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Abstract: Machine learning is an expanding field with an ever-increasing role in everyday life, with its
utility in the industrial, agricultural, and medical sectors being undeniable. Recently, this utility has
come in the form of machine learning implementation on embedded system devices. While there have
been steady advances in the performance, memory, and power consumption of embedded devices,
most machine learning algorithms still have a very high power consumption and computational
demand, making the implementation of embedded machine learning somewhat difficult. However,
different devices can be implemented for different applications based on their overall processing
power and performance. This paper presents an overview of several different implementations
of machine learning on embedded systems divided by their specific device, application, specific
machine learning algorithm, and sensors. We will mainly focus on NVIDIA Jetson and Raspberry
Pi devices with a few different less utilized embedded computers, as well as which of these devices
were more commonly used for specific applications in different fields. We will also briefly analyze
the specific ML models most commonly implemented on the devices and the specific sensors that
were used to gather input from the field. All of the papers included in this review were selected
using Google Scholar and published papers in the IEEExplore database. The selection criterion for
these papers was the usage of embedded computing systems in either a theoretical study or practical
implementation of machine learning models. The papers needed to have provided either one or,
preferably, all of the following results in their studies—the overall accuracy of the models on the
system, the overall power consumption of the embedded machine learning system, and the inference
time of their models on the embedded system. Embedded machine learning is experiencing an
explosion in both scale and scope, both due to advances in system performance and machine learning
models, as well as greater affordability and accessibility of both. Improvements are noted in quality,
power usage, and effectiveness.

Keywords: computer vision; embedded systems; Google Coral; machine learning; Nvidia Jetson;
RGB camera; Raspberry Pi; sensors

1. Introduction

Machine learning has become a ubiquitous feature in everyday life. From self-driving
vehicles, facial recognition systems, and real-time interpretation of different languages,
to security surveillance, smart home applications, and health monitoring, artificial in-
telligence has changed almost every society on earth [1-4]. Due to the extremely high
computational requirements of machine learning models, until recently, the majority of
these breakthroughs were implemented on high-power stationary computing systems.
However, continuous advancements in embedded system design have made the imple-
mentation of machine learning models on embedded computing systems for a wide variety
of mobile and low-power applications viable. One example of such an application would
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be [5], a 2020 paper by Ouyang et al., titled “Deep CNN-Based Real-Time Traffic Light De-
tector for Self-Driving Vehicles”, which proposes a method for recognizing traffic lights for
autonomous vehicles. This ever-expanding research field of machine learning implementa-
tion in limited environments of embedded systems has been titled “Embedded Machine
Learning” [6]. There are many considerations when choosing an embedded system for a
specific machine learning application, such as power limitations, specific sensor outputs,
model architecture, and monetary cost. In this review paper, we focus on the system
models and assess which systems are better suited for which specific applications and
sensing schemes.

As stated, machine learning algorithms are trained and used for many different
applications, such as hand gesture recognition [7] and speech source identification [8].
They usually have a very high performance and memory requirement for both training
and inference. Effective implementation would require the tuning and modification of the
machine learning model architecture as well as the selection of the appropriate system
depending on the priorities of the application. All machine learning applications aim to
consume as little power and computation and be as fast and accurate as possible, however,
improvement in one of these areas almost always comes at a relative cost to the other ones.
Since embedded systems can vary drastically in power consumption, processing power,
memory, storage, and pricing, it is prudent to select the appropriate system for each specific
application. As an example, a system for pedestrian detection for autonomous vehicles [9]
would prioritize performance speed and accuracy much more so than a system designed
for recognizing marine life [10], even if it comes at a much higher monetary cost.

Training a machine learning model for any task requires a dataset, which can consist
of megabytes to terabytes of images, video files, audio files, graphs, etc., and their corre-
sponding annotation files. The specific files of a dataset used for training depend on the
intended application of the machine learning model, an image classification model, for
example, would use a dataset of image files and label annotations associated with each
image. The sensing schemes used for collecting these files, both for the initial training and
testing datasets, as well as for the inference of the trained machine learning algorithm on an
embedded system, are varied. Another subject of analysis in this research was the correla-
tion between the type of sensor scheme used in each system to the overall implementation
of the system.

Most of the papers reviewed in this work utilized some form of computer vision, mainly
in areas such as obstacle detection for autonomous vehicles (such as speed bumps) [11] or
safety and security measures (such as violent assault identification) [12]. However, several
also presented embedded machine learning methods for medical applications (such as
patient heart monitoring) [13] or automating more aspects of city management (such as
managing the direction and flow of vehicular traffic) [14].

Essentially, in this review, we emphasized specific applications, embedded hardware
platforms, and sensors, then compared them based on the nature of those networks and
applications, while any other embedded machine learning review papers have a greater
focus on the performance of specific lines of hardware [15], or the network architecture
implemented on the hardware [16]. The paper is structured in the following format: 1. Ab-
stract; 2. Introduction; 3. Hardware System Considerations; 4. Specific Hardware Systems
Covered In The Review; 5. Sensing Systems; 6. Network Applications; 7. Comprehensive
Comparisons; 8. Conclusions. This layout is also displayed in Figure 1. If the readers are
interested in machine learning algorithms, models, and databases, please refer to other
review and benchmark papers such as the ones used as sources in this work [15-17]. Works
such as [18-21] and [15,17] provide a comprehensive performance analysis and benchmark
of the embedded systems used in their specified applications, while works such as [22,23]
conduct a more in-depth study on improvement methods for both system hardware and
model architecture for their specific applications.
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Figure 1. Paper Layout Showing the Distribution of Subjects Covered in the Review.

2. Objective and Method

To reiterate, the goal of this study is to summarize the current state-of-the-art research
in the embedded machine learning area for different applications, so that the researchers
could have an overview of the cutting-edge methods and results, as well predict the general
trajectory of embedded machine learning advances. The method of research for this study
was the compilation of the results gathered by the research papers referenced for this work.
Excluding the related works in the Benchmark and Review section of the references, all of
the papers presented in this review included a proposal or implementation of embedded
machine learning for a specified application with the results of each study including one or
all of the following findings: accuracy, inference speed, and power consumption.

3. Hardware

Embedded systems are computer hardware systems designed for performing ded-
icated functions in a combination with a larger system. They include and are used in
many everyday items from mobile phones and household appliances. Embedded computer
devices are a subset of embedded systems used for computational tasks for more dedicated
or remote operations, such as running machine learning algorithms in real time on small
unmanned aerial vehicles, connecting systems connected to the internet of things, and even
security monitoring. While the variety of the embedded computer devices produced and
used is quite wide, most academic research conducted on embedded machine learning is
focused on using Raspberry Pi and NVIDIA Jetson devices. Some other devices used in-
clude the ASUS Tinker board series, Google’s Coral TPU dev series, ODROID-XU4 Boards,
and the Banana Pi board series.
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3.1. General Considerations

When choosing an embedded computing device for specific applications, many dif-
ferent parameters need to be kept in mind. The parameters include, but are not limited
to, system processing speed, affected by the integrated CPU and GPU of a system, system
memory affected by the RAM, system storage space, system bus and drivers, the overall
power consumption of a system, and its cost of purchase. Generally, systems with higher
performance and memory are capable of performing more complex machine learning
tasks at a greater speed but have high power consumption rates and monetary prices. On
the other hand, cheaper and less power-intensive systems have lower performances and
memory, making them perform their dedicated task far slower.

3.2. Processor Units

Processing units are the integrated electrical circuits responsible for performing the
fundamental algorithmic and arithmetic logic processes for running a computer device.
There are different categories of processors, with the most common ones in embedded
computer systems being CPUs and GPUs. Central Processing Units, or CPUs, are the
processors present in most electrical devices and are responsible for the execution of
programs and applications, they are usually composed of multiple cores and have their
performance measured in gigahertz. Graphical Processing Units, or GPUs, are dedicated
processors used for graphical rendering, allowing devices to allocate graphically intensive
tasks, such as real-time object recognition, to them. All of the embedded computer devices
presented in this review contain both a CPU and GPU unit, with the CPUs being various
ARM Cortex multicore processors [24-34]. The GPUs for each system were more varied in
both clock speed and power consumption. More detailed descriptions are given within
each systems subsection.

3.3. Memory Units

System memory generally refers to a computing system’s Random Access Memory
or RAM, which is responsible for storing application data for quick access. The larger a
system’s RAM, the quicker the system can run simultaneous applications, making RAM
proportional to the overall performance of a system. Embedded computing devices are
packaged with their own memory component, with most embedded systems in this review
having between 1 GB, 2 GB, and 4 GB of RAM [30,31], while the most recent NVIDIA kits
have between 8 GB and 16 GB [24,28]. Memory Bandwidth is another important parameter
of system memory, indicating the rate at which data can be accessed and edited, with the
bandwidth of the system included in this review ranging from 128-bit to 256-bit.

3.4. Storage Units

Computer storage refers to the component of a computing device responsible for
retaining longtime application and computation data. While access and alteration to
storage data by the CPU are much slower than its access to RAM data, it consumes far less
power and processing capability. Storage systems come in many varieties such as flash
drives, hard drives, solid state drives, SD cards, and embedded MultiMediaCard memory
or eMMC. Hard drives have been the most common form of storage up until recently, with
their advantage over other alternatives being their overall size and their downside being
their relatively slow data access speed. Solid state drives or SSDs have provided far faster
data access at the cost of storage size, however, in recent years, SSDs have made leaps
in storage capacity and are now comparable in overall storage size to hard drives. Flash
drives are quick and easy to connect or disconnect from different computing devices while
having very small storage space, they are very similar to SSDs in terms of performance.
Secure digital cards or SD cards are also similar to flash storage but have both much smaller
sizes and storage capacities. eMMCs are architecturally similar to flash storage and are
generally used in small laptops and embedded computing systems. Most development kit
embedded computing systems contain eMMCs, this being very much the case in NVIDIA
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Jetson, Coral Edge, and ASUS Tinker board devices, and others, such as ODROID-XU4
boards, do not have their own integrated storage devices but instead have flash storage
interface. Raspberry Pi boards have interfaces for both SD cards and Flash drives.

3.5. Operating Systems

Operating systems are responsible for managing and running all of the applications
on a computing device, allowing applications to make requests for services through a
defined application program interface (API). This makes the creation and usage of various
applications much simpler, as all low-level functions, such as allocating disk space for an
app, can be delegated to the OS. Operating systems rely on a library of device drivers to their
services to specific hardware environments, so while every application makes a common
call to a storage device, it is the OS that receives that call and uses the corresponding
driver to translate the call into commands needed for the underlying hardware. Hardware
capabilities are divided into three sections: providing Ul through a CLI or GUI, launching
and managing application execution, and identifying and exposing system hardware
resources to the applications. Most personal computing devices utilize general-purpose
operating systems, such as Windows, Mac OS, and Linux, and while there are specific
embedded operating systems, mainly used in ATMs, Airplanes, and ioT devices, most
embedded computing systems either utilize operating systems based on or very similar
to general-purpose computer operating systems. For example, Nvidia Jetson boards have
Linux for Tegra included in their development software kits [35].

3.6. Bus and Drivers

Computer buses are communication systems responsible for transferring data between
the various components of a computing system. While most home computer systems have
32-bit to 64-bit buses, embedded devices have far smaller bit rates between 4-bit and 8-bit.
Drivers refer to the systems responsible for communicating the software of a computer
device to its hardware component. They generally run at a high privilege level in the OS
run time environment, and in many cases are directly linked to the OS kernel, which is a
portion of an OS such as Windows, Linux, or Mac OS, which remains memory-resident and
handles execution for all other code. Drivers are what defines the messages from the OS to a
specific device that facilitate the devices’ fulfillment of the OS’s request. The device drivers
used in each embedded computing system are related to the operating systems of each
device. For example, Raspberry Pi devices mainly use Raspberry Pi’s own operating system
which is based on Debian, while Nvidia Jetson boards mainly rely on JetPack, Nvidia’s
proprietary Software Development Kit (SDK) for their Jetson board series, which includes
the Linux for Tegra (L4T) operating system. This means the driver kernels for both of these
embedded system product lines are similar to that of a Linux computer [36].

Firmware refers to software formats that are directly embedded in specific devices,
giving users low-level control over them. Essentially, firmware is responsible for giving
simple devices their operation and system communication instructions. They are unique to
other software in that they do not rely on APIs, OSs, or device drivers for operation. They
are the first part of device programming to start sending instructions when the device is
powered on, and in some more simple devices such as keyboards, they never pause their
operations. They are mostly installed on a ROM for software protection and proximity
to the physical component of their specific device. They can only work with a basic or
low-level binary language known as machine language [37]. All of this applies to the
components within an embedded system, meaning each device within the system has its
own unique firmware with varying levels of complexity based on the function of the device.

4. Specific Systems
4.1. Nividia Jetson

Jetson is the name of a series of machine learning embedded systems by NVIDIA
used for autonomous devices and various embedded applications. While Jetson Developer
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kits vary in capability and performance, they are generally very reliable for implementing
machine learning tasks—this is especially true for more graphically intensive applications.
The downside to this is that NVIDIA Jetson boards also tend to be more costly than market
alternatives. Most of the sources shown in this review either only made use of Jetson
boards or used their combination with other devices. These specific developer kits were
the NVIDIA Jetson Nano, NVIDIA Jetson TX1, NVIDIA Jetson TX2, NVIDIA Jetson AGX
Xavier, and NVIDIA Jetson Xavier NX.

NVIDIA Jetson Nano is one of the smaller Jetson kits specialized for machine learning
tasks like image classification, object detection, segmentation, and speech processing.
It has a 128-core Maxwell GPU, a Quad-core ARM Cortex A57 1.4Remote Sensing of
EnvironmentHz CPU, 4 GB 64-bit LPDDR4 25.6 GB/s Memory, 2x MIPI CSI-2 DPHY lanes
camera, Ethernet, HDMI, and USB connection ports. Unlike most other NVIDIA kits, Nano
does not have an integrated storage unit and has to rely on SD cards for that purpose. It
has a power consumption of 5-10 Watts and with a price range of USD 300-USD 500, it is
the more affordable option out of all of the NVIDIA development kits [24].

The Jetson TX1 and TX2 series are a discontinued line of embedded system develop-
ment kits with flexible capabilities that include great performance for machine learning
tasks. As the discontinuation of this line of kits is especially recent for the TX2 series,
research publications that utilize the TX2 board are not uncommon, with the TX1 being
much rarer. The TX1 has a 256-core Maxwell GPU, a Quad-core ARM® Cortex®-A57 CPU,
a 4 GB LPDDR4 memory, a 16 GB eMMC 5.1 Flash Storage, a 5 MP Fixed Focus MIPI CSI
Camera, Ethernet, HDMI, and USB type A and Micro AB connection ports. The TX2 has
NVIDIA Pascal™ Architecture GPU, 2 64-bit CPUs, Quad-Core Cortex®-A57 Complexes,
an 8 GB L128 bit DDR4 memory, a 32 GB eMMC 5.1 Flash Storage, a 16 GB eMMC 5.1 Flash
Storage, a 5 MP Fixed Focus MIPI CSI Camera, and Ethernet, HDMI, and USB type A and
Micro AB connection ports. The power consumption of the TX1 is around 15 Watts and
that of the TX2 is about 25 Watts [25,26].

The Jetson AGX Xavier is one of the most powerful developer kits produced by
NVIDIA. It is mainly used for creating and deploying end-to-end Al robotics applications
for manufacturing, delivery, retail, and agriculture, but it could also be applied for less
intensive machine learning applications. It has a 512-core Volta GPU with Tensor Cores, an
8-core ARM v8.2 64-bit CPU, a 32 GB 256-Bit LPDDR4x memory, a 32 GB eMMC 5.1 Flash
storage, as well as two USB C ports, and an HDMI and camera connector. It has a price of
about USD 4000 and has a power consumption of 30 Watts, making it much more costly in
both price and electricity than the other Jetson kits [27].

The Jetson Xavier NX kits is another series of NVIDIA developer kits designed as
the successor to the TX series. It is power-efficient and compact, making it suitable for
machine learning application development. It has an NVIDIA Volta architecture GPU with
384 NVIDIA CUDA® cores and 48 Tensor cores, a six-core NVIDIA Carmel ARM®v8.2
64-bit CPU, an 8 GB 128-bit LPDDR4x memory, two MIPI CSI-2 DPHY lanes cameras, and
Ethernet, HDMI, and USB type A and Micro AB connection ports. It has an integrated
storage component of its own, instead of relying on a micro SD storage interface. It has a
power consumption of 10 Watts and a price range of around USD 2000. Its well-rounded
quality makes it a very good, if somewhat expensive, the choice for machine learning
implementation on embedded systems [28].

4.2. Google Coral

Google Coral Dev Board is a single-board computer by Coral that can be used to
perform fast machine learning (ML) inferencing in a small form factor; it is mainly used
for prototyping custom embedded systems, but it can also be used for embedded machine
learning on its own. It has an Edge TPU coprocessor that is capable of performing 4 trillion
operations per second, as well as being compatible with TensorFlow Lite. It has a quad
Cortex-A53 CPU, integrated GC7000 Lite Graphics, 1 GB/2 GB/4 GB LPDDR4 memory,
8 GB eMMC storage as well as a MicroSD slot, Type C, A, and microB USB, Gigabit Ethernet,
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and HMDI 2.0 ports. The overall board has a low power cost of 610 Watts and at USD 130,
the price for the board is relatively low [29].

4.3. Raspberry Pi

Raspberry Pi is a series of extremely popular embedded computers developed by the
Raspberry Pi Foundation in the United Kingdom. The uses for these systems are extremely
wide, including machine learning. Like the Jetson series, Raspberry Pi products are very
commonly used in embedded machine-learning implementation projects. For this review,
the three systems of Raspberry Pi that were commonly utilized were the Raspberry Pi 3
Model B, the Raspberry Pi 3 Model B+, and the Raspberry Pi 4 Model B.

The Raspberry Pi 3 Model B is the first iteration of the third-generation Raspberry
Pi computers. It has a Quad Core 1.2 GHz Broadcom BCM2837 64bit CPU, a 400 MHz
VideoCore IV video processor, a 1 GB LPDDR2 memory, a microSD port for storage, a
100 Base Ethernet, 4 USB 2.0, and full-size HDMI ports. It has an extremely low power
consumption of 1.5 Watts and a monetary cost of about USD 40 [30].

The Raspberry Pi 3 Model B+ is the final iteration of the third-generation Raspberry
Pi Computers. It has a Quad Core 1.4 GHz Broadcom BCM2837B0, Cortex-A53 (ARMv8)
64-bit SoC CPU, a 400 MHz VideoCore IV video processor, a 1 GB LPDDR2 memory, a
microSD port for storage, a 1000 Base Ethernet, 4 USB 2.0, and full-size HDMI ports. Its
main advantage to model 3b is its processor’s higher clock speed and its PoE (power over
Ethernet) support. At 2 Watts, its power consumption is still low but higher than that of
the model 3b series. It also has a very close monetary cost ranging around USD 40.

The Raspberry Pi 4 Model B is the first iteration of the fourth-generation Raspberry
Pi Computer. It has a Quad Core 1.5 GHz Broadcom BCM2837B0, Cortex-A72 (ARMv8)
64-bit SoC CPU, a 400 MHz VideoCore IV video processor, a choice between 1 GB, 2 GB,
4 GB, and 8 GB LPDDR2 memory, a microSD port for storage, a Gigabit Ethernet, 4 USB
2.0, and full size HDMI ports. Its main advantage to model 3b is its processor’s higher
clock speed and its PoE (power over Ethernet) support. Its newer processor and option
for memory make it a superior choice compared to the previous iteration of Raspberry pi.
It has a relatively low power consumption of 4 Watts and a monetary cost of about USD
40-USD 80 depending on the memory size [31].

4.4. ODROID XU4

The ODROID XU4 is an energy-efficient single-board embedded computing system by
Hardkernel Co. located in Rm704 Anyang K Center 1591-9 Gwanyang-dong Dongan-gu,
Anyang-si, Gyeonggi-do, South Korea. It is compatible with open-source software and can
use different versions of Linux, such as Ubuntu, as its operating system. It has Exynos5422
Cortex™-A15 2 Ghz and Cortex™-A7 Octa core CPUs, a Mali-T628 MP6 GPU, a 2 GB
LPDDR3 memory, 2 GB eMMC5.0 LPDDRS3 Flash Storage as well as a microSD slot, 2 USB
3.0 and 1 USB 2.0, Gigabit Ethernet, and HMDI 1.4 ports. It has an operating power of 5
Watts and its cost is generally around USD 100 [32].

4.5. Banana Pi

Banana Pi is an open-source hardware platform by Shenzhen SINOVOIP Co. located
in 7/F, Comprehensive Building of Zhongxing Industry City, Chuangye Road, Nanshan
District, Shenzhen, China. Like other embedded systems, it has a wide range of applications,
amongst them, embedded machine learning implementation. It has an H3 Quad-core
Cortex-A7 H.265/HEVC 4K, a Mali400MP2 GPU, 1 GB DDR3 Memory, an 8 GB eMMC
Onboard Storage, two USB 2.0 ports, an HDMI port, and an Ethernet interface. Its overall
power consumption is about 5 Watts and it has a price range of USD 50-USD 75 [33].

4.6. ASUS Tinker Board

The ASUS Tinker Board S is a powerful SBC board with a wide range of functions such
as computer vision, gesture recognition, image stabilization, and processing, as well as
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computational photography. It has a Rockchip Quad-Core RK3288 CPU, an ARM® Mali™-
T764 GPU, a 2 GB Dual-Channel DDR3 Memory and 16 GB eMMC Onboard Storage 4
USB 2.0, and an Ethernet port, and RTL GB LAN connectivity. It has a maximum power
consumption of 5 Watts and is a relatively low-price system for all of its capabilities ranging
in price from USD 100-USD 150 [34].

The ASUS Tinker Edge R is specifically developed for Al applications, containing an
integrated Machine Learning (ML) accelerator that speeds up processing efficiency, lowers
power demands, and makes it easier to build connected devices and intelligent applications.
It has an Arm® big. LITTLE™ A72+A53 Hexa-core CPU, an ARM® Mali™-T860 MP4 GPU,
a 4 GB Dual-CH LPDDR4 memory on its system, and a 2 GB LPDDR3 on the Rockchip
NPU, a 16 GB eMMC Flash Storage as well as a microSD slot, 3 USB 3.2 type A and 1 USB
3.2 Type C, Gigabit Ethernet, and HMDI ports. It can maintain a maximum power supply
of 65 Watts and is a relatively lo- price system for all of its capabilities ranging in price from
USD 200-USD 270 [38].

All of the inforamtion related to hardware specification has been summarised in
Table 1.

Table 1. Hardware specifications.

Hardware Processor RAM Storage Power Maker
ASUS Tinker Rockehip 2GB 16 GB eMMC
Board S Quad-Core Dual-Channel Onboard Storage 5W Asus
RK3288 Processor DDR3 Memory &
Banana Pi Hiﬁ‘fji}i‘;re 1 GB DDR3 8 GB eMMC sw Shenzhen
BPI-M2+ H.265/HEVC 4K Memory Onboard Storage SINOVOIP Co.
Coral TPU Dev NXP i.MX 8M 1 GB LPDDR4 8 GB eMMC
Board Quad-core Memory Onboard Storage E-10)w Coral
Cortex-A53
Exynos5422
ODROID-XU4 Cortex-A15 2 Ghz, 2 GB LPDDR3 Flash Storage
Board Cortex™-A7 Octa Memory Interface LW Hardkernel Co.
core
ASUS Tinker Edge Cortex-A72, 4 GB LPDDR4 16 GB eMMC
R Cortex-A53, Memor Onboard Stor 65 W ASUS
Mali-T860 emory oard storage
NVIDIA Jetson ARM Cortex-A57 4 GB 64-bit 16 GB eMMC 5.1
Nano MPCore LPDDR4 Onboard Storage G-10W NVIDIA
NVIDIA Jetson 4 Core ARM 4 GB 64-bit 16 GB eMMC 5.1
X1 Cortex-A57 LPDDR4 Onboard Storage 1w NVIDIA
MPCore
6 Core ARM .
NVIDIA Jetson 8 GB 64-bit 16 GB eMMC 5.1
X2 Cortex-A57 LPDDR4 Onboard Storage W NVIDIA
MPCore
NVIDIA Jetson 8 Core ARM v8.2 16 GB 256-Bit 32 GBeMMC 5.1
AGX Xavier 64-bit MPCore LPDDR4x Onboard Storage (10-30) W NVIDIA
6 Core NVIDIA . .
NY(ZDIiAr ]Igt)s(on Carmel ARM v8.2 8&1}331;&11& mlcriffe Srorage 10W NVIDIA
vie 64-bit MPCore erlace
Raspberry Pi 3 1.2 GHz Broadcom microSD storage B Raspberry Pi
Model B BCM2837 (64 Bit) 1 GB LPDDR2 interface (1L3-14H W Foundation
. 1.2 GHz . .
Ra;}i’fgg%fl 3 Quad-Core ARM 1 GB LPDDR2 mlcrifjgfioerage (1.92.1)W 1}1‘“’53\’5;?0?
Cortex-A53 (64 Bit)
Raspberry Pi 4 12 GHz (1/2/4) GB microSD storage Raspberry Pi
Model B Quad-Core ARM LPDDR2 interface @8-4Hw Foundation

Cortex-A72 (64 Bit)
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5. Sensors

Electrical sensors are components responsible for gathering input from a given physical
environment. The specific input that a sensor responds to varies from sensor to sensor
could be temperature, ultrasound waves, light waves, pressure [39,40], or motion. Sensors
do this by acting as switches in a circuit, controlling the flow of electric charges through
their overall systems. Sensors can be split into two separate overarching categories, active
sensors, and passive sensors. Active sensors emit their own radiation such as ultrasound
waves and laser, from an internal power source, which is then reflected from the objects in
the environment, the sensor then detects these reflections as inputs. radars are an example
of active sensors. Passive sensors simply detect the radiation or signature emitted from
their targets, such as body heat [41].

The most important characteristics of sensor performance are transfer function, sensi-
tivity, span, uncertainty, hysteresis, noise, resolution, and bandwidth. The transfer function
shows the functional relationship between the physical input signal and the electrical
output signal. The sensitivity is defined in terms of the relationship between the input
physical signal and the output electrical signal. The span is the range of input physical
signals that may be converted to electrical signals by the sensor. Uncertainty is generally
defined as the largest expected error between actual and ideal output signals. Hysteresis is
the width of the expected error in terms of the measured quantity for sensors that do not
return to the same output value when the input stimulus is cycled up or down. Output
noise is generated by all sensors in addition to the output signal, and since there is an
inverse relationship between the bandwidth and measurement time, it can be said that the
noise decreases with the square root of the measurement time. The resolution is defined as
the minimum detectable signal fluctuation. The bandwidth is the frequency range between
the upper and lower cutoff frequencies, which respectively correspond to the reciprocal of
the response and decay times [42].

Once sensors acquire input and convert it into electrical current, they can communicate
their data to the rest of an overarching system through a variety of means, the main
methods being to transfer data over a wired interface, or transfer data wirelessly [43,44].
Since the embedded systems studied in this research all made use of wired communication
for their sensing systems, we focus only on analog communication. Standard wired
interfaces between sensors and computing devices use serial ports, which transfer data
between the data terminal equipment (DTE) and data circuit-terminating equipment (DCE).
For successful data communication, the DTE and DCE must agree on a communication
standard, the transmission speed, the number of bits per character, and whether stop and
parity framing bits are used. Most modern-day computing devices and embedded systems
use USB standards for their communication, connection, and power peripherals, which
includes any additional sensor systems. USBs have had many port-type iterations since
their inception; USB 1.x (up to 12 Mbps speed), USB 2.0 (up to 480 Mbps speed), USB 3.0 (up
to 5 Gbps speed), and USB4 (super speed, up to 40 Gbps), most devices have ports for the
USB 2.0 and USB 3.0 port types, with the USB4 being mostly suited for mobile smartphone
devices. One of the main advantages of USB devices, including sensor systems, is that
they can have multiple functionalities through a single connection port, for example, a USB
camera can record both video and audio. These devices are referred to as composite devices
and each of their functionalities is assigned to a specific address. USB devices can draw
5V and a maximum of 500mA from a USB host, allowing both data interface for sensor
systems as well as powering the sensor component [45].

5.1. Sensor-to-Computation Pipeline

Once sensor systems receive input, they convert the input into digital data and transfer
it to a display or a larger system. The format of the gathered data depends on the specific
input a sensor collects, cameras would collect videos or images and microphones would
collect audio. The environmental data collected by sensors are then stored within internal
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or external storage components connected to the overall system. These data are then used
for whatever purpose the overall system that employed the sensor has been designed for.

As the focus of these research projects is over-viewing the capability of different em-
bedded systems for running machine learning models, all of the sensor data are transferred
to a previously trained machine learning algorithm or used to train a new algorithm based
on existing architecture. In cases of trained model deployment, depending on the exact
application of the model as well as its architecture, the stored data collected by the sensor
systems is transferred to the model to perform predictions. For example, image identifica-
tion and object recognition models will compare images files to the dataset images they
have been trained with to either identify the specific objects of interest or the entire image,
while forest biomass estimation models would compare the results gathered from lidar
sensors to their trained dataset to estimate the concentration of vegetation in certain areas
of forests [46].

5.2. Specific Sensors

Much like the different embedded computing systems that were used for machine
learning implementation, many different sensors were used in each of our review sources
depending on the application of the research. Not all sources made active use of a sensor
within their work, and mainly explored the theoretical implementation of their machine-
learning models using sensor systems. Amongst those that did implement their systems
in some capacity, many implemented some form of object detection, image recognition,
image segmentation, and other forms of computer vision, making extensive use of different
integrated and separate image and video cameras. These cameras included infrared, RGB,
Depth, Thermal, and 360-degree cameras. Other sensors used included microphones,
electrocardiograms, radar, motion sensors, LIDAR, and multi-sensors.

5.2.1. RGB Cameras

RGB color cameras or visible imaging sensors are sensor systems that collect and
store visible light waves as electrical signals that are then reorganized as rendered colored
images. The images and videos they capture replicate human vision, capturing lightwave
with (400-700) nm wavelength through light-sensitive electrical diodes, then saving them
as pixels. Modern-day cameras can capture high-definition images [47]. The main use
of these sensors is for object detection and image classification algorithms. Among the
sources in this review, the main application in which an RGB camera was implemented
included autonomous vehicles for pedestrian and sign detection, security cameras for
intruder detection, facial recognition, and employee safety monitoring, and drones for
search and rescue, domestic animal monitoring [48,49], agricultural crops, and wildlife
observation [50].

5.2.2. Infrared Cameras

Infrared cameras or thermal imaging sensors are sensor systems that collect and
store the heat signature that is emitted from objects as electronic images that show the
apparent surface temperature of the captured object. They contain sensor arrays, consisting
of thousands of detector pixels arranged in a grid on which infrared energy is focused.
The pixels then generate an electrical signal that is used to create a color map image
corresponding to the heat signature detected on an object ranging from violet to red, yellow,
and finally white, with deep violet corresponding to the lowest detected heat signature and
bright white corresponding to the highest detected heat signature [51]. In a similar sense to
RGB cameras, the main use of these sensors is for object detection and image classification
algorithms, albeit for more specialized tasks. Applications proposed by the sources in
this review included autonomous vehicles for pedestrian detection, hand gesture, sign
language, and facial expression recognition, thermal monitoring of electrical equipment,
and profile recognition in smart cities.



Sensors 2023, 23,2131

11 of 55

5.2.3. Depth Cameras

Depth or range cameras are specific forms of sensor systems used to measure the exact
three-dimensional depth of a given environment. They work by illuminating the scene
with infrared light and measuring the time-of-flight. There are two operation principles for
these sensors, pulsed light, and continuous wave amplitude modulation. In a sense, depth
camera operation is very similar to Lidar, with it relying on infrared radiation reflection
instead of laser [52]. The main application depth cameras used in among the sources of this
paper were for quad-copter drone formation control, ripe coffee beans identification, and
personal fall detection.

5.2.4. 360 Degree Cameras

360-degree cameras are sensor systems used to record images or video from all direc-
tions in 3D space using two over-180-degree cameras facing the front and rear of the device,
the borders of the two images or videos are then stitched together to create a seamless single
360 image or video file. Users and automated applications can then select a specific section
of the captured 360-image or footage for the intended use. Other than the over 180-field
of view for each camera lens, 360 cameras work in an identical fashion to RGB cameras
capturing visible spectrum light and storing it as digital data in pixel format [53,54]. While
360 cameras have various applications, from recreational ones such as vlogging and nature
photography to navigational ones such as Google Maps, the sources used in this paper
mainly relied on them for biometric recognition and marine life research.

5.2.5. Radar

RADAR, short for Radio Detecting And Ranging, is a radio transmission-based sensor
system designed for detecting objects. They operate using short-pulse electromagnetic
waves, these pulses are then reflected from objects in the path of the RADAR sensor and
are then reflected back at it. Essentially, “When these pulses intercept precipitation, part of
the energy is scattered back to the RADAR” [55]. RADAR systems can rely on 14 different
frequency bands depending on the application. RADAR systems have a wide variety of
applications, from meteorology to military surveillance and astronomical studies. Among
the sources used for this review, RADAR systems were scarcely used, and within these
cases, the main usage was for electric hybrid car deep learning-based car following systems
as well as multi-target classification for security monitoring.

5.2.6. LiDar

Lidar (light detection and ranging) sensors are sensor systems that emit millions
of laser waveforms and then collect their reflection to precisely measure the shape and
distance of physical objects in a 3D environment. Essentially, they are laser-based radar
systems. This process is repeated millions of times per second to create a precise real-
time three-dimensional map of an area called a point cloud, which can then be used for
navigation systems [56]. While the technology itself is decades old, with improvements in
Lidar performance in terms of range detection, accuracy, power consumption, as well as
physical features such as dimension and weight, its popularity has been rising in recent
years, especially in the fields of robotics, navigation, remote sensing, and advanced driving
assistance [57]. Lidars” main usage among our sources was for locating people in danger
in search and rescue operations, such as one following an earthquake, and optimizing
trajectory tracking for small multi-rotor aerial drones.

5.2.7. Microphones

Microphones are sound sensors that act as transducers, converting sound waves into
electrical current audio signals carrying the sound data. When sound waves interact with
the microphone diaphragm, the vibrations created are converted into a coinciding audio
signal via electromagnetic or electrostatic principles that will be outputted [58]. This audio
signal can then be stored as digital data and replayed or used in other applications such as
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training sound recognition machine learning models. The sources presented in this review
mainly used microphones for real-time speech source localization.

5.2.8. Body Motion Sensors

Body motion sensors, also known as motion capture sensors, are a series of sensor
systems that are used to keep track of a person or a physical movement or physical posture.
They generally work by making use of other sensing systems, including photosensors,
angle sensors, IR sensors, optical sensors, accelerometers, inertial sensors [59], and mag-
netic bearing sensors [60]. Mocap sensors have been widely known for their use in the
entertainment industry, but with recent advances, they have become more affordable and
accurate for common consumer use. The application for which motion capture was used
among the sources in this review is complex posture detection.

5.2.9. Electrocardiograms

Electrocardiograms are heart monitoring sensors used for quick analysis of a patient’s
heart [61-63]. Heart contractions generate natural electrical impulses that are measurable
by nonintrusive devices, such as lead wires placed on a patient’s skin. The measured pulses
are then converted into an electric signal that can be used to measure irregularities in the
patient’s heart rate [64]. Naturally, electrocardiograms are mainly used in medical facilities
or by caregivers and nurses to monitor heart health [65,66], however, the sources used for
this review have also utilized them for identifying epileptic seizures.

5.2.10. Electroencephalograms

Electroencephalograms are brain monitoring sensors used for analyzing a patient’s
brain activity. The brain’s processes are the result of electrical current traveling through
its neurons at varying levels depending on the current state of a patient, what they are
doing, or how they are feeling. Electroencephalograms record these currents across the
various brain regions using painless electrodes placed around a patient’s scalp. These
fluctuations recordings are then saved as either a paper or digital graph [67]. Much like
electrocardiograms, electroencephalograms are mainly used in medical facilities or by
caregivers and nurses to monitor heart health, however, sources used for this review have
also utilized them for anesthesia patient monitoring.

6. Applications

Embedded machine learning applications are all either of a remote nature or require
more mobile systems to be implemented. The applications which are covered in this review
are divided into the following categories: autonomous driving, security, personal health
and safety, unmanned aerial vehicle navigation, and agriculture.

6.1. Autonomous Driving

Autonomous driving refers to the ever-expanding field of assisted and self-driving
vehicles. It involves the implementation of a machine learning algorithm designed to detect
obstacles, street signs, pedestrians, and other vehicles. Almost all self-driving vehicle
Al models are computer vision models such as object and depth detection and distance
measurement, with some exceptions that rely on Lidar or Radar for obstacle detection. Due
to the nature of the application, the highest priority for models developed on embedded
systems for self-driving vehicles is performance speed. Driving requires extremely short
reaction time and that makes the speed at which a model can identify objects and allow the
other car systems to make driving decisions very important.

6.2. Security and Safety

Security applications of machine learning can be related to many different sections
such as intruder detection or personnel safety in hazardous worksites [68]. Once again,
most of these models are trained for computer vision purposes in order to identify different



Sensors 2023, 23,2131

13 of 55

individuals and ensure authorized access to secure locations and information. They do this
through facial recognition and biometric identification using embedded system-operated
camera systems, to name a few avenues. Ensuring personnel safety in hazardous work
environments also involves constant monitoring by camera systems, to see if any of the
employers are showing visible signs of illness or injury. Accuracy and computational speed
are both of very high import in these applications.

6.3. Healthcare

Monitoring the health of hospital and nursing home patients is one of the fields in
which machine learning has been found to be increasingly useful. The Al models trained
for these purposes are varied depending on the exact nature of the task they are created to
accomplish [69,70]. Applications involving the monitoring of the status of specific organs
of patients can rely on various different medical equipment as well as visual and thermal
cameras, such as monitoring a patient’s heart rate or brain activity, which are achieved with
electrocardiograms and electroencephalograms. Fast performance of the machine learning
models is of even greater importance in these scenarios as they can quite literally be about
"life and death". Other health monitoring applications can refer to posture recognition and
monitoring systems that rely on motion sensors and cameras to identify the posture of a
given patient and inform their caretakers in case of any danger.

6.4. Drones

Aerial drones, or unmanned aerial vehicles, have a long history of military use, but
have become increasingly utilized in everyday life over the past decade, be it for package
delivery, remote video recording, wildlife research, or simply for recreational purposes.
Many of these drones are of the quadcopter variety [71]. While most drones require remote
piloting, there has been an increasing element of automation to their navigation [72,73],
odometry, landing, and trajectory systems. Al models trained for these purposes use
pathways, object images, and balance data models. While performance speed is an impor-
tant factor for these models, accuracy takes far greater precedence as even the slightest
misclassification can result in damage to or the destruction of the drone.

6.5. Agriculture

Different agricultural sectors have also started making use of machine learning. Object
detection and facial recognition models are customized for recognizing individual animals
during feeding and drinking to measure their overall consumption as well as monitor
animal behavior and health. Object detection machine learning models are also used in
farming crops for identifying weeds within the field, damaged crops, and crops ready
for harvest, as well as any damage to the field and its fences. In both instances, the
detection accuracy and energy consumption of the models are far more important than the
performance speed.

7. Application Based System Comparison

As previously discussed, most review work on embedded machine learning has been
focused on the implementation of modified ML architecture on specific embedded devices,
whereas in this work, our focus is on identifying the advantages certain systems provide for
specific applications and sensing schemes. For this purpose, we have divided our sources
into the following categories with a summary of each presented in the Tables 2-12 after
the conclusion section. The systems are then compared by their performance and cost, the
former being assessed differently depending on the task for which the machine learning
model is trained. The method used for analyzing the performance is different from source
to source and heavily dependent on the specific application and sensory system. Each
sourced paper used a different method for analyzing model accuracy and inference speed.
Alongside the power consumption, the mean of all the final results is used to assess the
overall performance of each embedded system and presented in Figures 2-9.
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7.1. Image Recognition, Object Detection, and Computer Vision

As previously stated, different machine learning methods have been seeing an ever-
increasing application within various fields, among these methods is the broad field of
computer vision, which includes image and object detection. These applications can range
from security and agriculture to autonomous vehicles—we have further divided these
applications into the specific field in which they are applied.

7.1.1. Crop Identification

As previously discussed, like many other professions, machine learning has been
seeing an increasing level of application within the field of crop and animal agriculture.
This application can range from smart affordable farming solutions such as in [74] to the
monitoring of ripened produce as in [75]. While time is valuable in any discipline, for
agricultural machine learning applications, it is not nearly as much of a priority as power
consumption and accuracy. Most of the applications covered in this review involve the
usage of object recognition algorithms for the detection of various field or crop features but
there are other applications that are analyzed as well. The performance of these applications
is covered in Table 2 in addition to a comparison graph provided in Figure 2.

Inference Time (s)

Coral Edge TPU
Raspberry Pi 4 |
Raspberry Pi 3 B+ |
Jetson Nano
Jetson TX2 1
ASUS Tinker Board S |G

0 0.2 0.4 0.6 0.8 1 1.2 1.4

M Inference Time (s)

Figure 2. Average inference time in agricultural computer vision for devices used in this application.
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Table 2. Computer Vision in Agriculture.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
[76] ASUS Tinker Board S Crop 1de.nt1f1cat1on via Logitech C925e 89.449% 8 Watts for both sensor 07s
aerial drone wWebcam and system
Vineyard Landmark
extraction for robot Raspberrv Pi infrared
Google Edge TPU, navigation in steep slope pberty o 15 Watts for both sensor
[77] . . camera, Mako G-125C 52.98% 54.20 ms
NVIDIA Jetson TX2 vineyard environment . and system
. infrablue camera
through vine trunk
identification
Raspberry Pi 3 B+, with 10 Watts for both sensor
(78] and w1thou.t a neural Protect crops from Camera module 62.41% and system (Jetson) 67.57 ms (Jetson) 1.25 s
compufe stick, (Intel ungulate attacks (Raspberry Pi) e 3.4 Watts for both sensor (RaPi)
Movidius) NVIDIA and system (RaPi)
Jetson Nano
[79] NVIDIA Jetson Nano Detection of ripe coffee Intel realsense depth 97.23% 14 Watts for both sensor 17.49 ms
beans camera D435 and system
[80] NVIDIA Jetson TX2 Crop refzognlthn for Canon PowerShot SX150 95.9% 12.5 Watts for both 8.9 ms
robotic weeding IS camera sensor and system
[81] NVIDIA Jetson TX2 Accur.a te wee'd dete§t10n Multispectral camera 79.9% 15 Watts for both sensor 0.56 s
for micro aerial vehicles and system
Raspberry Pi camera
[82] Raspberry Pi 4 Weed 1dent%f{cat10n for  module version 2.0 with 96% 6.88 Watts for both 0167
herbicide an 8-megapixel Sony sensor and system
IMX219 sensor
[83] NVIDIA Jetson TX2 Loose fru.lt detection for Camera 949 10 Watts for both sensor Not Stated
oil palm and system
[84] NVIDIA Jetson TX2 Intelligent pest detection High-resolution optical 89.72% 7.5 Watts 114.89 ms

drone camera
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7.1.2. Face and Expression Recognition

Facial recognition is one of the most well known applications in the field of computer
vision—many personal projects, academic research studies, and computer applications
have been developed regarding or using facial recognition. There are also many specialized
models based on facial recognition, such as facial recognition models for animals [85], or fa-
cial expression recognition models that make use of existing facial recognition technologies
as a baseline [86]. The priority in facial recognition models is dependent on the application
as models used for security purposes would need to have both high accuracy and inference
speed, while commercial application models are not under as much scrutiny. Most of the
sources used in this review either implement facial recognition directly [87], or use it as
a basis for emotion and personality assessment as well [85]. The performance of these
applications is covered in Table 3 in addition to a comparison graph provided in Figure 3.

Inference Time (s) in Facial Recognition

Raspberry Pi 4
Raspberry Pi3 B I
Jetson Xavier AGX |
Jetson Xavier NX
Jetson Nano |
Jetson TX2

BananaPi W
0 20 40 60 80 100 120 140 160

M Inference Time (s)

Figure 3. Average Inference time in facial recognition for devices used in this application.

7.1.3. Depth Estimation

Depth estimation is a sub-field of machine learning that attempts to estimate depth
within 2D images. It involves the use of pixel shape and orientation for the identification
of the distance of objects within 2D images and video from the device that recorded it. Its
utility is mainly in photography and depth estimation for self-driving vehicles, while within
our sources, it was mostly used for personal projects such as in [88]. The performance of
these applications is covered in Table 4 as well as a comparison graph being provided in
Figure 4.
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Table 3. Computer Vision in Face Recognition.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
Thermal Camera
. . (Vanadium Oxide
[86] Banana Pi Emoh%neggd Ii’t?;ilonahty Microbolometer with 87.87% 4 Wat;snfgz b;te};;ensor 3.851s
gn Chalcogenide Lens and a 4
Field of View 360.)
Nvidia Jetson Nano, . .
Nvidia Jetson TX2 Facial recognition 5 Watts (Nano) 7.5 Watts ~ 0.37 s (Nano) 0.4 s (TX2)
1 T inference comparison o ) .
[89] Nvidia Jetson Xavier NX, between edee and cloud None 99.63% (TX2) 10 Watts (Xavier 0.18 s (Xavier NX) 0.28 s
Nvidia Jetson Xavier de;g,ices NX & AGX) (AGX)
AGX

Analyze face structure
[2] NVIDIA Jetson Nano from video f eed and Webcam camera 83.31% 15 Watts for both sensor 2s

detect drowsiness from and system

facial features
Face mask detection TGCAM-2000STAR o 17 Watts for both sensor
[90] NVIDIA Jetson Nano system camera 99.02% and system 30.18 ms
[87] Raspberry Pi 3 model B Facial biometric scan Pi camera 97.1% 2.8 Watts for both sensor 2.283 min
and system
. High-accuracy facial o 14 Watts for both sensor

[91] Raspberry Pi 4 recognition Webcam 75.26% and system 74.15ms

Facial recognition and
[92] Raspberry Pi 4 facial expression Logitech c270 camera 98% 14 Wai:rslgosr l;(:ilnsensor 71.14 ms

recognition Y
NVIDIA Jetson Nano, . . o 5 Watts (Nano) 7.5 Watts 0.1 s (Nano) 33.33 ms
[93] NVIDIA Jetson TX2 Facial ID for security Camera 94% (TX2) (TX2)
Lightweight facial
[94] NVIDIA Jetson TX2 recognition for Camera 58.7% 1.4 Watts 29 ms
&

embedded systems
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Table 4. Computer Vision in Depth Estimation.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
Monocular depth
estimation (MDE)
[88] NVIDIA Jetson TX1 (estimating depth from a Camera 78.3% 5 Watts 32.26 ms
single image or video
frame)
ODROID XU4 NvIDIA ~ Collision checking for g yp gl imaging 1.5 Watts (ODROID)
[95] Jetson TX2 small aer'lal Yehlcles camera 35.3% 7.5 Watts (TX2) 30 ms (ODROID)
navigation
Computationally
inexpensive
[75] ODROID XU4 misclassification D435i Depth Camera 45.8% 1.5 Watts 4.9 Watts for 36.46 ms
AR . System and Sensor
minimization for aerial
vehicles
[96] NVIDIA ];’;S(OH Xavier Depth estimation Monocular camera 87.8% 10 Watts 0.03 s
[97] NVIDIA Jetson TX2 ~ Lersonalfall detection Image depth camera, 98% 7.5 Watts 66.67 ms

system

RGB camera




Sensors 2023, 23,2131

19 of 55

Inference Time (s) in Depth Estimation

Jetson Xavier NX

Jetson TX2 ‘

ODROID XU4

0 5 10 15 20 25 30 35

M Inference Time (s)

Figure 4. Avg. inference time in depth estimation for devices used in this application.

7.1.4. Autonomous Vehicle Obstacle Recognition

One of the most widespread and focused implementations of machine learning, specif-
ically, embedded machine learning, is in autonomous or assisted vehicles. Self-driving
cars have been a staple of both science fiction and practical research for decades, but in the
past decade, they have come increasingly close to reality. Advances in machine learning
have been one of, if not the largest, driving factors behind this. While there are many
different aspects of driving that a machine-earning algorithm could automate, from speed
adjustment to the piloting of the vehicle in different directions, the focus in this review is
mainly on the implementations of detection schemes for the various obstacles a vehicle can
encounter, from other cars to pedestrians [98], road signs [99], traffic lights [5], and speed
bumpers [11]. Due to the extremely dangerous nature of this application, systems used for
these implementations need to be both as accurate and as fast as possible. The performance
of these applications is covered in Table 5 in addition to a comparison graph provided in
Figure 5.

Inference Time (s) in Autonamous Vehicles

Raspberry Pi 3 B+
Jetson Xavier
Jetson Xavier AGX
Jetson Xavier NX
Jetson Nano
Jetson TX2

Jetson TX1

ODROID XU4

o

0.05 0.1 0.15 0.2 0.25 0.3

m Inference Time (s)

Figure 5. Average inference time in autonomous vehicle obstacle recognition in devices used in this
application.
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Table 5. Computer Vision in Autonomous vehicles.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
ODROID XU4NVIDIA ~ Vighttime pedestrian FLIR A325sc thermal . 1.5 Watts (ODROID) 10 103 ms (ODROID) 43.3
[98] . detection systems for 75.7% . .
Jetson Xavier cars camera Watts (Xavier) ms (Xavier)
5] NVIDIA Jetson TX1, tr];}%i};t;;]e}i%gtezigj’cli_gﬂeor AVT camera (only used 99.3%, 5 Watts (TX1) 7.5 Watts 83.3 ms (TX1) 71.4 ms
NVIDIA Jetson TX2 5 . for data collection) =7 (TX2) (TX2)
autonomous vehicles
[1] NVIDIA Jetson TX2 ~ Road marking detection Camera 96.9% 7.5 Watts 47 ms
for autonomous vehicles
Lightweight road object
[100] NVIDIA Jetson TX2 detection for Camera 80.39% 7.5 Watts 31 ms
autonomous vehicles
Lightweight Multitask
[101] NVIDIA Jetson Xavier object detection and N/A 98.31% 10 Watts 17.36 ms
semantic segmentation
for autonomous vehicles
. Path Planning for
[102] NVIDIA ];t)s(on Xavier self-driving vehicles and Camera 93% 10 Watts 48.57 ms
robotic systems
[103] NVIDIA Jetson Nano L ermal object detection  LWIR prototype thermal 86.6% 5 Watts 333.33 ms
for assisted driving camera
[104] NVIDIA Jetson Xavier Road obstacle. detection 20 Hz stereo camera 98.1% 10 Watts 28.23 ms
NX for vehicles
[99] NVIDIA Jetson TX1 ~ Laffic sign identification USB webcam 96% 5 Watts 670 ms
for smart vehicles
Object detection and .
o N/A (can theoretically
[105] NVIDIA J e’Fson AGX recognition and energy use onboard camera or 99.63% 10 Watts 260 ms
Xavier management for radar)

autonomous vehicles
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Table 5. Cont.

Paper Title

Hardware

Application

Sensor

Accuracy

Power Consumption

Inference Time

[106]

Raspberry Pi 3 Model B+

Scalable and
computationally cheap
networks for
autonomous driving

Raspberry Pi camera

97.75%

2.1 Watts

3 ms

[11]

Raspberry Pi 3 Model B+

Speed bump detection
for autonomous vehicles

Raspberry Pi camera

97.89%

2.1 Watts

104 ms

[107]

NVIDIA Jetson Nano

Algorithm review for
self-driving car
navigation

Mini camera IMX-219

80.5%

5 Watts

Not Stated

[°]

NVIDIA Jetson TX1

Real-time pedestrian
detection for
autonomous vehicles

Zed Stereo camera

88.44%

5 Watts

33.3 ms

[108]

NVIDIA Jetson TX2

Real-time vehicle
detection on embedded
systems

N/A

85.6%

7.5 Watts

59.52 ms

[109]

NVIDIA Jetson AGX
Xavier

Uncertainty-based
real-time object detection
for autonomous vehicles

Camera

68.7%

10 Watts

14.35 ms
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7.1.5. Computer Vision in Medical Diagnosis and Disability Assistance

An interesting and beneficial application of computer vision is its use in the diagnosis
of medical conditions and in assisting individuals with disabilities. Many of the sources
presented in this review made use of RGB and thermal imaging of patients to perform
object detection and image classification to find any signs of medical conditions such as
melanoma [110] or diabetes [111], while others presented systems for assisting the visually
impaired [112]. In both presented fields of application, while a very high accuracy is of
extreme importance, a high inference speed is also paramount to any aides to special
needs individuals. The result of these benchmarks is covered in Table 6 in addition to a
comparison graph provided in Figure 6.

Inference Time (s) in Medicine & Disability
Assistance

Raspberry Pi4 8 I
Raspberry Pi3 B+ |
Jetson Xavier |
Jetson Nano |
Jetson TX2 |

0 5 10 15 20 25 30 35 40 45 50

H Inference Time (s)

Figure 6. Average inference time in medicine and disability assistance in devices used in these
applications.
7.1.6. Computer Vision in Safety and Security

A more novel application of Computer vision models is its use in security systems as
well as safety oversight networks. The sources presented in this section cover applications
in detecting violent assaults [12] and mining personnel safety [3] to detecting survivors
of severe natural disasters [113]. Most of these applications make use of RGB video and
image cameras to perform detection and recognition. The result of these benchmarks is
covered in Table 7 in addition to a comparison graph provided in Figure 7.

Inference Time (s) in Safety and Security

Raspberry Pi4 B I
Raspberry Pi 3 B+
Jetson Xavier AGX
Jetson Xavier NX
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Jetson TX2
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o
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o
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Figure 7. Average inference time in safety and security in devices used in these applications.
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Table 6. Computer Vision in Medical and Special Aide Applications.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

Visual aid system for the

[112] NVIDIA Jetson TX2 blind via real-time object Webcam 99.82% 7.5 Watts Not Stated

detection

Localize veins from color 2-CCD multi-spectral

[114] NVIDIA Jetson TX2 skin images prism camera (JAI 78.27% 7.5 Watts 530 ms

€S- AD-080-CL)
Raspberry Pi 4, NVIDIA COVID Identification o 4 Watts (Pi 4) 10 Watts . .
[115] Jetson Xavier through chest CT scans CT Scanner 98.8% (Xavier) 23.3 s (Pi4) 2.9 s (Xavier)
Posture recognition
[116] NVIDIA Jetson Nano system for medical RGB camera 83% 5 Watts 476 ms
surveillance
[117] NVIDIA Jetson TX2 Diabetes diagnosis J etsonc"l;l)ge(;:board 91.8% 7.5 Watts 48 ms
. Reading assistance for Raspberry Pi camera o

[118] Raspberry Pi 3 Model B+ blind people module V2 100% 2.1 Watts 1s

[110] Raspberry Pi 3 Model B+ Earlgestlzlcrtli(c)e:]ncer IR camera 98% 2.1 Watts 62 ms

[119] Raspberry Pi Ce;;z;c/zlni?;vfer PiCamera 90% Not Stated 52s

[120] Raspberry Pi 4 Model B t}]?r (c))i;}?z;ig; trlrll ;n;fzfll;sgis Smart camera network 100% 4 Watts 69.24 s

[111] NVIDIA Jetson Nano Diabetic ulcer detection Thermal Camera 97.9% 5 Watts Unspecified

[121] NVIDIA IISIES(OH Xavier Colonoscopy Colonoscopy camera 100% 10 Watts Unspecified
Travel assistance for the . o

[122] NVIDIA Jetson Nano visually impaired Optical RGB camera 94.87% 5 Watts 2222 ms
Activity recognition for

[123] Raspberry Pi 3 Model B+  medical monitoring and Wearable Sensor 96.63% 2.1 Watts 167.773 ms

rehab
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Table 7. Computer Vision in Safety and Security Applications.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
[124] Raspberry Pi Sign langl.lage Thermal camera 99.52% Not Stated 30 ms
recognition
Proposal of a fast and
[125] NVIDIA Jetson Xavier accurate method of UAV camera 55.6% 10 Watts 35 ms
NX power line edge
intelligent inspection
3] NVIDIA Jetson TX1 Production safety Video Surveillance 76.7% 5 Watts 27.25 ms
oversight in coal mines camera
[126] NVIDIA Jetson Nano Passenger §afety 3600 view camera 85% 5 Watts Not Stated
monitoring
NVIDIA Jetson TX2, Hard hat detection on . o 7.5 Watts (TX2) 5 Watts 68.03 ms (TX2) 111 ms
[127] NVIDIA Jetson Nano construction site Surveillance camera 97.14% (Nano) (Nano)
Detecting and tracking
[128] NVIDIA Jetson TX2 sinkholes via video Video camera 90.61% 7.5 Watts 17 ms
streaming
Concrete damage
[129] NVIDIA Jetson TX2 detection on the surface Logitech Camera 94.24% 7.5 Watts 33 ms
of buildings
[130] NVIDL; aljitz;m AGX Railway defect detection Camera 93.5% 10 Watts 29.94 ms
[131] Raspberry Pi 4 Model B Biometric scan for entry Raspberry Pi NoIR 97.2% 4 Watts Not Stated
control camera
[132] Raspberry Pi 4 Real-time fire detection Camera 97.5% 4 Watts 100 ms
[12] Raspberry Pi 4 Violent assault Surveillance camera (no 92.05% 4 Watts 250 ms
recognition actual live testing)
Raspberry Pi 3 Model
[133] B+, Intel Neural Security surveillance Surveillance camera 94% 2.1 Watts 5.5 ms
Compute Stick 2
Security surveillance for
[134] NVIDIA Jetson Nano abnormal activity Logitech C270 Camera 89% 5 Watts 250 ms

detection
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Table 7. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time

[135] NVIDIA Jetson Nano Security survelllar}ce for HD camera 97.5% 5 Watts Not Stated

unusual behavior
[136] NVIDIA ]gc;on Xavier Fire and smoke detection Camera 100% 10 Watts 100 ms

Monitoring vehicle
[137] NVIDIA Jetson TX2 driver tiredness in real Infrared Camera 94% 7.5 Watts 45.45 ms
time

Real-time security RaspiCam camera,

[138] NVIDIA Jetson TX2 surveillance for acts of panoramic spherical Not Stated 7.5 Watts 185 ms
violence camera
. No IR filter camera,
NVIDIA Jetson Nano, Rescue operation robot . . o 7.5 Watts (Nano) 50 ms (Nano) 500 ms
[139] Raspberry Pi 3 Model B+ mputer vision LiDAR, Raspi Cam 78.6% 2.1 Watts (Pi 3) (Pi3)
aspberry ode computer visio: NOIR V2.1 .1 Watts
[140] Raspberry Pi CPU heat tracking Infrared thermal sensor 90.72% Not Stated 12.3 ms
. Real-time image
[141] NVIDIA IISI’[)S(OH Xavier processing for fusion Thermal image camera Not Stated 10 Watts 48.97 ms
diagnostics
Automobile fog lamp o

[142] NVIDIA Jetson Nano . . IMX219 camera 97.5% 5 Watts Not Stated

intelligent control

Rescue of natural
[113] NVIDIA Jetson TX2 disaster survivors Zenmuse XT2 gimbal 61.97% 7.5 Watts 37.6 ms

through drone object camera
detection

[143] NVIDIA Jetson Nano Power system cyber N/A 99.96% 5 Watts Not Stated

security
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7.1.7. Smart City Management

Smart cities are an increasingly used term within tech circles that refers to, among
other things, the usage of machine learning and Al for the automation of many aspects of
city management. Many of these applications are related to traffic management [14] or to
the profiling of individuals [144]. It is very important for these models to be able to handle
a large number of objects at any given time; for this reason, inference time is of a higher
priority for these applications. Most of these applications make use of RGB video cameras
to perform detection and recognition. The result of these benchmarks is covered in Table 8
as well as a comparison graph being provided in Figure 8.

Inference Time (s) in City Management

Raspoerrypia s
Raspberry Pi 3 B _
Jetson Nano -

Jetson TX2 .

0 0.1 0.2 0.3 0.4 0.5 0.6

H Inference Time (s)

Figure 8. Average inference time in devices used in city management applications.

7.1.8. General Embedded Computer Vision

Many of the sources presented in this review could not fit into a large enough appli-
cation category of their own. These sources ranged from works that were focused on the
visual location of robotic limb grasping points [145] to ones studying the identification
of individuals via their clothing [146]. For that purpose, these sources were all included
within a generalized category presented in Table 9 as well as the comparison graphs shown
in Figure 9.

Inference Time (s) in General Computer Vision

Raspberry Pi |
Raspberry Pi4 B
Raspberry Pi3 B+ N
Raspberry Pi3 B |
Jetson AGX Xavier |
Jetson TX2 W
Jetson TX1 |

Jetson Nano 1
0 1 2 3 4 5 6 7

H Inference Time (s)

Figure 9. Average inference time in embedded computer vision devices.
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Table 8. Computer Vision in City Management.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
[14] NVIDIA Jetson TX2 Traffic flow detection |\ £38550D camera 92% 7.5 Watts 26.39 ms
and management
Real-time metro HD video recordin

[147] NVIDIA Jetson Nano passenger volume camera & 97.1% 5 Watts 128.2 ms
enumeration

[148] Raspberry Pi 4 Model B Smart Urban waste Pi Camera 91.76% 4 Watts 358.9598 ms
management

[149] Raspberry Pi4 Model B CTPage identification Camera 92.62% 4 Watts 630 ms
for recycling

[144] Raspberry Pi 3 Model B Pedestrian profile FLIR Lepton thermal 74.63% 1.4 Watts 111 ms

recognition camera

[150] NVIDIA Jetson Nano Car counter Traffic Logitech c922 webcam Not Stated 5 Watts Not Stated
management

[151] NVIDIA Jetson Nano Smart city traffic Camera 90% 5 Watts 25 ms
management

[152] NVIDIA Jetson Nano Visual garbage detection N/A (most likely a 94.56% 5 Watts 40 ms

video camera)
[153] NVIDIA Jetson Nano Al traffic light control Raspberry Pi camera 90% 5 Watts Not Stated
Table 9. General Embedded Computer Vision.
Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
[146] NVIDIA ]eron AGX Person detectlgn using N/A 92 579% 10 Watts 41.67 ms
Xavier top clothing
Detecting, tracking, and

[154] NVIDIA Jetson TX1 Iﬁf;’llé’:jlt:r‘i :;Seeri e Monocular Camera 97.6% 5 Watts 75.76 ms
aerial drone

[155] NVIDIA Jetson TX2 Drone detection Spherical Camera (Ricoh 88.9% 5 Watts 33.33 ms

Theta S)
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Table 9. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
[156] NVIDIA Jetson TX2 Resource-constrained N/A 55% 7.5 Watts 72.89 ms
object tracking
Object detection and
[157] NVIDIA Jetson TX2 ~ ODjecttrackingondrones i 1) BRIO camera 90% 7.5 Watts 243.9 ms
with limited power and
computational resources
Identifying and A Basler acA2500-14uc
[145] NVIDIA Jetson Nano detecting suitable industrial RGB camera Not Stated 5 Watts 48 ms
grasping point on objects with Computer
for robotic limbs M3514-MP lens
[158] NVIDIA Jetson TX2 Navigation for indoor Fisheye lens on the 75.5% 7.5 Watts 3454 ms
autonomous drones PointGrey Firefly camera
NVIDIA Jetson TX2, Object detection via 7.5 Watts (TX2) 5 Watts
[159] NVIDIA Jetson Nano template tracking N/A Not Stated (Nano) Not Stated
Target tracking amongst
[160] NVIDIA Jetson TX2 static and dynamic Drone camera Not Stated 7.5 Watts Not Stated
obstacles
[161] NVIDIA Jetson TX2 _Underwater object ZED binocular camera Not Stated 7.5 Watts 90.09 ms
gripping point detection
[162] NVIDIA Jetson TX2 Intelligent weapon N/A 68.9% 7.5 Watts 60 ms
targeting system
Object recognition for High-definition
[163] NVIDL’; aI s,i[;?n AGX unmanned surface photoelectric vision 81.74% 10 Watts 37.36 ms
vehicles sensor
Drone landin Raspberry Piv1.3
[164] Raspberry Pi 3 Model B+ 8 camera with a fisheye Not Stated 2.1 Watts 37.36 ms

automation

lens




Sensors 2023, 23,2131

29 of 55

Table 9. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
[10] Raspberry Pi3model B 1138¢ r:::%rf‘étm for Pi Camera v2.1 89.81% 1.4 Watts 33.33 ms
[165] Raspberry Pi 3 Model B+ Image classification N/A 83.7% 2.1 Watts 180 ms
Counting individuals
[166] Raspberry Pi within a given video Camera 90% 1.4 Watts Not Stated
feed
[167] Raspberry Pi Fish recognition for 360 degrees panoramic 879% 1.4 Watts 6s
underwater drones camera
[168] NVIDIA Jetson Nano Identifying dlfferent Photo camera 97.5% 5 Watts Not Stated
plant species
[169] I\II\;:?(;?J ]e;isoonnl\}rinlo’ Artistic photography N/A 91.02% 5 Watts (Nano and TX1) 37 ms (Nano) 17.9 ms
Raspberry Pi 4 ! aesthetic score prediction ser 4 Watts (Pi 4) (TX1)1.14s (Pi4)
[170] NVIDIA Jetson Nano Underwater object  N/A (visual camera in 74.77% 5 Watts 125 ms

detection

case of field testing)
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7.2. Non-Vision-Related Machine Learning

Among the sources used for this review, a number were unrelated to any sub-field
of computer vision and relied on different sensing schemes from LiDar [171] to ultra-
sound [13] for gathering training data and implementation, in applications from waste
management [148] to heart monitoring [13]. While the sensing scheme and overall applica-
tion of these models vastly differed from one another, their numbers for each application
and sensor were not sufficient for a proper basis-by-basis comparison. For this reason, they
are displayed within Table 10.

7.3. Embedded Machine Learning Optimization

Some of the sources in this review did not look into new applications of machine
learning, but rather sought to optimize the performance of existing machine learning
architecture on embedded system devices. The optimizations ranged from improving the
effectiveness of image captioning models on the NVIDIA Jetosn TX2 [172] to pruning deep
neural nets [173]. It should be noted that unlike the other sources in this review, most of
these papers did not have sensing schemes. The result of these benchmarks is covered in
Table 11 in addition to a comparison graph provided in Figure 10.

Inference Time (s) in Optimization

Raspberry Pi 3 B+
Jetson Nano
Jetson TX2

Jetson TX1

NVIDIA Jetson AGX Xavier NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M Inference Time (s)

Figure 10. Average inference time in devices used for testing model optimization methods.

7.4. Benchmarks, Reviews, and Machine Learning Enhancements

Among the sources used for this review, there were works of research that were not
focused on the introduction of a specific application or a new method for the implemen-
tation of machine learning tasks for any field. These papers either attempted to perform
benchmarks of different embedded system hardware via the implementation of specific
machine learning architectures on them [20] or tried to augment the learning rate of ma-
chine learning models and implement their work on embedded computing systems [23].
While most of the work that fell into this category did not include any sensing schemes, the
data gathered in them were highly relevant to this work and were for that reason included
in this review. The result of these benchmarks are covered in Table 12 and a comparison
graph is provided in Figure 11.
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Table 10. LiDar, Radar, Audio, and Motion Recognition Models.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
NVIDIA Jetson Nano, Ea'r ly cardlovasc.ular o 5 Watts (Nano) 2.78 ms (Nano)
[13] Raspberrv Pi 3 disease prevention Ultrasound 90.7 % 1.4 Watts (Pi 3) 6.95 ms (Pi 3)
Pherty through ultrasound ' '
. Patient anesthesia
[174] Raspberry Pi 3 o Electroencephalogram 95% 1.4 Watts 20 ms
monitoring
Human posture Wireless body sensors
[175] Raspberry Pi 3 P (motion sensors, inertial 98.28% 1.4 Watts 20 ms
detection
sensors)
[176] NVIDIA Jetson Nano Epileptic seizure Electrocardiogram 91.58% 5 Watts Not Stated
detection
[177] NVIDIA Jetson T2~ -OW-Power multimodal  Stand-alone dual-mode 98% 7.5 Watts 1.6 ms
data classification Tongue Drive System
Driver behavior IMU sensor, Shimmer
[178] Raspberry Pi Model 3 oo Version 3 wearable body 73.02% 1.4 Watts 4.357 s
monitoring
sensors
. Smart Urban waste .
[179] Raspberry Pi 3 Model B+ Ultrasonic sensor 88.43% 2.1 Watts 960 ms
management
[180] Raspberry Pi 3 Model B Fault de.tectlon in AC Photoelectric sensor 99.37% 1.4 Watts 31 ms
electrical systems
Target classification at
[181] Raspberry Pi 3 Model B+ road gates with radar Radar Not Stated 2.1 Watts Not Stated
SVM
[182] Raspberry Pi 3 Model B+ Human activity Wearable multimodal 99.21% 2.1 Watts 153 ms
recognition sensors
[183] Raspberry Pi 3B+ Speech recognition Audio sensor 96.82% 2.1 Watts 270 ms
Raspberry Pi 3B, Psychological stress Heart rate and o 1.4 Watts (Pi 3) 5 Watts 189 ms (Pi 3) 2.8 ms
4] NVIDIA Jetson TX1, monitorin, accelerometer sensors 96.7% (TX1) 7.5 Watts (TX2) (TX1) 4.7 ms (TX2)
NVIDIA Jetson TX2 & : :
[184] Raspberry Pi 3 Model B Motor fault diagnosis Hall effect sensor 97.05% 1.4 Watts 34s




Sensors 2023, 23,2131

32 0f 55

Table 10. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
[185] Raspberry Pi 4 Model B Machine state Vibration Sensor, 98% 4 Watts 1.002 s
monitoring Accelerometers
[186] Raspberry Pi Asthma risk prediction SDSOlslei;ro(Euahty 99% 1.4 Watts Not Stated
[8] Raspberry Pi 3 Model B Speech source SSL sensors, 89.68% 4 Watts 21 ms
identification microphones
[187] NVIDIA Jetson Nano Battery charge GY169 current converter RMSE of 1.976 5 Watts Not Stated
management sensor module
Nuclear magnetic
[188] NVIDIA Jetson TX2 Food quality analysis resonance spectrometer, 95% 7.5 Watts 4 ms
infrared spectrometer
iig;ﬁlf?gtisgsc;zz Capacitive Soil Moisture
[189] NVIDIA Jetson Nano . sensor, Water Level Not Stated 5 Watts Not Stated
watering needs
Lo Sensor
monitoring
[190] NVIDIA Jetson Nano Radio frequency ID - Universal software radio 89.27% 5 Watts 18 min
recognition peripheral
[171] NVIDIA Jetson Xavier Trajectory tracking for Velodyne Lite 16 Lidar 83% 10 Watts 100 ms
NX small drones sensor
Table 11. Embedded Machine Learning Optimization Papers.
Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
Improve the
[172] NVIDIA Jetson TX2 effectiveness of Image N/A 65.7% 7.5 Watts 230 ms
Captioning
[191] NVIDIA Jetson TX2, Latency estimation on N/A 96.39 % (Nano) 95.82 % 5 Watts (Nano) 7.5 Watts ~ 13.74 ms (Nano) 6.7 ms
NVIDIA Jetson Nano embedded systems (TX2)) (TX2) (TX2)
[192] NVIDIA Jetson Nano Real-time video analysis Video camera 85% 5 Watts 11.21 ms

for edge computing
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Table 11. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
Low-power and
[193] NVIDIA Jetson TX2 real-time deep 5MP CSI camera N/A 7.5 Watts 100 ms
learning-based multiple
object visual tracking
[173] NVIDIA Jetson TX2 Filter Pruning DNNs N/A 93.51% 7.5 Watts 8.01 ms
Energy-efficient
[194] NVIDIA J eron AGX acceleration of deep N/A N/A 10 Watts Not Stated
Xavier
neural networks
[195] NVIDIA Jetson TX1 ~Scmantic Segmentation N/A 87.3% 5 Watts 24 ms
for autonomous vehicles
Improve semantic
segmentation
[196] NVIDIA Jetson TX2 ~ Performance in contexts N/A 92.74% 7.5 Watts 92.46 ms
of various sizes and
types in diverse
environments
NVIDIA Jetson TX2,
Edge tensor processing
[197] unit, neural compute Fusion Pruning DNNs N/A 90.66% 7.5 Watts 4.7 ms
stick, and neural
compute stick2
Reduce computational
complexity and memory
[198] NVIDIA Jetson TX2 consumption of CNNs N/A 93% 7.5 Watts 66.14 ms
architecture on
low-power devices
Reduce computational
complexity and memory
[199] NVIDIA Jetson TX2 consumption of CNNs N/A 99.3% 7.5 Watts 894.85 ms

architecture on
low-power devices
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Table 11. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
Improve embedded
[200] NVIDIA eron AGX system performance in N/A 98.3% 10 Watts 690 ms
Xavier Y P
autonomous vehicles
Provide a less resource
costly object detection o
[201] NVIDIA Jetson TX1 model for embedded N/A 65.7% 5 Watts 135.2 ms
systems
[202] NVIDIA Jetson Nano Efficient video Video camera 74.1% 5 Watts 13.51 ms
understanding
Scalable and
. computationally cheap . o
[106] Raspberry Pi 3 Model B+ networks for Raspberry Pi camera 75.78% 5 Watts 284 ms
autonomous driving
Table 12. Benchmark and Review Papers.
Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
NVIDIA Jetson Nano, Enhance learning rate for
[23] Coral Edge. TPU, custom ML model with smaller  N/A (Benchmark paper) 49.6% (Nano) 49.8% 5 Watts (Nano) 2 Watts 0.3294 s (Nano) 19.8 ms
convolutional neural trainine dataset (TPU) (TPU) (TPU)
network accelerator aining datasets
[20] IE\GIDDIIAA]F; tss Oor;NAEgl)(z’ Benchmark analysis of ii}e?:?gc}iih‘;;iii 70% 5 Watts (Nano) 10 Watts 0.56 s (Nano) 47.61 ms
) 3d object detection ? (AGX) (AGX)
Xavier paper)
NVIDIA Jetson Nano, Performance analysis of o o
[18] NVIDIA Jetson TX2, different hardware for N/A (Benchmark paper) 93(531")?()2)(?1&1 Igf;) ?31)9 o 5 V\l(%l,f;?z()lia‘l;v(;)t t7s .F()P\;\)fatts %8s (1\?7205? (351)5 (TX2)
Raspberry PI 4 object detection CNNs o
Analysis of DNN
[19] NVIDIA Jetson TX1 architecture in image N/A (Benchmark paper) 69.52% 5 Watts 10.55 ms

recognition
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Table 12. Cont.

Paper Title Hardware Application Sensor Accuracy Power Consumption Inference Time
Presentation and
Risu;ef;nkgir 4E%g:ORie C;‘?(Eﬁfr?é‘e‘;fft;ee 4.75 Watts (Tinker) 2.75 0.33 s (Tinker) 0.28 s
[15] poerry ¢ & p . N/A (Benchmark paper) 92.5% Watts (Coral) 2.1 Watts (Coral) 0.21 s (Pi) 0.137 s
Coral Dev Board, presented systems in (Pi) 0.9 Watts (Nano) (Nano)
NVIDIA Jetson Nano terms of inference time ’
and power consumption
Space exploration N/A (dataset acquired
[22] Raspberry Pi 4 lanzlin sit}zz selection from images taken by the 95% 4 Watts 89 ms
8 Mars HiRISE camera)
NVIDIA Jetson Nano,
NVIDIA Jetson TX1, . Accuracy Rates Not 5 Watts (Nano & TX1) 10 94 ms (Nano) 84 ms
[21] NVIDIA Jetson AGX Benchmarking paper N/A Stated Watts (AGX) (TX1) 46 ms (AGX)
Xavier
NVIDIA Jetson TX2, Benchmarking NVIDIA
NVIDIA Jetson Xavier Jetson systems for visual Accuracy Rates Not 7.5 Watts (TX2) 10 Watts
[171 NX, and NVIDIA Jetson odometry of flying N/A Stated (NX & AGX) Speed Rates Not Stated
AGX Xavier drones
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Inference Time (s) in Benchmark Papers

ASUS Tinker Edge R I
Coral TPU I
Raspberry Pi 4  I———

Jetson Xavier AGX |
Jetson TX2 NN
Jetson TX1 |

Jetson Nano IS
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o Inference Time (s)

Figure 11. Average inference time in devices covered in referenced benchmark papers.

8. Conclusions

Rapid advances have been made in the field of machine learning, causing an explosion
of model variety, application, and performance. While many of these models are imple-
mented on powerful stationary computer devices, there are many applications that are
faced with cost, power, and size limitations for the specific usage of their models. For this
reason, the field of embedded machine learning, which is the implementation of machine
learning on embedded computing systems, has also faced a great deal of attention recently.
The main challenges faced in embedded machine learning are caused by the severe limi-
tations of embedded system devices in terms of computational performance and power,
with different devices having different performances, power requirements, and purchasing
costs. In this review, a large collection of research work and implementation of embedded
machine learning on Raspberry Pi, NVIDIA Jetson, and a few other series of devices is
presented alongside the overall power consumption, inference time, and accuracy of these
implementations. In addition, unlike many other reviews of this topic, this paper also
includes a presentation of the overall sensing scheme present in many of the works. It was
believed that this was a major dimension of embedded machine learning study overlooked
by most other reviews on the subject matter. The hope of this review is to familiarize
interested researchers in the field of embedded machine learning by giving them a general
introduction to it.

Overall, this study contained studies of several generations of embedded systems,
specifically, the Nvidia Jetson and Raspberry Pi systems, showing that much like dedicated
computing systems, embedded devices have been experiencing steady improvements in
the fields of performance and power consumption. More recent Jetson boards such as
the TX2 have a far higher performance rate compared to the TX1 while having the same
power consumption levels. As these advances continue, it stands to reason that embedded
machine learning will see even greater attention and become even more widespread. All of
the systems discussed in this work have their own distinct advantages and disadvantages
that users would need to consider when choosing a system for their embedded machine
learning application. More robust systems with high performance and relatively efficient
power usage such as the Jetson Board and Coral Dev Board line tend to be more monetarily
expensive, while more affordable options such as the Raspberry and Banana Pi boards
tend to have far lower performances. More remote applications such as agricultural object
detection systems might need a greater number of low-power systems while not having
much emphasis on performance, while autonomous vehicle applications would have a far
greater emphasis on performance and accuracy than on cost and power usage. A general
table of all sources” hardware, application, ML architecture, sensor is provided in Table 13
for interested readers.
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Table 13. Hardware specifications.

Paper Title Hardware Application ML Architecture Sensor
[76] ASUS Tinker Board S Crop 1de.n tification via SegNet, FCN-AlexNet Logitech C925e
aerial drone webcam
Thermal Camera
Emotion and (Vanadium Oxide
[86] Banana Pi . .. Hidden Markov Model Microbolometer with
Personality Recognition .
Chalcogenide Lens and
a Field of View 360.)
NVIDIA Jetson Nano, Enhance learning rate
Coral Edge TPU, . .
. for ML model with Siamese Neural
[23] custom convolutional .. N/A
smaller training Network
neural network
datasets
accelerator
Monocular depth .
estimation (MDE) Separa;)(ljez)ﬁz;amldal
[88] NVIDIA Jetson TX1 (esjclmatlpg depth f'rom Encoder-Decoder Camera
a single image or video (Custom Architecture)
frame)
Vineyard Landmark
extraction for robot
- Goolebigetry,  MBIINSER ey, e il
NVIDIA Jetson TX2 > OP y MobileNet V2 nera,
environment through infrablue camera
vine trunk
identification
8] ODROID XU4, g‘%htttig?le pefiit“farr‘ YOLOVS FLIR A325sc thermal
NVIDIA Jetson Xavier etec C:ZSS ems 1o v camera
ODROID XU4, Collision c.heck1r}g for Custom pyramid-based ~ FLIR thermal imaging
[95] small aerial vehicles . o
NVIDIA Jetson TX2 s spatial partitioning camera
navigation
Computationally
nexpensive Siamese Neural .
[75] ODROID XU4 misclassification D435i Depth Camera
e . Network
minimization for aerial
vehicles
[20] NN\\//IIDDI&]S tssc;rrllIXaGn;(), Benchmark analysis of Complex YOLOV3, g\iaej;t?lgzre\gh‘;;iii
. 3D object detection Complex YOLOv4
Xavier paper)
Performance analysis
NVIDIA Jetson Nano, .
[18] NVIDIA Jetson TX2, of dlffe.r ent hardv.vare Custom Deep-CNN N/A (Benchmark
Raspberry PI4 for object detection paper)
CNNs
Analysis of DNN
[19] NVIDIA Jetson TX1 architecture in image AlexNet, GoogLeNet, N/A (Benchmark
. SENet, MobileNet paper)
recognition
Presentation and
Asus Tinker Edge R, c;?ﬂiﬁ?gffﬁi MobileNetV2,
[15] Raspberry Pi 4, Google };esen ted systems in MobileNetV2 Lite, N/A (Benchmark
Coral Dev Board, teP;ms of in fe}r]ence time MobileNetV2 Quant. paper)
NVIDIA Jetson Nano Lite

and power
consumption
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Table 13. Cont.

Paper Title Hardware Application ML Architecture Sensor
Visual aid system for
[112] NVIDIA Jetson TX2 the blind via real-time CNN YOLOv2 Webcam
object detection
Proposal of a fast and
[125] NVIDIA Jetson Xavier accurate method of RepYOLO, YOLOV5 UAV camera
NX power line edge
intelligent inspection
NVIDIA Jetson Nano, Ea.r ly cardlovasc.ular DNN (custom models
[13] . disease prevention . Ultrasound
Raspberry Pi 3 for different tasks)
through ultrasound
[126] NVIDIA Jetson Nano Passenger safety DNN (YOLO, SSD) 3600 view camera
monitoring
3] NVIDIA Jetson TX1 Pro.ducfﬂon safety FL-YOLO Video surveillance
oversight in coal mines camera
[14] NVIDIA Jetson TX2 Traffic flow detection YOLOV3, DeepSORT Canon EOS550D
and management camera
Improve the
[172] NVIDIA Jetson TX2 effectiveness of image  Captioning. BDR-GRU N/A
captioning
Raspberry Pi 4, COVID Identification
[115] NVIDIA Jetson Xavier  through chest CT scans Anam-Net CT Scanner
NVIDIA Jetson TX2, Latency estimation on AlexNet, VGG16
[191] y ResNet-50 N/A
NVIDIA Jetson Nano embedded systems s Y
MobileNetV2
7] Nvidia Jetson AGX, Hand ge'zs.ture Custom Deep CNN Thermal camera
Raspberry Pi 4 recognition model
Nvidia Jetson Nano, . -
Nvidia Jetson TX2 Facial recognition
- L inference comparison MTCNN detector,
[89] Nvidia Jetson Xavier None
NX, Nvidia Jetson between edge and FaceNet
)’(avier AGX cloud devices
[146] NVIDIA Jetson AGX Person detection using Mask-R-CNN, N/A
Xavier top clothing YOLACT++
Lightweight real-time . .
NVIDIA Jetson TX1, traffic light detection nght‘.Nelght AVT camera (only used
[5] & Convolution Neural y
NVIDIA JetsonTX2 for autonomous for data collection)
. Network
vehicles
Real-time video Cuszgrrilsiasrgilgteocfture
[192] NVIDIA Jetson Nano anaclglrsrlls fﬁf nedge Front-CNN and Video camera
putng Back-CNN
Low-power and
real-time deep
[193] NVIDIA Jetson TX2 learning-based CNN—ba§ ed custom 5MP CSI camera
. . . architecture
multiple object visual
tracking
Localize veins from 2-CCD multi-spectral
[114] NVIDIA Jetson TX2 CNN prism camera (JAI

color skin images.

AD-080-CL)
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Paper Title Hardware Application ML Architecture Sensor
Raspberry Pi 3 B+, with
or without a neural Protect crops from Camera module
[78] compute stick (Intel e e ft e YOLO, Tiny-YOLO (Raspberry Pi)
Movidius), NVIDIA & pberry
Jetson Nano
Detecting and tracking
[128] NVIDIA Jetson TX2 sinkholes via video Cascaded CNN Video camera
streaming
Analyze face structure
[2] NVIDIA Jetson Nano from video f ced and Op enCY f'ac1a1 Webcam camera
detect drowsiness from recognition
facial features
Detecting, tracking,
[154] NVIDIA Jetson Tx1 ~ 2nd geolocating based YOLOV3 Monocular Camera
on a monocular camera
of an aerial drone
[155] NVIDIA Jetson TX2 Drone detection YOLOV3 Spherical Camera
(Ricoh Theta S)
. . VGG-16, ResNet-56,
[173] NVIDIA Jetson TX2 Filter Pruning DNNs LeNet, FCNet-120 N/A
[156] NVIDIA Jetson TX2 ~ Resource constrained CNN N/A
object tracking
Energy-efficient
[194] NVIDIA J effson AGX acceleration of deep DNN N/A
Xavier
neural networks
Road marking
[1] NVIDIA Jetson TX2 detection for CNN Camera
autonomous vehicles
Semantic Segmentation
[195] NVIDIA Jetson TX1 for autonomous DNN N/A
vehicles
Improve semantic
segmentation
[196] NVIDIA Jetson TX2 performance in Segmentation CNN N/A
contexts of various
sizes and types in
diverse environments
[90] NVIDIA Jetson Nano Face mask detection CNN TGCAM-2000STAR
system camera
[96] NVIDIA Jetson Xavier Depth estimation FastMDE custom monocular camera
NX model
NVIDIA Jetson TX2,
Edge tensor processing
[197] unit, neural compute Fusion Pruning DNN5s DNN N/A
stick, and neural
compute stick2
Object detection and
object tracking on
[157] NVIDIA Jetson TX2 drones with limited CNN Logitech BRIO camera
power and
computational

resources
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Paper Title Hardware Application ML Architecture Sensor
[79] NVIDIA Jetson Nano Detection of ripe coffee CNN Intel realsense depth
beans camera D435
[84] NVIDIA Jetson TX2 Intelhger}t pest Tiny-YOLOV3 High-resolution optical
detection drone camera
Personal fall detection Gaussian mixture Image depth camera,
[57] NVIDIA Jetson TX2 system model (GMM) RGB camera
Reduce computational
complexity and
[198] NVIDIA Jetson TX2 memory consumption Light-YOLOv4 N/A
of CNNs architecture
on low-power devices
Reduce computational
complexity and
[199] NVIDIA Jetson TX2 memory consumption CNN N/A
of CNNs architecture
on low-power devices
Identify and detect A Basler acA2500-14uc
[145] NVIDIA Jetson Nano sultabl.e grasping poTnt ASP U-Net (DCNN) 1ndusjcr1al RGB camera
on objects for robotic with Computer
limbs M3514-MP lens
Lightweight road object
[100] NVIDIA Jetson TX2 detection for CNN Camera
autonomous vehicles
Lightweight Multitask
object detection and
[101] NVIDIA Jetson Xavier = semantic segmentation DCNN N/A
for autonomous
vehicles
. Path Planning for
[102] NVIDIA ];t)s(on Xavier self-driving vehicles LSTM Camera
and robotic systems
Thermal object
[103] NVIDIA Jetson Nano detection for assisted Thermal-YOLO LWIR prototype
.. thermal camera
driving
Improve embedded
[200] NVIDIA J e.tson AGX system performance in DNN N/A
Xavier y p
autonomous vehicles
NVIDIA Jetson Xavier  Trajectory tracking for Velodyne Lite 16 Lidar
[171] MPC
NX small drones sensor
Navigation for indoor Fisheye lens on the
[158] NVIDIA Jetson TX2 5 SSD PointGrey Firefly
autonomous drones
camera
NVIDIA Jetson TX2, Object detection via
[159] NVIDIA Jetson Nano template tracking OpenCV N/A
[176] NVIDIA Jetson Nano Epileptic seizure DNN Electrocardiogram
detection
Posture recognition
[116] NVIDIA Jetson Nano system for medical MobilenetV2, LSTM RGB camera

surveillance




Sensors 2023, 23,2131

41 of 55

Table 13. Cont.

Paper Title Hardware Application ML Architecture Sensor
Concrete damage
[129] NVIDIA Jetson TX2 detection on the surface YOLO-v3 Logitech Camera
of buildings
Crop recognition for Canon PowerShot
(801 NVIDIA Jetson TX2 robotic weeding ResNet-10 5X150 IS camera
[130] NVIDIA ]efcson AGX Railway .defect TensorRT Camera
Xavier detection
Real-time metro . .
[147] NVIDIA Jetson Nano passenger volume CircleDet HD video recording
. camera
enumeration
Target tracking .
[160] NVIDIA Jetson TX2 amongst static and Model Predictive Drone camera
. Control (MPC)
dynamic obstacles
Underwater object real-time lightweight
[161] NVIDIA Jetson TX2 grlppmg’pomt object detector (RLOD) ZED binocular camera
detection
[104] NVIDIA Jetson Xavier = Road obstack? detection Siamese Neural 20 Hz stereo camera
NX for vehicles network
[162] NVIDIA Jetson TX2 [ ntelligent weapons YOLOVS N/A
targeting system
NVIDIA Jetson TX1, Review of assisted
[203] NVIDIA Jetson TX2, driving in resource ADAS N/A
NVIDIA Jetson TK1 constrained hardware
[117] NVIDIA Jetson TX2 Diabetes diagnosis R_CNN with Jetson TX2 onboard
InceptionV2 camera
NVIDIA Jetson TX2,  Benchmarking NVIDIA VINS-Mono,
NVIDIA Jetson Xavier Jetson systems for VINS-Fusion, Kimera,
[17] . ALVIO, Stereo-MSCKEF, N/A
NX, and NVIDIA visual odometry of
Jetson AGX Xavier flying dron ORB-SLAM? stereo,
eso vie yinhg drones and ROVIO
Low-power
[177] NVIDIA Jetson TX2 multimodal data DCNN Stand-alone Dual-mode
e Tongue Drive System
classification
Provide a less resource
costly object detection Tiny-YOLO-V3,
[201] NVIDIA Jetson TX1 model for embedded Tinier-YOLO N/A
systems
Power system cyber recurrent neural
[143] NVIDIA Jetson Nano security networks (RNN) N/A
Traffic sign deep convolutional
[99] NVIDIA Jetson TX1 identification for smart neural network USB webcam
vehicles (DCNN)
Efficient video Temporal Shift Module .
[202] NVIDIA Jetson Nano understanding (TSM) Video camera
ciiiiﬁii?ﬁ%i YOLOVS, YOLOV3- Zenmuse XT2 gimbal
[113] NVIDIA Jetson TX2 . MobileNetV1, &
through drone object camera

detection

YOLOV3-MobileNetV3
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Object detection and .
NVIDIA Jetson AGX recognition and energy Deep reinforcement N/A (can theoretically
[105] . . use onboard camera or
Xavier management for learning (DRL), YOLO
. radar)
autonomous vehicles
Object recognition for High-definition
[163] NVIDI?( i \e/;[Z;m AGX unmanned surface YOLOV4, Siamese-RPN photoelectric vision
vehicles sensor
Accurate weed
[81] NVIDIA Jetson TX2 detection for micro SegNet Multispectral camera
aerial vehicles
[148] Raspberry Pi 4 Smart Urban waste SSD MobileNetV2 Pi Camera
management
[149] Raspberry Pi 4B Garbage identification MobileNetV3 Camera
for recycling
Vein and Periocular
[131] Raspberry Pi 4 Model B Biometric scan for entry Patteljn—based Raspberry Pi NoIR
control Convolutional Neural camera
Network (VP-CNN).
[132] Raspberry Pi 4 Real time fire detection CNN Camera
[174] Raspberry Pi 3 Patient e.mes'thesm DNN Electroencephalogram
monitoring
Multl-Mgp ping Wireless body sensors
. Human posture Spherical .
[175] Raspberry Pi 3 . . (motion sensors,
detection Normalization inertial sensors)
(MMSN)
Raspberry Pi3 Model = Reading assistance for Raspberry Pi camera
[118] B+ blind people OCRCNN module V2
Driver behavior IMU sensor, Shimmer
[178] Raspberry Pi 3 tver behavio DCNN Version 3 wearable
monitoring
body sensors
Scalable and
[106] Raspberr}ll3 I+’1 3 Model comp;lgfvtvlgﬁjsllf}; 1(fheap DNN Raspberry Pi camera
autonomous driving
[110] Raspberr}li3 El 3 Model Earl‘}i/estl;r;igincer CNN IR camera
[179] Raspberry Pi 3 Model Smart Urban waste Keras Ultrasonic sensor
B+ management
[180] Raspberry Pi 3B Fault dgtectlon in AC ArcNet (CNN) Photoelectric sensor
electrical systems
N/A (dataset acquired
. Space exploration from images taken by
[22] Raspberry Pi 4B landing site selection SegNet, FCN the Mars HiRISE
camera)
[181] Raspberry Pi 3 Model Target c1a551f1.cat10n at SVM Radar
B+ road gates with radar
. Activity recognition for
[123] Rasp berr}l;-'lfl 3 Model medical monitoring CNN Wearable Sensor

and rehab
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[124] Raspberry Pi Sign lan.ggage CNN Thermal camera
recognition
Speed bump detection
[11] Raspberry Pi 3+ for autonomous CNN Raspberry Pi camera
vehicles
[182] Raspberry Pi 3B+ Human al.cfc1v1ty CNN Wearable multimodal
recognition Sensors
. Raspberry Piv1.3
[164] Raspberry Pi 3B+ Drone lan.dmg DNN camera with a fisheye
automation
lens
[119] Raspberry Pi Cervical cancer PiHRME PiCamera
prevention
[183] Raspberry Pi 3B+ Speech recognition EdgeRNN Audio sensor
[140] Raspberry Pi CPU heat tracking Adaptive learning Infrared thermal sensor
. High accuracy facial EfficientNet-Lite
[91] Raspberry Pi 4 recognition (CNN-KNN) Webcam
Raspberry Pi 3B, .
[4] NVIDIA Jetson TX1, Psychologlca}l stress KNN, SVM Heart rate and
NVIDIA Jetson TX2 monitoring accelerometer sensors
[10] Raspberry Pi 3 model B Image recognt ition for CNN—base(.i .ammal Pi Camera v2.1
sea life recognition
[87] Raspberry Pi 3 model B Facial biometric scan LGHP Pi camera
Raspberry Pi 3 Model
[133] B+, Intel Neural Security surveillance Mask R-CNN Surveillance camera
Compute Stick 2
Scalable and
Raspberry Pi 3B+, computationally cheap .
[204] NVIDIA Jetson TX2 networks for DNN, MobileNetv2 N/A
embedded systems
The Raspberry Pi
[82] Raspberrv Pi 4 Weed identification for Varied, includes CNN  camera module version
pherty herbicide and KNN 2.0 with an 8-megapixel
Sony IMX219 sensor
[184] Raspberry Pi3 Model B Motor fault diagnosis CNN Hall effect sensor
[185] Raspberry Pi 4 Model B Machl.ne gtate CNN Vibration Sensor,
monitoring Accelerometers
[12] Raspberry Pi 4 Violent a.s.sault mobile CNN SurvelllanFe camera
recognition (no actual live testing)
[186] Raspberry Pi Asthma risk prediction CNN, DNN SDSOlstilsl;)?uahty
Raspberry Pi 3 Model L MobiHisNet (based on
[165] B+ Image classification MobileNet) N/A
Facial recognition and
aspberry Pi acial expression ogitech c270 camera
[92] Raspberry Pi 4 facial expressi CNN Logitech c270
recognition
Counting individuals .
[166] Raspberry Pi within a given video Hlddi;[lol\(;{;k arov Camera

feed
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Dog health monitoring
[120] Raspberry Pi 4 Model B through posture Mask R-CNN Smart camera network
analysis
[144] Raspberry Pi 3 Model B Pedestrlar} Profﬂe 2-layer CNN FLIR Lepton thermal
recognition camera
Lightweight facial
[94] NVIDIA Jetson TX2 recognition for Facial action unit Camera
embedded systems
. Speech source SSL sensors,
(81 Raspberry Pi3 Model B identification CNN microphones
. Fish recognition for LeNet, AlexNet, 360 degrees panoramic
[167] Raspberry Pi underwater drones GoogLeNet camera
[153] NVIDIA Jetson Nano Al traffic light control SSD algorithm Raspberry Pi camera
GY169 current
[187] NVIDIA Jetson Nano Battery charge Long Short-Term converter sensor
management Memory (LSTM)
module
Automobile fog lamp
[142] NVIDIA Jetson Nano . . CN-FWR5 IMX219 camera
intelligent control
NVIDIA Jetson Nano,
NVIDIA Jetson TX1, . .
[21] NVIDIA Jetson AGX Benchmarking paper PointNet N/A
Xavier
AlexNet, ResNet50,
[168] NVIDIA Jetson Nano Identifying dlfferent an('i MobﬂeNet\,/Z, Photo camera
plant species within Python’s
Tensorflow framework
Car counter Traffic .
[150] NVIDIA Jetson Nano TeleBot API Logitech c922 webcam
management
[111] NVIDIA Jetson Nano Diabetic ulcer detection VGGNet, MatConvNet, Thermal Camera
and DenseNet
Smart city traffic MobileNetSSD and
[151] NVIDIA Jetson Nano management YOLOVA Camera
Support Vector
Machines (SVM), Naive
Neighboure lgorthm _ Nuclear magnetic
[188] NVIDIA Jetson TX2 Food quality analysis (K-NN), Decision Tree, r.esonance spectrometer,
infrared spectrometer
Random Forest,
Logistic Regression,
Neural Networks
[121] NVIDIA ];t)s(on Xavier Colonoscopy Mobilenet Colonoscopy camera
[83] NVIDIA Jetson TX2 ~ Lo0se fruit detection Faster R-CNN Camera
for oil palm
[127] NVIDIA Jetson TX2, Hard hat detection on Histogram of Oriented Surveillance camera
NVIDIA Jetson Nano construction site Gradients
Monitoring vehicle
[137] NVIDIA Jetson TX2 driver tiredness in real MobileNetV3 Infrared Camera

time
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[152] NVIDIA Jetson Nano Visual garbage MobileNetV3Lite N/A (mostlikely a
detection video Camera)
onnbeatimand Capacitive Soil
[189] NVIDIA Jetson Nano . MOBILENET SSD V2 Moisture sensor, Water
watering needs
.o Level Sensor
monitoring
Algorithm review for
.. SVM, ANN-MLP, ..
[107] NVIDIA Jetson Nano self—dljlvnTg car CNN-LSTM Mini camera IMX-219
navigation
Local Maximal
Real-time security Occurrence (LOMO), RaspiCam camera,
[138] NVIDIA Jetson TX2 surveillance for acts of Crossview Quadratic panoramic spherical
violence Discriminant Analysis camera
(XQDA)
NVIDIA Jetson Nano, . No IR filter camera,
[139] Raspberry Pi 3 Model Rescue operatl(}r} robot Haar CaSQade, YOLO LiDAR, Raspi Cam
B+ computer vision Tiny NOIR V2.1
Security surveillance
[134] NVIDIA Jetson Nano for abnormal activity YOLOV5 Logitech C270 Camera
detection
LFFD, ResNet50,
NVIDIA Jetson Nano, . . SeNet50, LFFD+
[93] NVIDIA Jetson TX2 Facial ID for security ResNet50, LFFD+ Camera
SeNet50
Baseline LSTM,
. baseline CNN, baseline .
[190] NVIDIA Jetson Nano Radlr‘;j;e‘rll‘i‘ggfly 1D CNMN, CNN with Urr;gf; Sa;rfoﬁgzlre
& ResNet, CNMN with perip
ResNet
NVIDIA Jetson Xavier Real—jﬂme 1mage Max-Tree .
[141] processing for fusion . Thermal image camera
NX . . Representation
diagnostics
[135] NVIDIA Jetson Nano ~ occurity surveillance 2D CNN HD camera
for unusual behavior
NVIDIA Jetson Xavier Fire and smoke
[136] NX detection YOLOvV3 Camera
[122] NVIDIA Jetson Nano Travg ! assw’Fance .for the MobileNet, SSD Optical RGB camera
visually impaired
Real-time pedestrian -
[9] NVIDIA Jetson TX1 detection for Modified YOLO v2 Zed Stereo camera
. (Model H)
autonomous vehicles
Nvidia Jetson Nano, Artistic photography Yﬁg&igﬂi\l’
[169] Nvidia Jetson TX1, aesthetic score . ’ N/A
Raspberry Pi 4 rediction multi-threaded
phetty P aesthetic predictor
Real-time vehicle .. .
[108] NVIDIA Jetson TX2 detection on embedded EfficientDet-Lite, N/A

systems

Yolov3-tiny
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Uncertainty-based
[109] NVIDIA Jetson AGX real-time object tiny YOLOv3, Gaussian Camera
Xavier detection for YOLOvV3
autonomous vehicles
[170] NVIDIA Jetson Nano Underwater object YOLO v3, YOLONano N/A (visual camera in

detection Underwater case of field testing)
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Abbreviations

The following abbreviations are used in this manuscript:

ADAS Advanced Driver-Assistance System

Al Artificial Intelligence

ANN artificial neural network

API Application Programming Interface
BDR Break Down Rate

CNN Convolutional Neural Network
CPU Central Processing Unit

CsI Camera Serial Interface

CT Computerized Tomography

DCE Data Circuit-terminating Equipment

DCNN Deep Convolutional Neural Network
DNN Deep Nerual Network

DRL Deep Reinforcement Learning
DTE Data Terminal Equipment
FCN Fully Convolutional Network
FLIR Forward Looking InfraRed
GPU Graphical Processing Unit
GRU Gated Recurrent Unit

IR Infra-Red

KNN K-Nearest Neighbors

L4T Linux for Tegra

LFFD Light and Fast Face Detector
LGHP Local Gradient Hexa Pattern
LSTM Long Short-Term Memory
LiDAR  Light Detection And Ranging

MDE Monocular Depth Estimation
ML Machine Learning
MLP Multilayer Perceptron

MMSN Multi-Mapping Spherical Normalization
MPC Model Predictive Control



Sensors 2023, 23,2131 47 of 55

MTCNN  Multi-Task Cascaded Convolutional Neural Network
MoCap Motion Capture

OCR Optical Character Recognition
oS Operating System

RAM Random Access Memory
RAM Random Access Memory
RCNN Region-Based Convolutional Neural Network
RGB Red Green Blue

RNN Recurrent Neural Network
RPN Region Proposal Network
RaDAR Radio Detecting And Ranging
SDK Software Development Kit
SSD Single Shot Detector

SVM Support Vector Machine

TPU Tensor Processing Unit

TSM Temporal Shift Module

UAV Unmanned Aerial Vehicle
USB Universal Serial Bus

VP-CNN  Vein and Periocular Pattern-based Convolutional Neural Network
YOLO You Only Look Once
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