV camera 55.6% 10 Watts 3.5 ms

[3] NVIDIA Jetson TX1
Production safety

oversight in coal mines
Video Surveillance

camera
76.7% 5 Watts 27.25 ms

[126] NVIDIA Jetson Nano
Passenger safety

monitoring
360◦ view camera 85% 5 Watts Not Stated

[127]
NVIDIA Jetson TX2,

NVIDIA Jetson Nano
Hard hat detection on

construction site
Surveillance camera 97.14%

7.5 Watts (TX2) 5 Watts
(Nano)

68.03 ms (TX2) 111 ms
(Nano)

[128] NVIDIA Jetson TX2
Detecting and tracking

sinkholes via video
streaming

Video camera 90.61% 7.5 Watts 17 ms

[129] NVIDIA Jetson TX2
Concrete damage

detection on the surface
of buildings

Logitech Camera 94.24% 7.5 Watts 33 ms

[130]
NVIDIA Jetson AGX

Xavier
Railway defect detection Camera 93.5% 10 Watts 29.94 ms

[131] Raspberry Pi 4 Model B
Biometric scan for entry

control
Raspberry Pi NoIR

camera
97.2% 4 Watts Not Stated

[132] Raspberry Pi 4 Real-time fire detection Camera 97.5% 4 Watts 100 ms

[12] Raspberry Pi 4
Violent assault

recognition
Surveillance camera (no

actual live testing)
92.05% 4 Watts 250 ms

[133]
Raspberry Pi 3 Model

B+, Intel Neural
Compute Stick 2

Security surveillance Surveillance camera 94% 2.1 Watts 5.5 ms

[134] NVIDIA Jetson Nano
Security surveillance for

abnormal activity
detection

Logitech C270 Camera 89% 5 Watts 250 ms
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Table 7. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[135] NVIDIA Jetson Nano
Security surveillance for

unusual behavior
HD camera 97.5% 5 Watts Not Stated

[136]
NVIDIA Jetson Xavier

NX
Fire and smoke detection Camera 100% 10 Watts 100 ms

[137] NVIDIA Jetson TX2
Monitoring vehicle

driver tiredness in real
time

Infrared Camera 94% 7.5 Watts 45.45 ms

[138] NVIDIA Jetson TX2
Real-time security

surveillance for acts of
violence

RaspiCam camera,
panoramic spherical

camera
Not Stated 7.5 Watts 185 ms

[139]
NVIDIA Jetson Nano,

Raspberry Pi 3 Model B+
Rescue operation robot

computer vision

No IR filter camera,
LiDAR, Raspi Cam

NOIR V2.1
78.6%

7.5 Watts (Nano)
2.1 Watts (Pi 3)

50 ms (Nano) 500 ms
(Pi 3)

[140] Raspberry Pi CPU heat tracking Infrared thermal sensor 90.72% Not Stated 12.3 ms

[141]
NVIDIA Jetson Xavier

NX

Real-time image
processing for fusion

diagnostics
Thermal image camera Not Stated 10 Watts 48.97 ms

[142] NVIDIA Jetson Nano
Automobile fog lamp

intelligent control
IMX219 camera 97.5% 5 Watts Not Stated

[113] NVIDIA Jetson TX2

Rescue of natural
disaster survivors

through drone object
detection

Zenmuse XT2 gimbal
camera

61.97% 7.5 Watts 37.6 ms

[143] NVIDIA Jetson Nano
Power system cyber

security
N/A 99.96% 5 Watts Not Stated
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Table 8. Computer Vision in City Management.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[14] NVIDIA Jetson TX2
Traffic flow detection

and management
Canon EOS550D camera 92% 7.5 Watts 26.39 ms

[147] NVIDIA Jetson Nano
Real-time metro

passenger volume
enumeration

HD video recording
camera

97.1% 5 Watts 128.2 ms

[148] Raspberry Pi 4 Model B
Smart Urban waste

management
Pi Camera 91.76% 4 Watts 358.9598 ms

[149] Raspberry Pi 4 Model B
Garbage identification

for recycling
Camera 92.62% 4 Watts 630 ms

[144] Raspberry Pi 3 Model B
Pedestrian profile

recognition
FLIR Lepton thermal

camera
74.63% 1.4 Watts 111 ms

[150] NVIDIA Jetson Nano
Car counter Traffic

management
Logitech c922 webcam Not Stated 5 Watts Not Stated

[151] NVIDIA Jetson Nano
Smart city traffic

management
Camera 90% 5 Watts 25 ms

[152] NVIDIA Jetson Nano Visual garbage detection
N/A (most likely a

video camera)
94.56% 5 Watts 40 ms

[153] NVIDIA Jetson Nano AI traffic light control Raspberry Pi camera 90% 5 Watts Not Stated

Table 9. General Embedded Computer Vision.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[146]
NVIDIA Jetson AGX

Xavier
Person detection using

top clothing
N/A 92.57% 10 Watts 41.67 ms

[154] NVIDIA Jetson TX1

Detecting, tracking, and
geolocating based on a

monocular camera of an
aerial drone

Monocular Camera 97.6% 5 Watts 75.76 ms

[155] NVIDIA Jetson TX2 Drone detection
Spherical Camera (Ricoh

Theta S)
88.9% 5 Watts 33.33 ms
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Table 9. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[156] NVIDIA Jetson TX2
Resource-constrained

object tracking
N/A 55% 7.5 Watts 72.89 ms

[157] NVIDIA Jetson TX2

Object detection and
object tracking on drones
with limited power and
computational resources

Logitech BRIO camera 90% 7.5 Watts 243.9 ms

[145] NVIDIA Jetson Nano

Identifying and
detecting suitable

grasping point on objects
for robotic limbs

A Basler acA2500-14uc
industrial RGB camera

with Computer
M3514-MP lens

Not Stated 5 Watts 48 ms

[158] NVIDIA Jetson TX2
Navigation for indoor
autonomous drones

Fisheye lens on the
PointGrey Firefly camera

75.5% 7.5 Watts 34.54 ms

[159]
NVIDIA Jetson TX2,

NVIDIA Jetson Nano
Object detection via
template tracking

N/A Not Stated
7.5 Watts (TX2) 5 Watts

(Nano)
Not Stated

[160] NVIDIA Jetson TX2
Target tracking amongst

static and dynamic
obstacles

Drone camera Not Stated 7.5 Watts Not Stated

[161] NVIDIA Jetson TX2
Underwater object

gripping point detection
ZED binocular camera Not Stated 7.5 Watts 90.09 ms

[162] NVIDIA Jetson TX2
Intelligent weapon
targeting system

N/A 68.9% 7.5 Watts 60 ms

[163]
NVIDIA Jetson AGX

Xavier

Object recognition for
unmanned surface

vehicles

High-definition
photoelectric vision

sensor
81.74% 10 Watts 37.36 ms

[164] Raspberry Pi 3 Model B+
Drone landing

automation

Raspberry Pi v1.3
camera with a fisheye

lens
Not Stated 2.1 Watts 37.36 ms
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[10] Raspberry Pi 3 model B
Image recognition for

sea life
Pi Camera v2.1 89.81% 1.4 Watts 33.33 ms

[165] Raspberry Pi 3 Model B+ Image classification N/A 83.7% 2.1 Watts 180 ms

[166] Raspberry Pi
Counting individuals
within a given video

feed
Camera 90% 1.4 Watts Not Stated

[167] Raspberry Pi
Fish recognition for
underwater drones

360 degrees panoramic
camera

87% 1.4 Watts 6 s

[168] NVIDIA Jetson Nano
Identifying different

plant species
Photo camera 97.5% 5 Watts Not Stated

[169]
Nvidia Jetson Nano,
Nvidia Jetson TX1,

Raspberry Pi 4

Artistic photography
aesthetic score prediction

N/A 91.02%
5 Watts (Nano and TX1)

4 Watts (Pi 4)
37 ms (Nano) 17.9 ms

(TX1) 1.14 s (Pi 4)

[170] NVIDIA Jetson Nano
Underwater object

detection
N/A (visual camera in

case of field testing)
74.77% 5 Watts 125 ms
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Table 10. LiDar, Radar, Audio, and Motion Recognition Models.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[13]
NVIDIA Jetson Nano,

Raspberry Pi 3

Early cardiovascular
disease prevention
through ultrasound

Ultrasound 90.7 %
5 Watts (Nano)
1.4 Watts (Pi 3)

2.78 ms (Nano)
6.95 ms (Pi 3)

[174] Raspberry Pi 3
Patient anesthesia

monitoring
Electroencephalogram 95% 1.4 Watts 20 ms

[175] Raspberry Pi 3
Human posture

detection

Wireless body sensors
(motion sensors, inertial

sensors)
98.28% 1.4 Watts 20 ms

[176] NVIDIA Jetson Nano
Epileptic seizure

detection
Electrocardiogram 91.58% 5 Watts Not Stated

[177] NVIDIA Jetson TX2
Low-power multimodal

data classification
Stand-alone dual-mode
Tongue Drive System

98% 7.5 Watts 1.6 ms

[178] Raspberry Pi Model 3
Driver behavior

monitoring

IMU sensor, Shimmer
Version 3 wearable body

sensors
73.02% 1.4 Watts 4.357 s

[179] Raspberry Pi 3 Model B+
Smart Urban waste

management
Ultrasonic sensor 88.43% 2.1 Watts 960 ms

[180] Raspberry Pi 3 Model B
Fault detection in AC

electrical systems
Photoelectric sensor 99.37% 1.4 Watts 31 ms

[181] Raspberry Pi 3 Model B+
Target classification at
road gates with radar

SVM
Radar Not Stated 2.1 Watts Not Stated

[182] Raspberry Pi 3 Model B+
Human activity

recognition
Wearable multimodal

sensors
99.21% 2.1 Watts 153 ms

[183] Raspberry Pi 3B+ Speech recognition Audio sensor 96.82% 2.1 Watts 270 ms

[4]
Raspberry Pi 3B,

NVIDIA Jetson TX1,
NVIDIA Jetson TX2

Psychological stress
monitoring

Heart rate and
accelerometer sensors

96.7%
1.4 Watts (Pi 3) 5 Watts
(TX1) 7.5 Watts (TX2)

189 ms (Pi 3) 2.8 ms
(TX1) 4.7 ms (TX2)

[184] Raspberry Pi 3 Model B Motor fault diagnosis Hall effect sensor 97.05% 1.4 Watts 3.4 s
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[185] Raspberry Pi 4 Model B
Machine state

monitoring
Vibration Sensor,
Accelerometers

98% 4 Watts 1.002 s

[186] Raspberry Pi Asthma risk prediction
SDS011 air quality

sensor
99% 1.4 Watts Not Stated

[8] Raspberry Pi 3 Model B
Speech source
identification

SSL sensors,
microphones

89.68% 4 Watts 21 ms

[187] NVIDIA Jetson Nano
Battery charge
management

GY169 current converter
sensor module

RMSE of 1.976 5 Watts Not Stated

[188] NVIDIA Jetson TX2 Food quality analysis
Nuclear magnetic

resonance spectrometer,
infrared spectrometer

95% 7.5 Watts 4 ms

[189] NVIDIA Jetson Nano

Pot plant species
identification and
watering needs

monitoring

Capacitive Soil Moisture
sensor, Water Level

Sensor
Not Stated 5 Watts Not Stated

[190] NVIDIA Jetson Nano
Radio frequency ID

recognition
Universal software radio

peripheral
89.27% 5 Watts 18 min

[171]
NVIDIA Jetson Xavier

NX
Trajectory tracking for

small drones
Velodyne Lite 16 Lidar

sensor
83% 10 Watts 100 ms

Table 11. Embedded Machine Learning Optimization Papers.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[172] NVIDIA Jetson TX2
Improve the

effectiveness of Image
Captioning

N/A 65.7% 7.5 Watts 230 ms

[191]
NVIDIA Jetson TX2,

NVIDIA Jetson Nano
Latency estimation on

embedded systems
N/A

96.39 % (Nano) 95.82 %
(TX2))

5 Watts (Nano) 7.5 Watts
(TX2)

13.74 ms (Nano) 6.7 ms
(TX2)

[192] NVIDIA Jetson Nano
Real-time video analysis

for edge computing
Video camera 85% 5 Watts 11.21 ms
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[193] NVIDIA Jetson TX2

Low-power and
real-time deep

learning-based multiple
object visual tracking

5MP CSI camera N/A 7.5 Watts 100 ms

[173] NVIDIA Jetson TX2 Filter Pruning DNNs N/A 93.51% 7.5 Watts 8.01 ms

[194]
NVIDIA Jetson AGX

Xavier

Energy-efficient
acceleration of deep

neural networks
N/A N/A 10 Watts Not Stated

[195] NVIDIA Jetson TX1
Semantic Segmentation

for autonomous vehicles
N/A 87.3% 5 Watts 24 ms

[196] NVIDIA Jetson TX2

Improve semantic
segmentation

performance in contexts
of various sizes and

types in diverse
environments

N/A 92.74% 7.5 Watts 92.46 ms

[197]

NVIDIA Jetson TX2,
Edge tensor processing
unit, neural compute

stick, and neural
compute stick2

Fusion Pruning DNNs N/A 90.66% 7.5 Watts 4.7 ms

[198] NVIDIA Jetson TX2

Reduce computational
complexity and memory
consumption of CNNs

architecture on
low-power devices

N/A 93% 7.5 Watts 66.14 ms

[199] NVIDIA Jetson TX2

Reduce computational
complexity and memory
consumption of CNNs

architecture on
low-power devices

N/A 99.3% 7.5 Watts 894.85 ms
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[200]
NVIDIA Jetson AGX

Xavier

Improve embedded
system performance in
autonomous vehicles

N/A 98.3% 10 Watts 690 ms

[201] NVIDIA Jetson TX1

Provide a less resource
costly object detection
model for embedded

systems

N/A 65.7% 5 Watts 135.2 ms

[202] NVIDIA Jetson Nano
Efficient video
understanding

Video camera 74.1% 5 Watts 13.51 ms

[106] Raspberry Pi 3 Model B+

Scalable and
computationally cheap

networks for
autonomous driving

Raspberry Pi camera 75.78% 5 Watts 284 ms

Table 12. Benchmark and Review Papers.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[23]

NVIDIA Jetson Nano,
Coral Edge TPU, custom

convolutional neural
network accelerator

Enhance learning rate for
ML model with smaller

training datasets
N/A (Benchmark paper)

49.6% (Nano) 49.8%
(TPU)

5 Watts (Nano) 2 Watts
(TPU)

0.3294 s (Nano) 19.8 ms
(TPU)

[20]
NVIDIA Jetson Nano,
NVIDIA Jetson AGX

Xavier

Benchmark analysis of
3d object detection

USB attached video
camera (Benchmark

paper)
70%

5 Watts (Nano) 10 Watts
(AGX)

0.56 s (Nano) 47.61 ms
(AGX)

[18]
NVIDIA Jetson Nano,
NVIDIA Jetson TX2,

Raspberry PI 4

Performance analysis of
different hardware for
object detection CNNs

N/A (Benchmark paper)
93.8 % (Nano) 93.9%

(TX2) 91.6% (Pi)
5 Watts (Nano) 7.5 Watts

(TX2) 4 Watts (Pi)
58 s (Nano) 32 s (TX2)

372 s (Pi)

[19] NVIDIA Jetson TX1
Analysis of DNN

architecture in image
recognition

N/A (Benchmark paper) 69.52% 5 Watts 10.55 ms
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[15]

Asus Tinker Edge R,
Raspberry Pi 4, Google

Coral Dev Board,
NVIDIA Jetson Nano

Presentation and
comparison of the
performance of the

presented systems in
terms of inference time

and power consumption

N/A (Benchmark paper) 92.5%
4.75 Watts (Tinker) 2.75
Watts (Coral) 2.1 Watts
(Pi) 0.9 Watts (Nano)

0.33 s (Tinker) 0.28 s
(Coral) 0.21 s (Pi) 0.137 s

(Nano)

[22] Raspberry Pi 4
Space exploration

landing site selection

N/A (dataset acquired
from images taken by the

Mars HiRISE camera)
95% 4 Watts 89 ms

[21]

NVIDIA Jetson Nano,
NVIDIA Jetson TX1,
NVIDIA Jetson AGX

Xavier

Benchmarking paper N/A
Accuracy Rates Not

Stated
5 Watts (Nano & TX1) 10

Watts (AGX)
94 ms (Nano) 84 ms
(TX1) 46 ms (AGX)

[17]

NVIDIA Jetson TX2,
NVIDIA Jetson Xavier

NX, and NVIDIA Jetson
AGX Xavier

Benchmarking NVIDIA
Jetson systems for visual

odometry of flying
drones

N/A
Accuracy Rates Not

Stated
7.5 Watts (TX2) 10 Watts

(NX & AGX)
Speed Rates Not Stated
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Paper Title Hardware Application ML Architecture Sensor

[76] ASUS Tinker Board S
Crop identification via

aerial drone
SegNet, FCN-AlexNet

Logitech C925e
webcam

[86] Banana Pi
Emotion and

Personality Recognition
Hidden Markov Model

Thermal Camera
(Vanadium Oxide

Microbolometer with
Chalcogenide Lens and

a Field of View 36O.)

[23]

NVIDIA Jetson Nano,
Coral Edge TPU,

custom convolutional
neural network

accelerator

Enhance learning rate
for ML model with

smaller training
datasets

Siamese Neural
Network

N/A

[88] NVIDIA Jetson TX1

Monocular depth
estimation (MDE)

(estimating depth from
a single image or video

frame)

Separable Pyramidal
pooling

Encoder-Decoder
(Custom Architecture)

Camera

[77]
Google Edge TPU,

NVIDIA Jetson TX2

Vineyard Landmark
extraction for robot
navigation in steep

slope vineyard
environment through

vine trunk
identification

MobileNet V1,
MobileNet V2

Raspberry Pi infrared
camera, Mako G-125C

infrablue camera

[98]
ODROID XU4,

NVIDIA Jetson Xavier

Nighttime pedestrian
detection systems for

cars
YOLOv2

FLIR A325sc thermal
camera

[95]
ODROID XU4,

NVIDIA Jetson TX2

Collision checking for
small aerial vehicles

navigation

Custom pyramid-based
spatial partitioning

FLIR thermal imaging
camera

[75] ODROID XU4

Computationally
inexpensive

misclassification
minimization for aerial

vehicles

Siamese Neural
Network

D435i Depth Camera

[20]
NVIDIA Jetson Nano,
NVIDIA Jetson AGX

Xavier

Benchmark analysis of
3D object detection

Complex YOLOv3,
Complex YOLOv4

USB attached video
camera (Benchmark

paper)

[18]
NVIDIA Jetson Nano,
NVIDIA Jetson TX2,

Raspberry PI4

Performance analysis
of different hardware
for object detection

CNNs

Custom Deep-CNN
N/A (Benchmark

paper)

[19] NVIDIA Jetson TX1
Analysis of DNN

architecture in image
recognition

AlexNet, GoogLeNet,
SENet, MobileNet

N/A (Benchmark
paper)

[15]

Asus Tinker Edge R,
Raspberry Pi 4, Google

Coral Dev Board,
NVIDIA Jetson Nano

Presentation and
comparison of the
performance of the

presented systems in
terms of inference time

and power
consumption

MobileNetV2,
MobileNetV2 Lite,

MobileNetV2 Quant.
Lite

N/A (Benchmark
paper)
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[112] NVIDIA Jetson TX2
Visual aid system for

the blind via real-time
object detection

CNN YOLOv2 Webcam

[125]
NVIDIA Jetson Xavier

NX

Proposal of a fast and
accurate method of

power line edge
intelligent inspection

RepYOLO, YOLOv5 UAV camera

[13]
NVIDIA Jetson Nano,

Raspberry Pi 3

Early cardiovascular
disease prevention
through ultrasound

DNN (custom models
for different tasks)

Ultrasound

[126] NVIDIA Jetson Nano
Passenger safety

monitoring
DNN (YOLO, SSD) 360◦ view camera

[3] NVIDIA Jetson TX1
Production safety

oversight in coal mines
FL-YOLO

Video surveillance
camera

[14] NVIDIA Jetson TX2
Traffic flow detection

and management
YOLOv3, DeepSORT

Canon EOS550D
camera

[172] NVIDIA Jetson TX2
Improve the

effectiveness of image
captioning

Captioning. BDR-GRU N/A

[115]
Raspberry Pi 4,

NVIDIA Jetson Xavier
COVID Identification

through chest CT scans
Anam-Net CT Scanner

[191]
NVIDIA Jetson TX2,

NVIDIA Jetson Nano
Latency estimation on

embedded systems

AlexNet, VGG16
ResNet-50,

MobileNetV2
N/A

[7]
Nvidia Jetson AGX,

Raspberry Pi 4
Hand gesture
recognition

Custom Deep CNN
model

Thermal camera

[89]

Nvidia Jetson Nano,
Nvidia Jetson TX2,

Nvidia Jetson Xavier
NX, Nvidia Jetson

Xavier AGX

Facial recognition
inference comparison

between edge and
cloud devices

MTCNN detector,
FaceNet

None

[146]
NVIDIA Jetson AGX

Xavier
Person detection using

top clothing
Mask-R-CNN,
YOLACT++

N/A

[5]
NVIDIA Jetson TX1,
NVIDIA JetsonTX2

Lightweight real-time
traffic light detection

for autonomous
vehicles

Lightweight
Convolution Neural

Network

AVT camera (only used
for data collection)

[192] NVIDIA Jetson Nano
Real-time video
analysis for edge

computing

Custom architecture
consisting of

Front-CNN and
Back-CNN

Video camera

[193] NVIDIA Jetson TX2

Low-power and
real-time deep
learning-based

multiple object visual
tracking

CNN-based custom
architecture

5MP CSI camera

[114] NVIDIA Jetson TX2
Localize veins from
color skin images.

CNN
2-CCD multi-spectral

prism camera (JAI
AD-080-CL)
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[78]

Raspberry Pi 3 B+, with
or without a neural
compute stick (Intel
Movidius), NVIDIA

Jetson Nano

Protect crops from
ungulate attacks

YOLO, Tiny-YOLO
Camera module
(Raspberry Pi)

[128] NVIDIA Jetson TX2
Detecting and tracking

sinkholes via video
streaming

Cascaded CNN Video camera

[2] NVIDIA Jetson Nano

Analyze face structure
from video feed and

detect drowsiness from
facial features

OpenCV facial
recognition

Webcam camera

[154] NVIDIA Jetson TX1

Detecting, tracking,
and geolocating based
on a monocular camera

of an aerial drone

YOLOv3 Monocular Camera

[155] NVIDIA Jetson TX2 Drone detection YOLOv3
Spherical Camera

(Ricoh Theta S)

[173] NVIDIA Jetson TX2 Filter Pruning DNNs
VGG-16, ResNet-56,
LeNet, FCNet-120

N/A

[156] NVIDIA Jetson TX2
Resource constrained

object tracking
CNN N/A

[194]
NVIDIA Jetson AGX

Xavier

Energy-efficient
acceleration of deep

neural networks
DNN N/A

[1] NVIDIA Jetson TX2
Road marking
detection for

autonomous vehicles
CNN Camera

[195] NVIDIA Jetson TX1
Semantic Segmentation

for autonomous
vehicles

DNN N/A

[196] NVIDIA Jetson TX2

Improve semantic
segmentation

performance in
contexts of various
sizes and types in

diverse environments

Segmentation CNN N/A

[90] NVIDIA Jetson Nano
Face mask detection

system
CNN

TGCAM-2000STAR
camera

[96]
NVIDIA Jetson Xavier

NX
Depth estimation

FastMDE custom
model

monocular camera

[197]

NVIDIA Jetson TX2,
Edge tensor processing
unit, neural compute

stick, and neural
compute stick2

Fusion Pruning DNNs DNN N/A

[157] NVIDIA Jetson TX2

Object detection and
object tracking on

drones with limited
power and

computational
resources

CNN Logitech BRIO camera
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[79] NVIDIA Jetson Nano
Detection of ripe coffee

beans
CNN

Intel realsense depth
camera D435

[84] NVIDIA Jetson TX2
Intelligent pest

detection
Tiny-YOLOv3

High-resolution optical
drone camera

[97] NVIDIA Jetson TX2
Personal fall detection

system
Gaussian mixture

model (GMM)
Image depth camera,

RGB camera

[198] NVIDIA Jetson TX2

Reduce computational
complexity and

memory consumption
of CNNs architecture
on low-power devices

Light-YOLOv4 N/A

[199] NVIDIA Jetson TX2

Reduce computational
complexity and

memory consumption
of CNNs architecture
on low-power devices

CNN N/A

[145] NVIDIA Jetson Nano

Identify and detect
suitable grasping point
on objects for robotic

limbs

ASP U-Net (DCNN)

A Basler acA2500-14uc
industrial RGB camera

with Computer
M3514-MP lens

[100] NVIDIA Jetson TX2
Lightweight road object

detection for
autonomous vehicles

CNN Camera

[101] NVIDIA Jetson Xavier

Lightweight Multitask
object detection and

semantic segmentation
for autonomous

vehicles

DCNN N/A

[102]
NVIDIA Jetson Xavier

NX

Path Planning for
self-driving vehicles
and robotic systems

LSTM Camera

[103] NVIDIA Jetson Nano
Thermal object

detection for assisted
driving

Thermal-YOLO
LWIR prototype
thermal camera

[200]
NVIDIA Jetson AGX

Xavier

Improve embedded
system performance in
autonomous vehicles

DNN N/A

[171]
NVIDIA Jetson Xavier

NX
Trajectory tracking for

small drones
MPC

Velodyne Lite 16 Lidar
sensor

[158] NVIDIA Jetson TX2
Navigation for indoor
autonomous drones

SSD
Fisheye lens on the
PointGrey Firefly

camera

[159]
NVIDIA Jetson TX2,

NVIDIA Jetson Nano
Object detection via
template tracking

OpenCV N/A

[176] NVIDIA Jetson Nano
Epileptic seizure

detection
DNN Electrocardiogram

[116] NVIDIA Jetson Nano
Posture recognition
system for medical

surveillance
MobilenetV2, LSTM RGB camera



Sensors 2023, 23, 2131 41 of 55

Table 13. Cont.

Paper Title Hardware Application ML Architecture Sensor

[129] NVIDIA Jetson TX2
Concrete damage

detection on the surface
of buildings

YOLO-v3 Logitech Camera

[80] NVIDIA Jetson TX2
Crop recognition for

robotic weeding
ResNet-10

Canon PowerShot
SX150 IS camera

[130]
NVIDIA Jetson AGX

Xavier
Railway defect

detection
TensorRT Camera

[147] NVIDIA Jetson Nano
Real-time metro

passenger volume
enumeration

CircleDet
HD video recording

camera

[160] NVIDIA Jetson TX2
Target tracking

amongst static and
dynamic obstacles

Model Predictive
Control (MPC)

Drone camera

[161] NVIDIA Jetson TX2
Underwater object

gripping point
detection

real-time lightweight
object detector (RLOD)

ZED binocular camera

[104]
NVIDIA Jetson Xavier

NX
Road obstacle detection

for vehicles
Siamese Neural

network
20 Hz stereo camera

[162] NVIDIA Jetson TX2
Intelligent weapons

targeting system
YOLOv5 N/A

[203]
NVIDIA Jetson TX1,
NVIDIA Jetson TX2,
NVIDIA Jetson TK1

Review of assisted
driving in resource

constrained hardware
ADAS N/A

[117] NVIDIA Jetson TX2 Diabetes diagnosis
R-CNN with
InceptionV2

Jetson TX2 onboard
camera

[17]

NVIDIA Jetson TX2,
NVIDIA Jetson Xavier

NX, and NVIDIA
Jetson AGX Xavier

Benchmarking NVIDIA
Jetson systems for
visual odometry of

flying drones

VINS-Mono,
VINS-Fusion, Kimera,

ALVIO, Stereo-MSCKF,
ORB-SLAM2 stereo,

and ROVIO

N/A

[177] NVIDIA Jetson TX2
Low-power

multimodal data
classification

DCNN
Stand-alone Dual-mode
Tongue Drive System

[201] NVIDIA Jetson TX1

Provide a less resource
costly object detection
model for embedded

systems

Tiny-YOLO-V3,
Tinier-YOLO

N/A

[143] NVIDIA Jetson Nano
Power system cyber

security
recurrent neural
networks (RNN)

N/A

[99] NVIDIA Jetson TX1
Traffic sign

identification for smart
vehicles

deep convolutional
neural network

(DCNN)
USB webcam

[202] NVIDIA Jetson Nano
Efficient video
understanding

Temporal Shift Module
(TSM)

Video camera

[113] NVIDIA Jetson TX2

Rescue of natural
disaster survivors

through drone object
detection

YOLOV3, YOLOV3-
MobileNetV1,

YOLOV3-MobileNetV3

Zenmuse XT2 gimbal
camera
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[105]
NVIDIA Jetson AGX

Xavier

Object detection and
recognition and energy

management for
autonomous vehicles

Deep reinforcement
learning (DRL), YOLO

N/A (can theoretically
use onboard camera or

radar)

[163]
NVIDIA Jetson AGX

Xavier

Object recognition for
unmanned surface

vehicles
YOLOv4, Siamese-RPN

High-definition
photoelectric vision

sensor

[81] NVIDIA Jetson TX2
Accurate weed

detection for micro
aerial vehicles

SegNet Multispectral camera

[148] Raspberry Pi 4
Smart Urban waste

management
SSD MobileNetV2 Pi Camera

[149] Raspberry Pi 4B
Garbage identification

for recycling
MobileNetV3 Camera

[131] Raspberry Pi 4 Model B
Biometric scan for entry

control

Vein and Periocular
Pattern-based

Convolutional Neural
Network (VP-CNN).

Raspberry Pi NoIR
camera

[132] Raspberry Pi 4 Real time fire detection CNN Camera

[174] Raspberry Pi 3
Patient anesthesia

monitoring
DNN Electroencephalogram

[175] Raspberry Pi 3
Human posture

detection

Multi-Mapping
Spherical

Normalization
(MMSN)

Wireless body sensors
(motion sensors,
inertial sensors)

[118]
Raspberry Pi 3 Model

B+
Reading assistance for

blind people
OCR CNN

Raspberry Pi camera
module V2

[178] Raspberry Pi 3
Driver behavior

monitoring
DCNN

IMU sensor, Shimmer
Version 3 wearable

body sensors

[106]
Raspberry Pi 3 Model

B+

Scalable and
computationally cheap

networks for
autonomous driving

DNN Raspberry Pi camera

[110]
Raspberry Pi 3 Model

B+
Early skin cancer

detection
CNN IR camera

[179]
Raspberry Pi 3 Model

B+
Smart Urban waste

management
Keras Ultrasonic sensor

[180] Raspberry Pi 3B
Fault detection in AC

electrical systems
ArcNet (CNN) Photoelectric sensor

[22] Raspberry Pi 4B
Space exploration

landing site selection
SegNet, FCN

N/A (dataset acquired
from images taken by

the Mars HiRISE
camera)

[181]
Raspberry Pi 3 Model

B+
Target classification at
road gates with radar

SVM Radar

[123]
Raspberry Pi 3 Model

B+

Activity recognition for
medical monitoring

and rehab
CNN Wearable Sensor
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[124] Raspberry Pi
Sign language

recognition
CNN Thermal camera

[11] Raspberry Pi 3+
Speed bump detection

for autonomous
vehicles

CNN Raspberry Pi camera

[182] Raspberry Pi 3B+
Human activity

recognition
CNN

Wearable multimodal
sensors

[164] Raspberry Pi 3B+
Drone landing

automation
DNN

Raspberry Pi v1.3
camera with a fisheye

lens

[119] Raspberry Pi
Cervical cancer

prevention
PiHRME PiCamera

[183] Raspberry Pi 3B+ Speech recognition EdgeRNN Audio sensor

[140] Raspberry Pi CPU heat tracking Adaptive learning Infrared thermal sensor

[91] Raspberry Pi 4
High accuracy facial

recognition
EfficientNet-Lite

(CNN-KNN)
Webcam

[4]
Raspberry Pi 3B,

NVIDIA Jetson TX1,
NVIDIA Jetson TX2

Psychological stress
monitoring

KNN, SVM
Heart rate and

accelerometer sensors

[10] Raspberry Pi 3 model B
Image recognition for

sea life
CNN-based animal

recognition
Pi Camera v2.1

[87] Raspberry Pi 3 model B Facial biometric scan LGHP Pi camera

[133]
Raspberry Pi 3 Model

B+, Intel Neural
Compute Stick 2

Security surveillance Mask R-CNN Surveillance camera

[204]
Raspberry Pi 3B+,

NVIDIA Jetson TX2

Scalable and
computationally cheap

networks for
embedded systems

DNN, MobileNetv2 N/A

[82] Raspberry Pi 4
Weed identification for

herbicide
Varied, includes CNN

and KNN

The Raspberry Pi
camera module version
2.0 with an 8-megapixel

Sony IMX219 sensor

[184] Raspberry Pi 3 Model B Motor fault diagnosis CNN Hall effect sensor

[185] Raspberry Pi 4 Model B
Machine state

monitoring
CNN

Vibration Sensor,
Accelerometers

[12] Raspberry Pi 4
Violent assault

recognition
mobile CNN

Surveillance camera
(no actual live testing)

[186] Raspberry Pi Asthma risk prediction CNN, DNN
SDS011 air quality

sensor

[165]
Raspberry Pi 3 Model

B+
Image classification

MobiHisNet (based on
MobileNet)

N/A

[92] Raspberry Pi 4
Facial recognition and

facial expression
recognition

CNN Logitech c270 camera

[166] Raspberry Pi
Counting individuals
within a given video

feed

Hidden Makarov
Model

Camera



Sensors 2023, 23, 2131 44 of 55

Table 13. Cont.

Paper Title Hardware Application ML Architecture Sensor

[120] Raspberry Pi 4 Model B
Dog health monitoring

through posture
analysis

Mask R-CNN Smart camera network

[144] Raspberry Pi 3 Model B
Pedestrian profile

recognition
2-layer CNN

FLIR Lepton thermal
camera

[94] NVIDIA Jetson TX2
Lightweight facial

recognition for
embedded systems

Facial action unit Camera

[8] Raspberry Pi 3 Model B
Speech source
identification

CNN
SSL sensors,
microphones

[167] Raspberry Pi
Fish recognition for
underwater drones

LeNet, AlexNet,
GoogLeNet

360 degrees panoramic
camera

[153] NVIDIA Jetson Nano AI traffic light control SSD algorithm Raspberry Pi camera

[187] NVIDIA Jetson Nano
Battery charge
management

Long Short-Term
Memory (LSTM)

GY169 current
converter sensor

module

[142] NVIDIA Jetson Nano
Automobile fog lamp

intelligent control
CN-FWR5 IMX219 camera

[21]

NVIDIA Jetson Nano,
NVIDIA Jetson TX1,
NVIDIA Jetson AGX

Xavier

Benchmarking paper PointNet N/A

[168] NVIDIA Jetson Nano
Identifying different

plant species

AlexNet, ResNet50,
and MobileNetv2,
within Python’s

Tensorflow framework

Photo camera

[150] NVIDIA Jetson Nano
Car counter Traffic

management
TeleBot API Logitech c922 webcam

[111] NVIDIA Jetson Nano Diabetic ulcer detection
VGGNet, MatConvNet,

and DenseNet
Thermal Camera

[151] NVIDIA Jetson Nano
Smart city traffic

management
MobileNetSSD and

YOLOv4
Camera

[188] NVIDIA Jetson TX2 Food quality analysis

Support Vector
Machines (SVM), Naive

Bayes, k-Nearest
Neighbours algorithm
(K-NN), Decision Tree,

Random Forest,
Logistic Regression,
Neural Networks

Nuclear magnetic
resonance spectrometer,
infrared spectrometer

[121]
NVIDIA Jetson Xavier

NX
Colonoscopy Mobilenet Colonoscopy camera

[83] NVIDIA Jetson TX2
Loose fruit detection

for oil palm
Faster R-CNN Camera

[127]
NVIDIA Jetson TX2,

NVIDIA Jetson Nano
Hard hat detection on

construction site
Histogram of Oriented

Gradients
Surveillance camera

[137] NVIDIA Jetson TX2
Monitoring vehicle

driver tiredness in real
time

MobileNetV3 Infrared Camera



Sensors 2023, 23, 2131 45 of 55

Table 13. Cont.

Paper Title Hardware Application ML Architecture Sensor

[152] NVIDIA Jetson Nano
Visual garbage

detection
MobileNetV3Lite

N/A (most likely a
video Camera)

[189] NVIDIA Jetson Nano

Pot plant species
identification and
watering needs

monitoring

MOBILENET SSD V2
Capacitive Soil

Moisture sensor, Water
Level Sensor

[107] NVIDIA Jetson Nano
Algorithm review for

self-driving car
navigation

SVM, ANN-MLP,
CNN-LSTM

Mini camera IMX-219

[138] NVIDIA Jetson TX2
Real-time security

surveillance for acts of
violence

Local Maximal
Occurrence (LOMO),
Crossview Quadratic

Discriminant Analysis
(XQDA)

RaspiCam camera,
panoramic spherical

camera

[139]
NVIDIA Jetson Nano,
Raspberry Pi 3 Model

B+

Rescue operation robot
computer vision

Haar Cascade, YOLO
Tiny

No IR filter camera,
LiDAR, Raspi Cam

NOIR V2.1

[134] NVIDIA Jetson Nano
Security surveillance
for abnormal activity

detection
YOLOv5 Logitech C270 Camera

[93]
NVIDIA Jetson Nano,
NVIDIA Jetson TX2

Facial ID for security

LFFD, ResNet50,
SeNet50, LFFD+

ResNet50, LFFD+
SeNet50

Camera

[190] NVIDIA Jetson Nano
Radio frequency ID

recognition

Baseline LSTM,
baseline CNN, baseline

CNMN, CNN with
ResNet, CNMN with

ResNet

Universal software
radio peripheral

[141]
NVIDIA Jetson Xavier

NX

Real-time image
processing for fusion

diagnostics

Max-Tree
Representation

Thermal image camera

[135] NVIDIA Jetson Nano
Security surveillance
for unusual behavior

2D CNN HD camera

[136]
NVIDIA Jetson Xavier

NX
Fire and smoke

detection
YOLOv3 Camera

[122] NVIDIA Jetson Nano
Travel assistance for the

visually impaired
MobileNet, SSD Optical RGB camera

[9] NVIDIA Jetson TX1
Real-time pedestrian

detection for
autonomous vehicles

Modified YOLO v2
(Model H)

Zed Stereo camera

[169]
Nvidia Jetson Nano,
Nvidia Jetson TX1,

Raspberry Pi 4

Artistic photography
aesthetic score

prediction

YOLO-CNN,
Mobilenet,

multi-threaded
aesthetic predictor

N/A

[108] NVIDIA Jetson TX2
Real-time vehicle

detection on embedded
systems

EfficientDet-Lite,
Yolov3-tiny

N/A
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[109]
NVIDIA Jetson AGX

Xavier

Uncertainty-based
real-time object

detection for
autonomous vehicles

tiny YOLOv3, Gaussian
YOLOv3

Camera

[170] NVIDIA Jetson Nano
Underwater object

detection
YOLO v3, YOLO Nano

Underwater
N/A (visual camera in

case of field testing)
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Abbreviations

The following abbreviations are used in this manuscript:

ADAS Advanced Driver-Assistance System
AI Artificial Intelligence
ANN artificial neural network
API Application Programming Interface
BDR Break Down Rate
CNN Convolutional Neural Network
CPU Central Processing Unit
CSI Camera Serial Interface
CT Computerized Tomography
DCE Data Circuit-terminating Equipment
DCNN Deep Convolutional Neural Network
DNN Deep Nerual Network
DRL Deep Reinforcement Learning
DTE Data Terminal Equipment
FCN Fully Convolutional Network
FLIR Forward Looking InfraRed
GPU Graphical Processing Unit
GRU Gated Recurrent Unit
IR Infra-Red
KNN K-Nearest Neighbors
L4T Linux for Tegra
LFFD Light and Fast Face Detector
LGHP Local Gradient Hexa Pattern
LSTM Long Short-Term Memory
LiDAR Light Detection And Ranging
MDE Monocular Depth Estimation
ML Machine Learning
MLP Multilayer Perceptron
MMSN Multi-Mapping Spherical Normalization
MPC Model Predictive Control
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MTCNN Multi-Task Cascaded Convolutional Neural Network
MoCap Motion Capture
OCR Optical Character Recognition
OS Operating System
RAM Random Access Memory
RAM Random Access Memory
RCNN Region-Based Convolutional Neural Network
RGB Red Green Blue
RNN Recurrent Neural Network
RPN Region Proposal Network
RaDAR Radio Detecting And Ranging
SDK Software Development Kit
SSD Single Shot Detector
SVM Support Vector Machine
TPU Tensor Processing Unit
TSM Temporal Shift Module
UAV Unmanned Aerial Vehicle
USB Universal Serial Bus
VP-CNN Vein and Periocular Pattern-based Convolutional Neural Network
YOLO You Only Look Once
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