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1. Introduction

We would like to start with congratulating the authors. Empir-
ical Bayes estimation is a very old, well studied problem. How-
ever, construction of confidence intervals in empirical Bayes
setting has been neglected, in spite of the fact that, in the
majority of practical situations, one is interested in confidence
bounds rather than point estimators.

The authors present several procedures for construction of
confidence intervals, such as simultaneous confidence intervals
via F-localization and AMARI confidence intervals for specific
values of z. They provide general constructions of the confi-
dence intervals and study their lengths and coverage probabil-
ities. One of the great successes of the paper is that it offers
algorithms in the case of a conditional distribution of a general
form. The theoretical results are stated in asymptotic form,
so that adequate coverage is guaranteed only as the number
of observations tends to infinity. Subsequently, Ignatiadis and
Wager examine separately the most important cases where the
conditional distribution P(z|u) belongs to the binomial, the
Poisson or the Gaussian family. This investigation reveals, how
much the construction of the confidence intervals and their
lengths depend on the conditional distribution P(z|u) as well
as the class of prior densities G.

This does not come as a surprise since the empirical Bayes
estimation problem is an ill-posed problems. For this reason,
we feel that, while construction of confidence intervals in the
case of a generic conditional distribution is a very valuable
undertaking, one can gain undeniable advantages by construct-
ing confidence intervals separately for specific conditional dis-
tribution families. The latter also highlights what choices of G
is most appropriate. Below, we consider construction of confi-
dence intervals in the cases of the binomial, the Poisson and
the Gaussian families when h(n) = wp™. If point or interval
estimators are available for 1 < m < M, then, due to linearity of
0 (z) with respect to h(u), the latter will allow to obtain point or
interval estimators for 6 (z) when k() € & (M), where (M)
is the set of polynomials of degree at most M.

It is easy to see that one can construct a point estimator
for 0G(z) = ag(z)/fc(z) by estimating separately the top and
the bottom of the fraction (see, e.g., Pensky 1997) and taking

into account that fg(z) = P(Z = z) in the discrete case, and
fc(z) is the pdf of Z at z in the continuous case. In addition, for
estimating ag(z), one can use the following statement:

Proposition 1 (Pensky 1997, 2002). Let there exists a function
Yz (y) such that, for every y, z, and

/P(}/Iu)llfz(y)dvo’) = p(zlw)h(p), 1

where v(y) is the Riemann-Stiltjes measure. Then,

ag(z) =/p(2|u)h(u)dG(u) =/wz(y)fc(y)dv(y)
=Eg [V:(2)]. (2)

Finally, combining the steps, one can obtain confidence inter-
vals for ag(z) = Eg[¥:(Z2)] and f5(z), and combine them,
using the following simple lemma for construction of the confi-
dence interval of the fraction:

Lemma 1. Let ag(z) and}%(z) be such that P {|ag(z) — ag(2)|
<lag(@)]81(2)} = 1 — «/2 and I[D{[](G(Z) —f6(@)| < |fc(2)]

H@| 2 1-0/2 Letlo@) = @@)/fo. M5@) < 172,
then

P {106(2) — 06(2)| < 2166(2)| (31(2) + 82(2)} = 1 — a.

2. Confidence Intervals for the Binomial Family

The case when p(z|u) ~ Binomial(N,u), z = 0,...,N, is
perhaps the one which brings the ill-posedness of the problem
to light. Indeed, since one has only (N + 1) distinct values of
fc(z), infinite-dimensional classes of priors G will likely lead to
ambiguity in the value of 6. One of the natural sets for G is the
set of polynomials &7(N) of degree at most N. Specifically, the
following statement is valid.

Lemma 2. Let h(u) = p™ where m > 1. Let g(n) = g1(u) +
() where g1 € Z(N) and g» L #(N), orthogonal to Z(N).
Then, there exists g2(u) such that fol pzlw)g(n)du = 0 for
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z =0,...,N, but fol h(w)p(zln)g(w)dp # 0 for some z €
{0,1,...,N).

Validity of the lemma follows from the fact that p(z|u) €
P (N), while h(n)p(z|ln) € (N +m)forz=0,1,...,N.

Similar statements can be proved for (N + 1)-dimensional
spaces other than 7 (N). The latter means that, unless one fixes
an (N + 1)-dimensional space G, the empirical Bayes estimator
0 (2) is not identifiable. On the other hand, as soon as such
space is fixed, one can construct confidence bounds for ag(z)
using standard techniques used in the finite-dimensional linear
regression problems.

In conclusion, the empirical Bayes estimation problem is very
ill-posed in the case of the binomial distribution and cannot be
solved without imposing finite-dimensional constraints on the
set G.

3. Confidence Intervals for the Poisson Family

While the binomial case leaves one wondering whether empiri-
cal Bayes estimation problem is always so hard, the Poisson case
presents at example, where the problem is relatively well-posed
and can be solved without imposing assumptions on class G.

In the Poisson case, v is a counting measure and equation (1)
with h(pn) = u™ yields ¥, (y) = I(y = z + m), so that 6(z) =
fa(z + m)/fc(z). Hence, given n observations Zi,...,Z, on Z,
the problem of construction of a confidence interval for 6(z)
reduces to construction of confidence intervals for the binomial
probability p, where p = fg(z + m) or p = fG(2). The latter is a
well studied problem (see, e.g., Brown, Cai, and DasGupta 2001;
Brown, Cai, and DasGupta 2002). For example, if « = q1_q/2 is
the (1 — «/2) quantile of the normal distribution, p = f5(z + k)
andp = n' YL I(Z; = z + k), where k = m for ag(z) =
]?E;(z +m)and k=0 forfg;(z), and

V(p,nk) = [p—05)kn~ /2 + \/ﬁ(l —D) +0.25k2n71,

then, the Wilson confidence interval (Brown, Cai, and Das-
Gupta 2001) yields

P—pl _ V(p,n,ic)
p TNV [p—kn2A+ k20" )" V(p,ni) ]

_* vrd _pi+o(n> (3)

N

Combination of (3) and Lemma 1 leads to the following (1 —)-
confidence interval

2o (Ve +ma —foz+m)
NG fo(z+m)

Je@( ~fa@) 1
+ 0 (_)

fe(2)
Note that construction of this interval does not involve any
assumptions on the family of priors G, which confirms that the
case of the Poisson conditional distribution is very mildly ill-
posed.

106(2) — O6(2)| <

4. Construction Ideas in the Gaussian Case

In the case of the normal distribution, the ill-posedness of the
problem appears as a requirement of estimating derivatives of
the pdf f(z) on the basis of observations Z, . . ., Z,,. Denote the
standard normal pdf by ¢ (x) and observe that, for h(u) =

one has
o0

ag(2) = Bp(2) = / w"¢(z — n)dG(w) (4)

—0oQ
It turns out that B, (2) can be represented as a linear combina-

tion of the derivatives fG (2),j=0,...,m,of the pdf f5(2), with
the coefficients being polynomials in z. Indeed, By(z) = f5(2)
and it is well known that By (z) = f};(z)+zfG(2), so the statement
is true for m = 0 and m = 1. One can show that a similar

representation holds for any value of m.

Lemma 3. For any m = 0,1, ... and B,,(2z) introduced in (4),

one has

Bu(z) = ZQ,('")(Z) D@ (5)

Here, Q(m) e Xm-10D,l=0,1,.
polynomials in z, defined as follows: QM (z) = 1and

m—1 )
QA D=3 (’J”) ~D)" 7 Hyi(2) @ (@),

=

.., m, are the degree (m — )

0<l<m-1 (6)
where Hjps(x) is the Mth probabilistic Hermite polynomial,

given by
I am 2
ez e 2 ), M=01,...
dxM ( >

Proof. Formula (5) can be proved by induction. Certainly, (5)
holds for m = 1. Assume that (5) is correctform = 1,...,M —
1. Note that (see, Abramowitz and Stegun 1964, (22.5.18)), for
any M =0, 1,.. ., the Mth derivative of f5(z) can be written as

£ () = / Hy(y— W (0dG), M=0,1,...

(7)
Due to the equations (22.5.19) of Abramowitz and Stegun (1964)
and (8.958.2) of Gradshteyn and Ryzhik (2007), derive
M

M
Hy(y—p) =Yy (k)<—mM" Hi(y)
k=0

Substituting this expression into (7), obtain

Hpy(x) = (=1

MM
@ =Bu@ + Y (k) (—D¥ Hi(2) By« (2).
k=1

Rearranging the last formula and plugging in the value of
Bpi_k(2) from (5), due to induction assumption derive that

Bu(z) = <M’<z)+2< )( D! Hi(2) ZQ§M V1@

l_
(8)
Finally, introducing j = M — k and changing the order of
summation in (8), obtain (6) with m = M, so Lemma holds
for m = M. O



At last, we need to show that Ql(m) € P(m—I)forl < m.ltis

easy to see that the statement holds for m = 1. We assume that
ng) € P(m—1) forl < m < M — 1, and show that the same is
true for m = M. Note that it immediately follows from (8) that

Q%) (2) = 1 € Z(0). Moreover, since Hy—j(z) € (M — j)
and Ql(’) (z) € Z(j — 1), by examining (6) withm = M and [ <
M — 1, we obtain that Q" (z) € Z(M —j+j—1) = P(M—1),
which completes the proof.

Lemma 3 asserts that ag(z) is linear combination of f(z) and
its derivatives. Note that construction of a confidence interval
for a nonparametric density function and its jth derivative is a
standard problem that has been investigated previously in, e.g.,
Gine and Nickl (2010) and Chen (2017). In general, the choice
of a kernel (or a wavelet basis if a wavelet estimator is employed)

depends on the Sobolev ball W(A), to which fG(]) belongs. In a
generic nonparametric setting, adapting to an unknown Sobolev

space is a difficult problem. However, it is a lot easier if fé] ) is
given by Equation (7).

Consider the case where distribution G has a density function
g. For any function q denote its Fourier transform F[g](w)
at o by g*(w). Then, using the fact that F[H; * ¢](w) =
(iw)k exp(—w?/2) (see (7.374.6) of Gradshteyn and Ryzhik

(2007)), one obtains that Fourier transform of, fG(J ) is g ))* (w) =
(iwy exp(—w?/2)g* (w), where g*(w) = Flgl(w). Hence,

Ve wiA) = / ¥ (@? + 1)°e |g* () Pdw < A2
—00

The latter implies that fg) € W,(A) with A = A(s,j) =
max [(a)2 + 1)5+je_‘*’2} for any s > 0. In addition, (fg))* has

an exponential decay, for example, |(fé’))*(a))| exp(w?/4) <
A(j) where A(j) = max {(w? + 1) exp(—w?/4)}. Adapting to
the exponential decay of a density function or its derivatives
requires using kernels (or wavelets) with unbounded supports.
For n — 00, estimators based on those kernels (or wavelets)
have better asymptotic properties. However, when 7 is finite,
those kernels may be outperformed by kernels (or wavelets) with
finite support, that are adapted to Sobolev spaces with finite s.
One can try various values of s and then choose the confidence
intervals with the shortest length. Methodology of Gine and
Nickl (2010) allows one to obtain asymptotic convergence rates
for the interval estimators for each value of s.

Unfortunately, due to our regrettable lack of knowledge of
Julia language and the short time window, we could not com-
pare the proposed approach to the confidence intervals in the

paper.

5. Classes of Prior Densities

Our discussion above should have convinced the reader that
construction of empirical Bayes confidence intervals depend
considerably on the choice of the class of prior distributions
G. Since this class is unknown, one would like to have a broad
range of choices for G, unless identifiability issues are of a major
concern, as it happens in the case of the binomial distribution. In
particular, one would like to construct confidence intervals that
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are adaptive to unknown nonparametric classes. As one can see
from our discussion, this is possible in the case of the Poisson
or the Gaussian conditional distribution family. One of the
properties of such nonparametric classes is that they are broad
enough, so misspecification of G stops being an issue. On the flip
side, for the same reason, those families are not well represented
by a finite subset of G. The present paper studies much more
narrow choices of G. For example, a Gaussian location mixture
such as LN(0.252,[—4,4]), used in simulations, can be easily
approximated by a finite-dimensional family of distributions by
discretizing the interval [—4, 4].

In addition, it is easy to see that, for g € LN(0.25%,[—4,4)),
one has [g*(w)| = exp(—w?/32), so this choice leads to g*(w)
with the exponential decay. After close examination, one discov-
ers that all families G studied in the paper (specifically, LA in
(34), SN in (35), GPXY and GNesSPiky i (36)) are comprised
of prior densities with |g*(w)| < exp(—aw?) for some a >
0, and, hence, represent “the best case scenario” as far as the
inference for the Gaussian conditional density is concerned. For
this reason, the reference to low convergence rates in Pensky
(2017) is unsuitable, since Pensky (2017) only considered densi-
ties whose Fourier transforms ¢g* (@) have polynomial decay as
|w| — oo. By following calculations in Pensky (2017), one can
easily observe that convergence rates improve whenever |g* ()|
has an exponential decay. Nevertheless, if this assumption is
unfounded, it would lead to wrong conclusions.

The discussion above is by no means a criticism of the paper
by Ignatiadis and Wager but rather a deliberation of the further
directions in the construction of confidence intervals. We hope
that the present paper will encourage the long overdue research
on interval estimators and hypothesis testing in the empirical
Bayes setting.
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